1
|
Wang Y, Zou W, Niu Y, Wang S, Chen B, Xiong R, Zhang P, Luo Z, Wu Y, Fan C, Zhong Z, Xu P, Peng Y. Phosphorylation of enteroviral 2A pro at Ser/Thr125 benefits its proteolytic activity and viral pathogenesis. J Med Virol 2023; 95:e28400. [PMID: 36511115 PMCID: PMC10107306 DOI: 10.1002/jmv.28400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Enteroviral 2A proteinase (2Apro ), a well-established and important viral functional protein, plays a key role in shutting down cellular cap-dependent translation, mainly via its proteolytic activity, and creating optimal conditions for Enterovirus survival. Accumulated data show that viruses take advantage of various signaling cascades for their life cycle; studies performed by us and others have demonstrated that the extracellular signal-regulated kinase (ERK) pathway is essential for enterovirus A71 (EV-A71) and other viruses replication. We recently showed that ERK1/2 is required for the proteolytic activity of viral 2Apro ; however, the mechanism underlying the regulation of 2Apro remains unknown. Here, we demonstrated that the 125th residue Ser125 of EV-A71 2Apro or Thr125 of coxsackievirus B3 2Apro , which is highly conserved in the Enterovirus, was phosphorylated by ERK1/2. Importantly, 2Apro with phosphor-Ser/Thr125 had much stronger proteolytic activity toward eukaryotic initiation factor 4GI and rendered the virus more efficient for multiplication and pathogenesis in hSCARB2 knock-in mice than that in nonphospho-Ser/Thr125A (S/T125A) mutants. Notably, phosphorylation-mimic mutations caused deleterious changes in 2Apro catalytic function (S/T125D/E) and in viral propagation (S125D). Crystal structure simulation analysis showed that Ser125 phosphorylation in EV-A71 2Apro enabled catalytic Cys to adopt an optimal conformation in the catalytic triad His-Asp-Cys, which enhances 2Apro proteolysis. Therefore, we are the first to report Ser/Thr125 phosphorylation of 2Apro increases enteroviral adaptation to the host to ensure enteroviral multiplication, causing pathogenicity. Additionally, weakened viruses containing a S/T125A mutation could be a general strategy to develop attenuated Enterovirus vaccines.
Collapse
Affiliation(s)
- Yuya Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenjia Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Sanyuan Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Bangtao Chen
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rui Xiong
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yihong Peng
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
2
|
Ganciclovir-resistant cytomegalovirus retinitis in a 4-month-old infant. J AAPOS 2022; 26:336-338. [PMID: 36152756 DOI: 10.1016/j.jaapos.2022.08.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/04/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
We present a case of ganciclovir-resistant cytomegalovirus retinitis (CMV) in a 4-month-old boy with congenital CMV infection. This case highlights the potential utility of a combination of intermittent viral load monitoring and retinal examinations in cases of congenital CMV with retinitis.
Collapse
|
3
|
The Conserved Herpesviridae Protein Kinase (CHPK) of Gallid alphaherpesvirus 3 (GaHV3) Is Required for Horizontal Spread and Natural Infection in Chickens. Viruses 2022; 14:v14030586. [PMID: 35336996 PMCID: PMC8955875 DOI: 10.3390/v14030586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
We have formerly identified the conserved herpesvirus protein kinase (CHPK) as essential for horizontal transmission of Marek’s disease virus (MDV). Thus far, it has been confirmed that the mutation of the invariant lysine (K) of CHPKs abrogates kinase activity and that CHPK activity is required for MDV horizontal transmission. Since CHPK is conserved among all members of the Herpesviridae, we hypothesized that CHPK, and specifically its kinase activity, is important for the horizontal transmission of other herpesviruses. To test this hypothesis, we utilized our experimental and natural infection model in chickens with MD vaccine strain 301B/1 of Gallid alphaherpesvirus 3 (GaHV3). First, we mutated the invariant lysine (K) 157 of 301B/1 CHPK to alanine (A) and determined whether it was required for horizontal transmission. To confirm the requirement of 301B/1 CHPK activity for transmission, a rescued virus was generated in which the A157 was changed back to a K (A157K). Despite both the CHPK mutant (K157A) and rescuant (A157K) viruses having replication defects in vivo, only the CHPK mutant (K157A) was unable to spread to contact chickens, while both wild-type and rescuant (A157K) viruses transmitted efficiently, confirming the importance of CHPK activity for horizontal spread. The data confirm that CHPK is required for GaHV3 transmission and suggest that the requirement of avian CHPKs for natural infection is conserved.
Collapse
|
4
|
Sanchez V, Britt W. Human Cytomegalovirus Egress: Overcoming Barriers and Co-Opting Cellular Functions. Viruses 2021; 14:v14010015. [PMID: 35062219 PMCID: PMC8778548 DOI: 10.3390/v14010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
The assembly of human cytomegalovirus (HCMV) and other herpesviruses includes both nuclear and cytoplasmic phases. During the prolonged replication cycle of HCMV, the cell undergoes remarkable changes in cellular architecture that include marked increases in nuclear size and structure as well as the reorganization of membranes in cytoplasm. Similarly, significant changes occur in cellular metabolism, protein trafficking, and cellular homeostatic functions. These cellular modifications are considered integral in the efficient assembly of infectious progeny in productively infected cells. Nuclear egress of HCMV nucleocapsids is thought to follow a pathway similar to that proposed for other members of the herpesvirus family. During this process, viral nucleocapsids must overcome structural barriers in the nucleus that limit transit and, ultimately, their delivery to the cytoplasm for final assembly of progeny virions. HCMV, similar to other herpesviruses, encodes viral functions that co-opt cellular functions to overcome these barriers and to bridge the bilaminar nuclear membrane. In this brief review, we will highlight some of the mechanisms that define our current understanding of HCMV egress, relying heavily on the current understanding of egress of the more well-studied α-herpesviruses, HSV-1 and PRV.
Collapse
Affiliation(s)
- Veronica Sanchez
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35294, USA;
- Correspondence:
| | - William Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35294, USA;
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Piret J, Boivin G. Antiviral Drugs Against Herpesviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:1-30. [PMID: 34258735 DOI: 10.1007/978-981-16-0267-2_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the nucleoside analogue, acyclovir, represented a milestone in the management of infections caused by herpes simplex virus and varicella-zoster virus. Ganciclovir, another nucleoside analogue, was then used for the management of systemic and organ-specific human cytomegalovirus diseases. The pyrophosphate analogue, foscarnet, and the nucleotide analogue, cidofovir, have been approved subsequently and constitute the second-line antiviral drugs. However, the viral DNA polymerase is the ultimate target of all these antiviral agents with a possible emergence of cross-resistance between these drugs. Recently, letermovir that targets the viral terminase complex was approved for the prophylaxis of human cytomegalovirus infections in hematopoietic stem cell transplant recipients. Other viral targets such as the protein kinase and the helicase-primase complex are also evaluated for the development of novel potent inhibitors against herpesviruses.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Laval University, Quebec City, QC, Canada.
| |
Collapse
|
6
|
The Cytomegalovirus Protein Kinase pUL97:Host Interactions, Regulatory Mechanisms and Antiviral Drug Targeting. Microorganisms 2020; 8:microorganisms8040515. [PMID: 32260430 PMCID: PMC7232230 DOI: 10.3390/microorganisms8040515] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) expresses a variety of viral regulatory proteins that undergo close interaction with host factors including viral-cellular multiprotein complexes. The HCMV protein kinase pUL97 represents a viral cyclin-dependent kinase ortholog (vCDK) that determines the efficiency of HCMV replication via phosphorylation of viral and cellular substrates. A hierarchy of functional importance of individual pUL97-mediated phosphorylation events has been discussed; however, the most pronounced pUL97-dependent phenotype could be assigned to viral nuclear egress, as illustrated by deletion of the UL97 gene or pharmacological pUL97 inhibition. Despite earlier data pointing to a cyclin-independent functionality, experimental evidence increasingly emphasized the role of pUL97-cyclin complexes. Consequently, the knowledge about pUL97 involvement in host interaction, viral nuclear egress and additional replicative steps led to the postulation of pUL97 as an antiviral target. Indeed, validation experiments in vitro and in vivo confirmed the sustainability of this approach. Consequently, current investigations of pUL97 in antiviral treatment go beyond the known pUL97-mediated ganciclovir prodrug activation and henceforward include pUL97-specific kinase inhibitors. Among a number of interesting small molecules analyzed in experimental and preclinical stages, maribavir is presently investigated in clinical studies and, in the near future, might represent a first kinase inhibitor applied in the field of antiviral therapy.
Collapse
|
7
|
Expression of the Conserved Herpesvirus Protein Kinase (CHPK) of Marek's Disease Alphaherpesvirus in the Skin Reveals a Mechanistic Importance for CHPK during Interindividual Spread in Chickens. J Virol 2020; 94:JVI.01522-19. [PMID: 31801854 DOI: 10.1128/jvi.01522-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
The Herpesviridae encode many conserved genes, including the conserved herpesvirus protein kinase (CHPK) that has multifunctional properties. In most cases, herpesviruses lacking CHPK can propagate in cell culture to various degrees, depending on the virus and cell culture system. However, in the natural animal model system of Marek's disease alphaherpesvirus (MDV) in chickens, CHPK is absolutely required for interindividual spread from chicken to chicken. The lack of biological reagents for chicken and MDV has limited our understanding of this important gene during interindividual spread. Here, we engineered epitope-tagged proteins in the context of virus infection in order to detect CHPK in the host. Using immunofluorescence assays and Western blotting during infection in cell culture and in chickens, we determined that the invariant lysine 170 (K170) of MDV CHPK is required for interindividual spread and autophosphorylation of CHPK and that mutation to methionine (M170) results in instability of the CHPK protein. Using these newly generated viruses allowed us to examine the expression of CHPK in infected chickens, and these results showed that mutant CHPK localization and late viral protein expression were severely affected in feather follicles wherein MDV is shed, providing important information on the requirement of CHPK for interindividual spread.IMPORTANCE Marek's disease in chickens is caused by Gallid alphaherpesvirus 2, better known as Marek's disease alphaherpesvirus (MDV). Current vaccines only reduce tumor formation but do not block interindividual spread from chicken to chicken. Understanding MDV interindividual spread provides important information for the development of potential therapies to protect against Marek's disease while also providing a reliable natural host in order to study herpesvirus replication and pathogenesis in animals. Here, we studied the conserved Herpesviridae protein kinase (CHPK) in cell culture and during infection in chickens. We determined that MDV CHPK is not required for cell-to-cell spread, for disease induction, and for oncogenicity. However, it is required for interindividual spread, and mutation of the invariant lysine (K170) results in stability issues and aberrant expression in chickens. This study is important because it addresses the critical role CHPK orthologs play in the natural host.
Collapse
|
8
|
Human cytomegalovirus overcomes SAMHD1 restriction in macrophages via pUL97. Nat Microbiol 2019; 4:2260-2272. [PMID: 31548682 DOI: 10.1038/s41564-019-0557-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/09/2019] [Indexed: 12/30/2022]
Abstract
The host restriction factor sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) is an important component of the innate immune system. By regulating the intracellular nucleotide pool, SAMHD1 influences cell division and restricts the replication of viruses that depend on high nucleotide concentrations. Human cytomegalovirus (HCMV) is a pathogenic virus with a tropism for non-dividing myeloid cells, in which SAMHD1 is catalytically active. Here we investigate how HCMV achieves efficient propagation in these cells despite the SAMHD1-mediated dNTP depletion. Our analysis reveals that SAMHD1 has the capability to suppress HCMV replication. However, HCMV has evolved potent countermeasures to circumvent this block. HCMV interferes with SAMHD1 steady-state expression and actively induces SAMHD1 phosphorylation using the viral kinase pUL97 and by hijacking cellular kinases. These actions convert SAMHD1 to its inactive phosphorylated form. This mechanism of SAMHD1 inactivation by phosphorylation might also be used by other viruses to overcome intrinsic immunity.
Collapse
|
9
|
El Helou G, Razonable RR. Safety considerations with current and emerging antiviral therapies for cytomegalovirus infection in transplantation. Expert Opin Drug Saf 2019; 18:1017-1030. [PMID: 31478398 DOI: 10.1080/14740338.2019.1662787] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Human cytomegalovirus (HCMV) is a major contributor of morbidity and mortality, and its management is essential for the successful outcome of solid organ and hematopoietic stem cell transplantation. Areas covered: This review discusses the safety profiles of currently available and emerging antiviral drugs and the other strategies for HCMV prevention and treatment after transplantation. Expert opinion: Strategies for management of HCMV rely largely on the use of antiviral agents that inhibit viral DNA polymerase (ganciclovir/valganciclovir, foscarnet, and cidofovir/brincidofovir) and viral terminase complex (letermovir), with different types and degrees of adverse effects. An investigational agent, maribavir, exerts its anti-CMV effect through UL97 inhibition, and its safety profile is under clinical evaluation. In choosing the antiviral medication to use, it is important to consider these safety profiles in addition to overall efficacy. In addition to antiviral drugs, reduction of immunosuppression is often generally needed in the management of HCMV infection, but with a potential risk of allograft rejection or graft-versus-host disease. The use of HCMV-specific or non-specific intravenous immunoglobulins remains debated, while adoptive HCMV-specific T cell therapy remains investigational, and associated with unique set of adverse effects.
Collapse
Affiliation(s)
- Guy El Helou
- Division of Infectious Diseases, Department of Medicine, and William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, and William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
10
|
Piret J, Boivin G. Clinical development of letermovir and maribavir: Overview of human cytomegalovirus drug resistance. Antiviral Res 2019; 163:91-105. [PMID: 30690043 DOI: 10.1016/j.antiviral.2019.01.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/28/2023]
Abstract
The prevention and treatment of human cytomegalovirus (HCMV) infections is based on the use of antiviral agents that currently target the viral DNA polymerase and that may cause serious side effects. The search for novel inhibitors against HCMV infection led to the discovery of new molecular targets, the viral terminase complex and the viral pUL97 kinase. The most advanced compounds consist of letermovir (LMV) and maribavir (MBV). LMV inhibits the cleavage of viral DNA and its packaging into capsids by targeting the HCMV terminase complex. LMV is safe and well tolerated and exhibits pharmacokinetic properties that allow once daily dosing. LMV showed efficacy in a phase III prophylaxis study in hematopoietic stem cell transplant (HSCT) recipients seropositive for HCMV. LMV was recently approved under the trade name Prevymis™ for prophylaxis of HCMV infection in adult seropositive recipients of an allogeneic HSCT. Amino acid substitutions conferring resistance to LMV selected in vitro map primarily to the pUL56 and rarely to the pUL89 and pUL51 subunits of the HCMV terminase complex. MBV is an inhibitor of the viral pUL97 kinase activity and interferes with the morphogenesis and nuclear egress of nascent viral particles. MBV is safe and well tolerated and has an excellent oral bioavailability. MBV was effective for the treatment of HCMV infections (including those that are refractory or drug-resistant) in transplant recipients in two phase II studies and is further evaluated in two phase III trials. Mutations conferring resistance to MBV map to the UL97 gene and can cause cross-resistance to ganciclovir. MBV-resistant mutations also emerged in the UL27 gene in vitro and could compensate for the inhibition of pUL97 kinase activity by MBV. Thus, LMV and probably MBV will broaden the armamentarium of antiviral drugs available for the prevention and treatment of HCMV infections.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada.
| |
Collapse
|
11
|
Britt WJ, Prichard MN. New therapies for human cytomegalovirus infections. Antiviral Res 2018; 159:153-174. [PMID: 30227153 DOI: 10.1016/j.antiviral.2018.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
The recent approval of letermovir marks a new era of therapy for human cytomegalovirus (HCMV) infections, particularly for the prevention of HCMV disease in hematopoietic stem cell transplant recipients. For almost 30 years ganciclovir has been the therapy of choice for these infections and by today's standards this drug exhibits only modest antiviral activity that is often insufficient to completely suppress viral replication, and drives the selection of drug-resistant variants that continue to replicate and contribute to disease. While ganciclovir remains the therapy of choice, additional drugs that inhibit novel molecular targets, such as letermovir, will be required as highly effective combination therapies are developed not only for the treatment of immunocompromised hosts, but also for congenitally infected infants. Sustained efforts, largely in the biotech industry and academia, have identified additional highly active lead compounds that have progressed into clinical studies with varying levels of success and at least two have the potential to be approved in the near future. Some of the new drugs in the pipeline inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapeutic regimens. Here, we will describe some of the unique features of HCMV biology and discuss their effect on therapeutic needs. Existing drugs will also be discussed and some of the more promising candidates will be reviewed with an emphasis on those progressing through clinical studies. The in vitro and in vivo antiviral activity, spectrum of antiviral activity, and mechanism of action of new compounds will be reviewed to provide an update on potential new therapies for HCMV infections that have progressed significantly in recent years.
Collapse
Affiliation(s)
- William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA
| | - Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA.
| |
Collapse
|
12
|
Regulation of Herpes Simplex Virus 2 Protein Kinase UL13 by Phosphorylation and Its Role in Viral Pathogenesis. J Virol 2018; 92:JVI.00807-18. [PMID: 29899106 DOI: 10.1128/jvi.00807-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
UL13 proteins are serine/threonine protein kinases encoded by herpes simplex virus 1 (HSV-1) and HSV-2. Although the downstream effects of the HSV protein kinases, mostly those of HSV-1 UL13, have been reported, there is a lack of information on how these viral protein kinases are regulated in HSV-infected cells. In this study, we used a large-scale phosphoproteomic analysis of HSV-2-infected cells to identify a physiological phosphorylation site in HSV-2 UL13 (i.e., Ser-18) and investigated the significance of phosphorylation of this site in HSV-2-infected cell cultures and mice. Our results were as follows. (i) An alanine substitution at UL13 Ser-18 (S18A) significantly reduced HSV-2 replication and cell-to-cell spread in U2OS cells to a level similar to those of the UL13-null and kinase-dead mutations. (ii) The UL13 S18A mutation significantly impaired phosphorylation of a cellular substrate of this viral protein kinase in HSV-2-infected U2OS cells. (iii) Following vaginal infection of mice, the UL13 S18A mutation significantly reduced mortality, HSV-2 replication in the vagina, and development of vaginal disease to levels similar to those of the UL13-null and the kinase-dead mutations. (iv) A phosphomimetic substitution at UL13 Ser-18 significantly restored the phenotype observed with the UL13 S18A mutation in U2OS cells and mice. Collectively, our results suggested that phosphorylation of UL13 Ser-18 regulated UL13 function in HSV-2-infected cells and that this regulation was critical for the functional activity of HSV-2 UL13 in vitro and in vivo and also for HSV-2 replication and pathogenesis.IMPORTANCE Based on studies on cellular protein kinases, it is obvious that the regulatory mechanisms of protein kinases are as crucial as their functional consequences. Herpesviruses each encode at least one protein kinase, but the mechanism by which these kinases are regulated in infected cells remains to be elucidated, with a few exceptions, although information on their functional effects has been accumulating. In this study, we have shown that phosphorylation of the HSV-2 UL13 protein kinase at Ser-18 regulated its function in infected cells, and this regulation was critical for HSV-2 replication and pathogenesis in vivo UL13 is conserved in all members of the family Herpesviridae, and this is the first report clarifying the regulatory mechanism of a conserved herpesvirus protein kinase that is involved in viral replication and pathogenesis in vivo Our study may provide insight into the regulatory mechanisms of the other conserved herpesvirus protein kinases.
Collapse
|
13
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Thymidine kinase and protein kinase in drug-resistant herpesviruses: Heads of a Lernaean Hydra. Drug Resist Updat 2018; 37:1-16. [PMID: 29548479 DOI: 10.1016/j.drup.2018.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herpesviruses thymidine kinase (TK) and protein kinase (PK) allow the activation of nucleoside analogues used in anti-herpesvirus treatments. Mutations emerging in these two genes often lead to emergence of drug-resistant strains responsible for life-threatening diseases in immunocompromised populations. In this review, we analyze the binding of different nucleoside analogues to the TK active site of the three α-herpesviruses [Herpes Simplex Virus 1 and 2 (HSV-1 and HSV-2) and Varicella-Zoster Virus (VZV)] and present the impact of known mutations on the structure of the viral TKs. Furthermore, models of β-herpesviruses [Human cytomegalovirus (HCMV) and human herpesvirus-6 (HHV-6)] PKs allow to link amino acid changes with resistance to ganciclovir and/or maribavir, an investigational chemotherapeutic used in patients with multidrug-resistant HCMV. Finally, we set the basis for the understanding of drug-resistance in γ-herpesviruses [Epstein-Barr virus (EBV) and Kaposi's sarcoma associated herpesvirus (KSHV)] TK and PK through the use of animal surrogate models.
Collapse
Affiliation(s)
- Dimitri Topalis
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Sarah Gillemot
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Milbradt J, Sonntag E, Wagner S, Strojan H, Wangen C, Lenac Rovis T, Lisnic B, Jonjic S, Sticht H, Britt WJ, Schlötzer-Schrehardt U, Marschall M. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97. Viruses 2018; 10:v10010035. [PMID: 29342872 PMCID: PMC5795448 DOI: 10.3390/v10010035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.
Collapse
Affiliation(s)
- Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Hanife Strojan
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Tihana Lenac Rovis
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Berislav Lisnic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - William J Britt
- Departments of Pediatrics and Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| |
Collapse
|
15
|
Iwahori S, Kalejta RF. Phosphorylation of transcriptional regulators in the retinoblastoma protein pathway by UL97, the viral cyclin-dependent kinase encoded by human cytomegalovirus. Virology 2017; 512:95-103. [PMID: 28946006 DOI: 10.1016/j.virol.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/11/2023]
Abstract
Human cytomegalovirus (HCMV) encodes a viral cyclin-dependent kinase (v-CDK), the UL97 protein. UL97 phosphorylates Rb, p107 and p130, thereby inactivating all three retinoblastoma (Rb) family members. Rb proteins function through regulating the activity of transcription factors to which they bind. Therefore, we examined whether the UL97-mediated regulation of the Rb tumor suppressors also extended to their binding partners. We observed that UL97 phosphorylates LIN52, a component of p107- and p130-assembled transcriptionally repressive DREAM complexes that control transcription during the G0/G1 phases, and the Rb-associated E2F3 protein that activates transcription through G1 and S phases. Intriguingly, we also identified FoxM1B, a transcriptional regulator during the S and G2 phases, as a UL97 substrate. This survey extends the influence of UL97 beyond simply the Rb proteins themselves to their binding partners, as well as past the G1/S transition into later stages of the cell cycle.
Collapse
Affiliation(s)
- Satoko Iwahori
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, United States
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
16
|
The regulatory role of protein phosphorylation in human gammaherpesvirus associated cancers. Virol Sin 2017; 32:357-368. [PMID: 29116588 PMCID: PMC6704201 DOI: 10.1007/s12250-017-4081-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Activation of specific sets of protein kinases by intracellular signal molecules
has become more and more apparent in the past decade. Phosphorylation, one of key
posttranslational modification events, is activated by kinase or regulatory protein
and is vital for controlling many physiological functions of eukaryotic cells such
as cell proliferation, differentiation, malignant transformation, and signal
transduction mediated by external stimuli. Moreovers, the reversible modification of
phosphorylation and dephosphorylation can result in different features of the target
substrate molecules including DNA binding, protein-protein interaction, subcellular
location and enzymatic activity, and is often hijacked by viral infection.
Epstein-Barr virus (EBV) and Kaposi’s sarcomaassociated herpesvirus (KSHV), two
human oncogenic gamma-herpesviruses, are shown to tightly associate with many
malignancies. In this review, we summarize the recent progresses on understanding of
molecular properties and regulatory modes of cellular and viral proteins
phosphorylation influenced by these two tumor viruses, and highlight the potential
therapeutic targets and strategies against their related cancers. ![]()
Collapse
|
17
|
Iwahori S, Umaña AC, VanDeusen HR, Kalejta RF. Human cytomegalovirus-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates and inactivates the retinoblastoma protein-related p107 and p130 proteins. J Biol Chem 2017; 292:6583-6599. [PMID: 28289097 DOI: 10.1074/jbc.m116.773150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Indexed: 01/19/2023] Open
Abstract
The human cytomegalovirus (HCMV)-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates the retinoblastoma (Rb) tumor suppressor. Here, we identify the other Rb family members p107 and p130 as novel targets of UL97. UL97 phosphorylates p107 and p130 thereby inhibiting their ability to repress the E2F-responsive E2F1 promoter. As with Rb, this phosphorylation, and the rescue of E2F-responsive transcription, is dependent on the L1 LXCXE motif in UL97 and its interacting clefts on p107 and p130. Interestingly, UL97 does not induce the disruption of all p107-E2F or p130-E2F complexes, as it does to Rb-E2F complexes. UL97 strongly interacts with p107 but not Rb or p130. Thus the inhibitory mechanisms of UL97 for Rb family protein-mediated repression of E2F-responsive transcription appear to differ for each of the Rb family proteins. The immediate early 1 (IE1) protein of HCMV also rescues p107- and p130-mediated repression of E2F-responsive gene expression, but it does not induce their phosphorylation and does not disrupt p107-E2F or p130-E2F complexes. The unique regulation of Rb family proteins by HCMV UL97 and IE1 attests to the importance of modulating Rb family protein function in HCMV-infected cells.
Collapse
Affiliation(s)
- Satoko Iwahori
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Angie C Umaña
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Halena R VanDeusen
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Robert F Kalejta
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
18
|
Jarosinski KW. Interindividual Spread of Herpesviruses. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:195-224. [PMID: 28528445 DOI: 10.1007/978-3-319-53168-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interindividual spread of herpesviruses is essential for the virus life cycle and maintenance in host populations. For most herpesviruses, the virus-host relationship is close, having coevolved over millions of years resulting in comparatively high species specificity. The mechanisms governing interindividual spread or horizontal transmission are very complex, involving conserved herpesviral and cellular proteins during the attachment, entry, replication, and egress processes of infection. Also likely, specific herpesviruses have evolved unique viral and cellular interactions during cospeciation that are dependent on their relationship. Multiple steps are required for interindividual spread including virus assembly in infected cells; release into the environment, followed by virus attachment; and entry into new hosts. Should any of these steps be compromised, transmission is rendered impossible. This review will focus mainly on the natural virus-host model of Marek's disease virus (MDV) in chickens in order to delineate important steps during interindividual spread.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
19
|
How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients. Blood 2016; 128:2624-2636. [PMID: 27760756 DOI: 10.1182/blood-2016-06-688432] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Cytomegalovirus (CMV) infection is a significant complication in hematopoietic cell transplantation (HCT) recipients. Four antiviral drugs are used for preventing or treating CMV: ganciclovir, valganciclovir, foscarnet, and cidofovir. With prolonged and repeated use of these drugs, CMV can become resistant to standard therapy, resulting in increased morbidity and mortality, especially in HCT recipients. Antiviral drug resistance should be suspected when CMV viremia (DNAemia or antigenemia) fails to improve or continue to increase after 2 weeks of appropriately dosed and delivered antiviral therapy. CMV resistance is diagnosed by detecting specific genetic mutations. UL97 mutations confer resistance to ganciclovir and valganciclovir, and a UL54 mutation confers multidrug resistance. Risk factors for resistance include prolonged or previous anti-CMV drug exposure or inadequate dosing, absorption, or bioavailability. Host risk factors include type of HCT and degree of immunosuppression. Depending on the genotyping results, multiple strategies can be adopted to treat resistant CMV infections, albeit no randomized clinical trials exist so far, after reducing immunosuppression (if possible): ganciclovir dose escalation, ganciclovir and foscarnet combination, and adjunct therapy such as CMV-specific cytotoxic T-lymphocyte infusions. Novel therapies such as maribavir, brincidofovir, and letermovir should be further studied for treatment of resistant CMV.
Collapse
|
20
|
Ho CMK, Donovan-Banfield IZ, Tan L, Zhang T, Gray NS, Strang BL. Inhibition of IKKα by BAY61-3606 Reveals IKKα-Dependent Histone H3 Phosphorylation in Human Cytomegalovirus Infected Cells. PLoS One 2016; 11:e0150339. [PMID: 26930276 PMCID: PMC4773098 DOI: 10.1371/journal.pone.0150339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/14/2016] [Indexed: 11/18/2022] Open
Abstract
Protein kinase inhibitors can be used as tools to identify proteins and pathways required for virus replication. Using virus replication assays and western blotting we found that the widely used protein kinase inhibitor BAY61-3606 inhibits replication of human cytomegalovirus (HCMV) strain AD169 and the accumulation of HCMV immediate-early proteins in AD169 infected cells, but has no effect on replication of HCMV strain Merlin. Using in vitro kinase assays we found that BAY61-3606 is a potent inhibitor of the cellular kinase IKKα. Infection of cells treated with siRNA targeting IKKα indicated IKKα was required for efficient AD169 replication and immediate-early protein production. We hypothesized that IKKα was required for AD169 immediate-early protein production as part of the canonical NF-κB signaling pathway. However, although BAY61-3606 inhibited phosphorylation of the IKKα substrate IκBα, we found no canonical or non-canonical NF-κB signaling in AD169 infected cells. Rather, we observed that treatment of cells with BAY61-3606 or siRNA targeting IKKα decreased phosphorylation of histone H3 at serine 10 (H3S10p) in western blotting assays. Furthermore, we found treatment of cells with BAY61-3606, but not siRNA targeting IKKα, inhibited the accumulation of histone H3 acetylation (H3K9ac, H3K18ac and H3K27ac) and tri-methylation (H3K27me3 and H3K36me3) modifications. Therefore, the requirement for IKKα in HCMV replication was strain-dependent and during replication of an HCMV strain requiring IKKα, IKKα-dependent H3S10 phosphorylation was associated with efficient HCMV replication and immediate-early protein production. Plus, inhibition of HCMV replication by BAY61-3606 is associated with acetylation and tri-methylation modifications of histone H3 that do not involve IKKα.
Collapse
Affiliation(s)
- Catherine M. K. Ho
- Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - I’ah Z. Donovan-Banfield
- Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Li Tan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States of America
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Longwood Ave, Boston, MA 02115, United States of America
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States of America
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Longwood Ave, Boston, MA 02115, United States of America
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States of America
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Longwood Ave, Boston, MA 02115, United States of America
| | - Blair L. Strang
- Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
The Interaction between Cyclin B1 and Cytomegalovirus Protein Kinase pUL97 is Determined by an Active Kinase Domain. Viruses 2015; 7:4582-601. [PMID: 26270673 PMCID: PMC4576195 DOI: 10.3390/v7082834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/12/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Replication of human cytomegalovirus (HCMV) is characterized by a tight virus-host cell interaction. Cyclin-dependent protein kinases (CDKs) are functionally integrated into viral gene expression and protein modification. The HCMV-encoded protein kinase pUL97 acts as a CDK ortholog showing structural and functional similarities. Recently, we reported an interaction between pUL97 kinase with a subset of host cyclins, in particular with cyclin T1. Here, we describe an interaction of pUL97 at an even higher affinity with cyclin B1. As a striking feature, the interaction between pUL97 and cyclin B1 proved to be strictly dependent on pUL97 activity, as interaction could be abrogated by treatment with pUL97 inhibitors or by inserting mutations into the conserved kinase domain or the nonconserved C-terminus of pUL97, both producing loss of activity. Thus, we postulate that the mechanism of pUL97-cyclin B1 interaction is determined by an active pUL97 kinase domain.
Collapse
|
22
|
Antagonistic Relationship between Human Cytomegalovirus pUL27 and pUL97 Activities during Infection. J Virol 2015. [PMID: 26223645 DOI: 10.1128/jvi.00986-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a member of the betaherpesvirus family. During infection, an array of viral proteins manipulates the host cell cycle. We have previously shown that expression of HCMV pUL27 results in increased levels of the cyclin-dependent kinase (CDK) inhibitor p21(Cip1). In addition, pUL27 is necessary for the full antiviral activity of the pUL97 kinase inhibitor maribavir (MBV). The purpose of this study was to define the relationship between pUL27 and pUL97 and its role in MBV antiviral activity. We observed that expression of wild-type but not kinase-inactive pUL97 disrupted pUL27-dependent induction of p21(Cip1). Furthermore, pUL97 associated with and promoted the phosphorylation of pUL27. During infection, inhibition of the kinase resulted in elevated levels of p21(Cip1) in wild-type virus but not a pUL27-deficient virus. We manipulated the p21(Cip1) levels to evaluate the functional consequence to MBV. Overexpression of p21(Cip1) restored MBV activity against a pUL27-deficient virus, while disruption reduced activity against wild-type virus. We provide evidence that the functional target of p21(Cip1) in the context of MBV activity is CDK1. One CDK-like activity of pUL97 is to phosphorylate nuclear lamin A/C, resulting in altered nuclear morphology and increased viral egress. In the presence of MBV, we observed that infection using a pUL27-deficient virus still altered the nuclear morphology. This was prevented by the addition of a CDK inhibitor. Overall, our results demonstrate an antagonistic relationship between pUL27 and pUL97 activities centering on p21(Cip1) and support the idea that CDKs can complement some activities of pUL97. IMPORTANCE HCMV infection results in severe disease upon immunosuppression and is a leading cause of congenital birth defects. Effective antiviral compounds exist, yet they exhibit high levels of toxicity, are not approved for use during pregnancy, and can result in antiviral resistance. Our studies have uncovered new information regarding the antiviral efficacy of the HCMV pUL97 kinase inhibitor MBV as it relates to the complex interplay between pUL97 and a second HCMV protein, pUL27. We demonstrate that pUL97 functions antagonistically against pUL27 by phosphorylation-dependent inactivation of pUL27-mediated induction of p21(Cip1). In contrast, we provide evidence that p21(Cip1) functions to antagonize overlapping activities between pUL97 and cellular CDKs. In addition, these studies further support the notion that CDK inhibitors or p21(Cip1) activators might be useful in combination with MBV to effectively inhibit HCMV infections.
Collapse
|
23
|
Iwahori S, Hakki M, Chou S, Kalejta RF. Molecular Determinants for the Inactivation of the Retinoblastoma Tumor Suppressor by the Viral Cyclin-dependent Kinase UL97. J Biol Chem 2015; 290:19666-80. [PMID: 26100623 DOI: 10.1074/jbc.m115.660043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Indexed: 01/10/2023] Open
Abstract
The retinoblastoma (Rb) tumor suppressor restricts cell cycle progression by repressing E2F-responsive transcription. Cellular cyclin-dependent kinase (CDK)-mediated Rb inactivation through phosphorylation disrupts Rb-E2F complexes, stimulating transcription. The human cytomegalovirus (HCMV) UL97 protein is a viral CDK (v-CDK) that phosphorylates Rb. Here we show that UL97 phosphorylates 11 of the 16 consensus CDK sites in Rb. A cleft within Rb accommodates peptides with the amino acid sequence LXCXE. UL97 contains three such motifs. We determined that the first LXCXE motif (L1) of UL97 and the Rb cleft enhance UL97-mediated Rb phosphorylation. A UL97 mutant with a non-functional L1 motif (UL97-L1m) displayed significantly reduced Rb phosphorylation at multiple sites. Curiously, however, it efficiently disrupted Rb-E2F complexes but failed to relieve Rb-mediated repression of E2F reporter constructs. The HCMV immediate early 1 protein cooperated with UL97-L1m to inactivate Rb in transfection assays, likely indicating that cells infected with a UL97-L1m mutant virus show no defects in growth or E2F-responsive gene expression because of redundant viral mechanisms to inactivate Rb. Our data suggest that UL97 possesses a mechanism to elicit E2F-dependent gene expression distinct from disruption of Rb-E2F complexes and dependent upon both the L1 motif of UL97 and the cleft region of Rb.
Collapse
Affiliation(s)
- Satoko Iwahori
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | - Morgan Hakki
- the Division of Infectious Diseases, Oregon Health and Science University and
| | - Sunwen Chou
- the Division of Infectious Diseases, Oregon Health and Science University and Veterans Affairs Portland Health Care System, Portland, Oregon 97239
| | - Robert F Kalejta
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| |
Collapse
|
24
|
Oberstein A, Perlman DH, Shenk T, Terry LJ. Human cytomegalovirus pUL97 kinase induces global changes in the infected cell phosphoproteome. Proteomics 2015; 15:2006-22. [PMID: 25867546 DOI: 10.1002/pmic.201400607] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 12/12/2022]
Abstract
Replication of human cytomegalovirus (HCMV) is regulated in part by cellular kinases and the single viral Ser/Thr kinase, pUL97. The virus-coded kinase augments the replication of HCMV by enabling nuclear egress and altering cell cycle progression. These roles are accomplished through direct phosphorylation of nuclear lamins and the retinoblastoma protein, respectively. In an effort to identify additional pUL97 substrates, we analyzed the phosphoproteome of SILAC-labeled human fibroblasts during infection with either wild-type HCMV or a pUL97 kinase-dead mutant virus. Phosphopeptides were enriched over a titanium dioxide matrix and analyzed by high-resolution MS. We identified 157 unambiguous phosphosites from 106 cellular and 17 viral proteins whose phosphorylation required UL97. Analysis of peptides containing these sites allowed the identification of several candidate pUL97 phosphorylation motifs, including a completely novel phosphorylation motif, LxSP. Substrates harboring the LxSP motif were enriched in nucleocytoplasmic transport functions, including a number of components of the nuclear pore complex. These results extend the known functions of pUL97 and suggest that modulation of nuclear pore function may be important during HCMV replication.
Collapse
Affiliation(s)
- Adam Oberstein
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David H Perlman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Laura J Terry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
25
|
Human cytomegalovirus resistance to deoxyribosylindole nucleosides maps to a transversion mutation in the terminase subunit-encoding gene UL89. Antimicrob Agents Chemother 2014; 59:226-32. [PMID: 25348532 DOI: 10.1128/aac.03686-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection can cause severe illnesses, including encephalopathy and mental retardation, in immunocompromised and immunologically immature patients. Current pharmacotherapies for treating systemic HCMV infections include ganciclovir, cidofovir, and foscarnet. However, long-term administration of these agents can result in serious adverse effects (myelosuppression and/or nephrotoxicity) and the development of viral strains with reduced susceptibility to drugs. The deoxyribosylindole (indole) nucleosides demonstrate a 20-fold greater activity in vitro (the drug concentration at which 50% of the number of plaques was reduced with the presence of drug compared to the number in the absence of drug [EC50] = 0.34 μM) than ganciclovir (EC50 = 7.4 μM) without any observed increase in cytotoxicity. Based on structural similarity to the benzimidazole nucleosides, we hypothesize that the indole nucleosides target the HCMV terminase, an enzyme responsible for packaging viral DNA into capsids and cleaving the DNA into genome-length units. To test this hypothesis, an indole nucleoside-resistant HCMV strain was isolated, the open reading frames of the genes that encode the viral terminase were sequenced, and a G766C mutation in exon 1 of UL89 was identified; this mutation resulted in an E256Q change in the amino acid sequence of the corresponding protein. An HCMV wild-type strain, engineered with this mutation to confirm resistance, demonstrated an 18-fold decrease in susceptibility to the indole nucleosides (EC50 = 3.1 ± 0.7 μM) compared to that of wild-type virus (EC50 = 0.17 ± 0.04 μM). Interestingly, this mutation did not confer resistance to the benzimidazole nucleosides (EC50 for wild-type HCMV = 0.25 ± 0.04 μM, EC50 for HCMV pUL89 E256Q = 0.23 ± 0.04 μM). We conclude, therefore, that the G766C mutation that results in the E256Q substitution is unique for indole nucleoside resistance and distinct from previously discovered substitutions that confer both indole and benzimidazole nucleoside resistance (D344E and A355T).
Collapse
|
26
|
Abstract
UNLABELLED Herpesvirus nucleocapsids exit the host cell nucleus in an unusual process known as nuclear egress. The human cytomegalovirus (HCMV) UL97 protein kinase is required for efficient nuclear egress, which can be explained by its phosphorylation of the nuclear lamina component lamin A/C, which disrupts the nuclear lamina. We found that a dominant negative lamin A/C mutant complemented the replication defect of a virus lacking UL97 in dividing cells, validating this explanation. However, as complementation was incomplete, we investigated whether the HCMV nuclear egress complex (NEC) subunits UL50 and UL53, which are required for nuclear egress and recruit UL97 to the nuclear rim, are UL97 substrates. Using mass spectrometry, we detected UL97-dependent phosphorylation of UL50 residue S216 (UL50-S216) and UL53-S19 in infected cells. Moreover, UL53-S19 was specifically phosphorylated by UL97 in vitro. Notably, treatment of infected cells with the UL97 inhibitor maribavir or infection with a UL97 mutant led to a punctate rather than a continuous distribution of the NEC at the nuclear rim. Alanine substitutions in both UL50-S216 and UL53-S19 resulted in a punctate distribution of the NEC in infected cells and also decreased virus production and nuclear egress in the absence of maribavir. These results indicate that UL97 phosphorylates the NEC and suggest that this phosphorylation modulates nuclear egress. Thus, the UL97-NEC interaction appears to recruit UL97 to the nuclear rim both for disruption of the nuclear lamina and phosphorylation of the NEC. IMPORTANCE Human cytomegalovirus (HCMV) causes birth defects and it can cause life-threatening diseases in immunocompromised patients. HCMV assembles in the nucleus and then translocates to the cytoplasm in an unusual process termed nuclear egress, an attractive target for antiviral therapy. A viral enzyme, UL97, is important for nuclear egress. It has been proposed that this is due to its role in disruption of the nuclear lamina, which would otherwise impede nuclear egress. In validating this proposal, we showed that independent disruption of the lamina can overcome a loss of UL97, but only partly, suggesting additional roles for UL97 during nuclear egress. We then found that UL97 phosphorylates the viral nuclear egress complex (NEC), which is essential for nuclear egress, and we obtained evidence that this phosphorylation modulates this process. Our results highlight a new role for UL97, the mutual dependence of the viral NEC and UL97 during nuclear egress, and differences among herpesviruses.
Collapse
|
27
|
Antiherpesviral DNA Polymerase Inhibitors. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Herpes simplex virus protein kinases US3 and UL13 modulate VP11/12 phosphorylation, virion packaging, and phosphatidylinositol 3-kinase/Akt signaling activity. J Virol 2014; 88:7379-88. [PMID: 24741093 DOI: 10.1128/jvi.00712-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays key roles in diverse cellular activities and promotes cell growth and survival. It is therefore unsurprising that most viruses modify this pathway in order to facilitate their replication and spread. Previous work has suggested that the herpes simplex virus 1 (HSV-1) tegument proteins VP11/12 and US3 protein kinase modulate the PI3K/Akt pathway, albeit in opposing ways: VP11/12 binds and activates Src family kinases (SFKs), is tyrosine phosphorylated, recruits PI3K in an SFK-dependent fashion, and is required for HSV-induced phosphorylation of Akt on its activating residues; in contrast, US3 inhibits Akt activation and directly phosphorylates downstream Akt targets. We examined if US3 negatively regulates Akt by dampening the signaling activity of VP11/12. Consistent with this hypothesis, the enhanced Akt activation that occurs during US3-null infection requires VP11/12 and correlates with an increase in SFK-dependent VP11/12 tyrosine phosphorylation. In addition, deleting US3 leads to a striking increase in the relative abundances of several VP11/12 species that migrate with reduced mobility during SDS-PAGE. These forms arise through phosphorylation, strictly require the viral UL13 protein kinase, and are excluded from virions. Taken in combination, these data indicate that US3 dampens SFK-dependent tyrosine and UL13-dependent serine/threonine phosphorylation of VP11/12, thereby inhibiting VP11/12 signaling and promoting virion packaging of VP11/12. These results illustrate that protein phosphorylation events mediated by viral protein kinases serve to coordinate the roles of VP11/12 as a virion component and intracellular signaling molecule. IMPORTANCE Herpesvirus tegument proteins play dual roles during the viral life cycle, serving both as structural components of the virus particle and as modulators of cellular and viral functions in infected cells. How these two roles are coordinated during infection and virion assembly is a fundamental and largely unanswered question. Here we addressed this issue with herpes simplex virus VP11/12, a tegument protein that activates the cellular PI3K/Akt signaling pathway. We showed that protein phosphorylation mediated by the viral US3 and UL13 kinases serves to orchestrate its functions: UL13 appears to inhibit VP11/12 virion packaging, while US3 antagonizes UL13 action and independently dampens VP11/12 signaling activity.
Collapse
|
29
|
Smith RM, Kosuri S, Kerry JA. Role of human cytomegalovirus tegument proteins in virion assembly. Viruses 2014; 6:582-605. [PMID: 24509811 PMCID: PMC3939473 DOI: 10.3390/v6020582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 11/26/2022] Open
Abstract
Like other herpesviruses, human cytomegalovirus (HCMV) contains a unique proteinaceous layer between the virion envelope and capsid, termed the tegument. Upon infection, the contents of the tegument layer are delivered to the host cell, along with the capsid and the viral genome, where they facilitate the initial stages of virus replication. The tegument proteins also play important roles in virion assembly and this dual nature makes them attractive potential targets for antiviral therapies. While our knowledge regarding tegument protein function during the initiation of infection has been the subject of intense study, their roles in assembly are much less well understood. In this review, we will focus on recent studies that highlight the functions of HCMV tegument proteins during assembly, and pose key questions for further investigation.
Collapse
Affiliation(s)
- Rebecca Marie Smith
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | - Srivenkat Kosuri
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | - Julie Anne Kerry
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
30
|
Komatsu TE, Pikis A, Naeger LK, Harrington PR. Resistance of human cytomegalovirus to ganciclovir/valganciclovir: A comprehensive review of putative resistance pathways. Antiviral Res 2014; 101:12-25. [DOI: 10.1016/j.antiviral.2013.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
|
31
|
Human cytomegalovirus UL97 kinase is involved in the mechanism of action of methylenecyclopropane analogs with 6-ether and -thioether substitutions. Antimicrob Agents Chemother 2013; 58:274-8. [PMID: 24145545 DOI: 10.1128/aac.01726-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylenecyclopropane nucleoside (MCPN) analogs are being investigated for treatment of human cytomegalovirus (HCMV) infection because of favorable preclinical data and limited ganciclovir cross-resistance. Monohydroxymethyl MCPNs bearing ether and thioether functionalities at the purine 6 position have antiviral activity against herpes simplex virus (HSV) and varicella-zoster virus (VZV) in addition to HCMV. The role of the HCMV UL97 kinase in the mechanism of action of these derivatives was examined. When tested against a kinase-inactive UL97 K355M virus, a moderate 5- to 7-fold increase in 50% effective concentration (EC50) was observed, in comparison to a 13- to 25-fold increase for either cyclopropavir or ganciclovir. Serial propagation of HCMV under two of these compounds selected for three novel UL97 mutations encoding amino acid substitutions D456N, C480R,and Y617del. When transferred to baseline laboratory HCMV strains, these mutations individually conferred resistance to all of the tested MCPNs, ganciclovir, and maribavir. However, the engineered strains also demonstrated severe growth defects and abnormal cytopathic effects similar to the kinase-inactive mutant. Expressed and purified UL97 kinase showed in vitro phosphorylation of the newly tested MCPNs. Thus, HCMV UL97 kinase is involved in the antiviral action of these MCPNs, but the in vitro selection of UL97-defective viruses suggests that their activity against more typical ganciclovir-resistant growth-competent UL97 mutants may be relatively preserved.
Collapse
|
32
|
Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol 2013; 87:10126-38. [PMID: 23843639 DOI: 10.1128/jvi.01671-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses.
Collapse
|
33
|
Resistance of human cytomegalovirus to cyclopropavir maps to a base pair deletion in the open reading frame of UL97. Antimicrob Agents Chemother 2013; 57:4343-8. [PMID: 23817384 DOI: 10.1128/aac.00214-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen in the human population, affecting many immunologically immature and immunocompromised patients, and can result in severe complications, such as interstitial pneumonia and mental retardation. Current chemotherapies for the treatment of HCMV infections include ganciclovir (GCV), foscarnet, and cidofovir. However, the high incidences of adverse effects (neutropenia and nephrotoxicity) limit the use of these drugs. Cyclopropavir (CPV), a guanosine nucleoside analog, is 10-fold more active against HCMV than GCV (50% effective concentrations [EC50s] = 0.46 and 4.1 μM, respectively). We hypothesize that the mechanism of action of CPV is similar to that of GCV: phosphorylation to a monophosphate by viral pUL97 protein kinase with further phosphorylation to a triphosphate by endogenous kinases, resulting in inhibition of viral DNA synthesis. To test this hypothesis, we isolated a CPV-resistant virus, sequenced its genome, and discovered that bp 498 of UL97 was deleted. This mutation caused a frameshift in UL97 resulting in a truncated protein that lacks a kinase domain. To determine if this base pair deletion was responsible for drug resistance, the mutation was engineered into the wild-type viral genome, which was then exposed to increasing concentrations of CPV. The results demonstrate that the engineered virus was approximately 72-fold more resistant to CPV (EC50 = 25.8 ± 3.1 μM) than the wild-type virus (EC50 = 0.36 ± 0.11 μM). We conclude, therefore, that this mutation is sufficient for drug resistance and that pUL97 is involved in the mechanism of action of CPV.
Collapse
|
34
|
The ULb' region of the human cytomegalovirus genome confers an increased requirement for the viral protein kinase UL97. J Virol 2013; 87:6359-76. [PMID: 23536674 DOI: 10.1128/jvi.03477-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We report a requirement for the viral protein kinase UL97 in human cytomegalovirus (HCMV) replication that maps to the ULb' region of the viral genome. A UL97-null (Δ97) mutant of strain TB40/E, which encodes a full-length ULb' region, exhibited replication defects, particularly in production of cell-free virus, that were more severe than those seen with a Δ97 mutant of laboratory strain AD169, which harbors extensive deletions in its ULb' region. These differences were recapitulated with additional HCMV strains by treatment with a UL97 kinase inhibitor, 1-(β-L-ribofuranosyl)-2-isopropylamino-5,6-dichlorobenzimidazole (maribavir). We observed lower levels of viral DNA synthesis and an increased requirement for UL97 in viral late gene expression in strains with full-length ULb' regions. Analysis of UL97-deficient TB40/E infections by electron microscopy revealed fewer C-capsids in nuclei, unusual viral particles in the cytoplasmic assembly compartment, and defective viral nuclear egress. Partial inhibition of viral DNA synthesis caused defects in production of cell-free virus that were up to ≈ 100-fold greater than those seen with cell-associated virus in strains TB40/E and TR, suggesting that UL97-dependent defects in cell-free virus production in strains with full-length ULb' regions were secondary to DNA synthesis defects. Accordingly, a chimeric virus in which the ULb' region of TB40/E was replaced with that of AD169 showed reduced effects of UL97 inhibition on viral DNA synthesis, late gene expression, and production of cell-free virus compared to parental TB40/E. Together, these results argue that the ULb' region encodes a factor(s) which invokes an increased requirement for UL97 during viral DNA synthesis.
Collapse
|
35
|
Protein kinase inhibitors that inhibit induction of lytic program and replication of Epstein-Barr virus. Antiviral Res 2012; 96:296-304. [PMID: 23058855 DOI: 10.1016/j.antiviral.2012.09.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/20/2023]
Abstract
Signaling pathways mediating Epstein-Barr virus (EBV) reactivation by Ag-bound B-cell receptor (BCR) were analyzed using a panel of 80 protein kinase inhibitors. Broad range protein kinase inhibitors Staurosporine, K252A, and PKC-412 significantly reduced the EBV genome copy numbers measured 48 h after reactivation perhaps due to their higher toxicity. In addition, selected inhibitors of the phosphatidylinositol-3-kinase (PI3K), protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways, glycogen synthase kinase 3β (GSK-3β), platelet-derived growth factor receptor-associated tyrosine kinase (PDGFRK), and epidermal growth factor receptor-associated tyrosine kinase (EGFRK) significantly reduced the EBV genome copy numbers. Of those, only U0126 and Erbstatin analog, which inhibit MAPK pathway and EGFRK, respectively, did not inhibit viral reactivation assessed by expression of the EBV early protein, EA-D. None of the tested compounds, except for K252A, affected the activity of the EBV-encoded protein kinase in vitro. These results show that EBV reactivation induced by BCR signaling is mainly mediated through PI3K and PKC, whereas MAPK might be involved in later stages of viral replication.
Collapse
|
36
|
Gill RB, James SH, Prichard MN. Human cytomegalovirus UL97 kinase alters the accumulation of CDK1. J Gen Virol 2012; 93:1743-1755. [PMID: 22552942 PMCID: PMC3541764 DOI: 10.1099/vir.0.039214-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/30/2012] [Indexed: 12/14/2022] Open
Abstract
The UL97 protein kinase is a serine/threonine kinase expressed by human cytomegalovirus (CMV) that phosphorylates ganciclovir. An investigation of the subcellular localization of pUL97 in infected cells indicated that, early in infection, pUL97 localized to focal sites in the nucleus that transitioned to subnuclear compartments and eventually throughout the entire nucleus. When UL97 kinase activity was eliminated with a K355M mutation or pharmacologically inhibited with maribavir, the expansion and redistribution of pUL97 foci within the nucleus was delayed, nuclear reorganization did not occur and assembly complexes in the cytoplasm failed to form normally. As UL97 kinase and its homologues appear to be functionally related to CDK1, a known regulator of nuclear structural organization, the effects of the UL97 kinase on CDK1 were investigated. Expression of CDK1 in infected cells appeared to be induced by UL97 kinase activity at the level of transcription and was not tied to other virus life-cycle events, such as viral DNA replication or virion assembly. These results suggest that, in addition to phosphorylating CDK1 targets, the UL97 kinase modifies G₂/M cell-cycle checkpoint regulators, specifically CDK1, to promote virus replication.
Collapse
Affiliation(s)
- Rachel B. Gill
- Department of Cell Biology, 1900 University Blvd, Birmingham, AL 35294, USA
| | - Scott H. James
- Department of Pediatrics, University of Alabama at Birmingham, 1600 6th Avenue South, Birmingham, AL 35233, USA
| | - Mark N. Prichard
- Department of Cell Biology, 1900 University Blvd, Birmingham, AL 35294, USA
- Department of Pediatrics, University of Alabama at Birmingham, 1600 6th Avenue South, Birmingham, AL 35233, USA
| |
Collapse
|
37
|
Keating JA, Striker R. Phosphorylation events during viral infections provide potential therapeutic targets. Rev Med Virol 2011; 22:166-81. [PMID: 22113983 PMCID: PMC3334462 DOI: 10.1002/rmv.722] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 01/21/2023]
Abstract
For many medically relevant viruses, there is now considerable evidence that both viral and cellular kinases play important roles in viral infection. Ultimately, these kinases, and the cellular signaling pathways that they exploit, may serve as therapeutic targets for treating patients. Currently, small molecule inhibitors of kinases are under investigation as therapy for herpes viral infections. Additionally, a number of cellular or host-directed tyrosine kinase inhibitors that have been previously FDA approved for cancer treatment are under study in animal models and clinical trials, as they have shown promise for the treatment of various viral infections as well. This review will highlight the wide range of viral proteins phosphorylated by viral and cellular kinases, and the potential for variability of kinase recognition sites within viral substrates to impact phosphorylation and kinase prediction. Research studying kinase-targeting prophylactic and therapeutic treatments for a number of viral infections will also be discussed.
Collapse
Affiliation(s)
- Julie A Keating
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
38
|
|
39
|
Sites and roles of phosphorylation of the human cytomegalovirus DNA polymerase subunit UL44. Virology 2011; 417:268-80. [PMID: 21784501 DOI: 10.1016/j.virol.2011.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/12/2011] [Accepted: 06/11/2011] [Indexed: 12/27/2022]
Abstract
The human cytomegalovirus DNA polymerase subunit UL44 is a phosphoprotein, but its sites and roles of phosphorylation have not been investigated. We compared sites of phosphorylation of UL44 in vitro by the viral protein kinase UL97 and cyclin-dependent kinase 1 with those in infected cells. Transient treatment of infected cells with a UL97 inhibitor greatly reduced labeling of two minor UL44 phosphopeptides. Viruses containing alanine substitutions of most UL44 residues that are phosphorylated in infected cells exhibited at most modest effects on viral DNA synthesis and yield. However, substitution of highly phosphorylated sites adjacent to the nuclear localization signal abolished viral replication. The results taken together are consistent with UL44 being phosphorylated directly by UL97 during infection, and a crucial role for phosphorylation-mediated nuclear localization of UL44 for viral replication, but lend little support to the widely held hypothesis that UL97-mediated phosphorylation of UL44 is crucial for viral DNA synthesis.
Collapse
|
40
|
Boutolleau D, Burrel S, Agut H. Genotypic characterization of human cytomegalovirus UL97 phosphotransferase natural polymorphism in the era of ganciclovir and maribavir. Antiviral Res 2011; 91:32-5. [PMID: 21570426 DOI: 10.1016/j.antiviral.2011.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/12/2011] [Accepted: 04/27/2011] [Indexed: 01/17/2023]
Abstract
The molecular mechanisms of human cytomegalovirus (CMV) resistance to both ganciclovir and maribavir reported so far rely predominantly on the presence of mutations within UL97 phosphotransferase. The accurate interpretation of genotypic antiviral resistance assay results requires the clear distinction between resistance mutations and natural interstrain sequence variations. The objective of this work was to extend the catalog of CMV UL97 phosphotransferase natural polymorphisms. The full-length UL97 gene sequence analysis from 4 laboratory strains and 35 clinical samples from patients who had not received any previous anti-CMV treatment was performed. At the nucleotide level, the interstrain identity was >98%. At the amino acid level, ten natural polymorphisms never previously described were identified. Together with all previous results reported in the literature, a new map of UL97 phosphotransferase natural polymorphism could be settled in the era of ganciclovir and maribavir.
Collapse
|
41
|
Abstract
The study of human cytomegalovirus (HCMV) antiviral drug resistance has enhanced knowledge of the virological targets and the mechanisms of antiviral activity. The currently approved drugs, ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), target the viral DNA polymerase. GCV anabolism also requires phosphorylation by the virus-encoded UL97 kinase. GCV resistance mutations have been identified in both genes, while FOS and CDV mutations occur only in the DNA polymerase gene. Confirmation of resistance mutations requires phenotypic analysis; however, phenotypic assays are too time-consuming for diagnostic purposes. Genotypic assays based on sequencing provide more rapid results but are dependent on prior validation by phenotypic methods. Reports from many laboratories have produced an evolving list of confirmed resistance mutations, although differences in interpretation have led to some confusion. Recombinant phenotyping methods performed in a few research laboratories have resolved some of the conflicting results. Treatment options for drug-resistant HCMV infections are complex and have not been subjected to controlled clinical trials, although consensus guidelines have been proposed. This review summarizes the virological and clinical data pertaining to HCMV antiviral drug resistance.
Collapse
|
42
|
Shannon-Lowe CD, Emery VC. The effects of maribavir on the autophosphorylation of ganciclovir resistant mutants of the cytomegalovirus UL97 protein. HERPESVIRIDAE 2010; 1:4. [PMID: 21429239 PMCID: PMC3050433 DOI: 10.1186/2042-4280-1-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/07/2010] [Indexed: 11/21/2022]
Abstract
Background The UL97 protein kinase of human cytomegalovirus phosphorylates the antiviral drug ganciclovir and is the target of maribavir action. A detailed enzyme kinetic analysis of maribavir on the various enzymatic functions of wild type and ganciclovir resistant forms of UL97 is required. Methods Wild type and site directed mutant forms of the human cytomegalovirus UL97 gene product were expressed using recombinant baculoviruses and the purified products used to assess the effects of maribavir on the ganciclovir (GCV) kinase and protein kinase (PK) activities. Results Maribavir was a potent inhibitor of the autophosporylation of the wild type and all the major GCV resistant UL97 mutants analysed (M460I, H520Q, A594V and L595F) with a mean IC50 of 35 nM. The M460I mutation resulted in hypersensitivity to maribavir with an IC50 of 4.8 nM. A maribavir resistant mutant of UL97 (L397R) was functionally compromised as both a GCV kinase and a protein kinase (~ 10% of wild type levels). Enzyme kinetic experiments demonstrated that maribavir was a competitive inhibitor of ATP with a Ki of 10 nM. Discussion Maribavir is a potent competitive inhibitor of the UL97 protein kinase function and shows increased activity against the M460I GCV-resistant mutant which may impact on the management of GCV drug resistance in patients.
Collapse
Affiliation(s)
- Claire D Shannon-Lowe
- Department of Infection, Centre for Virology, UCL (Royal Free Campus Campus), Rowland Hill Street, Hampstead, London NW3 2QG, UK.
| | | |
Collapse
|
43
|
Abstract
Phosphorylation represents one the most abundant and important posttranslational modifications of proteins, including viral proteins. Virus-encoded serine/threonine protein kinases appear to be a feature that is unique to large DNA viruses. Although the importance of these kinases for virus replication in cell culture is variable, they invariably play important roles in virus virulence. The current review provides an overview of the different viral serine/threonine protein kinases of several large DNA viruses and discusses their function, importance, and potential as antiviral drug targets.
Collapse
|
44
|
Inactivation and disassembly of the anaphase-promoting complex during human cytomegalovirus infection is associated with degradation of the APC5 and APC4 subunits and does not require UL97-mediated phosphorylation of Cdh1. J Virol 2010; 84:10832-43. [PMID: 20686030 DOI: 10.1128/jvi.01260-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of quiescent cells by human cytomegalovirus (HCMV) elicits severe cell cycle deregulation, resulting in a G(1)/S arrest, which can be partly attributed to the inactivation of the anaphase-promoting complex (APC). As we previously reported, the premature phosphorylation of its coactivator Cdh1 and/or the dissociation of the core complex can account for the inactivation. We have expanded on these results and further delineated the key components required for disabling the APC during HCMV infection. The viral protein kinase UL97 was hypothesized to phosphorylate Cdh1, and consistent with this, phosphatase assays utilizing a virus with a UL97 deletion mutation (ΔUL97 virus) indicated that Cdh1 is hypophosphorylated at early times in the infection. Mass spectrometry analysis demonstrated that UL97 can phosphorylate Cdh1 in vitro, and the majority of the sites identified correlated with previously characterized cyclin-dependent kinase (Cdk) consensus sites. Analysis of the APC core complex during ΔUL97 virus infection showed APC dissociation occurring at the same time as during infection with wild-type virus, suggesting that the UL97-mediated phosphorylation of Cdh1 is not required for this to occur. Further investigation of the APC subunits showed a proteasome-dependent loss of the APC5 and APC4 subunits that was temporally associated with the disassembly of the APC. Immediate early viral gene expression was not sufficient for the degradation of APC4 and APC5, indicating that a viral early gene product(s), possibly in association with a de novo-synthesized cellular protein(s), is involved.
Collapse
|
45
|
Jarosinski KW, Osterrieder N. Further analysis of Marek's disease virus horizontal transmission confirms that U(L)44 (gC) and U(L)13 protein kinase activity are essential, while U(S)2 is nonessential. J Virol 2010; 84:7911-6. [PMID: 20484497 PMCID: PMC2897598 DOI: 10.1128/jvi.00433-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/13/2010] [Indexed: 11/20/2022] Open
Abstract
Marek's disease virus (MDV) causes a devastating disease in chickens characterized by the development of lymphoblastoid tumors in multiple organs and is transmitted from the skin of infected chickens. We have previously reported that the U(S)2, U(L)44 (glycoprotein C [gC]), and U(L)13 genes are essential for horizontal transmission of MDV in gain-of-function studies using an a priori spread-deficient virus that was based on an infectious clone from the highly virulent RB-1B virus (pRB-1B). To precisely determine the importance of each individual gene in the process of chicken-to-chicken transmission, we used the transmission-restored clone that readily transmits horizontally and mutated each individual gene in loss-of-function experiments. Two independent U(S)2-negative mutants transmitted horizontally, eliminating U(S)2 as being essential for the process. In contrast, the absence of gC expression or mutating the invariant lysine essential for U(L)13 kinase activity abolished horizontal spread of MDV between chickens.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
46
|
Stereoselective phosphorylation of cyclopropavir by pUL97 and competitive inhibition by maribavir. Antimicrob Agents Chemother 2010; 54:3093-8. [PMID: 20547817 DOI: 10.1128/aac.00468-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that can cause severe disease in immunologically immature and immunocompromised individuals. Cyclopropavir (CPV) is a guanine nucleoside analog active against human and murine cytomegaloviruses in cell culture and efficacious in mice by oral administration. Previous studies established that the mechanism of action of CPV involves inhibition of viral DNA synthesis. Based upon this action and the structural similarity of CPV to ganciclovir (GCV), we hypothesized that CPV must be phosphorylated to a triphosphate to inhibit HCMV DNA synthesis and that pUL97 is the enzyme responsible for the initial phosphorylation of CPV to a monophosphate (CPV-MP). We found that purified pUL97 phosphorylated CPV 45-fold more extensively than GCV, a known pUL97 substrate and the current standard of treatment for HCMV infections. Kinetic studies with CPV as the substrate for pUL97 demonstrated a Km of 1,750+/-210 microM. Introduction of 1.0 or 10 nM maribavir, a known pUL97 inhibitor, and subsequent Lineweaver-Burk analysis demonstrated competitive inhibition of CPV phosphorylation, with a Ki of 3.0+/-0.3 nM. Incubation of CPV with pUL97 combined with GMP kinase [known to preferentially phosphorylate the (+)-enantiomer of CPV-MP] established that pUL97 stereoselectively phosphorylates CPV to its (+)-monophosphate. These results elucidate the mechanism of CPV phosphorylation and help explain its selective antiviral action.
Collapse
|
47
|
Prichard MN. Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 2009; 19:215-29. [PMID: 19434630 DOI: 10.1002/rmv.615] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine/threonine kinase expressed by human cytomegalovirus from gene UL97 phosphorylates the antiviral drug ganciclovir, but its biological function is the phosphorylation of its natural viral and cellular protein substrates which affect viral replication at many levels. The UL97 kinase null phenotype is therefore complex, as is the mechanism of action of maribavir, a highly specific inhibitor of its enzymatic activity. Studies that utilise the drug corroborate results from genetic approaches and together have elucidated many functions of the UL97 kinase that are critical for viral replication. The kinase phosphorylates eukaryotic elongation factor 1delta, the carboxyl terminal domain of the large subunit of RNA polymerase II, the retinoblastoma tumour suppressor and lamins A and C. Each of these is also phosphorylated and regulated by cdc2/cyclin-dependent kinase 1, suggesting that the viral kinase may perform a similar function. These and other activities of the UL97 kinase appear to stimulate the cell cycle to support viral DNA synthesis, enhance the expression of viral genes, promote virion morphogenesis and facilitate the egress of mature capsids from the nucleus. In the absence of UL97 kinase activity, viral DNA synthesis is inefficient and structural proteins are sequestered in nuclear aggresomes, reducing the efficiency of virion morphogenesis. Mature capsids that do form fail to egress the nucleus as the nuclear lamina are not dispersed by the kinase. The critical functions performed by the UL97 kinase illustrate its importance in viral replication and confirm that the kinase is a target for the development of antiviral therapies.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| |
Collapse
|
48
|
Differences in the regulatory and functional effects of the Us3 protein kinase activities of herpes simplex virus 1 and 2. J Virol 2009; 83:11624-34. [PMID: 19740999 DOI: 10.1128/jvi.00993-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) are serine/threonine protein kinases and play critical roles in viral replication and pathogenicity in vivo. In the present study, we investigated differences in the biological properties of HSV-1 and HSV-2 Us3 protein kinases and demonstrated that HSV-2 Us3 did not have some of the HSV-1 Us3 kinase functions, including control of nuclear egress of nucleocapsids, localization of UL31 and UL34, and cell surface expression of viral envelope glycoprotein B. In agreement with the observations that HSV-2 Us3 was less important for these functions, the effect of HSV-2 Us3 kinase activity on virulence in mice following intracerebral inoculation was much lower than that of HSV-1 Us3. Furthermore, we showed that alanine substitution in HSV-2 Us3 at a site (aspartic acid at position 147) corresponding to one that can be autophosphorylated in HSV-1 Us3 abolished HSV-2 Us3 kinase activity. Thus, the regulatory and functional effects of Us3 kinase activity are different between HSV-1 and HSV-2.
Collapse
|
49
|
Sanchez Puch SI, Mathet VL, Porta M, Cuestas ML, Oubiña JR, Videla CM, Salomón HE. Single and multiple mutations in the human cytomegalovirus UL97 gene and their relationship to the enzymatic activity of UL97 kinase for ganciclovir phosphorylation. Antiviral Res 2009; 84:194-8. [PMID: 19712701 DOI: 10.1016/j.antiviral.2009.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 08/10/2009] [Accepted: 08/19/2009] [Indexed: 11/17/2022]
Abstract
In this study we determined that the double mutant M460V/D605E in the UL97 gene of an HCMV isolate from an immunocompromised patient (MMT isolate) is related to resistance to ganciclovir (GCV) therapy. Our results suggest that the aspartic acid-to-glutamic acid substitution at codon 605 may be associated with a natural polymorphism of the UL97 gene, and not with positive selection pressure exerted by the antiviral drug. We also determined that GCV resistance due to the M460V mutation in the HCMV UL97 gene is not offset by a second mutation (D605E) at codon 605. Furthermore, we showed that when the two mutations related to GCV resistance were simultaneously detected in the same HCMV construct, virus-drug resistance might be enhanced in comparison to that of the single mutants studied separately. To our knowledge for the first time, seven of 12 amino acid changes (F102L, D118V, M330T, T400A, R507P and C511R and I533V) in the UL97 gene of an isolate are herein reported.
Collapse
Affiliation(s)
- Silvia I Sanchez Puch
- Centro de Referencia para el SIDA, Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina-Universidad de Buenos Aires, Paraguay 2155, piso 11, (C1121ABG)-CABA, Argentina.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hamirally S, Kamil JP, Ndassa-Colday YM, Lin AJ, Jahng WJ, Baek MC, Noton S, Silva LA, Simpson-Holley M, Knipe DM, Golan DE, Marto JA, Coen DM. Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog 2009; 5:e1000275. [PMID: 19165338 PMCID: PMC2625439 DOI: 10.1371/journal.ppat.1000275] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 12/17/2008] [Indexed: 01/19/2023] Open
Abstract
The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser(22)). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser(22) is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle.
Collapse
Affiliation(s)
- Sofia Hamirally
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeremy P. Kamil
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yasmine M. Ndassa-Colday
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alison J. Lin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wan Jin Jahng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Moon-Chang Baek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarah Noton
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laurie A. Silva
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martha Simpson-Holley
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David M. Knipe
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David E. Golan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Hematology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jarrod A. Marto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|