1
|
Canuti M, Pénzes JJ, Lang AS. A new perspective on the evolution and diversity of the genus Amdoparvovirus (family Parvoviridae) through genetic characterization, structural homology modeling, and phylogenetics. Virus Evol 2022; 8:veac056. [PMID: 35783582 PMCID: PMC9242002 DOI: 10.1093/ve/veac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Amdoparvoviruses (genus Amdoparvovirus, family Parvoviridae) are primarily viruses of carnivorans, but recent studies have indicated that their host range might also extend to rodents and chiropterans. While their classification is based on the full sequence of the major nonstructural protein (NS1), several studies investigating amdoparvoviral diversity have been focused on partial sequences, leading to difficulties in accurately determining species demarcations and leaving several viruses unclassified. In this study, while reporting the complete genomic sequence of a novel amdoparvovirus identified in an American mink (British Columbia amdoparvovirus, BCAV), we studied the phylogenetic relationships of all amdoparvovirus-related sequences and provide a comprehensive reevaluation of their diversity and evolution. After excluding recombinant sequences, phylogenetic and pairwise sequence identity analyses allowed us to define fourteen different viruses, including the five currently classified species, BCAV, and four additional viruses that fulfill the International Committee on Taxonomy of Viruses criteria to be classified as species. We show that the group of viruses historically known as Aleutian mink disease virus (species Carnivore amdoparvovirus 1) should be considered as a cluster of at least four separate viral species that have been co-circulating in mink farms, facilitating the occurrence of inter-species recombination. Genome organization, splicing donor and acceptor sites, and protein sequence motifs were surprisingly conserved within the genus. The sequence of the major capsid protein virus protein 2 (VP2) was significantly more conserved between and within species compared to NS1, a phenomenon possibly linked to antibody-dependent enhancement (ADE). Homology models suggest a remarkably high degree of conservation of the spikes located near the icosahedral threefold axis of the capsid, comprising the surface region associated with ADE. A surprisingly high number of divergent amino acid positions were found in the luminal threefold and twofold axes of the capsid, regions of hitherto unknown function. We emphasize the importance of complete genome analyses and, given the marked phylogenetic inconsistencies across the genome, advise to obtain the complete coding sequences of divergent strains. Further studies on amdoparvovirus biology and structure as well as epidemiological and virus discovery investigations are required to better characterize the ecology and evolution of this important group of viruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s NL A1C 5S7, Canada
| | - Judit J Pénzes
- Institute for Quantitative Biomedicine, Rutgers the State University of New Jersey, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s NL A1C 5S7, Canada
| |
Collapse
|
2
|
Alex CE, Canuti M, Schlesinger MS, Jackson KA, Needle D, Jardine C, Nituch L, Bourque L, Lang AS, Pesavento PA. Natural disease and evolution of an amdoparvovirus endemic in striped skunks (
Mephitis mephitis
). Transbound Emerg Dis 2022; 69:e1758-e1767. [DOI: 10.1111/tbed.14511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Charles E. Alex
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - Marta Canuti
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Maya S. Schlesinger
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - Kenneth A. Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture University of New Hampshire Durham NH USA
| | - Claire Jardine
- Department of Pathobiology, Canadian Wildlife Health Cooperative University of Guelph Guelph ON Canada
| | - Larissa Nituch
- Ontario Ministry of Northern Development Mines, Natural Resources and Forestry Peterborough ON Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative – Atlantic Region University of Prince Edward Island 550 University Ave Charlottetown PE C1A4P3 Canada
| | - Andrew S. Lang
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| |
Collapse
|
3
|
Abstract
The saying "It takes a village to raise a child" has never been truer than in my case. This autobiographical article documents my growing up and working on three different continents and my influencers along the way. Born in a village in Nigeria, West Africa, I spent the first 12 years of life with my grandmother living in a mud house and attending a village primary school. I walked barefoot to school every day, learned to read, and wrote on a chalk slate. At the age of 13, I moved to my second "village," London, England. In secondary school my love of science began to blossom. I attained a double major in chemistry and human biology from the University of Hertfordshire and a PhD in biophysics from the University of London, with a research project aimed at designing anticancer agents. I was mentored by Terence Jenkins and Stephen Neidle. For my postdoctoral training, I crossed the ocean again, to the United States, my third "village." In Michael Rossmann's group at Purdue University, my love for viruses was ignited. My independent career in structural virology began at Warwick University, England, working on pathogenic single-stranded DNA packaging viruses. In 2020, I am a full professor at the University of Florida. Most of my research is focused on the adeno-associated viruses, gene delivery vectors. My list of mentors has grown and includes Nick Muzyczka. Here, the mentee has become the mentor, and along the way, we attained a number of firsts in the field of structural virology and contributed to the field at the national and international stages.
Collapse
Affiliation(s)
- Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
4
|
Shao G, Zhao L, Tang C, Yue H. Identification and genomic characterization of bovine parvovirus 1 in yaks. J Vet Diagn Invest 2021; 33:1193-1196. [PMID: 34238077 DOI: 10.1177/10406387211029691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine parvovirus 1 (BPV1) is a causative agent of respiratory, gastrointestinal, and reproductive cattle diseases. We collected 149 yak diarrhea fecal samples from 9 farms in the Qinghai-Tibet Plateau. The samples were screened for BPV1 by PCR, and 2 samples were positive for BPV1. The complete genomes of these BPV1 isolates were sequenced successfully. The sequences of these 2 variants were both 5,515 bp in length and shared 96.5-96.8% identity with 2 previously reported BPV1 genomes (GenBank DQ335247, NC_001540). Twenty-six identical amino acid mutations were found in the 2 yak variants, including 7 amino acid substitutions in receptor-binding regions of the VP2 protein, and 5 amino acid substitutions in the NS1 protein C-terminal region that functions to activate transcription. The new genome sequences contribute to better understanding of the evolution and molecular characteristics of BPV1.
Collapse
Affiliation(s)
- Guoqing Shao
- College of Animal and Veterinary Sciences, Southwest Minzu University, and Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Long Zhao
- College of Animal and Veterinary Sciences, Southwest Minzu University, and Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Cheng Tang
- College of Animal and Veterinary Sciences, Southwest Minzu University, and Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Hua Yue
- College of Animal and Veterinary Sciences, Southwest Minzu University, and Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| |
Collapse
|
5
|
Li L, Hu Z, Sun J, Guo K, Chu X, Wang X, Lu Y. Development of an EvaGreen-based real-time PCR assay for detection of Aleutian mink disease virus. J Virol Methods 2019; 275:113751. [PMID: 31639372 DOI: 10.1016/j.jviromet.2019.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022]
Abstract
The objective of this study was to develop a rapid, sensitive and specific EvaGreen (EG)-based real-time PCR assay capable of detecting Aleutian mink disease virus (AMDV) and to evaluate the reliability of the assay for analysis of blood or tissue samples. For this assay, a pair of primers was designed based on a nonstructural protein (NS)-encoding gene of AMDV, and the identity of PCR products was identified based on a melting temperature of 82.8°C. The EG-based real-time PCR assay did not detect canine distemper virus or mink enteritis virus, and the assay could be used to detect Chinese and American AMDV strains, in contrast to a commercial TaqMan kit that could only detect American AMDV strains. The amplification efficiencies of the EG assay were 104.8% for the Chinese strain and 94.4% for the American strain, and the detection limit was 1 copy/μL of AMDV plasmid or 3 pg/μL of viral DNA (Chinese strain). The intra- and inter-assay variation coefficients of melting temperature were all lower than 0.15%, confirming the high reproducibility of the assay. Forty-five clinical blood samples were simultaneously analyzed using the EG real-time PCR, TaqMan kit and conventional PCR, and the detection rates were 91.1%, 0.0% and 86.7%, respectively. Serum samples were also collected from the corresponding blood samples and tested using the counterimmunoelectrophoresis (CIEP) assay, where positive samples accounted for 24.4% of the 45 samples. In conclusion, EG-based real-time PCR is a rapid, sensitive, universal assay that can be effectively utilized as a reliable and specific tool for detection and quantitation of AMDV.
Collapse
Affiliation(s)
- Li Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China; Harbin Customs District P.R. China, 88 Songshan Road, Harbin 150008, PR China
| | - Zhe Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Jinhui Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China; College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Kui Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Xiaoyu Chu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Yixin Lu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China.
| |
Collapse
|
6
|
Kashtanov SN, Salnikova LE. Aleutian Mink Disease: Epidemiological and Genetic Aspects. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s2079086418020056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Structural Insights into Human Bocaparvoviruses. J Virol 2017; 91:JVI.00261-17. [PMID: 28331084 DOI: 10.1128/jvi.00261-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/13/2017] [Indexed: 02/08/2023] Open
Abstract
Bocaparvoviruses are emerging pathogens of the Parvoviridae family. Human bocavirus 1 (HBoV1) causes severe respiratory infections and HBoV2 to HBoV4 cause gastrointestinal infections in young children. Recent reports of life-threatening cases, lack of direct treatment or vaccination, and a limited understanding of their disease mechanisms highlight the need to study these pathogens on a molecular and structural level for the development of therapeutics. Toward this end, the capsid structures of HBoV1, HBoV3, and HBoV4 were determined to a resolution of 2.8 to 3.0 Å by cryo-electron microscopy and three-dimensional image reconstruction. The bocaparvovirus capsids, which display different tissue tropisms, have features in common with other parvoviruses, such as depressions at the icosahedral 2-fold symmetry axis and surrounding the 5-fold symmetry axis, protrusions surrounding the 3-fold symmetry axis, and a channel at the 5-fold symmetry axis. However, unlike other parvoviruses, densities extending the 5-fold channel into the capsid interior are conserved among the bocaparvoviruses and are suggestive of a genus-specific function. Additionally, their major viral protein 3 contains loops with variable regions at their apexes conferring capsid surface topologies different from those of other parvoviruses. Structural comparisons at the strain (HBoV) and genus (bovine parvovirus and HBoV) levels identified differences in surface loops that are functionally important in host/tissue tropism, pathogenicity, and antigenicity in other parvoviruses and likely play similar roles in these viruses. This study thus provides a structural framework to characterize determinants of host/tissue tropism, pathogenicity, and antigenicity for the development of antiviral strategies to control human bocavirus infections.IMPORTANCE Human bocaviruses are one of only a few members of the Parvoviridae family pathogenic to humans, especially young children and immunocompromised adults. There are currently no treatments or vaccines for these viruses or the related enteric bocaviruses. This study obtained the first high-resolution structures of three human bocaparvoviruses determined by cryo-reconstruction. HBoV1 infects the respiratory tract, and HBoV3 and HBoV4 infect the gastrointestinal tract, tissues that are likely targeted by the capsid. Comparison of these viruses provides information on conserved bocaparvovirus-specific features and variable regions resulting in unique surface topologies that can serve as guides to characterize HBoV determinants of tissue tropism and antigenicity in future experiments. Based on the comparison to other existing parvovirus capsid structures, this study suggests capsid regions that likely control successful infection, including determinants of receptor attachment, host cell trafficking, and antigenic reactivity. Overall, these observations could impact efforts to design antiviral strategies and vaccines for HBoVs.
Collapse
|
8
|
Ma F, Zhang L, Wang Y, Lu R, Hu B, Lv S, Xue X, Li X, Ling M, Fan S, Zhang H, Yan X. Development of a Peptide ELISA for the Diagnosis of Aleutian Mink Disease. PLoS One 2016; 11:e0165793. [PMID: 27802320 PMCID: PMC5089682 DOI: 10.1371/journal.pone.0165793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/18/2016] [Indexed: 01/26/2023] Open
Abstract
Aleutian disease (AD) is a common immunosuppressive disease in mink farms world-wide. Since the 1980s, counterimmunoelectrophoresis (CIEP) has been the main detection method for infection with the Aleutian Mink Disease Virus (AMDV). In this study, six peptides derived from the AMDV structural protein VP2 were designed, synthesized, and used as ELISA antigens to detect anti-AMDV antibodies in the sera of infected minks. Serum samples were collected from 764 minks in farms from five different provinces, and analyzed by both CIEP (a gold standard) and peptide ELISA. A peptide designated P1 (415 aa-433 aa) exhibited good antigenicity. A novel ELISA was developed using ovalbumin-linked peptide P1 to detect anti-AMDV antibodies in mink sera. The sensitivity and specificity of the peptide ELISA was 98.0% and 97.5%, respectively. Moreover, the ELISA also detected 342 early-stage infected samples (negative by CIEP and positive by PCR), of which 43.6% (149/342) were true positives. These results showed that the peptide ELISA had better sensitivity compared with CIEP, and therefore could be preferable over CIEP for detecting anti-AMDV antibodies in serological screening.
Collapse
Affiliation(s)
- Fanshu Ma
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lei Zhang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yang Wang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rongguang Lu
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Hu
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang Lv
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianghong Xue
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xintong Li
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyu Ling
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sining Fan
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hailing Zhang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xijun Yan
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
9
|
Mapping Antigenic Epitopes on the Human Bocavirus Capsid. J Virol 2016; 90:4670-4680. [PMID: 26912619 DOI: 10.1128/jvi.02998-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/18/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Human bocaviruses (HBoV1 to -4) are emerging pathogens associated with pneumonia and/or diarrhea in young children. Currently, there is no treatment or vaccination, so there is a need to study these pathogens to understand their disease mechanisms on a molecular and structural level for the development of control strategies. Here, we report the structures of six HBoV monoclonal antibody (MAb) fragment complexes, HBoV1-15C6, HBoV2-15C6, HBoV4-15C6, HBoV1-4C2, HBoV1-9G12, and HBoV1-12C1, determined by cryo-electron microscopy and three-dimensional image reconstruction to 18.0- to 8.5-Å resolution. Of these, the 15C6 MAb cross-reacted with HBoV1, HBoV2, and HBoV4, while the 4C2, 12C1, and 9G12 MAbs recognized only HBoV1. Pseudoatomic modeling mapped the 15C6 footprint to the capsid surface DE and HI loops, at the 5-fold axis and the depression surrounding it, respectively, which are conserved motifs in Parvoviridae The footprints for 4C2, 12C1, and 9G12 span the surface loops that assemble portions of the 2-/5-fold wall (a raised surface feature between the 2-fold and 5-fold axes of symmetry) and the shoulder of the 3-fold protrusions. The MAb footprints, cross reactive and strain specific, coincide with regions with high and low sequence/structural identities, respectively, on the capsid surfaces of the HBoVs and identify potential regions for the development of peptide vaccines for these viruses. IMPORTANCE Human bocaviruses (HBoVs) may cause severe respiratory and gastrointestinal infections in young children. The nonenveloped parvovirus capsid carries determinants of host and tissue tropism, pathogenicity, genome packaging, assembly, and antigenicity important for virus infection. This information is currently unavailable for the HBoVs and other bocaparvoviruses. This study identifies three strain-specific antigenic epitopes on the HBoV1 capsid and a cross-reactive epitope on the HBoV1, HBoV2, and HBoV4 capsids using structures of capsid-antibody complexes determined using cryo-electron microscopy and image reconstruction. This is the first study to report the highly conserved parvovirus DE loop at the 5-fold axis as a determinant of antigenicity. Additionally, knowledge of the strain-specific and conserved antigenic epitopes of the bocaviruses can be instrumental in characterization of the virus life cycle, development of peptide vaccines, and generation of gene delivery vectors for cystic fibrosis given the strict tropism of HBoV1 for human airway epithelial cells.
Collapse
|
10
|
Xi J, Wang J, Yu Y, Zhang X, Mao Y, Hou Q, Liu W. Genetic characterization of the complete genome of an Aleutian mink disease virus isolated in north China. Virus Genes 2016; 52:463-73. [PMID: 27007772 DOI: 10.1007/s11262-016-1320-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/12/2016] [Indexed: 12/16/2022]
Abstract
The genome of a highly pathogenic strain of Aleutian disease mink virus (AMDV-BJ) isolated from a domestic farm in North China has been determined and compared with other strains. Alignment analysis of the major structural protein VP2 revealed that AMDV-BJ is unique among 17 other AMDV strains. Compared with the nonpathogenic strain ADV-G, the 3' end Y-shaped hairpin was highly conserved, while a 4-base deletion in the 5' U-shaped terminal palindrome resulted in a different unpaired "bubble" group near the NS1-binding region of the 5' end hairpin which may affect replication efficiency in vivo. We also performed a protein analysis of the NS1, NS2, and new-confirmed NS3 of AMDV-BJ with some related AMDV DNA sequence published, providing information on evolution of AMDV genes. This study shows a useful method to obtain the full-length genome of AMDV and some other parvoviruses.
Collapse
Affiliation(s)
- Ji Xi
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yongle Yu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaomei Zhang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yaping Mao
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qiang Hou
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
11
|
Canuti M, O’Leary KE, Hunter BD, Spearman G, Ojkic D, Whitney HG, Lang AS. Driving forces behind the evolution of the Aleutian mink disease parvovirus in the context of intensive farming. Virus Evol 2016; 2:vew004. [PMID: 27774297 PMCID: PMC4989880 DOI: 10.1093/ve/vew004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aleutian mink disease virus (AMDV) causes plasmacytosis, an immune complex-associated syndrome that affects wild and farmed mink. The virus can also infect other small mammals (e.g., ferrets, skunks, ermines, and raccoons), but the disease in these hosts has been studied less. In 2007, a mink plasmacytosis outbreak began on the Island of Newfoundland, and the virus has been endemic in farms since then. In this study, we evaluated the molecular epidemiology of AMDV in farmed and wild animals of Newfoundland since before the beginning of the outbreak and investigated the epidemic in a global context by studying AMDV worldwide, thereby examining its diffusion and phylogeography. Furthermore, AMDV evolution was examined in the context of intensive farming, where host population dynamics strongly influence viral evolution. Partial NS1 sequences and several complete genomes were obtained from Newfoundland viruses and analyzed along with numerous sequences from other locations worldwide that were either obtained as part of this study or from public databases. We observed very high viral diversity within Newfoundland and within single farms, where high rates of co-infection, recombinant viruses and polymorphisms were observed within single infected individuals. Worldwide, we documented a partial geographic distribution of strains, where viruses from different countries co-exist within clades but form country-specific subclades. Finally, we observed the occurrence of recombination and the predominance of negative selection pressure on AMDV proteins. A surprisingly low number of immunoepitopic sites were under diversifying pressure, possibly because AMDV gains no benefit by escaping the immune response as viral entry into target cells is mediated through interactions with antibodies, which therefore contribute to cell infection. In conclusion, the high prevalence of AMDV in farms facilitates the establishment of co-infections that can favor the occurrence of recombination and enhance viral diversity. Viruses are then exchanged between different farms and countries and can be introduced into the wild, with the rapidly evolving viruses producing many parallel lineages.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, Newfoundland and Labrador, A1B 3X9, Canada
| | - Kimberly E. O’Leary
- Animal Health Division, Forestry and Agrifoods Agency, P.O. Box 7400, St. John’s, Newfoundland and Labrador, A1E 3Y5, Canada
| | - Bruce D. Hunter
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Grant Spearman
- Department of Agriculture, Animal Health Laboratory, 65 River Rd., Truro, Nova Scotia, B2N 5E3, Canada and
| | - Davor Ojkic
- Animal Health Laboratory, 419 Gordon Street, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Hugh G. Whitney
- Animal Health Division, Forestry and Agrifoods Agency, P.O. Box 7400, St. John’s, Newfoundland and Labrador, A1E 3Y5, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, Newfoundland and Labrador, A1B 3X9, Canada
| |
Collapse
|
12
|
Development of an Enzyme-Linked Immunosorbent Assay Based on Fusion VP2332-452 Antigen for Detecting Antibodies against Aleutian Mink Disease Virus. J Clin Microbiol 2015; 54:439-42. [PMID: 26582828 DOI: 10.1128/jcm.02625-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/31/2015] [Indexed: 11/20/2022] Open
Abstract
For detection of Aleutian mink disease virus (AMDV) antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed using the recombinant VP2332-452 protein as an antigen. Counterimmunoelectrophoresis (CIEP) was used as a reference test to compare the results of the ELISA and Western blotting (WB); the specificity and sensitivity of the VP2332-452 ELISA were 97.9% and 97.3%, respectively, which were higher than those of WB. Therefore, this VP2332-452 ELISA may be a preferable method for detecting antibodies against AMDV.
Collapse
|
13
|
Affiliation(s)
- Shweta Kailasan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Colin R. Parrish
- Baker Institute for Animal Health and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
14
|
Abstract
UNLABELLED Bovine parvovirus (BPV), the causative agent of respiratory and gastrointestinal disease in cows, is the type member of the Bocaparvovirus genus of the Parvoviridae family. Toward efforts to obtain a template for the development of vaccines and small-molecule inhibitors for this pathogen, the structure of the BPV capsid, assembled from the major capsid viral protein 2 (VP2), was determined using X-ray crystallography as well as cryo-electron microscopy and three-dimensional image reconstruction (cryo-reconstruction) to 3.2- and 8.8-Å resolutions, respectively. The VP2 region ordered in the crystal structure, from residues 39 to 536, conserves the parvoviral eight-stranded jellyroll motif and an αA helix. The BPV capsid displays common parvovirus features: a channel at and depressions surrounding the 5-fold axes and protrusions surrounding the 3-fold axes. However, rather than a depression centered at the 2-fold axes, a raised surface loop divides this feature in BPV. Additional observed density in the capsid interior in the cryo-reconstructed map, compared to the crystal structure, is interpreted as 10 additional N-terminal residues, residues 29 to 38, that radially extend the channel under the 5-fold axis, as observed for human bocavirus 1 (HBoV1). Surface loops of various lengths and conformations extend from the core jellyroll motif of VP2. These loops confer the unique surface topology of the BPV capsid, making it strikingly different from HBoV1 as well as the type members of other Parvovirinae genera for which structures have been determined. For the type members, regions structurally analogous to those decorating the BPV capsid surface serve as determinants of receptor recognition, tissue and host tropism, pathogenicity, and antigenicity. IMPORTANCE Bovine parvovirus (BPV), identified in the 1960s in diarrheic calves, is the type member of the Bocaparvovirus genus of the nonenveloped, single-stranded DNA (ssDNA) Parvoviridae family. The recent isolation of human bocaparvoviruses from children with severe respiratory and gastrointestinal infections has generated interest in understanding the life cycle and pathogenesis of these emerging viruses. We have determined the high-resolution structure of the BPV capsid assembled from its predominant capsid protein VP2, known to be involved in a myriad of functions during host cell entry, pathogenesis, and antigenicity for other members of the Parvovirinae. Our results show the conservation of the core secondary structural elements and the location of the N-terminal residues for the known bocaparvovirus capsid structures. However, surface loops with high variability in sequence and conformation give BPV a unique capsid surface topology. Similar analogous regions in other Parvovirinae type members are important as determinants of receptor recognition, tissue and host tropism, pathogenicity, and antigenicity.
Collapse
|
15
|
Dam-Tuxen R, Dahl J, Jensen TH, Dam-Tuxen T, Struve T, Bruun L. Diagnosing Aleutian mink disease infection by a new fully automated ELISA or by counter current immunoelectrophoresis: A comparison of sensitivity and specificity. J Virol Methods 2014; 199:53-60. [DOI: 10.1016/j.jviromet.2014.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 11/24/2022]
|
16
|
Phylogenetic analysis of the VP2 gene of Aleutian mink disease parvoviruses isolated from 2009 to 2011 in China. Virus Genes 2012; 45:31-7. [PMID: 22415542 DOI: 10.1007/s11262-012-0734-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Aleutian mink disease parvovirus (AMDV) is a non-enveloped virus with a single-stranded DNA genome that causes a fatal, usually persistent immune complex disease in minks. In this study, a total of 18,654 serum samples were collected from minks that were farmed in China from 2009 to 2011. After testing by counter-current immunoelectrophoresis (CIE), the seroprevalence of AMDV was found to be 68.67 %. The results show that there is a serious epidemic among Chinese minks used for breeding. To gain detailed information regarding the molecular epidemiology of AMDV in China, nine strains of AMDV were isolated from mink samples that were collected from four of the primary mink farming areas in China. The full-length capsid protein VP2 gene from each strain was sequenced after PCR amplification, and a phylogenetic analysis was performed on the VP2 gene sequence, including the VP2 genes from the other 10 AMDV strains available in the GenBank database, which were submitted from the 1970s to 2009. The phylogenetic analysis showed that the AMDV isolates were divided into five independent clades. The Chinese AMDV strains were distributed among all five groups and showed a high level of genetic diversity. Over 50 % of the Chinese AMDV strains were classified into two clades that consisted only of isolates from China and that were distinct from AMDV strains found in other countries. This finding indicated that both local and imported ADMV species are prevalent in the Chinese mink farming population.
Collapse
|
17
|
Abstract
Parvoviruses package a ssDNA genome. Both nonpathogenic and pathogenic members exist, including those that cause fetal infections, encompassing the entire spectrum of virus phenotypes. Their small genomes and simple coding strategy has enabled functional annotation of many steps in the infectious life cycle. They assemble a multifunctional capsid responsible for cell recognition and the transport of the packaged genome to the nucleus for replication and progeny virus production. It is also the target of the host immune response. Understanding how the capsid structure relates to the function of parvoviruses provides a platform for recombinant engineering of viral gene delivery vectors for the treatment of clinical diseases, and is fundamental for dissecting the viral determinants of pathogenicity. This review focuses on our current understanding of parvovirus capsid structure and function with respect to the infectious life cycle.
Collapse
Affiliation(s)
- Sujata Halder
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| | - Robert Ng
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Implementation and validation of a sensitive PCR detection method in the eradication campaign against Aleutian mink disease virus. J Virol Methods 2010; 171:81-5. [PMID: 20951744 DOI: 10.1016/j.jviromet.2010.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/03/2010] [Accepted: 10/07/2010] [Indexed: 11/23/2022]
Abstract
Aleutian mink disease virus (AMDV) is a severe progressive disease causing multiple different clinical syndromes in mink. In Denmark, the disease is notifiable and under official control. The control programme, based on serological screening, has confined successfully AMDV to the northern part of Denmark. However, re-infections and new introductions of virus into farms require a confirmatory virological test to verify the positive test results of single animals and ultimately to investigate disease transmission. A one step PCR amplifying a 374-base fragment of the NS1 gene of AMDV was compared to the counter-current immune electrophoresis (CIE) routinely used in the serological screening programme. Mink organs (n=299) obtained from 55 recently infected farms and 8 non-infected farms from 2008 to 2010 were tested by PCR, and the results were found to have a high correlation with the serological status of the mink. The relative diagnostic sensitivity of the PCR was 94.7%, and the relative diagnostic specificity was 97.9% when read in parallel with the CIE. PCR positive samples were sequenced and phylogenetic analysis revealed high similarity within the analysed AMDV strains and to AMDV strains described previously.
Collapse
|
19
|
Kaufmann B, López-Bueno A, Mateu MG, Chipman PR, Nelson CDS, Parrish CR, Almendral JM, Rossmann MG. Minute virus of mice, a parvovirus, in complex with the Fab fragment of a neutralizing monoclonal antibody. J Virol 2007; 81:9851-8. [PMID: 17626084 PMCID: PMC2045413 DOI: 10.1128/jvi.00775-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of virus-like particles of the lymphotropic, immunosuppressive strain of minute virus of mice (MVMi) in complex with the neutralizing Fab fragment of the mouse monoclonal antibody (MAb) B7 was determined by cryo-electron microscopy to 7-A resolution. The Fab molecule recognizes a conformational epitope at the vertex of a three-fold protrusion on the viral surface, thereby simultaneously engaging three symmetry-related viral proteins in binding. The location of the epitope close to the three-fold axis is consistent with the previous analysis of MVMi mutants able to escape from the B7 antibody. The binding site close to the symmetry axes sterically forbids the binding of more than one Fab molecule per spike. MAb as well as the Fab molecules inhibits the binding of the minute virus of mice (MVM) to permissive cells but can also neutralize MVM postattachment. This finding suggests that the interaction of B7 with three symmetry-related viral subunits at each spike hinders structural transitions in the viral capsid essential during viral entry.
Collapse
Affiliation(s)
- Bärbel Kaufmann
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sauter P, Lobert PE, Lucas B, Varela-Calvino R, Alm G, Wattre P, Hober D. Role of the capsid protein VP4 in the plasma-dependent enhancement of the Coxsackievirus B4E2-infection of human peripheral blood cells. Virus Res 2007; 125:183-90. [PMID: 17291618 DOI: 10.1016/j.virusres.2007.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 11/26/2022]
Abstract
It has been previously shown that antibodies contained in human plasma directed towards the Coxsackievirus B4 (CVB4)E2 capsid protein VP4 can enhance the CVB4E2-induced production of IFN-alpha by peripheral blood mononuclear cells (PBMC). The aim of this study was to produce a VP4 fusion protein to investigate the role of the internal capsid protein VP4 and anti-VP4 antibodies in the plasma-dependent enhancement of CVB4E2 infection of PBMC. A fusion protein MBPVP4 containing the VP4 insert of CVB4E2 and a control fusion protein MBP-beta-gal-alpha, were produced in Escherichia coli K12 TB1. The CVB4E2 infection of PBMC was quantified by using a real time PCR method amplifying CVB4E2-negative strand RNA. IFN-alpha concentrations in culture supernatants were assayed by DELFIA. MBPVP4 but not MBP-beta-gal-alpha, preincubated with plasma inhibited the plasma-dependent enhancement of CVB4E2-induced production of IFN-alpha by PBMC. Human plasma samples, antibodies contained in plasma eluted from MBPVP4-coated plates, but not from MBP-beta-gal-alpha-coated plates, incubated with CVB4E2 enhanced the infection of PBMC and the production of IFN-alpha by infected cells. Together our results show that VP4 and anti-VP4 antibodies play a role in the plasma-dependent enhancement of CVB4E2 infection of PBMC.
Collapse
Affiliation(s)
- Pierre Sauter
- Service de Virologie/UPRES EA3610, Faculté de Médecine-Université Lille 2, Bâtiment Paul Boulanger, CHRU Lille, 59037 Lille, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Best SM, Shelton JF, Pompey JM, Wolfinbarger JB, Bloom ME. Caspase cleavage of the nonstructural protein NS1 mediates replication of Aleutian mink disease parvovirus. J Virol 2003; 77:5305-12. [PMID: 12692232 PMCID: PMC153974 DOI: 10.1128/jvi.77.9.5305-5312.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-induced apoptosis of infected cells can limit both the time and the cellular machinery available for virus replication. Hence, many viruses have evolved strategies to specifically inhibit apoptosis. However, Aleutian mink disease parvovirus (ADV) is the first example of a DNA virus that not only induces apoptosis but also utilizes caspase activity to facilitate virus replication. To determine the function of caspase activity during ADV replication, virus-infected cell lysates or purified ADV proteins were incubated with various purified caspases. Caspases cleaved the major nonstructural protein of ADV (NS1) at two caspase recognition sequences, whereas ADV structural proteins could not be cleaved. Importantly, the NS1 products could be identified in ADV-infected cells but were not present in infected cells pretreated with caspase inhibitors. By mutating putative caspase cleavage sites (D to E), we mapped the two cleavage sites to amino acid residues NS1:227 (INTD downward arrow S) and NS1:285 (DQTD downward arrow S). Replication of ADV containing either of these mutations was reduced 10(3)- to 10(4)-fold compared to that of wild-type virus, and a construct containing both mutations was replication defective. Immunofluorescent studies revealed that cleavage was required for nuclear localization of NS1. The requirement for caspase activity during permissive replication suggests that limitation of caspase activation and apoptosis in vivo may be a novel approach to restricting virus replication.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840, USA
| | | | | | | | | |
Collapse
|
22
|
López-Bueno A, Mateu MG, Almendral JM. High mutant frequency in populations of a DNA virus allows evasion from antibody therapy in an immunodeficient host. J Virol 2003; 77:2701-8. [PMID: 12552010 PMCID: PMC141124 DOI: 10.1128/jvi.77.4.2701-2708.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The degree of genetic heterogeneity of DNA virus populations in nature and its consequences for disease control are virtually unknown. The parvovirus minute virus of mice (MVMi) was used here to investigate (i) the frequency of antibody-escape mutants in populations of a DNA virus and (ii) the ability of a DNA virus to evade in the long-term a passive monoclonal antibody (MAb) therapy in an immunodeficient natural host. Independent clonal populations of MVMi harbored a high proportion of mutants resistant to neutralizing MAb (mutant frequency = [2.8 +/- 0.5] x 10(-5)) that rapidly evolved under antibody pressure in culture to become mixtures dominated by genotypically diverse escape mutants. Immunodeficient mice naturally infected with clonal populations of MVMi and subsequently treated by intravenous injections of MAb were initially protected from the characteristic viral induced lethal leukopenia. However, some treated animals developed a delayed severe leukopenic syndrome associated with the emergence of genetically heterogeneous populations of MAb-resistant mutants in the MVMi main target organs. The 11 plaque-purified viruses analyzed from an antibody-resistant population obtained from one animal corresponded to four different mutant genotypes, although their consensus sequence remained wild type. All cloned escape mutants harbored single radical amino acid changes within a stretch of seven residues in a surface-exposed loop at the threefold axes of the capsid. This antigenic site, which can tolerate radical changes preserving MVMi pathogenic potential, may thereby allow the virus to evade the immune control. These findings indicate a high genetic heterogeneity and rapid adaptation of populations of a mammal DNA virus in vivo and provide a genetic basis for the failure of passive immunotherapy in the natural host.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
23
|
Bowles DE, Rabinowitz JE, Samulski RJ. Marker rescue of adeno-associated virus (AAV) capsid mutants: a novel approach for chimeric AAV production. J Virol 2003; 77:423-32. [PMID: 12477847 PMCID: PMC140636 DOI: 10.1128/jvi.77.1.423-432.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Marker rescue, the restoration of gene function by replacement of a defective gene with a normal one by recombination, has been utilized to produce novel adeno-associated virus (AAV) vectors. AAV serotype 2 (AAV2) clones containing wild-type terminal repeats, an intact rep gene, and a mutated cap gene, served as the template for marker rescue. When transfected alone in 293 cells, these AAV2 mutant plasmids produced noninfectious AAV virions that could not bind heparin sulfate after infection with adenovirus dl309 helper virus. However, the mutation in the cap gene was corrected after cotransfection with AAV serotype 3 (AAV3) capsid DNA fragments, resulting in the production of AAV2/AAV3 chimeric viruses. The cap genes from several independent marker rescue experiments were PCR amplified, cloned, and then sequenced. Sequencing results confirmed not only that homologous recombination occurred but, more importantly, that a mixed population of AAV chimeras carrying 16 to 2,200 bp throughout different regions of the type 3 cap gene were generated in a single marker rescue experiment. A 100% correlation was observed between infectivity and the ability of the chimeric virus to bind heparin sulfate. In addition, many of the AAV2/AAV3 chimeras examined exhibited differences at both the nucleotide and amino acid levels, suggesting that these chimeras may also exhibit unique infectious properties. Furthermore, AAV helper plasmids containing these chimeric cap genes were able to function in the triple transfection method to generate recombinant AAV. Together, the results suggest that DNA from other AAV serotypes can rescue AAV capsid mutants and that marker rescue may be a powerful, yet simple, technique to map, as well as develop, chimeric AAV capsids that display different serotype-specific properties.
Collapse
Affiliation(s)
- Dawn E Bowles
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599-7352, USA
| | | | | |
Collapse
|
24
|
Bloom ME, Best SM, Hayes SF, Wells RD, Wolfinbarger JB, McKenna R, Agbandje-McKenna M. Identification of aleutian mink disease parvovirus capsid sequences mediating antibody-dependent enhancement of infection, virus neutralization, and immune complex formation. J Virol 2001; 75:11116-27. [PMID: 11602751 PMCID: PMC114691 DOI: 10.1128/jvi.75.22.11116-11127.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 07/30/2001] [Indexed: 11/20/2022] Open
Abstract
Aleutian mink disease parvovirus (ADV) causes a persistent infection associated with circulating immune complexes, immune complex disease, hypergammaglobulinemia, and high levels of antiviral antibody. Although antibody can neutralize ADV infectivity in Crandell feline kidney cells in vitro, virus is not cleared in vivo, and capsid-based vaccines have proven uniformly ineffective. Antiviral antibody also enables ADV to infect macrophages, the target cells for persistent infection, by Fc-receptor-mediated antibody-dependent enhancement (ADE). The antibodies involved in these unique aspects of ADV pathogenesis may have specific targets on the ADV capsid. Prominent differences exist between the structure of ADV and other, more-typical parvoviruses, which can be accounted for by short peptide sequences in the flexible loop regions of the capsid proteins. In order to determine whether these short sequences are targets for antibodies involved in ADV pathogenesis, we studied heterologous antibodies against several peptides present in the major capsid protein, VP2. Of these antibodies, a polyclonal rabbit antibody to peptide VP2:428-446 was the most interesting. The anti-VP2:428-446 antibody aggregated virus particles into immune complexes, mediated ADE, and neutralized virus infectivity in vitro. Thus, antibody against this short peptide can be implicated in key facets of ADV pathogenesis. Structural modeling suggested that surface-exposed residues of VP2:428-446 are readily accessible for antibody binding. The observation that antibodies against a single target peptide in the ADV capsid can mediate both neutralization and ADE may explain the failure of capsid-based vaccines.
Collapse
Affiliation(s)
- M E Bloom
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Maroto B, Ramírez JC, Almendral JM. Phosphorylation status of the parvovirus minute virus of mice particle: mapping and biological relevance of the major phosphorylation sites. J Virol 2000; 74:10892-902. [PMID: 11069983 PMCID: PMC113168 DOI: 10.1128/jvi.74.23.10892-10902.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The core of the VP-1 and VP-2 proteins forming the T=1 icosahedral capsid of the prototype strain of the parvovirus minute virus of mice (MVMp) share amino acids sequence and a common three-dimensional structure; however, the roles of these polypeptides in the virus infection cycle differ. To gain insights into this paradox, the nature, distribution, and biological significance of MVMp particle phosphorylation was investigated. The VP-1 and VP-2 proteins isolated from purified empty capsids and from virions containing DNA harbored phosphoserine and phosphothreonine amino acids, which in two-dimensional tryptic analysis resulted in complex patterns reproducibly composed by more than 15 unevenly phosphorylated peptides. Whereas secondary protease digestions and comigration of most weak peptides in the fingerprints revealed common phosphorylation sites in the VP-1 and VP-2 subunits assembled in capsids, the major tryptic phosphopeptides were remarkably characteristic of either polypeptide. The VP-2-specific peptide named B, containing the bulk of the (32)P label of the MVMp particle in the form of phosphoserine, was mapped to the structurally unordered N-terminal domain of this polypeptide. Mutations in any or all four serine residues present in peptide B showed that the VP-2 N-terminal domain is phosphorylated at multiple sites, even though none of them was essential for capsid assembly or virus formation. Chromatographic analysis of purified wild-type (wt) and mutant peptide B digested with a panel of specific proteases allowed us to identify the VP-2 residues Ser-2, Ser-6, and Ser-10 as the main phosphate acceptors for MVMp capsid during the natural viral infection. Phosphorylation at VP-2 N-terminal serines was not necessary for the externalization of this domain outside of the capsid shell in particles containing DNA. However, the plaque-forming capacity and plaque size of VP-2 N-terminal phosphorylation mutants were severely reduced, with the evolutionarily conserved Ser-2 determining most of the phenotypic effect. In addition, the phosphorylated amino acids were not required for infection initiation or for nuclear translocation of the expressed structural proteins, and thus a role at a late stage of MVMp life cycle is proposed. This study illustrates the complexity of posttranslational modification of icosahedral viral capsids and underscores phosphorylation as a versatile mechanism to modulate the biological functions of their protein subunits.
Collapse
Affiliation(s)
- B Maroto
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Cantoblanco, Spain
| | | | | |
Collapse
|
26
|
Lombardo E, Ramírez JC, Agbandje-McKenna M, Almendral JM. A beta-stranded motif drives capsid protein oligomers of the parvovirus minute virus of mice into the nucleus for viral assembly. J Virol 2000; 74:3804-14. [PMID: 10729155 PMCID: PMC111889 DOI: 10.1128/jvi.74.8.3804-3814.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The determinants of nuclear import in the VP-1 and VP-2 capsid proteins of the parvovirus minute virus of mice strain i (MVMi) synthesized in human fibroblasts were sought by genetic analysis in an infectious plasmid. Immunofluorescence of transfected cells revealed that the two proteins were involved in cooperative cytoplasmic interactions for nuclear cotransport. However, while VP-1 translocated regardless of extension of deletions and did not form capsid epitopes by itself, VP-2 seemed to require cytoplasmic folding and the overall conformation for nuclear transport. The sequence (528)KGKLTMRAKLR(538) was found necessary for nuclear uptake of VP-2, even though it was not sufficient to confer a nuclear localization capacity on a heterologous protein. In the icosahaedral MVMi capsid, this sequence forms the carboxy end of the amphipathic beta-strand I (betaI), and all its basic residues are contiguously positioned at the face that in the unassembled subunit would be exposed to solvent. Mutations in singly expressed VP-2 that either decrease the net basic charge of the exposed face (K530N-R534T), perturb the hydrophobicity of the opposite face (L531E), or distort the betaI conformation (G529P) produced cytoplasmic subviral oligomers. Particle formation by betaI mutants indicated that the basic residues clustered at one face of betaI drive VP oligomers into the nucleus preceding and uncoupled to assembly and that the nuclear environment is required for MVMi capsid formation in the infected cell. The degree of VP-1/VP-2 transport cooperativity suggests that VP trimers are the morphogenetic intermediates translocating through the nuclear pore. The results support a model in which nuclear transport signaling preserves the VP-1/VP-2 stoichiometry necessary for efficient intranuclear assembly and in which the beta-stranded VP-2 nuclear localization motif contributes to the quality control of viral morphogenesis.
Collapse
Affiliation(s)
- E Lombardo
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), 28049 Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Fox JM, McCrackin Stevenson MA, Bloom ME. Replication of Aleutian mink disease parvovirus in vivo is influenced by residues in the VP2 protein. J Virol 1999; 73:8713-9. [PMID: 10482625 PMCID: PMC112892 DOI: 10.1128/jvi.73.10.8713-8719.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aleutian mink disease parvovirus (ADV) is the etiological agent of Aleutian disease of mink. Several ADV isolates have been identified which vary in the severity of the disease they elicit. The isolate ADV-Utah replicates to high levels in mink, causing severe Aleutian disease that results in death within 6 to 8 weeks, but does not replicate in Crandell feline kidney (CrFK) cells. In contrast, ADV-G replicates in CrFK cells but does not replicate in mink. The ability of the virus to replicate in vivo is determined by virally encoded determinants contained within a defined region of the VP2 gene (M. E. Bloom, J. M. Fox, B. D. Berry, K. L. Oie, and J. B. Wolfinbarger. Virology 251:288-296, 1998). Within this region, ADV-G and ADV-Utah differ at only five amino acid residues. To determine which of these five amino acid residues comprise the in vivo replication determinant, site-directed mutagenesis was performed to individually convert the amino acid residues of ADV-G to those of ADV-Utah. A virus in which the ADV-G VP2 residue at 534, histidine (H), was converted to an aspartic acid (D) of ADV-Utah replicated in CrFK cells as efficiently as ADV-G. H534D also replicated in mink, causing transient viremia at 30 days postinfection and a strong antibody response. Animals infected with this virus developed diffuse hepatocellular microvesicular steatosis, an abnormal accumulation of intracellular fat, but did not develop classical Aleutian disease. Thus, the substitution of an aspartic acid at residue 534 for a histidine allowed replication of ADV-G in mink, but the ability to replicate was not sufficient to cause classical Aleutian disease.
Collapse
Affiliation(s)
- J M Fox
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
28
|
McKenna R, Olson NH, Chipman PR, Baker TS, Booth TF, Christensen J, Aasted B, Fox JM, Bloom ME, Wolfinbarger JB, Agbandje-McKenna M. Three-dimensional structure of Aleutian mink disease parvovirus: implications for disease pathogenicity. J Virol 1999; 73:6882-91. [PMID: 10400786 PMCID: PMC112773 DOI: 10.1128/jvi.73.8.6882-6891.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Accepted: 04/15/1999] [Indexed: 11/20/2022] Open
Abstract
The three-dimensional structure of expressed VP2 capsids of Aleutian mink disease parvovirus strain G (ADVG-VP2) has been determined to 22 A resolution by cryo-electron microscopy and image reconstruction techniques. A structure-based sequence alignment of the VP2 capsid protein of canine parvovirus (CPV) provided a means to construct an atomic model of the ADVG-VP2 capsid. The ADVG-VP2 reconstruction reveals a capsid structure with a mean external radius of 128 A and several surface features similar to those found in human parvovirus B19 (B19), CPV, feline panleukopenia virus (FPV), and minute virus of mice (MVM). Dimple-like depressions occur at the icosahedral twofold axes, canyon-like regions encircle the fivefold axes, and spike-like protrusions decorate the threefold axes. These spikes are not present in B19, and they are more prominent in ADV compared to the other parvoviruses owing to the presence of loop insertions which create mounds near the threefold axes. Cylindrical channels along the fivefold axes of CPV, FPV, and MVM, which are surrounded by five symmetry-related beta-ribbons, are closed in ADVG-VP2 and B19. Immunoreactive peptides made from segments of the ADVG-VP2 capsid protein map to residues in the mound structures. In vitro tissue tropism and in vivo pathogenic properties of ADV map to residues at the threefold axes and to the wall of the dimples.
Collapse
Affiliation(s)
- R McKenna
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Costello F, Steenfos N, Jensen KT, Christensen J, Gottschalck E, Holm A, Aasted B. Epitope mapping of Aleutian mink disease parvovirus virion protein VP1 and 2. Scand J Immunol 1999; 49:347-54. [PMID: 10219758 DOI: 10.1046/j.1365-3083.1999.00499.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Six overlapping fragments of the Aleutian Mink Disease parvoVirus (AMDV) virion protein VP1 and 2 (VP1/2) gene were inserted into the expression vector pMAL-c2. Four of the clones carried large overlapping fragments covering the entire VP1/2 gene. The remaining two clones covered specifically chosen regions within the VP1/2 gene. Using a Western blotting detection system, sera from AMDV-infected mink were tested against the recombinant polypeptides. These studies showed reactions primarily directed against the two AMDV polypeptides ranging from amino acids 297 to 518. Weaker reactions against other regions of the VP1/2 were also observed. The small fusion protein designed to cover the presumed AMDV VP1/2 loop 4 was purified by affinity chromatography and used to develop solid-phase immunoassays. Twelve small synthetic peptides were constructed and used as inhibitors. A peptide covering amino acids S428 to T448 was shown to block the reactivity of a pool of positive mink sera, indicating the presence of one dominant linear epitope.
Collapse
Affiliation(s)
- F Costello
- Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | | | | | | | |
Collapse
|