1
|
Nedellec R, Herbeck JT, Hunt PW, Deeks SG, Mullins JI, Anton ED, Reeves JD, Mosier DE. High-Sequence Diversity and Rapid Virus Turnover Contribute to Higher Rates of Coreceptor Switching in Treatment-Experienced Subjects with HIV-1 Viremia. AIDS Res Hum Retroviruses 2017; 33:234-245. [PMID: 27604829 DOI: 10.1089/aid.2016.0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coreceptor switching from CCR5 to CXCR4 is common during chronic HIV-1 infection, but is even more common in individuals who have failed antiretroviral therapy (ART). Prior studies have suggested rapid mutation and/or recombination of HIV-1 envelope (env) genes during coreceptor switching. We compared the functional and genotypic changes in env of viruses from viremic subjects who had failed ART just before and after coreceptor switching and compared those to viruses from matched subjects without coreceptor switching. Analysis of multiple unique functional env clones from each subject revealed extensive diversity at both sample time points and rapid diversification of sequences during the 4-month interval in viruses from both 9 subjects with coreceptor switching and 15 control subjects. Only two subjects had envs with evidence of recombination. Three findings distinguished env clones from subjects with coreceptor switching from controls: (1) lower entry efficiency via CCR5; (2) longer V1/V2 regions; and (3), lower nadir CD4 T cell counts during prior years of infection. Most of these subjects harbored virus with lower replicative capacity associated with protease (PR) and/or reverse transcriptase inhibitor resistance mutations, and the extensive diversification tended to lead either to improved entry efficiency via CCR5 or the gain of entry function via CXCR4. These results suggest that R5X4 or X4 variants emerge from a diverse, low-fitness landscape shaped by chronic infection, multiple ART resistance mutations, the availability of target cells, and reduced entry efficiency via CCR5.
Collapse
Affiliation(s)
- Rebecca Nedellec
- Department of Immunology and Microbial Science, IMM-7, The Scripps Research Institute, La Jolla, California
| | - Joshua T. Herbeck
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, Washington
| | - Peter W. Hunt
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Elizabeth D. Anton
- Monogram Biosciences, Laboratory Corporation of America® Holding, Virology Research and Development, South San Francisco, California
| | - Jacqueline D. Reeves
- Monogram Biosciences, Laboratory Corporation of America® Holding, Virology Research and Development, South San Francisco, California
| | - Donald E. Mosier
- Department of Immunology and Microbial Science, IMM-7, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
2
|
Brandenberg OF, Rusert P, Magnus C, Weber J, Böni J, Günthard HF, Regoes RR, Trkola A. Partial rescue of V1V2 mutant infectivity by HIV-1 cell-cell transmission supports the domain's exceptional capacity for sequence variation. Retrovirology 2014; 11:75. [PMID: 25287422 PMCID: PMC4190450 DOI: 10.1186/s12977-014-0075-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variable loops 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 perform two key functions: ensuring envelope trimer entry competence and shielding against neutralizing antibodies. While preserving entry functionality would suggest a high need for V1V2 sequence optimization and conservation, shielding efficacy is known to depend on a high flexibility of V1V2 giving rise to its substantial sequence variability. How entry competence of the trimer is maintained despite the continuous emergence of antibody escape mutations within V1V2 has not been resolved. Since HIV cell-cell transmission is considered a highly effective means of virus dissemination, we investigated whether cell-cell transmission may serve to enhance infectivity of V1V2 variants with debilitated free virus entry. RESULTS In a detailed comparison of wt and V1V2 mutant envelopes, V1V2 proved to be a key factor in ascertaining free virus infectivity, with V1V2 mutants displaying significantly reduced trimer integrity. Despite these defects, cell-cell transmission was able to partially rescue infectivity of V1V2 mutant viruses. We identified two regions, encompassing amino acids 156 to 160 (targeted by broadly neutralizing antibodies) and 175 to 180 (encompassing the α4β7 binding site) which were particularly prone to free virus infectivity loss upon mutation but maintained infectivity in cell-cell transmission. Of note, V1V2 antibody shielding proved important during both free virus infection and cell-cell transmission. CONCLUSIONS Based on our data we propose a model for V1V2 evolution that centers on cell-cell transmission as a salvage pathway for virus replication. Escape from antibody neutralization may frequently result in V1V2 mutations that reduce free virus infectivity. Cell-cell transmission could provide these escape viruses with sufficiently high replication levels that enable selection of compensatory mutations, thereby restoring free virus infectivity while ensuring antibody escape. Thus, our study highlights the need to factor in cell-cell transmission when considering neutralization escape pathways of HIV-1.
Collapse
|
3
|
Enhanced fusion and virion incorporation for HIV-1 subtype C envelope glycoproteins with compact V1/V2 domains. J Virol 2013; 88:2083-94. [PMID: 24335304 DOI: 10.1128/jvi.02308-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In infected people, the HIV-1 envelope glycoprotein (Env) constantly evolves to escape the immune response while retaining the essential elements needed to mediate viral entry into target cells. The extensive genetic variation of Env is particularly striking in the V1/V2 hypervariable domains. In this study, we investigated the trade-off, in terms of fusion efficiency, for encoding V1/V2 domains of different lengths. We found that natural variations in V1/V2 length exert a profound impact on HIV-1 entry. Variants encoding compact V1/V2 domains mediated fusion with higher efficiencies than related Envs encoding longer V1/V2 domains. By exchanging the V1/V2 domains between Envs of the same infected person or between two persons linked by a transmission event, we further demonstrated that V1/V2 domains critically influence both Env incorporation into viral particles and fusion to primary CD4 T cells and monocyte-derived dendritic cells. Shortening the V1/V2 domains consistently increased Env incorporation and fusion, whereas lengthening the V1/V2 domains decreased Env incorporation and fusion. Given that in a new host transmitted founder viruses are distinguished by compact Envs with fewer glycosylation sites, our study points to fusion and possibly Env incorporation into virions as limiting steps for transmission of HIV-1 to a new host and suggests that the length and/or the N-glycosylation profile of the V1/V2 domain influences these early steps in the HIV life cycle.
Collapse
|
4
|
Mathematical models: a key to understanding HIV envelope interactions? J Immunol Methods 2013; 398-399:1-18. [PMID: 24041473 DOI: 10.1016/j.jim.2013.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/17/2013] [Accepted: 09/02/2013] [Indexed: 11/23/2022]
Abstract
The spikes of the human immunodeficiency virus (HIV) mediate viral entry and are the most important targets for neutralizing antibodies. Each spike consists of three identical subunits. The role of the spike's subunits in antibody binding is not fully understood. One experimental approach to analyze trimer function uses assays with mixed envelope trimer expressing cells or viruses. As these experiments do not allow direct observation of subunit functions, mathematical models are required to interpret them. Here we describe a modeling framework to study (i) the interaction of the V1V2 loop with epitopes on the V3 loop and (ii) the composition of quaternary epitopes. In a first step we identify which trimers can form in these assays and how they function under antibody binding. We then derive the behavior of an average trimer. We contrast two experimental reporting systems and list their advantages and disadvantages. In these experiments trimer formation might not be perfectly random and we show how these effects can be tested. As we still lack a potent vaccine against HIV, and this vaccine surely has to stimulate the production of neutralizing antibodies, mixed trimer approaches in combination with mathematical models will help to identify vulnerable sites of the HIV spike.
Collapse
|
5
|
Anti-CD4 monoclonal antibody ibalizumab exhibits breadth and potency against HIV-1, with natural resistance mediated by the loss of a V5 glycan in envelope. J Acquir Immune Defic Syndr 2013; 62:1-9. [PMID: 23023102 DOI: 10.1097/qai.0b013e3182732746] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Passive immunization for the prevention of HIV-1 infection is currently being reenergized. The anti-CD4 monoclonal antibody ibalizumab has demonstrated safety and efficacy in phase 1 and 2 clinical trials for treatment of HIV-1 infection and is undergoing a phase 1 clinical trial in HIV-1 uninfected individuals for prevention. Here, we sought to assess ibalizumab antiviral breadth and potency and to identify determinants of natural preexisting resistance. METHODS Ibalizumab breadth and potency was assessed against a large clinically relevant panel of HIV-1 pseudoviruses (n = 116) commonly used to assess vaccine candidates. Determinants of resistance were assessed by sequence analysis. RESULTS Ibalizumab neutralized 92% and 66% of viruses as defined by 50% and 80% inhibition, respectively. Median in vitro neutralization potency by IC50 was 0.03 μg/mL, substantially lower than the broadly neutralizing mAbs, PG9, or VRC01. The dominant determinant of resistance was the absence of a potential N-linked glycosylation site (PNGS) at the V5 N-terminus (P < 0.001), with the V2 loop length possibly influencing the degree of resistance afforded by the absence of the V5 N-terminal PNGS (P = 0.001). Other significant independent correlates of resistance included PNGS at position 386 and the side chain length of residue 375. Ibalizumab exhibited complementary resistance to VRC01 (P = 0.006) and sCD4 (P < 0.001), in part mediated by the V5 PNGS. CONCLUSIONS Ibalizumab breadth and potency compared favorably with broadly neutralizing anti-HIV-1 monoclonal antibodies, supporting the clinical development of ibalizumab, alone or in combination, for HIV-1 prevention.
Collapse
|
6
|
Rusert P, Krarup A, Magnus C, Brandenberg OF, Weber J, Ehlert AK, Regoes RR, Günthard HF, Trkola A. Interaction of the gp120 V1V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies. ACTA ACUST UNITED AC 2011; 208:1419-33. [PMID: 21646396 PMCID: PMC3135368 DOI: 10.1084/jem.20110196] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Structure–function analysis and mathematical modeling reveal insight into the mechanisms through which conserved HIV-1 gp120 epitopes are masked in the HIV-1 envelope trimer. The HIV-1 envelope trimer adopts a quaternary conformation that effectively shields neutralization-sensitive domains and thus represents a major obstacle for natural and vaccine-elicited antibody responses. By using a structure–function analysis based on a specifically devised mathematical model, we demonstrate in this study that protection from neutralization is enforced by intersubunit contact between the variable loops 1 and 2 (V1V2) and domains of neighboring gp120 subunits in the trimer encompassing the V3 loop. Our data are consistent with an interaction of the V1V2 and V3 loop at the spike apex as proposed by cryoelectron tomography experiments. By defining the orientation of the V1V2 loop within the trimer toward the neighboring gp120 subunit’s V3 loop, our data close an important gap in the understanding of the architecture of the trimeric spike. Knowledge on how the V1V2 barrier functions in the context of the trimer to mask conserved epitopes on gp120 may aid future vaccine design.
Collapse
Affiliation(s)
- Peter Rusert
- Institute of Medical Virology, University Hospital Zurich; University of Zurich, 8006 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sterjovski J, Churchill MJ, Roche M, Ellett A, Farrugia W, Wesselingh SL, Cunningham AL, Ramsland PA, Gorry PR. CD4-binding site alterations in CCR5-using HIV-1 envelopes influencing gp120-CD4 interactions and fusogenicity. Virology 2011; 410:418-28. [PMID: 21216423 DOI: 10.1016/j.virol.2010.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/24/2010] [Accepted: 12/06/2010] [Indexed: 11/30/2022]
Abstract
CD4-binding site (CD4bs) alterations in gp120 contribute to different pathophysiological phenotypes of CCR5-using (R5) HIV-1 strains, but the potential structural basis is unknown. Here, we characterized functionally diverse R5 envelope (Env) clones (n=16) to elucidate potential structural alterations within the gp120 CD4bs that influence Env function. Initially, we showed that the magnitude of gp120-CD4-binding correlates with increased fusogenicity and reduced CD4 dependence. Analysis of three-dimensional gp120 structural models revealed two CD4bs variants, D279 and N362, that were associated with reduced CD4 dependence. Further structural analysis showed that a wider aperture of the predicted CD4bs cavity, as constrained by the inner-most atoms at the gp120 V1V2 stem and the V5 loop, was associated with amino acid alterations within V5 and correlated with increased gp120-CD4 binding and increased fusogenicity. Our results provide evidence that the gp120 V5 loop may alter CD4bs conformation and contribute to increased gp120-CD4 interactions and Env fusogenicity.
Collapse
|
8
|
Broad neutralization of human immunodeficiency virus type 1 (HIV-1) elicited from human rhinoviruses that display the HIV-1 gp41 ELDKWA epitope. J Virol 2009; 83:5087-100. [PMID: 19279101 DOI: 10.1128/jvi.00184-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In efforts to develop AIDS vaccine components, we generated combinatorial libraries of recombinant human rhinoviruses that display the well-conserved ELDKWA epitope of the membrane-proximal external region of human immunodeficiency virus type 1 (HIV-1) gp41. The broadly neutralizing human monoclonal antibody 2F5 was used to select for viruses whose ELDKWA conformations resemble those of HIV. Immunization of guinea pigs with different chimeras, some boosted with ELDKWA-based peptides, elicited antibodies capable of neutralizing HIV-1 pseudoviruses of diverse subtypes and coreceptor usages. These recombinant immunogens are the first reported that elicit broad, albeit modest, neutralization of HIV-1 using an ELDKWA-based epitope and are among the few reported that elicit broad neutralization directed against any recombinant HIV epitope, providing a critical advance in developing effective AIDS vaccine components.
Collapse
|
9
|
Granados-Gonzalez V, Claret J, Berlier W, Vincent N, Urcuqui-Inchima S, Lucht F, Defontaine C, Pinter A, Genin C, Riffard S. Opposite immune reactivity of serum IgG and secretory IgA to conformational recombinant proteins mimicking V1/V2 domains of three different HIV type 1 subtypes depending on glycosylation. AIDS Res Hum Retroviruses 2008; 24:289-99. [PMID: 18260782 DOI: 10.1089/aid.2007.0187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The V1/V2 domain of the HIV-1 gp120 envelope protein has been shown to contribute to viral cell tropism during infection and also to viral recognition by neutralizing monoclonal antibodies. However, this domain has been poorly investigated. Carbohydrates have been demonstrated to dramatically influence immune reactivity of antisera to viral glycoprotein antigens. In this study, DNA sequences coding for V1/V2 domains from HIV-1 primary isolates of three subtypes (A, B, and C) were subcloned into a secretion vector and used to transfect CHO cells that are able to achieve the glycosylation of proteins. The structure of purified recombinant V1/V2 proteins was tested using two anti-V1/V2 monoclonal antibodies directed against either a linear or a conformational and glycosylation-dependent epitope (8.22.2 and 697-D). Serum or saliva of 14/82 seropositive patients with anti-V1/V2 reactivity demonstrated good recognition of the recombinant proteins. Deglycosylation of the recombinant proteins was found to increase the reactivity of the serum IgG to the clade A and C but not to clade B V1/V2 domain demonstrating that the recognition of glycosylation sites by serum IgG is clade dependent. When considering SIgA from parotid saliva, deglycosylation of all recombinant proteins tested decreased the reactivity, suggesting that glycosylation plays an important role in the recognition of V1/V2 domain target epitopes by this class of antibodies. In conclusion, these results suggest the influence of carbohydrate moieties on the specificity of the antibodies to the V1/V2 domain produced during HIV infection and the potential importance of viral glycans in vaccine responses after mucosal administration.
Collapse
Affiliation(s)
- Viviana Granados-Gonzalez
- Groupe Immunité des Muqueuses et Agents Pathogènes, EA 3064, University of Saint Etienne, Saint Etienne, France
| | - Julien Claret
- Groupe Immunité des Muqueuses et Agents Pathogènes, EA 3064, University of Saint Etienne, Saint Etienne, France
| | - Willy Berlier
- Groupe Immunité des Muqueuses et Agents Pathogènes, EA 3064, University of Saint Etienne, Saint Etienne, France
| | - Nadine Vincent
- Groupe Immunité des Muqueuses et Agents Pathogènes, EA 3064, University of Saint Etienne, Saint Etienne, France
| | | | - Frederic Lucht
- Groupe Immunité des Muqueuses et Agents Pathogènes, EA 3064, University of Saint Etienne, Saint Etienne, France
| | - Christiane Defontaine
- Groupe Immunité des Muqueuses et Agents Pathogènes, EA 3064, University of Saint Etienne, Saint Etienne, France
| | - Abraham Pinter
- Laboratory of Retroviral Virology, Public Health Research Institute, Newark, New Jersey
| | - Christian Genin
- Groupe Immunité des Muqueuses et Agents Pathogènes, EA 3064, University of Saint Etienne, Saint Etienne, France
| | - Serge Riffard
- Groupe Immunité des Muqueuses et Agents Pathogènes, EA 3064, University of Saint Etienne, Saint Etienne, France
| |
Collapse
|
10
|
Peters PJ, Duenas-Decamp MJ, Sullivan WM, Brown R, Ankghuambom C, Luzuriaga K, Robinson J, Burton DR, Bell J, Simmonds P, Ball J, Clapham PR. Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors. Retrovirology 2008; 5:5. [PMID: 18205925 PMCID: PMC2268948 DOI: 10.1186/1742-4690-5-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 01/18/2008] [Indexed: 11/13/2022] Open
Abstract
Background HIV-1 R5 viruses cause most of the AIDS cases worldwide and are preferentially transmitted compared to CXCR4-using viruses. Furthermore, R5 viruses vary extensively in capacity to infect macrophages and highly macrophage-tropic variants are frequently identified in the brains of patients with dementia. Here, we investigated the sensitivity of R5 envelopes to a range of inhibitors and antibodies that block HIV entry. We studied a large panel of R5 envelopes, derived by PCR amplification without culture from brain, lymph node, blood and semen. These R5 envelopes conferred a wide range of macrophage tropism and included highly macrophage-tropic variants from brain and non-macrophage-tropic variants from lymph node. Results R5 macrophage-tropism correlated with sensitivity to inhibition by reagents that inhibited gp120:CD4 interactions. Thus, increasing macrophage-tropism was associated with increased sensitivity to soluble CD4 and to IgG-CD4 (PRO 542), but with increased resistance to the anti-CD4 monoclonal antibody (mab), Q4120. These observations were highly significant and are consistent with an increased affinity of envelope for CD4 for macrophage-tropic envelopes. No overall correlations were noted between R5 macrophage-tropism and sensitivity to CCR5 antagonists or to gp41 specific reagents. Intriguingly, there was a relationship between increasing macrophage-tropism and increased sensitivity to the CD4 binding site mab, b12, but decreased sensitivity to 2G12, a mab that binds a glycan complex on gp120. Conclusion Variation in R5 macrophage-tropism is caused by envelope variation that predominantly influences sensitivity to reagents that block gp120:CD4 interactions. Such variation has important implications for therapy using viral entry inhibitors and for the design of envelope antigens for vaccines.
Collapse
Affiliation(s)
- Paul J Peters
- Center for AIDS Research, Program in Molecular Medicine and Department of Molecular Genetics and Microbiology, 373 Plantation Street, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zolla-Pazner S, Cohen SS, Krachmarov C, Wang S, Pinter A, Lu S. Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope. Virology 2007; 372:233-46. [PMID: 18061228 DOI: 10.1016/j.virol.2007.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/25/2007] [Accepted: 09/20/2007] [Indexed: 11/28/2022]
Abstract
Rabbits were immunized with a novel regimen designed to focus the immune response on a single neutralizing epitope of HIV-1 gp120 and thereby preferentially induce neutralizing antibodies (Abs). Animals were primed with gp120 DNA from a clade A Env bearing the GPGR V3 motif and/or a clade C Env bearing the GPGQ V3 motif, and boosted with one or more fusion proteins containing V3 sequences from clades A, B and/or C. Immune sera neutralized three of four Tier 1 primary isolates, including strains heterologous to the immunizing strains, and potent cross-clade-neutralizing activity was demonstrated against V3 chimeric pseudoviruses carrying in a Tier 1 Env, the consensus V3 sequences from clades A1, AG, B, AE, or F. The broadest and most potent neutralizing responses were elicited with the clade C gp120 DNA and a combination of V3-fusion proteins from clades A, B and C. Neutralizing activity was primarily due to V3-specific Abs. The results demonstrate that the immune response can be focused on a neutralizing epitope and show that the anti-V3 Abs induced recognize a diverse set of V3 loops.
Collapse
|
12
|
Honnen WJ, Krachmarov C, Kayman SC, Gorny MK, Zolla-Pazner S, Pinter A. Type-specific epitopes targeted by monoclonal antibodies with exceptionally potent neutralizing activities for selected strains of human immunodeficiency virus type 1 map to a common region of the V2 domain of gp120 and differ only at single positions from the clade B consensus sequence. J Virol 2006; 81:1424-32. [PMID: 17121806 PMCID: PMC1797533 DOI: 10.1128/jvi.02054-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Only a few monoclonal antibodies (MAbs) have been isolated that recognize conserved sites in human immunodeficiency virus type 1 (HIV-1) Env proteins and possess broad neutralizing activities. Other MAbs directed against targets in various domains of Env have been described that are strongly neutralizing, but they possess limited breadth. One such MAb, 2909, possesses a uniquely potent neutralizing activity specific for a quaternary epitope on SF162 Env that requires the presence of both the V2 and the V3 domains. We now show that replacement of the SF162 V3 sequence with consensus V3 sequences of multiple subtypes led to attenuated but still potent neutralization by 2909 and that the main determinants for the type specificity of 2909 reside in the V2 domain. A substitution at position 160 completely eliminated 2909 reactivity, and mutations at position 167 either attenuated or potentiated neutralization by this antibody. Different substitutions at the same positions in V2 were previously shown to introduce epitopes recognized by MAbs 10/76b and C108g and to allow potent neutralization by these MAbs. Two substitutions at key positions in the V2 domain of JR-FL Env also allowed potent expression of the 2909 epitope, and single substitutions in YU2 V2 were sufficient for expression of the 2909, C108g, and 10/76b epitopes. These results demonstrate that the minimal epitopes for 2909, C108g, and 10/76b differed from that of the clade B consensus sequence only at single positions and suggest that all three MAbs recognize distinct variants of a relatively conserved sequence in V2 that is a particularly sensitive mediator of HIV-1 neutralization.
Collapse
Affiliation(s)
- W J Honnen
- Public Health Research Institute, UMDNJ, 255 Warren Street, Newark, NJ 07103-3535, USA
| | | | | | | | | | | |
Collapse
|
13
|
Krachmarov CP, Honnen WJ, Kayman SC, Gorny MK, Zolla-Pazner S, Pinter A. Factors determining the breadth and potency of neutralization by V3-specific human monoclonal antibodies derived from subjects infected with clade A or clade B strains of human immunodeficiency virus type 1. J Virol 2006; 80:7127-35. [PMID: 16809318 PMCID: PMC1489036 DOI: 10.1128/jvi.02619-05] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neutralizing activities of anti-V3 antibodies for HIV-1 isolates is affected both by sequence variation within V3 and by epitope masking by the V1/V2 domain. To analyze the relative contribution of V3 sequence variation, chimeric Env genes that contained consensus V3 sequences from seven HIV-1 subtypes in the neutralization-sensitive SF162 Env backbone were constructed. Resulting viral pseudotypes were tested for neutralization by 15 anti-V3 MAbs isolated from humans infected with viruses of either subtype B (anti-V3(B) MAbs) or subtype A (anti-V3(A) MAbs). Pseudovirions with the subtype B consensus V3 sequence were potently neutralized (IC(50) < 0.006 microg/ml) by all but one of these MAbs, while pseudovirions with V3 subtypes A, C, F, H, AG, and AE were generally neutralized more effectively by anti-V3(A) MAbs than by anti-V3(B) MAbs. A V1/V2-masked Env version of SF162 Env with the consensus B V3 sequence was also neutralized by these MAbs, although with considerably lower potency, while similarly masked chimeras with V3 sequences of subtype A, C, or AG were weakly neutralized by anti-V3(A) MAbs but not by anti-V3(B) MAbs. Mutations in the V1/V2 domain of YU-2 Env increased the sensitivity of this highly resistant Env to a pool of anti-V3(B) MAbs several thousand-fold. These results demonstrated (i) the exceptional sensitivity of representative V3 domains of multiple subtypes to neutralization in the absence of epitope masking, (ii) the broader neutralizing activity of anti-V3(A) MAbs for viruses containing diverse V3 sequences, and (iii) the generality and dominant effect of V1/V2 masking on restriction of V3-mediated neutralization.
Collapse
Affiliation(s)
- C P Krachmarov
- The Public Health Research Institute, 255 Warren St., Newark, NJ 07103-3535, USA
| | | | | | | | | | | |
Collapse
|
14
|
Milicic A, Price DA, Zimbwa P, Booth BL, Brown HL, Easterbrook PJ, Olsen K, Robinson N, Gileadi U, Sewell AK, Cerundolo V, Phillips RE. CD8+ T cell epitope-flanking mutations disrupt proteasomal processing of HIV-1 Nef. THE JOURNAL OF IMMUNOLOGY 2005; 175:4618-26. [PMID: 16177107 DOI: 10.4049/jimmunol.175.7.4618] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTL play a critical role in the control of HIV and SIV. However, intrinsic genetic instability enables these immunodeficiency viruses to evade detection by CTL through mutation of targeted antigenic sites. These mutations can impair binding of viral epitopes to the presenting MHC class I molecule or disrupt TCR-mediated recognition. In certain regions of the virus, functional constraints are likely to limit the capacity for variation within epitopes. Mutations elsewhere in the protein, however, might still enable immune escape through effects on Ag processing. In this study, we describe the coincident emergence of three mutations in a highly conserved region of Nef during primary HIV-1 infection. These mutations (R69K, A81G, and H87R) flank the HLA B*35-restricted VY8 epitope and persisted to fixation as the early CTL response to this Ag waned. The variant form of Nef showed a reduced capacity to activate VY8-specific CTL, although protein stability and expression levels were unchanged. This effect was associated with altered processing by the proteasome that caused partial destruction of the VY8 epitope. Our data demonstrate that a variant HIV genotype can significantly impair proteasomal epitope processing and substantiate the concept of immune evasion through diminished Ag generation. These observations also indicate that the scale of viral escape may be significantly underestimated if only intraepitope variation is evaluated.
Collapse
Affiliation(s)
- Anita Milicic
- James Martin 21st Century School and Nuffield Department of Clinical Medicine, The Peter Medawar Building, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Saunders CJ, McCaffrey RA, Zharkikh I, Kraft Z, Malenbaum SE, Burke B, Cheng-Mayer C, Stamatatos L. The V1, V2, and V3 regions of the human immunodeficiency virus type 1 envelope differentially affect the viral phenotype in an isolate-dependent manner. J Virol 2005; 79:9069-80. [PMID: 15994801 PMCID: PMC1168758 DOI: 10.1128/jvi.79.14.9069-9080.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well documented that removal of the V1V2 region or of the V2 loop alone from the envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) increases the susceptibility of these viruses to neutralization by antibodies. The specific role of the V1 loop in defining the neutralization susceptibility of HIV is, however, not well documented. Our current studies indicate that although the V1V2 region is a global modulator of the HIV-1 neutralization susceptibility, the individual roles the V1 and V2 loops have in defining the neutralization susceptibility profile of HIV-1 differ and in some cases are opposite. While deletion of the V2 loop renders the virus more susceptible to neutralization by antibodies that recognize diverse epitopes, in particular certain ones located in the CD4 binding site and the V3 loop, deletion of the V1 loop renders the virus refractory to neutralization, especially by antibodies that recognize CD4-induced epitopes and certain CD4-site binding antibodies. Our current studies also indicate that the relative involvement of the V2 loop of the HIV-1 envelope during virus-cell entry appears to be envelope background dependent. As a result, although deletion of the V2 loop from the clade B, R5-tropic SF162 HIV-1 virus resulted in a virus that was replication competent, the same modification introduced on the background of two other R5-tropic isolates, SF128A (clade B) or SF170 (clade A), abrogated the ability of these envelopes to mediate virus-cell entry.
Collapse
Affiliation(s)
- Cheryl J Saunders
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Balfe P, Shapiro S, Hsu M, Buckner C, Harouse JM, Cheng-Mayer C. Expansion of quasispecies diversity but no evidence for adaptive evolution of SHIV during rapid serial transfers among seronegative macaques. Virology 2004; 318:267-79. [PMID: 14972553 DOI: 10.1016/j.virol.2003.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 09/10/2003] [Accepted: 09/17/2003] [Indexed: 11/20/2022]
Abstract
Four successive, rapid serial passages of the nonpathogenic, CCR5-tropic simian-human immunodeficiency virus SHIV(SF162) in rhesus macaques resulted in an increase in acute plasma viremia with each passage and the emergence of a pathogenic isolate SHIV(SF162P3) in one of the passage three transfer animals (macaque T353). To explore the mechanism(s) underlying increased virulence of SHIV(SF162) upon in vivo passage, the evolution of the HIV-1 envelope gene was characterized in plasma and PBMC samples obtained from animals before (week 1) and after (week 3) the time of virus transfer. We found no evidence in support of adaptive evolution of the HIV gp120 during rapid serial passage; however, the animals which later received passage virus had more diverse quasispecies. SHIV(SF162P3)-like gp120 sequences were first detected in macaque T353 at week 6, after seroconversion. These sequence changes increased in frequency and number at later time points. The first sequence change conferred neutralization escape but not an increase in viral infectivity that could account for the apparent increase in replicative capacity of the later passage viruses. Collectively, our data argue against any host-specific adaptation of the HIV-1 envelope gp120 as the basis for the generation of more aggressive SHIV variants during rapid serial transfers in seronegative macaques, and support the model of quasispecies diversity as a predictor of pathogenesis. Envelope sequence changes accumulate principally in response to immune pressure exerted by the host, generating viral variants that can persist in the presence of a strong host immune response.
Collapse
Affiliation(s)
- Peter Balfe
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Hayman A, Moss T, Arnold C, Naylor-Adamson L, Balfe P. Disease progression in heterosexual patients infected with closely related subtype B strains of HIV type 1 with differing coreceptor usage properties. AIDS Res Hum Retroviruses 2004; 20:365-71. [PMID: 15157355 DOI: 10.1089/088922204323048113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously we described a heterosexual outbreak of HIV-1 subtype B in a town in the north of England (Doncaster) where 11 of 13 infections were shown to be linked by phylogenetic analysis of the env gp120 region. The 11 infections were related to a putative index case, Don1, and further divided into two groups based on the patients' disease status, their viral sequences, and other epidemiological information. Here we describe two further findings. First, we found that viral isolates and gp120 recombinant viruses derived from patients from one group used the CCR5 coreceptor, whereas viruses from the other group could use both the CCR5 and CXCR4 coreceptors. Patients with the X4/R5 dual tropic strains were symptomatic when diagnosed and progressed rapidly, in contrast to the other patient group that has remained asymptomatic, implying a link between the tropism of the strains and disease outcome. Second, we present additional sequence data derived from the index case, demonstrating the presence of sequences from both clades, with an average interclade distance of 9.56%, providing direct evidence of a genetic link between these two groups. This new study shows that Don1 harbored both strains, implying he was either dually infected or that over time intrahost diversification from the R5 to R5/X4 phenotype occurred. These events may account for/have led to the spread of two genetically related strains with different pathogenic properties within the same heterosexual community.
Collapse
Affiliation(s)
- Anna Hayman
- Department of Virology, Windeyer Institute, RFUCMS, London, W1T 4JF, UK.
| | | | | | | | | |
Collapse
|
18
|
Jochimsen F, Gruening W, Arnould T, Segal MS, Kruskall MS, Colgrove R, Walz G. Thrombotic microangiopathy associated with unusual viral sequences in HIV-1-positive patients. Nephrol Dial Transplant 2004; 19:1129-35. [PMID: 14993479 DOI: 10.1093/ndt/gfh085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Thrombotic microangiopathy (TMA) is a rare disorder caused by endothelial cell damage. TMA has been associated with the human immunodeficiency virus 1 (HIV-1) infection, yet only a minority of all HIV-1 patients develops TMA. Since HIV-1 has been shown to interact with endothelial cells, we investigated whether certain mutations in the HIV-1 envelope protein are associated with the development of TMA in HIV-1-infected patients. METHODS Plasma was obtained from nine HIV-1-positive patients with TMA. Viral loads were determined from the samples and compared with the clinical data. Viral envelope protein sequences from the regions known to be responsible for viral tropism were isolated, sequenced and compared with known HIV-1 isolates. The isolates were expressed as synthetic fusion proteins; binding of these fusion proteins to CD4+ cells as well as to endothelial cell lines was investigated. RESULTS The viral loads in patients with HIV/TMA were highly variable with no correlation to the clinical status. Most patients carried macrophage-tropic viral envelope protein sequences and an unusual insertion was found in the V2 variable region. The isolates showed increased CD4 binding, but a direct binding to endothelial cells was not observed. CONCLUSIONS Although TMA is generally diagnosed in patients with advanced HIV-1 infection, viral loads per se were not predictive of TMA in this study. While a direct interaction with endothelial cells was not detectable, specific viral envelope mutations were found in a region known to influence viral tropism. Hence, viral-specific factors might contribute to the pathogenesis of HIV-associated TMA.
Collapse
Affiliation(s)
- Friederike Jochimsen
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Medicine, Boston, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Poumbourios P, Maerz AL, Drummer HE. Functional evolution of the HIV-1 envelope glycoprotein 120 association site of glycoprotein 41. J Biol Chem 2003; 278:42149-60. [PMID: 12923196 DOI: 10.1074/jbc.m305223200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interaction surfaces can exhibit structural plasticity, a mechanism whereby an interface adapts to mutations as binding partners coevolve. The HIV-1 envelope glycoprotein gp120-gp41 complex, which is responsible for receptor attachment and membrane fusion, represents an extreme example of a coevolving complex as up to 35% amino acid sequence divergence has been observed in these proteins among HIV-1 isolates. In this study, the function of conserved gp120 contact residues, Leu593, Trp596, Gly597, Lys601, and Trp610 within the disulfide-bonded region of gp41, was examined in envelope glycoproteins derived from diverse HIV-1 isolates. We found that the gp120-gp41 association function of the disulfide-bonded region is conserved. However, the contribution of individual residues to gp41 folding and/or stability, gp120-gp41 association, membrane fusion function, and viral entry varied from isolate to isolate. In gp120-gp41 derived from the dual-tropic isolate, HIV-189.6, the importance of Trp596 for fusion function was dependent on the chemokine receptor utilized as a fusion cofactor. Thus, the engagement of alternative chemokine receptors may evoke distinct fusion-activation signals involving the site of gp120-gp41 association. An examination of chimeric glycoproteins revealed that the isolate-specific functional contributions of particular gp120-contact residues are influenced by the sequence of gp120 hypervariable regions 1, 2, and 3. These data indicate that the gp120-gp41 association site is structurally and functionally adaptable, perhaps to maintain a functional glycoprotein complex in a setting of host selective pressures driving the rapid coevolution of gp120 and gp41.
Collapse
Affiliation(s)
- Pantelis Poumbourios
- Virology Unit, St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.
| | | | | |
Collapse
|
20
|
Dybul M, Daucher M, Jensen MA, Hallahan CW, Chun TW, Belson M, Hidalgo B, Nickle DC, Yoder C, Metcalf JA, Davey RT, Ehler L, Kress-Rock D, Nies-Kraske E, Liu S, Mullins JI, Fauci AS. Genetic characterization of rebounding human immunodeficiency virus type 1 in plasma during multiple interruptions of highly active antiretroviral therapy. J Virol 2003; 77:3229-37. [PMID: 12584346 PMCID: PMC149739 DOI: 10.1128/jvi.77.5.3229-3237.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various strategies of interrupting highly active antiretroviral therapy (HAART) are being investigated for the treatment of human immunodeficiency virus (HIV) infection. Interruptions of greater than 2 weeks frequently result in rebound of plasma HIV RNA. In order to discern changes in the viral population that might occur during cycles of treatment interruption, we evaluated the homology of HIV-1 envelope gene sequences over time in 12 patients who received four to seven cycles of 4 weeks off HAART followed by 8 weeks on HAART by using the heteroduplex tracking assay and novel statistical tools. HIV populations in 9 of 12 patients diverged from those found in the first cycle in at least one subsequent cycle. The substantial genetic changes noted in HIV env did not correlate with increased or decreased log changes in levels of plasma HIV RNA (P > 0.5). Thus, genetic changes in HIV env itself did not contribute in a systematic way to changes in levels of plasma viremia from cycle to cycle of treatment interruption. In addition, the data suggest that there may be multiple compartments contributing to the rebound of plasma viremia and to viral diversity from cycle to cycle of intermittent therapy.
Collapse
Affiliation(s)
- Mark Dybul
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Masciotra S, Owen SM, Rudolph D, Yang C, Wang B, Saksena N, Spira T, Dhawan S, Lal RB. Temporal relationship between V1V2 variation, macrophage replication, and coreceptor adaptation during HIV-1 disease progression. AIDS 2002; 16:1887-98. [PMID: 12351948 DOI: 10.1097/00002030-200209270-00005] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Specific mutations in VPR and V2 potentially restrict HIV-1 replication in macrophages. Such restriction could potentially limit HIV replication in long-term non-progressors (LTNP), thus accounting for low viral load and delayed progression to AIDS. OBJECTIVE To examine whether a specific VPR phenotype (truncated versus non-truncated) correlates with disease progression and whether elongated V2 restricts viral replication in macrophages or alters viral tropism. METHODS Sequence analysis was carried for VPR and V1-V3 env from four rapid progressors (RPs), six late progressors (LPs), and three LTNPs in cohort of HIV-1-infected homosexual men. The replication kinetics of sequential isolates was examined in primary CD4 cells and macrophages and coreceptor usage was determined by GHOST infection assays. RESULTS No differences were found in the VPR protein from RP and LTNP isolates. Analysis of the V2 region revealed that all RPs maintained similar V2 lengths (40 aa), whereas LPs and LTNPs acquired additional amino acids (2-13 aa) in the V2 region. Coreceptor specificity revealed that RP switch from CCR5 to multiple coreceptor usage, whereas LTNPs maintained R5 viruses. Sequential isolates from each group revealed comparable replication efficiencies in both T-cells and macrophages, regardless of the V2 length or coreceptor utilization. In addition, cross-section analysis of six LTNPs from Australia revealed extended V2 with consistent usage of CCR5 coreceptor. CONCLUSION The present results suggest that acquisition of a V2 extension over time in HIV-1-infected LPs/LTNPs appears to correlate with maintenance of CCR5 usage among LTNPs. These findings may be important for a better understanding of the host interactions and disease progression.
Collapse
Affiliation(s)
- Silvina Masciotra
- HIV Immunology and Diagnostics Branch, Division of AIDS, STD, TB Laboratory Research, National Center for Infectious Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zheng NN, Vella C, Easterbrook PJ, Daniels RS. Selection following isolation of human immunodeficiency virus type 1 in peripheral blood mononuclear cells and herpesvirus saimiri-transformed T cells is comparable. J Gen Virol 2002; 83:1343-1352. [PMID: 12029149 DOI: 10.1099/0022-1317-83-6-1343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In attempts to improve isolation rates and virus yields for human immunodeficiency virus (HIV), the use of herpesvirus saimiri-immortalized T cells (HVS T cells) has been investigated as an alternative to/improvement over peripheral blood mononuclear cells (PBMCs). Here we characterize isolates rescued, in the two cell types, from two asymptomatic, long-term non-progressing HIV-1-infected individuals. All rescued viruses replicated in PBMCs and HVS T cells only, displaying a non-syncytium inducing (NSI) phenotype, and using CCR5 as co-receptor. Furthermore, PBMC/HVS T cell virus pairs displayed similar neutralization profiles. Full-length, expression-competent env genes were rescued from all virus isolates and directly from the patient samples using proviral DNA and viral RNA as templates. Compared with the sequences retrieved directly from the patient samples, both cell types showed similar selection characteristics. Whilst the selections were distinct for individual patient samples, they shared a common characteristic in selecting for viruses with increased negative charge across the V2 domain of the viral glycoproteins. The latter was observed at the env gene sequencing level for three other patients whose HIV strains were isolated in PBMCs only. This further supports a common selection for viral sequences that display a macrophage-tropic/NSI phenotype and shows that HVS T cells are a viable alternative to PBMCs for HIV-1 isolation.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Line, Transformed
- Coculture Techniques
- DNA, Viral
- Gene Products, env/genetics
- Genes, env
- Giant Cells
- Glycoproteins/genetics
- HIV Infections/blood
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/immunology
- HIV-1/isolation & purification
- Herpesvirus 2, Saimiriine
- Humans
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Leukocytes, Mononuclear/virology
- Male
- Molecular Sequence Data
- Phylogeny
- Proviruses/genetics
- RNA, Viral
- Receptors, CCR5
- Sequence Alignment
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Natalie N Zheng
- Virology Division, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| | - Cherelyn Vella
- School of Biological and Applied Sciences, University of North London, 166-220 Holloway Road, London N7 8DB, UK2
| | - Philippa J Easterbrook
- Department of HIV and Genitourinary Medicine, The Guy's, King's and St Thomas' School of Medicine, King's College Hospital, Denmark Hill, London SE5 9RS, UK3
| | - Rod S Daniels
- Virology Division, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| |
Collapse
|
23
|
Quiñones-Kochs MI, Buonocore L, Rose JK. Role of N-linked glycans in a human immunodeficiency virus envelope glycoprotein: effects on protein function and the neutralizing antibody response. J Virol 2002; 76:4199-211. [PMID: 11932385 PMCID: PMC155056 DOI: 10.1128/jvi.76.9.4199-4211.2002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope (Env) glycoprotein of human immunodeficiency virus (HIV) contains 24 N-glycosylation sites covering much of the protein surface. It has been proposed that one role of these carbohydrates is to form a shield that protects the virus from immune recognition. Strong evidence for such a role for glycosylation has been reported for simian immunodeficiency virus (SIV) mutants lacking glycans in the V1 region of Env (J. N. Reitter, R. E. Means, and R. C. Desrosiers, Nat. Med. 4:679-684, 1998). Here we used recombinant vesicular stomatitis viruses (VSVs) expressing HIV Env glycosylation mutants to determine if removal of carbohydrates in the V1 and V2 domains affected protein function and the generation of neutralizing antibodies in mice. Mutations that eliminated one to six of the sites for N-linked glycosylation in the V1 and V2 loops were introduced into a gene encoding the HIV type 1 primary isolate 89.6 envelope glycoprotein with its cytoplasmic domain replaced by that of the VSV G glycoprotein. The membrane fusion activities of the mutant proteins were studied in a syncytium induction assay. The transport and processing of the mutant proteins were studied with recombinant VSVs expressing mutant Env G proteins. We found that HIV Env V1 and V2 glycosylation mutants were no better than wild-type envelope at inducing antibodies neutralizing wild-type Env, although an Env mutant lacking glycans appeared somewhat more sensitive to neutralization by antibodies raised to mutant or wild-type Env. These results indicate significant differences between SIV and HIV with regard to the roles of glycans in the V1 and V2 domains.
Collapse
Affiliation(s)
- Miriam I Quiñones-Kochs
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
24
|
Li Y, Carpenter S. Cis-acting sequences may contribute to size variation in the surface glycoprotein of bovine immunodeficiency virus. J Gen Virol 2001; 82:2989-2998. [PMID: 11714975 DOI: 10.1099/0022-1317-82-12-2989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic recombination is an important mechanism of retrovirus variation and diversity. Size variation in the surface (SU) glycoprotein, characterized by duplication and insertion, has been observed during in vivo infection with several lentiviruses, including bovine immunodeficiency virus (BIV), equine infectious anaemia virus (EIAV) and human immunodeficiency virus type 1. These duplication/insertion events are thought to occur through a mechanism of template switching/strand transfer during reverse transcription. Studies of RNA recombination in a number of virus systems indicate that cis-acting sequences can modulate the frequency of template switching/strand transfer. The size variable region of EIAV and BIV SU glycoproteins was examined and an AU-rich region and regions of nucleotide sequence identity that may facilitate template switching/strand transfer were identified. An in vitro strand transfer assay using donor and acceptor templates derived from the size variable region in BIV env detected both precise and imprecise strand transfer products, in addition to full-length products. Sequence analysis of clones obtained from imprecise strand transfer products showed that 87.5% had crossover sites within 10 nt of the crossover site observed in vivo. Mutations in the donor template which altered either the AU-rich region or nucleotide sequence identity dramatically decreased the frequency of imprecise strand transfer. Together, these results suggest that cis-acting elements can modulate non-homologous recombination events during reverse transcription and may contribute to the genetic and biological diversity of lentiviruses in vivo.
Collapse
Affiliation(s)
- Yuxing Li
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011-1250, USA1
| | - Susan Carpenter
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011-1250, USA1
| |
Collapse
|
25
|
Jansson M, Backström E, Scarlatti G, Björndal A, Matsuda S, Rossi P, Albert J, Wigzell H. Length variation of glycoprotein 120 V2 region in relation to biological phenotypes and coreceptor usage of primary HIV type 1 isolates. AIDS Res Hum Retroviruses 2001; 17:1405-14. [PMID: 11679153 DOI: 10.1089/088922201753197079] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conflicting data have been published concerning the correlation between the length of the second variable region (V2) in the HIV-1 envelope and the biological phenotype of the virus. Here the V2 region length of primary HIV-1 isolates was compared with biological phenotype and coreceptor usage. The V2 region variation was determined by DNA fragment length analysis, virus biological phenotype by the MT-2 cell assay, and coreceptor usage by infection of U87.CD4 cells expressing CCR3, CCR5, or CXCR4. Ninety-three primary virus isolates from 40 patients were analyzed. This panel of viruses included sequential isolates obtained from patients who progressed to AIDS with or without a virus phenotypic switch. We found that NSI MT-2-negative isolates had significantly shorter V2 regions than SI MT-2-positive isolates. However, when V2 region lengths of viruses were analyzed in more detail, we observed that NSI isolates obtained from patients shortly before the phenotypic switch had V2 region lengths similar to those of SI isolates. V2 regions of NSI isolates obtained from patients who progressed to AIDS without a virus phenotypic switch had, in contrast, shorter V2 region than isolates obtained just before virus phenotypic switch. Coreceptor analysis revealed that CCR5-using (R5) isolates generally had shorter V2 regions than virus isolates with the ability to enter CXCR4-expressing cells. Moreover, no significant difference in V2 region length was observed between monotropic SI isolates, that is, X4 isolates, and multitropic SI isolates, that is, R3R5X4 or R5X4 isolates. Thus, we conclude that R5 NSI isolates obtained from patients with stable virus phenotype through the whole disease course display shorter V2 regions than isolates obtained from patients at switch of virus phenotype, suggesting that V2 region length may influence virus coreceptor usage.
Collapse
Affiliation(s)
- M Jansson
- Microbiology and Tumor Biology Center, Karolinska Institute, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ly A, Stamatatos L. V2 loop glycosylation of the human immunodeficiency virus type 1 SF162 envelope facilitates interaction of this protein with CD4 and CCR5 receptors and protects the virus from neutralization by anti-V3 loop and anti-CD4 binding site antibodies. J Virol 2000; 74:6769-76. [PMID: 10888615 PMCID: PMC112193 DOI: 10.1128/jvi.74.15.6769-6776.2000] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the role of asparagine-linked glycosylation of the V2 loop of the human immunodeficiency virus (HIV) SF162 envelope on viral replication potential and neutralization susceptibility. We report that the asparagines located at the amino- and carboxy-terminal sites (at positions 154 and 195, respectively), as well as within the V2 loop of the SF162 envelope (at position 186), are glycosylated during in vitro replication of this virus in human peripheral blood mononuclear cells. Our studies indicate that glycosylation of the V2 loop, in particular at its base, facilitates the interaction of the HIV envelope with the CD4 and CCR5 receptor molecules present on the surface of target cells and affects viral replication kinetics in a cell type-dependent manner. In cells expressing high numbers of receptor molecules on their surfaces, the SF162-derived V2 loop-deglycosylated mutant viruses replicate as efficiently as the parental SF162 virus, while in cells expressing small numbers of receptor molecules, the mutant viruses replicate with markedly reduced efficiency. In addition to expanding the viral tropism, V2 loop glycosylation at the three sites examined prevents neutralization by anti-CD4 binding site antibodies. In contrast, glycosylation at the amino- and carboxy-terminal sites of the V2 loop but not within the loop itself offers protection against anti-V3 loop antibodies. Thus, the epitopes masked by the sugar molecules present on the three glycosylation sites examined are not identical but overlap.
Collapse
Affiliation(s)
- A Ly
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10021-6399, USA.
| | | |
Collapse
|
27
|
Gordon CJ, Delwart EL. Genetic diversity of primary HIV-1 isolates and their sensitivity to antibody-mediated neutralization. Virology 2000; 272:326-30. [PMID: 10873775 DOI: 10.1006/viro.2000.0400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wide differences exist among primary isolates of HIV-1 in their sensitivity to antibody-mediated neutralization. While it is well documented that even short-term tissue culture amplification of HIV-1 leads to a reduction in the genetic diversity of the viral quasispecies seen in vivo, viral isolates, while relatively homogeneous, are generally not clonal. We investigated whether the extent of genetic diversity within primary viral isolates correlates with their general susceptibility to neutralization. We compared the number of V1V2 and V3-V5 envelope variants detectable within 16 primary isolates selected to represent the extremes of the neutralization sensitive and resistant phenotypes. Using DNA heteroduplex tracking assays to estimate the extent of genetic diversity in these two regions of the envelope locus, we found that these primary isolates were made up of one to five distinguishable V1V2 and V3-V5 sequence variants. We found that higher levels of env genetic diversity did not correlate with increased resistance to antibody neutralization.
Collapse
Affiliation(s)
- C J Gordon
- Aaron Diamond AIDS Research Center, New York City, New York, 10016, USA
| | | |
Collapse
|
28
|
Abstract
The study of the immunological defects which arise from HIV infection has led to a deeper understanding both of the normal immune system and of the mechanisms by which it is damaged in disease. The interactions between viral and host factors during the early stages of HIV infection leads to a post-seroconversion steady state or 'set point' of viral RNA load, which has been shown to be a prognostic marker for subsequent progression rates, further underlining the important role of early immunological responses in the disease process. The changing immune response during the course of infection, together with the changing patterns of antigenicity and tropism leads to a complex series of evolutionary interactions which can be monitored as a series of changes in the properties of the virus over time. Furthermore, significant differences may be seen between the antigenicity of viruses adapted to grow in tissue culture and viruses cultured only briefly in primary cells, and also between the antigenicity of monomeric and oligomeric subunit immunogens. The immunodominant, highly polymorphic and rapidly changing envelope glycoproteins of HIV remains the single biggest target for the design of successful candidate vaccines. The recent crystallisation of one HIV envelope, the proven existence of functionally conserved neutralisation targets and our increasing knowledge of the behaviour of the envelope glycoprotein in vivo offers the possibility that the next generation of vaccine candidates will have a far higher chance of success than has currently been achieved.
Collapse
Affiliation(s)
- J A McKeating
- University of Reading, School of Animal and Microbial Sciences, Whiteknights, UK
| | | |
Collapse
|
29
|
Abstract
Isolates of human immunodeficiency virus type-1 (HIV-1) display marked differences in their ability to replicate in macrophages and transformed T-cell lines in vitro, a property that has important implications for disease pathogenesis. The restriction in replication between these two CD4-positive cell types is largely at the level of viral entry and is regulated by the viral envelope (env) gene. The envelope protein (Env) is responsible for fusion of the viral and host membranes, and a particular region of Env called the V3-loop has been implicated in regulating viral tropism. However, other regions of Env, such as the V1- and V2-loops, have been shown to modulate the effects of the V3-loop. The discovery that Env initially binds the CD4 molecule on the target cell surface and then makes subsequent interactions with one of several members of the chemokine receptor family has greatly enhanced the molecular understanding of HIV-1 entry. The differential use of chemokine receptors by different viral isolates and their expression in different cell types largely explains viral tropism. The same regions in Env responsible for virus tropism have also been shown to play an important role in mediating chemokine receptor use. The recent crystallization of HIV-1 Env in complex with CD4 illuminates the architecture of the components involved in mediating fusion between the viral and host membranes. The spatial relationship between variable structures of Env previously implicated in tropism and chemokine receptor use and conserved Env structures potentially involved in chemokine receptor binding are discussed.
Collapse
Affiliation(s)
- T L Hoffman
- Department of Pathology, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
30
|
Lewis J, Balfe P, Arnold C, Kaye S, Tedder RS, McKeating JA. Development of a neutralizing antibody response during acute primary human immunodeficiency virus type 1 infection and the emergence of antigenic variants. J Virol 1998; 72:8943-51. [PMID: 9765439 PMCID: PMC110311 DOI: 10.1128/jvi.72.11.8943-8951.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/1998] [Accepted: 08/04/1998] [Indexed: 11/20/2022] Open
Abstract
We monitored the primary humoral response to human immunodeficiency virus type 1 infection and showed that, in addition to antibodies to p24 and gp41, antigens which form the basis of most diagnostic assays, the response included a significant antibody response directed to the gp120 region of the infecting viral quasispecies. When tested in a recombinant virus neutralization assay, these antibodies were capable of inhibiting viral growth. We found the primary viral quasispecies to solely utilize the CCR-5 chemokine receptor; however, recombinant viruses differed in their cytopathology and in their sensitivity to beta-chemokine inhibition of viral growth. Sequence analysis of the gp120 open reading frames showed that amino acid changes in the C1 (D-->G at position 62) and C4 (V-->A at position 430) regions accounted for the phenotypic differences. These data demonstrate that early in infection, polymorphism exists in envelope glycoprotein coreceptor interactions and imply that therapeutic strategies targeted at this step in the viral life cycle may lead to rapid resistance.
Collapse
Affiliation(s)
- J Lewis
- School of Animal and Microbial Sciences, University of Reading, Reading RG6 2AJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Stamatatos L, Wiskerchen M, Cheng-Mayer C. Effect of major deletions in the V1 and V2 loops of a macrophage-tropic HIV type 1 isolate on viral envelope structure, cell entry, and replication. AIDS Res Hum Retroviruses 1998; 14:1129-39. [PMID: 9737584 DOI: 10.1089/aid.1998.14.1129] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two HIV-1 envelope mutant proteins were generated by introducing deletions in the first and second hypervariable gp120 regions (V1 and V2 loops, respectively) of a macrophage-tropic primary HIV-1 isolate, SF162, to study the effect of the deleted sequences on envelope structure, viral entry, and replication potentials. The first mutant lacked 17 amino acids of the V1 loop and the latter 30 amino acids of the V2 loop. A comparison of the immunochemical structure of the wild-type and mutant monomeric and virion-associated gp120 molecules revealed that the V1 and V2 loop deletions differentially altered the structure of the V3 loop, the CD4-binding site, and epitopes within conserved regions of gp120. Regardless of differences in structure, both mutated envelope proteins supported viral replication into peripheral blood mononuclear cells to levels comparable to those of the wild-type SF162 virus. However, they decreased the viral replication potential in macrophages, even though they did not alter the coreceptor usage of the viruses. These studies support and extend previous observations that a complex structural interaction between the V1, V2, and V3 loops and elements of the CD4-binding site of gp120 controls entry of virus into cells. The present studies, however, suggest that the effect of the V1 and V2 loops in viral entry is cell dependent.
Collapse
Affiliation(s)
- L Stamatatos
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
32
|
Abstract
The various functions of human (HIV) and simian (SIV) immunodeficiency virus glycoproteins are similar, so it may be assumed that the overall structure of the folded proteins will be maintained. To preserve structure there must be constraints on sequence variation. The majority of mutations tolerated will be involved in immune escape but changes at some positions are known to have direct effects on glycoprotein expression and function. This allows the virus to change its phenotype and escape immune pressure. These properties will influence the fitness of the virus to infect and replicate in potential hosts. A better understanding of the structure-function relationships of HIV/SIV glycoproteins will assist in the development of vaccines and antivirals. Here, we identify similarities and differences between HIV-1 subtypes and HIV/SIV types that may be relevant to the phenotypes of the various groups. The results are discussed in relation to what is known of domain-function associations for HIV/SIV glycoproteins.
Collapse
Affiliation(s)
- N W Douglas
- Virology Division, National Institute for Medical Research, London, UK
| | | | | |
Collapse
|