1
|
Structural characterization of the glycoprotein GP2 core domain from the CAS virus, a novel arenavirus-like species. J Mol Biol 2013; 426:1452-68. [PMID: 24333483 PMCID: PMC3951589 DOI: 10.1016/j.jmb.2013.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022]
Abstract
Fusion of the viral and host cell membranes is a necessary first step for infection by enveloped viruses and is mediated by the envelope glycoprotein. The transmembrane subunits from the structurally defined “class I” glycoproteins adopt an α-helical “trimer-of-hairpins” conformation during the fusion pathway. Here, we present our studies on the envelope glycoprotein transmembrane subunit, GP2, of the CAS virus (CASV). CASV was recently identified from annulated tree boas (Corallus annulatus) with inclusion body disease and is implicated in the disease etiology. We have generated and characterized two protein constructs consisting of the predicted CASV GP2 core domain. The crystal structure of the CASV GP2 post-fusion conformation indicates a trimeric α-helical bundle that is highly similar to those of Ebola virus and Marburg virus GP2 despite CASV genome homology to arenaviruses. Denaturation studies demonstrate that the stability of CASV GP2 is pH dependent with higher stability at lower pH; we propose that this behavior is due to a network of interactions among acidic residues that would destabilize the α-helical bundle under conditions where the side chains are deprotonated. The pH-dependent stability of the post-fusion structure has been observed in Ebola virus and Marburg virus GP2, as well as other viruses that enter via the endosome. Infection experiments with CASV and the related Golden Gate virus support a mechanism of entry that requires endosomal acidification. Our results suggest that, despite being primarily arenavirus like, the transmembrane subunit of CASV is extremely similar to the filoviruses. CASV is a novel arenavirus with a filovirus-like glycoprotein. Arenaviruses and filoviruses are significant human pathogens. The stability of the CASV GP2 post-fusion structure is dependent on pH. CASV infection requires endosomal acidification. The structure and function of CASV GP2 is similar to filovirus GP2.
Collapse
|
2
|
Lairmore MD, Anupam R, Bowden N, Haines R, Haynes RAH, Ratner L, Green PL. Molecular determinants of human T-lymphotropic virus type 1 transmission and spread. Viruses 2011; 3:1131-65. [PMID: 21994774 PMCID: PMC3185783 DOI: 10.3390/v3071131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/23/2023] Open
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D. Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-9203; Fax: +1-614-292-6473
| | - Rajaneesh Anupam
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Nadine Bowden
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Robyn Haines
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Rashade A. H. Haynes
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Division of Biology and Biological Sciences, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Ave., St. Louis, MO 63110, USA; E-Mail: (L.R.)
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Mirsaliotis A, Nurkiyanova K, Lamb D, Kuo CWS, Brighty DW. An antibody that blocks human T-cell leukemia virus type 1 six-helix-bundle formation in vitro identified by a novel assay for inhibitors of envelope function. J Gen Virol 2007; 88:660-669. [PMID: 17251585 DOI: 10.1099/vir.0.82390-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fusion of the viral and cellular membranes is a critical step in the infection of cells by the human T-cell leukemia virus type 1 (HTLV-1) and this process is catalysed by the viral envelope glycoproteins. During fusion, the transmembrane glycoprotein (TM) is thought to undergo a transition from a rod-like pre-hairpin conformation that is stabilized by a trimeric coiled coil to a more compact six-helix-bundle or trimer-of-hairpins structure. Importantly, synthetic peptides that interfere with the conformational changes of TM are potent inhibitors of membrane fusion and HTLV-1 entry, suggesting that the pre-hairpin motif is a valid target for antiviral therapy. Here, a stable, trimeric TM derivative that mimics the coiled-coil structure of fusion-active TM has been used to develop a plate-based assay to identify reagents that interfere with the formation of the six-helix bundle. The assay discriminates effectively between strong, weak and inactive peptide inhibitors of membrane fusion and has been used to identify a monoclonal antibody (mAb) that disrupts six-helix-bundle formation efficiently in vitro. The mAb is reactive with the C-helical region of TM, indicating that this region of TM is immunogenic. However, the mAb failed to neutralize HTLV-1 envelope-mediated membrane fusion, suggesting that, on native viral envelope, the epitope recognized by the mAb is obscured during fusion. This novel mAb will be of value in the immunological characterization of fusion-active structures of HTLV-1 TM. Moreover, the assay developed here will aid the search for therapeutic antibodies, peptides and small-molecule inhibitors targeting envelope and the HTLV-1 entry process.
Collapse
Affiliation(s)
- Antonis Mirsaliotis
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, UK
| | - Kulpash Nurkiyanova
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, UK
| | - Daniel Lamb
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, UK
| | - Chien-Wen S Kuo
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, UK
| | - David W Brighty
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, UK
| |
Collapse
|
4
|
Ghez D, Lepelletier Y, Lambert S, Fourneau JM, Blot V, Janvier S, Arnulf B, van Endert PM, Heveker N, Pique C, Hermine O. Neuropilin-1 is involved in human T-cell lymphotropic virus type 1 entry. J Virol 2006; 80:6844-54. [PMID: 16809290 PMCID: PMC1489069 DOI: 10.1128/jvi.02719-05] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is transmitted through a viral synapse and enters target cells via interaction with the glucose transporter GLUT1. Here, we show that Neuropilin-1 (NRP1), the receptor for semaphorin-3A and VEGF-A165 and a member of the immune synapse, is also a physical and functional partner of HTLV-1 envelope (Env) proteins. HTLV-1 Env and NRP1 complexes are formed in cotransfected cells, and endogenous NRP1 contributes to the binding of HTLV-1 Env to target cells. NRP1 overexpression increases HTLV-1 Env-dependent syncytium formation. Moreover, overexpression of NRP1 increases both HTLV-1 and HTLV-2 Env-dependent infection, whereas down-regulation of endogenous NRP1 has the opposite effect. Finally, overexpressed GLUT1, NRP1, and Env form ternary complexes in transfected cells, and endogenous NRP1 and GLUT1 colocalize in membrane junctions formed between uninfected and HTLV-1-infected T cells. These data show that NRP1 is involved in HTLV-1 and HTLV-2 entry, suggesting that the HTLV receptor has a multicomponent nature.
Collapse
Affiliation(s)
- David Ghez
- CNRS UMR 8147, Université Paris V, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 161 rue de Sèvres, 75743 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Silverman LR, Phipps AJ, Montgomery A, Fernandez S, Tsukahara T, Ratner L, Lairmore MD. In vivo analysis of replication and immunogenicity of proviral clones of human T-lymphotropic virus type 1 with selective envelope surface-unit mutations. Blood 2005; 106:3602-8. [PMID: 16046523 PMCID: PMC1895059 DOI: 10.1182/blood-2005-03-1076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 07/20/2005] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell lymphoma/leukemia (ATL). The HTLV-1 envelope gene exhibits limited variability when examined from infected individuals, but has not been tested using infectious clones of the virus in animal models. In vitro assays indicate that HTLV-1 envelope (Env) Ser75Ile, Asn95Asp, and Asn195Asp surface unit (SU) mutants are able to replicate in and immortalize lymphocytes. Herein, we examined the effects of these Env mutants in rabbits inoculated with HTLV-1 immortalized ACH.75, ACH.95, or ACH.195 cell lines (expressing full-length molecular clones with the SU mutations) or the ACH.1 cell line (expressing wild-type SU). All rabbits became infected, and the fidelity of the mutations was maintained throughout the 8-week study. However, SU point mutations resulted in decreased antibody responses to viral group-associated antigen (Gag) and Env antigens. ACH.195 rabbits had a selective decreased antibody response to SU, and one ACH.195 rabbit had an antibody response to both HTLV-1 and HTLV-2 SUs. Some mutant inoculation groups had altered proviral loads. However, peripheral-blood mononuclear cell (PBMC) proviral loads did not correlate with antibody responses. Our data are the first to demonstrate that mutations in critical determinants of HTLV-1 Env SU altered antibody responses and proviral loads, but do not prevent viral replication in vivo.
Collapse
Affiliation(s)
- Lee R Silverman
- Center for Retrovirus Research and Department of Veterinary Biosciences, the Center for Biostatistics, The Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Sundaram R, Lynch MP, Rawale SV, Sun Y, Kazanji M, Kaumaya PTP. De Novo Design of Peptide Immunogens That Mimic the Coiled Coil Region of Human T-cell Leukemia Virus Type-1 Glycoprotein 21 Transmembrane Subunit for Induction of Native Protein Reactive Neutralizing Antibodies. J Biol Chem 2004; 279:24141-51. [PMID: 15060075 DOI: 10.1074/jbc.m313210200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding, Competitive
- COS Cells
- Cell Line
- Cells, Cultured
- Circular Dichroism
- Crystallography, X-Ray
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Immunologic
- Enzyme-Linked Immunosorbent Assay
- Epitopes/chemistry
- Female
- Flow Cytometry
- Gene Products, env/chemistry
- Gene Products, env/immunology
- Guanidine/chemistry
- Guanidine/pharmacology
- HTLV-I Antibodies/chemistry
- HTLV-I Antibodies/immunology
- HeLa Cells
- Human T-lymphotropic virus 1/metabolism
- Humans
- Leucine/chemistry
- Mice
- Mice, Inbred ICR
- Molecular Sequence Data
- Peptides/chemistry
- Protein Conformation
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/immunology
- Temperature
- Vaccines, Subunit/chemistry
- beta-Galactosidase/metabolism
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Roshni Sundaram
- Peptide and Protein Engineering Laboratory, Department of Obstetrics and Gynecology, Division of Vaccine Research, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
7
|
Piñón JD, Kelly SM, Price NC, Flanagan JU, Brighty DW. An antiviral peptide targets a coiled-coil domain of the human T-cell leukemia virus envelope glycoprotein. J Virol 2003; 77:3281-90. [PMID: 12584351 PMCID: PMC149751 DOI: 10.1128/jvi.77.5.3281-3290.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Retrovirus entry into cells is mediated by the viral envelope glycoproteins which, through a cascade of conformational changes, orchestrate fusion of the viral and cellular membranes. In the absence of membrane fusion, viral entry into the host cell cannot occur. For human T-cell leukemia virus type 1 (HTLV-1), synthetic peptides that mimic a carboxy-terminal region of the transmembrane glycoprotein (TM) ectodomain are potent inhibitors of membrane fusion and virus entry. Here, we demonstrate that this class of inhibitor targets a fusion-active structure of HTLV-1 envelope. In particular, the peptides bind specifically to a core coiled-coil domain of envelope, and peptide variants that fail to bind the coiled-coil lack inhibitory activity. Our data indicate that the inhibitory peptides likely function by disrupting the formation of a trimer-of-hairpins structure that is required for membrane fusion. Importantly, we also show that peptides exhibiting dramatically increased potency can be readily obtained. We suggest that peptides or peptide mimetics targeting the fusion-active structures of envelope may be of therapeutic value in the treatment of HTLV-1 infections.
Collapse
Affiliation(s)
- Josefina D Piñón
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Jones KS, Nath M, Petrow-Sadowski C, Baines AC, Dambach M, Huang Y, Ruscetti FW. Similar regulation of cell surface human T-cell leukemia virus type 1 (HTLV-1) surface binding proteins in cells highly and poorly transduced by HTLV-1-pseudotyped virions. J Virol 2002; 76:12723-34. [PMID: 12438598 PMCID: PMC136733 DOI: 10.1128/jvi.76.24.12723-12734.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the requirements for human T-cell leukemia virus type 1 (HTLV-1) entry, including the identity of the cellular receptor(s). Previous studies have shown that although the HTLV receptor(s) are widely expressed on cell lines of various cell types from different species, cell lines differ dramatically in their susceptibility to HTLV-Env-mediated fusion. Human cells (293, HeLa, and primary CD4(+) T cells) showed higher levels of binding at saturation than rodent (NIH 3T3 and NRK) cells to an HTLV-1 SU immunoadhesin. A direct comparison of the binding of the HTLV-1 surface glycoprotein (SU) immunoadhesin and transduction by HTLV-1 pseudotyped virus revealed parallels between the level of binding and the titer for various cell lines. When cells were treated with phorbol myristate acetate (PMA), which down-modulates a number of cell surface molecules, the level of SU binding was markedly reduced. However, PMA treatment only slightly reduced the titer of murine leukemia virus(HTLV-1) on both highly susceptible and poorly susceptible cells. Treatment of target cells with trypsin greatly reduced binding, indicating that the majority of HTLV SU binding is to proteins. Polycations, which enhance the infectivity of several other retroviruses, inhibited HTLV-1 Env-mediated binding and entry on both human and rodent cells. These results suggest that factors other than the number of primary binding receptors are responsible for the differences in the titers of HTLV-1 pseudotypes between highly susceptible cells and poorly susceptible cells.
Collapse
Affiliation(s)
- Kathryn S Jones
- Basic Research Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Johnston ER, Albritton LM, Radke K. Envelope proteins containing single amino acid substitutions support a structural model of the receptor-binding domain of bovine leukemia virus surface protein. J Virol 2002; 76:10861-72. [PMID: 12368329 PMCID: PMC136609 DOI: 10.1128/jvi.76.21.10861-10872.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Functional domains of the strikingly conserved envelope (Env) glycoproteins of bovine leukemia virus (BLV) and its close relative, human T-cell leukemia virus type 1 (HTLV-1), are still being defined. We have used BLV Env protein variants to gain insights into the structure and function of this important determinant of viral infectivity. Each of 23 different single amino acid variants found in cDNA clones of env transcripts present after short-term culture of peripheral blood mononuclear cells from BLV-infected sheep was expressed in COS-1 cells and tested for the ability to mediate cell fusion and to be cleaved to surface (SU) and transmembrane (TM) protein subunits. Of 11 Env variants that failed to induce syncytia or did so poorly, 7 contained changes in amino acids identical or chemically conserved in the HTLV-1 Env protein. These seven included the four variants that showed aberrant proteolytic cleavage and poor cell surface expression, underscoring their importance for Env structure. Ten of 12 variants that retained wild-type syncytium-inducing ability clustered in the N-terminal half of BLV SU, which forms the putative receptor-binding domain (RBD). Several variants in the RBD showed evidence of subtle misfolding, as judged by reduced binding to monoclonal antibodies recognizing conformational epitopes F, G, and H formed by the N terminus of SU. We modeled the BLV RBD by aligning putative structural elements with known elements of the ecotropic Friend murine leukemia virus RBD monomer. All the variant RBD residues but one are exposed on the surface of this BLV model. These variants as well as function-altering, antibody-reactive residues defined by other investigators group on one face of the molecular model. They are strikingly absent from the opposite face, implying that it is likely to face inward in Env complexes. This surface might interact with the C-terminal domain of SU or with an adjacent monomer in the Env oligomer. This location suggests an orientation for the monomer of ecotropic Friend murine leukemia virus RBD.
Collapse
Affiliation(s)
- Elizabeth R Johnston
- Department of Animal Science and Graduate Group in Biochemistry and Molecular Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
10
|
Wilson KA, Maerz AL, Poumbourios P. Evidence that the transmembrane domain proximal region of the human T-cell leukemia virus type 1 fusion glycoprotein gp21 has distinct roles in the prefusion and fusion-activated states. J Biol Chem 2001; 276:49466-75. [PMID: 11595747 DOI: 10.1074/jbc.m108449200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To investigate the structural context of the fusion peptide region in human T-cell leukemia virus type 1 gp21, maltose-binding protein (MBP) was used as an N-terminal solubilization partner for the entire gp21 ectodomain (residues 313-445) and C-terminally truncated ectodomain fragments. The bacterial expression of the MBP/gp21 chimeras resulted in soluble trimers containing intramonomer disulfide bonds. Detergents blocked the proteolytic cleavage of fusion peptide residues in the MBP/gp21-(313-425) chimera, indicating that the fusion peptide is available for interaction with detergent despite the presence of an N-terminal MBP domain. Limited proteolysis experiments indicated that the transmembrane domain proximal sequence Thr(425)-Ala(439) protects fusion peptide residues from chymotrypsin. MBP/gp21 chimera stability therefore depends on a functional interaction between N-terminal and transmembrane domain proximal regions in a gp21 helical hairpin structure. In addition, thermal aggregation experiments indicated that the Thr(425)-Ser(436) sequence confers stability to the fusion peptide-containing MBP/gp21 chimeras. The functional role of the transmembrane domain proximal sequence was assessed by alanine-scanning mutagenesis of the full-length envelope glycoprotein, with 11 of 12 single alanine substitutions resulting in 1.5- to 4.5-fold enhancements in cell-cell fusion activity. By contrast, single alanine substitutions in MBP/gp21 did not significantly alter chimera stability, indicating that multiple residues within the transmembrane domain proximal region and the fusion peptide and adjacent glycine-rich segment contribute to stability, thereby mitigating the potential effects of the substitutions. The fusion-enhancing effects of the substitutions are therefore likely to be caused by alteration of the prefusion complex. Our observations suggest that the function of the transmembrane domain proximal sequence in the prefusion envelope glycoprotein is distinct from its role in stabilizing the fusion peptide region in the fusion-activated helical hairpin conformation of gp21.
Collapse
MESH Headings
- Amino Acid Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chromatography, Gel
- Chymotrypsin/metabolism
- Deltaretrovirus Antigens/genetics
- Deltaretrovirus Antigens/metabolism
- Detergents/chemistry
- Disulfides/chemistry
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/physiology
- Humans
- Maltose-Binding Proteins
- Molecular Sequence Data
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/metabolism
- Temperature
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- K A Wilson
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065 Australia
| | | | | |
Collapse
|
11
|
Jassal SR, Lairmore MD, Leigh-Brown AJ, Brighty DW. Soluble recombinant HTLV-1 surface glycoprotein competitively inhibits syncytia formation and viral infection of cells. Virus Res 2001; 78:17-34. [PMID: 11520577 DOI: 10.1016/s0168-1702(01)00279-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Efficient entry into, and infection of, human cells by human T-cell leukaemia virus type-1 (HTLV-1) is mediated by the viral envelope glycoproteins, gp46 and gp21. The gp46 surface glycoprotein binds to an as yet unidentified cell surface receptor, thereby, allowing the gp21 transmembrane glycoprotein to initiate fusion of the viral and cellular membranes. In the absence of membrane fusion viral penetration and entry into the host cell cannot occur. The envelope glycoproteins are also a major target for neutralising antibodies and cytotoxic T lymphocytes following a protective immune response, and represent ideal constituents for a recombinant HTLV-1 vaccine. Given the importance of the envelope proteins in HTLV-1 pathogenesis there is increasing interest in obtaining sufficient quantities of these proteins for biochemical, biophysical and biological analyses. We have now developed a system for production of large amounts of a glycosylated and functional form of soluble recombinant gp46 (sRgp46), and have used this recombinant material for analysis of envelope function and receptor binding activity. We find that, the sRgp46 molecules expressed in our system are immunologically indistinguishable from the native virally expressed surface glycoproteins; that sRgp46 binds to T-cells in a dose dependent and saturable manner; and that cell surface binding by sRgp46 can be inhibited by neutralising antibodies. Importantly, we demonstrate that these sRgp46 molecules potently inhibit syncytia formation and viral infection of target cells, and that regions outwith the SU domain of envelope are not required for binding to target cells or for inhibiting membrane fusion. The sRgp46 produced in our study will provide new opportunities to investigate envelope-receptor interactions, and will be of utility in defining the conformationally sensitive antigenic determinants of the HTLV-1 surface glycoprotein.
Collapse
Affiliation(s)
- S R Jassal
- Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, The University, Scotland DD1 9SY, Dundee, UK
| | | | | | | |
Collapse
|
12
|
Le Blanc I, Grange MP, Delamarre L, Rosenberg AR, Blot V, Pique C, Dokhélar MC. HTLV-1 structural proteins. Virus Res 2001; 78:5-16. [PMID: 11520576 DOI: 10.1016/s0168-1702(01)00278-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HTLV-1 structural proteins do not appear to ensure virus transmission as efficiently as most other retrovirus structural proteins do, whereas all other retroviruses can be transmitted via either free virions or cell-to-cell contacts, infection by HTLV-1 by free virions is very inefficient, and effective infection requires the presence of HTLV-1 infected cells. This characteristic feature of HTLV-1 provides a unique tool which can be used to analyse retrovirus cellular transmission in the absence of simultaneous cell-free infection. Here we summarise what is known about HTLV-1 structural proteins and identify the questions about these proteins which remain to be answered.
Collapse
Affiliation(s)
- I Le Blanc
- INSERM U332, Institut Cochin de Génétique Moléculaire, 22 Rue Méchain, 75014, Paris, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Jassal SR, Pöhler RG, Brighty DW. Human T-cell leukemia virus type 1 receptor expression among syncytium-resistant cell lines revealed by a novel surface glycoprotein-immunoadhesin. J Virol 2001; 75:8317-28. [PMID: 11483777 PMCID: PMC115076 DOI: 10.1128/jvi.75.17.8317-8328.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope glycoproteins of human T-cell leukemia virus type 1 (HTLV-1) perform functions that are crucial for virus entry into cells. The surface glycoprotein (SU) is responsible for viral recognition of, and binding to, target cells through its interaction with an unknown cell surface receptor. To facilitate molecular analysis of the receptor-binding properties of SU and to characterize the cellular receptor employed by HTLV-1, we have expressed a recombinant SU fused to the Fc domain of human immunoglobulin G. Here, we demonstrate that this novel SU-immunoadhesin retains both the biochemical properties of Fc and the receptor-binding specificity of the HTLV-1 SU. We use this SU-immunoadhesin to demonstrate, by direct cell surface binding assays, that the receptor used by HTLV-1 has been conserved through vertebrate evolution. Moreover, using murine-human somatic cell hybrids we provide data that do not support the previously assigned location for the HTLV-1 receptor on human chromosome 17. Most importantly, we show that many cell lines that are resistant to HTLV-1 envelope-mediated infection and syncytium formation express functional receptors that are recognized by the HTLV-1 SU. Based on our results, we suggest that for some HTLV-1-resistant cell lines the block to viral entry occurs at a late post-receptor-binding step of the entry process. Our findings will be of value in developing new strategies to identify the cellular receptor used by HTLV-1.
Collapse
Affiliation(s)
- S R Jassal
- Biomedical Research Centre, Ninewells Hospital and Medical School, The University of Dundee, Dundee DD1 9SY, Scotland
| | | | | |
Collapse
|
14
|
Maerz AL, Center RJ, Kemp BE, Kobe B, Poumbourios P. Functional implications of the human T-lymphotropic virus type 1 transmembrane glycoprotein helical hairpin structure. J Virol 2000; 74:6614-21. [PMID: 10864675 PMCID: PMC112171 DOI: 10.1128/jvi.74.14.6614-6621.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Retrovirus entry into cells follows receptor binding by the surface-exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.
Collapse
MESH Headings
- Cell Line
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Gene Products, env/physiology
- HeLa Cells
- Human T-lymphotropic virus 1/chemistry
- Human T-lymphotropic virus 1/metabolism
- Human T-lymphotropic virus 1/physiology
- Humans
- Membrane Fusion
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/metabolism
- Retroviridae Proteins, Oncogenic/physiology
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- A L Maerz
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | |
Collapse
|
15
|
Tallet B, Astier-Gin T, Londos-Gagliardi D, Guillemain B. Expression, purification and biological properties of the carboxyl half part of the HTLV-I surface envelope glycoprotein. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 737:85-95. [PMID: 10681045 DOI: 10.1016/s0378-4347(99)00379-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The carboxyl half of the surface envelope protein of HTLV-I contains the major immunodominant and neutralizable domains. Using two affinity chromatography steps and a combination of high salt concentration and non-ionic detergent, we purified this part of the envelope protein from Escherichia coli. Analysis of some immmunological and biological properties of this protein indicated that it was folded in a way that preserved the correct structure of this domain of the HTLV-I envelope protein. It could be utilized in structural studies to further understand the mechanisms of HTLV-I entry and to better define the component(s) of an effective vaccine.
Collapse
Affiliation(s)
- B Tallet
- EP630 CNRS-Université Victor Ségalen Bordeaux 2, France
| | | | | | | |
Collapse
|
16
|
Blanchard S, Astier-Gin T, Tallet B, Moynet D, Londos-Gagliardi D, Guillemain B. Amino acid changes at positions 173 and 187 in the human T-cell leukemia virus type 1 surface glycoprotein induce specific neutralizing antibodies. J Virol 1999; 73:9369-76. [PMID: 10516045 PMCID: PMC112971 DOI: 10.1128/jvi.73.11.9369-9376.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequence of human T-cell leukemia virus type 1 (HTLV-1) is highly conserved, most strains sharing at least 95% sequence identity. This sequence conservation is also found in the viral env gene, which codes for the two envelope glycoproteins that play a major role in the induction of a protective immune response against the virus. However, recent reports have indicated that some variations in env sequences may induce incomplete cross-reactivity between HTLV-1 strains. To identify the amino acid changes that might be involved in the antigenicity of neutralizable epitopes, we constructed expression vectors coding for the envelope glycoproteins of two HTLV-1 isolates (2060 and 2072) which induced human antibodies with different neutralization patterns. The amino acid sequences of the envelope glycoproteins differed at four positions. Vectors coding for chimeric or point-mutated envelope proteins were derived from 2060 and 2072 HTLV-1 env genes. Syncytium formation induced by the wild-type or mutated envelope proteins was inhibited by human sera with different neutralizing specificities. We thus identified two amino acid changes, I173-->V and A187-->T, that play an important role in the antigenicity of neutralizable epitopes located in this region of the surface envelope glycoprotein.
Collapse
Affiliation(s)
- S Blanchard
- EP630 CNRS-Université Victor Ségalen Bordeaux 2, 33077 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Jinno A, Haraguchi Y, Shiraki H, Hoshino H. Inhibition of cell-free human T-cell leukemia virus type 1 infection at a postbinding step by the synthetic peptide derived from an ectodomain of the gp21 transmembrane glycoprotein. J Virol 1999; 73:9683-9. [PMID: 10516085 PMCID: PMC113011 DOI: 10.1128/jvi.73.11.9683-9689.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the roles of human T-cell leukemia virus type 1 (HTLV-1) envelope (Env) proteins gp46 and gp21 in the early steps of infection, the effects of the 23 synthetic peptides covering the entire Env proteins on transmission of cell-free HTLV-1 were examined by PCR and by the plaque assay using a pseudotype of vesicular stomatis virus (VSV) bearing the Env of HTLV-1 [VSV(HTLV-1)]. The synthetic peptide corresponding to amino acids 400 to 429 of the gp21 Env protein (gp21 peptide 400-429, Cys-Arg-Phe-Pro-Asn-Ile-Thr-Asn-Ser-His-Val-Pro-Ile-Leu-Gln-Glu-Arg-P ro-Pro-Leu-Glu-Asn-Arg-Val-Leu-Thr-Gly-Trp-Gly-Leu) strongly inhibited infection of cell-free HTLV-1. By using the mutant peptide, Asn407, Ser408, and Leu413, -419, -424, and -429 were confirmed to be important amino acids for neutralizing activity of the gp21 peptide 400-429. Addition of this peptide before or during adsorption of HTLV-1 at 4 degrees C did not affect its entry. However, HTLV-1 infection was inhibited about 60% when the gp21 peptide 400-429 was added even 30 min after adsorption of HTLV-1 to cells, indicating that the amino acid sequence 400 to 429 on the gp21 Env protein plays an important role at the postbinding step of HTLV-1 infection. In contrast, a monoclonal antibody reported to recognize the gp46 191-196 peptide inhibited the infection of HTLV-1 at the binding step.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cats
- Cell Line
- Gene Products, env/chemical synthesis
- Gene Products, env/chemistry
- Gene Products, env/pharmacology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/physiology
- Humans
- Molecular Sequence Data
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/pharmacology
- Polymerase Chain Reaction
- Protein Structure, Tertiary
- RNA, Viral/metabolism
- Retroviridae Proteins, Oncogenic/chemical synthesis
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/pharmacology
- Transcription, Genetic
- Viral Envelope Proteins/chemistry
- Viral Plaque Assay
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- A Jinno
- Department of Virology and Preventive Medicine, Gunma University School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | |
Collapse
|
18
|
Delamarre L, Pique C, Rosenberg AR, Blot V, Grange MP, Le Blanc I, Dokhélar MC. The Y-S-L-I tyrosine-based motif in the cytoplasmic domain of the human T-cell leukemia virus type 1 envelope is essential for cell-to-cell transmission. J Virol 1999; 73:9659-63. [PMID: 10516080 PMCID: PMC113006 DOI: 10.1128/jvi.73.11.9659-9663.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) transmembrane glycoprotein has a 24-amino-acid cytoplasmic domain whose function in the viral life cycle is poorly understood. We introduced premature-stop mutations and 18 single-amino-acid substitutions into this domain and studied their effects on cell-to-cell transmission of the virus. The results show that the cytoplasmic domain is absolutely required for cell-to-cell transmission of HTLV-1, through amino acids which cluster in a Y-S-L-I tyrosine-based motif. The transmission defect in two motif mutants did not result from a defect in glycoprotein incorporation or fusion. It appears that the Y-S-L-I tyrosine-based motif of the HTLV-1 glycoprotein cytoplasmic domain has multiple functions, including involvement in virus transmission at a postfusion step.
Collapse
Affiliation(s)
- L Delamarre
- INSERM U332, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Taylor GM, Sanders DA. The role of the membrane-spanning domain sequence in glycoprotein-mediated membrane fusion. Mol Biol Cell 1999; 10:2803-15. [PMID: 10473628 PMCID: PMC25519 DOI: 10.1091/mbc.10.9.2803] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The role of glycoprotein membrane-spanning domains in the process of membrane fusion is poorly understood. It has been demonstrated that replacing all or part of the membrane-spanning domain of a viral fusion protein with sequences that encode signals for glycosylphosphatidylinositol linkage attachment abrogates membrane fusion activity. It has been suggested, however, that the actual amino acid sequence of the membrane-spanning domain is not critical for the activity of viral fusion proteins. We have examined the function of Moloney murine leukemia virus envelope proteins with substitutions in the membrane-spanning domain. Envelope proteins bearing substitutions for proline 617 are processed and incorporated into virus particles normally and bind to the viral receptor. However, they possess greatly reduced or undetectable capacities for the promotion of membrane fusion and infectious virus particle formation. Our results imply a direct role for the residues in the membrane-spanning domain of the murine leukemia virus envelope protein in membrane fusion and its regulation. They also support the thesis that membrane-spanning domains possess a sequence-dependent function in other protein-mediated membrane fusion events.
Collapse
Affiliation(s)
- G M Taylor
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | |
Collapse
|
20
|
Abstract
The interactions between human T-cell lymphotropic virus type I (HTLV-I) and the cellular immune system can be divided into viral interference with functions of the infected host T cell and the subsequent interactions between the infected T cell and the cellular immune system. HTLV-I-mediated activation of the infected host T cell is induced primarily by the viral protein Tax, which influences transcriptional activation, signal transduction pathways, cell cycle control, and apoptosis. These properties of Tax may well explain the ability of HTLV-I to immortalize T cells. It is not clear, though, how HTLV-I induces T-cell transformation (interleukin-2 [IL-2] independence). Recent evidence suggests that Tax may promote the G1- to S-phase transition, although this may involve additional proteins. A role for other viral proteins that may constitutively activate the IL-2 receptor pathway has also been suggested. By virtue of their activated state, HTLV-I-infected T cells can nonspecifically activate resting, uninfected T cells via virus-mediated upregulation of adhesion molecules. This may favor viral dissemination. Moreover, the induction of a remarkably high frequency of antiviral CD8(+) T cells does not appear to eliminate the infection. Indeed, individuals with a high frequency of virus-specific CD8(+) T cells have a high viral load, indicating a state of chronic immune system stimulation. Thus, while an activated immune system is needed to eradicate the infection, the spread of the HTLV-I is also accelerated under these conditions. A detailed knowledge of the molecular interactions between virus-specific CD8(+) T cells and immunodominant viral epitopes holds promise for the development of specific antiviral therapy.
Collapse
Affiliation(s)
- P Höllsberg
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
21
|
Kobe B, Center RJ, Kemp BE, Poumbourios P. Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc Natl Acad Sci U S A 1999; 96:4319-24. [PMID: 10200260 PMCID: PMC16330 DOI: 10.1073/pnas.96.8.4319] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-A resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.
Collapse
MESH Headings
- Amino Acid Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/isolation & purification
- Computer Graphics
- Crystallization
- Crystallography, X-Ray/methods
- Evolution, Molecular
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/isolation & purification
- Human T-lymphotropic virus 1/chemistry
- Human T-lymphotropic virus 1/genetics
- Humans
- Macromolecular Substances
- Maltose-Binding Proteins
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Secondary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/isolation & purification
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/isolation & purification
- Sequence Alignment
- Sequence Homology, Amino Acid
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- B Kobe
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | | | | | | |
Collapse
|
22
|
Rosenberg AR, Delamarre L, Pique C, Le Blanc I, Griffith G, Dokhélar MC. Early assembly step of a retroviral envelope glycoprotein: analysis using a dominant negative assay. J Biophys Biochem Cytol 1999; 145:57-68. [PMID: 10189368 PMCID: PMC2148214 DOI: 10.1083/jcb.145.1.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
As for most integral membrane proteins, the intracellular transport of retroviral envelope glycoproteins depends on proper folding and oligomeric assembly in the ER. In this study, we considered the hypothesis that a panel of 22 transport-defective mutants of the human T cell leukemia virus type 1 envelope glycoprotein might be defective in ER assembly. Upon cell cotransfection with wild-type envelope, however, the vast majority of these transport-defective mutants (21 of 22) exerted a specific trans-dominant negative effect. This effect was due to random dimerization of the mutated and wild-type glycoproteins that prevented the intracellular transport of the latter. This unexpected result suggests that association of glycoprotein monomers precedes the completion of folding. The only mutation that impaired this early assembly was located at the NH2 terminus of the protein. COOH-terminally truncated, soluble forms of the glycoprotein were also trans-dominant negative provided that their NH2 terminus was intact. The leucine zipper-like domain, although involved in oligomerization of the envelope glycoproteins at the cell surface, did not contribute to their intracellular assembly. We propose that, at a step subsequent to translation, but preceding complete folding of the monomers, glycoproteins assemble via their NH2-terminal domains, which, in turn, permits their cooperative folding.
Collapse
Affiliation(s)
- A R Rosenberg
- Institut National de la Santé et de la Recherche Medicale U332, Institut Cochin de Génétique Moléculaire, 75014 Paris, France.
| | | | | | | | | | | |
Collapse
|
23
|
Le Blanc I, Rosenberg AR, Dokhélar MC. Multiple functions for the basic amino acids of the human T-cell leukemia virus type 1 matrix protein in viral transmission. J Virol 1999; 73:1860-7. [PMID: 9971764 PMCID: PMC104426 DOI: 10.1128/jvi.73.3.1860-1867.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We studied the involvement of the human T-cell leukemia virus type 1 (HTLV-1) Gag matrix protein in the cell-to-cell transmission of the virus using missense mutations of the basic amino acids. These basic amino acids are clustered at the N terminus of the protein in other retroviruses and are responsible for targeting the Gag proteins to the plasma membrane. In the HTLV-bovine leukemia virus genus of retroviruses, the basic amino acids are distributed throughout the matrix protein sequence. The HTLV-1 matrix protein contains 11 such residues. A wild-type phenotype was obtained only for mutant viruses with mutations at one of two positions in the matrix protein. The phenotypes of the other nine mutant viruses showed that the basic amino acids are involved at various steps of the replication cycle, including some after membrane targeting. Most of these nine mutations allowed normal synthesis, transport, and cleavage of the Gag precursor, but particle release was greatly affected for seven of them. In addition, four mutated proteins with correct particle release and envelope glycoprotein incorporation did not however permit cell-to-cell transmission of HTLV-1. Thus, particle release, although required, is not sufficient for the cell-to-cell transmission of HTLV-1, and the basic residues of the matrix protein are involved in steps that occur after viral particle release.
Collapse
Affiliation(s)
- I Le Blanc
- INSERM U332, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | |
Collapse
|
24
|
Mangeney M, Heidmann T. Tumor cells expressing a retroviral envelope escape immune rejection in vivo. Proc Natl Acad Sci U S A 1998; 95:14920-5. [PMID: 9843991 PMCID: PMC24551 DOI: 10.1073/pnas.95.25.14920] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A model system for the in vivo control of tumor cell proliferation by the immune system has been used to assay for the possible immunosuppressive activity of retroviral proteins. Expression vectors for the entire or the transmembrane subunit of the Moloney murine leukemia virus envelope protein were constructed, as well as control vectors for irrelevant transmembrane proteins-or no protein. They were introduced either into MCA205 murine tumor cells, which do not proliferate upon s.c. injection into an allogeneic host, or into CL8.1 murine tumor cells, which overexpress class I antigens and are rejected in a syngeneic host. In both cases, expression of the complete envelope protein or of the transmembrane subunit resulted in tumor growth in vivo, with no effect of control vectors. Tumor cell growth results from inhibition of the host immune response, as the envelope-dependent effect was no more observed for MCA205 cells in syngeneic mice or for CL8.1 cells in x-irradiated mice. This inhibition is local because it is not observed at the level of control tumor cells injected contralaterally. These results suggest a noncanonical function of retroviral envelopes in the "penetrance" of viral infections, as well as a possible involvement of the envelope proteins of endogenous retroviruses in tumoral processes.
Collapse
Affiliation(s)
- M Mangeney
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eukaryotes Supérieurs, Unité Mixte de Recherche 1573, Centre National de la Recherche Scientifique, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | |
Collapse
|
25
|
Rosenberg AR, Delamarre L, Preira A, Dokhélar MC. Analysis of functional conservation in the surface and transmembrane glycoprotein subunits of human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2. J Virol 1998; 72:7609-14. [PMID: 9696862 PMCID: PMC110017 DOI: 10.1128/jvi.72.9.7609-7614.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are closely related retroviruses with nucleotide sequences that are 65% identical. To determine whether their envelope glycoproteins function similarly and to define the molecular determinants of HTLV-2 envelope-mediated functions, we have used pseudotyped viruses and have introduced mutations into regions of the HTLV-2 glycoproteins homologous to those known to be important for HTLV-1 glycoprotein functions. The envelopes of the two viruses could be exchanged with no loss of infectivity, suggesting that the glycoproteins function in broadly similar ways. However, comparative analysis of the HTLV-1 and HTLV-2 glycoproteins showed subtle differences in the structure-function relationships of the two surface glycoprotein (SU) subunits, even though they recognize the same receptor. Indeed, mutations introduced at equivalent positions in the two SU glycoproteins resulted in different phenotypes in the two viruses. The scenario is the opposite for the transmembrane glycoprotein (TM) subunits, in which the functional domains of the two viruses are strictly conserved, confirming the involvement of the TM ectodomain in postfusion events required for full infectivity of the HTLVs. Thus, although they recognize the same receptor, the HTLV-1 and HTLV-2 SU subunits have slightly different ways of transducing the conformational information that primes a common fusion mechanism effected by similar TM subunits.
Collapse
Affiliation(s)
- A R Rosenberg
- INSERM U332, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, 75014 Paris, France
| | | | | | | |
Collapse
|
26
|
Gatot JS, Callebaut I, Mornon JP, Portetelle D, Burny A, Kerkhofs P, Kettmann R, Willems L. Conservative mutations in the immunosuppressive region of the bovine leukemia virus transmembrane protein affect fusion but not infectivity in vivo. J Biol Chem 1998; 273:12870-80. [PMID: 9582317 DOI: 10.1074/jbc.273.21.12870] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many retroviruses, including bovine leukemia virus (BLV), contain a highly conserved region located about 40 amino acids downstream from the fusion peptide within the sequence of the external domain of the transmembrane (TM) protein. This region is notably thought to be involved in the presentation of the NH2-terminal peptide to allow cell fusion. By using hydrophobic cluster analysis and by analogy with the influenza A hemagglutinin structures, the core of the TM structure including this particular region was predicted to consist, in the BLV and other retroviral envelope proteins, of an alpha-helix followed by a loop region, both docked against a subsequent alpha-helix that forms a triple-stranded coiled coil. The loop region could undergo, as in hemagglutinin, a major refolding into an alpha-helix integrating the coiled coil structure and putting the fusion peptide to one tip of the molecule. Based on this model, we have identified amino acids that may be essential to the BLV TM structure, and a series of mutations were introduced in the BLV env gene of an infectious molecular clone. A first series of mutations was designed to disturb the coiled coil structure (substitutions with proline residues), whereas others would maintain the general TM structure. When expressed by Semliki Forest virus recombinants, all the mutated envelope proteins were stable and efficiently synthesized in baby hamster kidney cells. Both proline-substituted and conservative mutants were strongly affected in their capacity to fuse to CC81 indicator cells. In addition, it appeared that the integrity of the TM coiled coil structure is essential for envelope protein multimerization, as analyzed by metrizamide gradient centrifugation. Finally, to gain insight into the role of this coiled coil in the infectious potential of BLV in vivo, the mutated TM genes were introduced in an infectious and pathogenic molecular clone and injected into sheep. It appeared that only the conservative mutations (A60V and A64S) allowed maintenance of viral infectivity in vivo. Since these mutations destroyed the ability to induce syncytia, we conclude that efficient fusion capacity of the recombinant envelopes is not a prerequisite for the infectious potential of BLV in vivo. Viral propagation of these mutants was strongly affected in some of the infected sheep. However, the proviral loads within half of the infected animals (2 out of 2 for A60V and 1 out of 4 for A64S) were close to the wild-type levels. In these sheep, it thus appears that the A60V and A64S mutants propagate efficiently despite being unable to induce syncytia in cell culture.
Collapse
Affiliation(s)
- J S Gatot
- Unité de Biologie Moléculaire, Faculté Universitaire des Sciences Agronomiques, Avenue Maréchal Juin 13, B5030 Gembloux, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Han JS, Qian D, Wicha MS, Clarke MF. A method of limited replication for the efficient in vivo delivery of adenovirus to cancer cells. Hum Gene Ther 1998; 9:1209-16. [PMID: 9625260 DOI: 10.1089/hum.1998.9.8-1209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Replication-deficient viral vectors are currently being used in gene transfer strategies to treat cancer cells. Unfortunately, viruses are limited in their ability to diffuse through tissue. This makes it virtually impossible to infect the majority of tumor cells in vivo and results in inadequate gene transfer. This problem can be addressed by allowing limited viral replication. Limited viral replication facilitates greater penetration of virions into tissue and can improve gene transfer. We have developed a strategy of limited viral replication using AdRSVlaclys, a chemically modified E1-deleted adenovirus, to codeliver an exogenous plasmid encoding the adenovirus E1 region. This system allows one round of viral replication. We examined the effect of this limited adenovirus replication in vitro and in vivo. In culture, codelivery of virus and pE1 resulted in a large increase in infected cells when compared with control cells exposed to virus and pUC19. In experiments on nude mice bearing HeLa ascites tumors, intraperitoneal injection of AdRSVlaclys/pE1 resulted in a significantly higher percentage of infected HeLa cells as compared with the PBS controls (p < 0.05) or the AdRSVlaclys/pUC19 controls (p < 0.01). These data demonstrate that the transcomplementation of replication-deficient adenovirus with exogenous E1 DNA leads to limited replication, and this controlled replication enhances gene transfer efficiency of adenovirus in vivo.
Collapse
Affiliation(s)
- J S Han
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109-0936, USA
| | | | | | | |
Collapse
|