1
|
Wang Y, Zhang W, Shi R, Luo Y, Feng Z, Chen Y, Zhang Q, Zhou Y, Liang J, Ye X, Feng Q, Zhang X, Xu M. Identification of HLA-A*11:01 and A*02:01-Restricted EBV Peptides Using HLA Peptidomics. Viruses 2024; 16:669. [PMID: 38793551 PMCID: PMC11125987 DOI: 10.3390/v16050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Epstein-Barr Virus (EBV) is closely linked to nasopharyngeal carcinoma (NPC), notably prevalent in southern China. Although type II latency of EBV plays a crucial role in the development of NPC, some lytic genes and intermittent reactivation are also critical for viral propagation and tumor progression. Since T cell-mediated immunity is effective in targeted killing of EBV-positive cells, it is important to identify EBV-derived peptides presented by highly prevalent human leukocyte antigen class I (HLA-I) molecules throughout the EBV life cycle. Here, we constructed an EBV-positive NPC cell model to evaluate the presentation of EBV lytic phase peptides on streptavidin-tagged specific HLA-I molecules. Utilizing a mass spectrometry (LC-MS/MS)-based immunopeptidomic approach, we characterized eleven novel EBV peptides as well as two previously identified peptides. Furthermore, we determined these peptides were immunogenic and could stimulate PBMCs from EBV VCA/NA-IgA positive donors in an NPC endemic southern Chinese population. Overall, this work demonstrates that highly prevalent HLA-I-specific EBV peptides can be captured and functionally presented to elicit immune responses in an in vitro model, which provides insight into the epitopes presented during EBV lytic cycle and reactivation. It expands the range of viral targets for potential NPC early diagnosis and treatment.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Wanlin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Ruona Shi
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (R.S.); (Z.F.)
| | - Yanran Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Zhenhuan Feng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (R.S.); (Z.F.)
| | - Yanhong Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Qiuting Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Yan Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Jingtong Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Xiaoping Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Qisheng Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Xiaofei Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (R.S.); (Z.F.)
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| |
Collapse
|
2
|
Identification of a tumor-specific allo-HLA-restricted γδTCR. Blood Adv 2020; 3:2870-2882. [PMID: 31585951 DOI: 10.1182/bloodadvances.2019032409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/28/2019] [Indexed: 12/25/2022] Open
Abstract
γδT cells are key players in cancer immune surveillance because of their ability to recognize malignant transformed cells, which makes them promising therapeutic tools in the treatment of cancer. However, the biological mechanisms of how γδT-cell receptors (TCRs) interact with their ligands are poorly understood. Within this context, we describe the novel allo-HLA-restricted and CD8α-dependent Vγ5Vδ1TCR. In contrast to the previous assumption of the general allo-HLA reactivity of a minor fraction of γδTCRs, we show that classic anti-HLA-directed, γδTCR-mediated reactivity can selectively act on hematological and solid tumor cells, while not harming healthy tissues in vitro and in vivo. We identified the molecular interface with proximity to the peptide-binding groove of HLA-A*24:02 as the essential determinant for recognition and describe the critical role of CD8 as a coreceptor. We conclude that alloreactive γδT-cell repertoires provide therapeutic opportunities, either within the context of haplotransplantation or as individual γδTCRs for genetic engineering of tumor-reactive T cells.
Collapse
|
3
|
Huan X, Zhuo Z, Xiao Z, Ren EC. Crystal structure of suboptimal viral fragments of Epstein Barr Virus Rta peptide-HLA complex that stimulate CD8 T cell response. Sci Rep 2019; 9:16660. [PMID: 31723204 PMCID: PMC6853878 DOI: 10.1038/s41598-019-53201-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
Peptides presented by Human leukocyte antigen (HLA) class-I molecules are generally 8-10 amino acids in length. However, the predominant pool of peptide fragments generated by proteasomes is less than 8 amino acids in length. Using the Epstein - Barr virus (EBV) Rta-epitope (ATIGTAMYK, residues 134-142) restricted by HLA-A*11:01 which generates a strong immunodominant response, we investigated the minimum length of a viral peptide that can constitute a viral epitope recognition by CD8 T cells. The results showed that Peripheral blood mononuclear cells (PBMCs) from healthy donors can be stimulated by a viral peptide fragment as short as 4-mer (AMYK), together with a 5-mer (ATIGT) to recapitulate the full length EBV Rta epitope. This was confirmed by generating crystals of the tetra-complex (2 peptides, HLA and β2-microglobulin). The solved crystal structure of HLA-A*11:01 in complex with these two short peptides revealed that they can bind in the same orientation similar to parental peptide (9-mer) and the free ends of two short peptides acquires a bulged conformation that is directed towards the T cell receptor. Our data shows that suboptimal length of 4-mer and 5-mer peptides can complement each other to form a stable peptide-MHC (pMHC) complex.
Collapse
Affiliation(s)
- Xuelu Huan
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ziyi Zhuo
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ziwei Xiao
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 119260, Singapore.
| |
Collapse
|
4
|
van Zyl DG, Mautner J, Delecluse HJ. Progress in EBV Vaccines. Front Oncol 2019; 9:104. [PMID: 30859093 PMCID: PMC6398348 DOI: 10.3389/fonc.2019.00104] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/04/2019] [Indexed: 12/26/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous pathogen that imparts a significant burden of disease on the human population. EBV is the primary cause of infectious mononucleosis and is etiologically linked to the development of numerous malignancies. In recent years, evidence has also been amassed that strongly implicate EBV in the development of several autoimmune diseases, including multiple sclerosis. Prophylactic and therapeutic vaccination has been touted as a possible means of preventing EBV infection and controlling EBV-associated diseases. However, despite several decades of research, no licensed EBV vaccine is available. The majority of EBV vaccination studies over the last two decades have focused on the major envelope protein gp350, culminating in a phase II clinical trial that showed soluble gp350 reduced the incidence of IM, although it was unable to protect against EBV infection. Recently, novel vaccine candidates with increased structural complexity and antigenic content have been developed. The ability of next generation vaccines to safeguard against B-cell and epithelial cell infection, as well as to target infected cells during all phases of infection, is likely to decrease the negative impact of EBV infection on the human population.
Collapse
Affiliation(s)
- Dwain G. van Zyl
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Josef Mautner
- German Center for Infection Research (DZIF), Heidelberg, Germany
- Children's Hospital, Technische Universität München, and Helmholtz Zentrum München, Bavaria, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
5
|
Natural Variations in BRLF1 Promoter Contribute to the Elevated Reactivation Level of Epstein-Barr Virus in Endemic Areas of Nasopharyngeal Carcinoma. EBioMedicine 2018; 37:101-109. [PMID: 30420297 PMCID: PMC6286269 DOI: 10.1016/j.ebiom.2018.10.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Background Epstein-Barr virus (EBV) infection is a crucial risk factor for nasopharyngeal carcinoma (NPC), but the mechanism for its elevated activation level in NPC endemic areas remains unclear. This study aims to identify the EBV natural variations contributed to the different reactivation potential between NPC endemic and non-endemic areas. Methods 1030 subjects were recruited in China, including 303 healthy individuals from two NPC non-endemic areas, 483 healthy people from three endemic areas and 244 NPC patients. Among which, saliva DNA samples from 244 participants were sequenced for the EBV immediate early (IE) genes of BRLF1 and BZLF1, their promoters were included; the rest 786 subjects were used for the validation of significant variations among three different populations. Haplotype and population structure analysis were conducted. Dual-luciferase assay was used to detect the promoter activity. Results A total of 246 distinct variations were detected, 29 showed significant difference in the frequencies between healthy people from NPC endemic area and non-endemic area. Population structure analysis clustered EBV strains into 9 subgroups mostly in accordance with the geographical origin of samples. Interestingly, two EBV genotypes, Rp-V1 and Rp-V2, were identified according to the linkage relationship of the variations in BRLF1 promoter (Rp). Rp-V1 has higher frequency in NPC endemic areas than in non-endemic areas (52.38% vs 18.15%, P = 2.07 × 10−14), and was associated with higher oral EBV DNA levels (adjusted OR = 1.64, 95% CI = 1.21–2.24, P = .002), suggesting a more powerful activation ability of Rp-V1 than that of the prototype Rp-of the EBV strain; On the contrary, Rp-V2 has higher frequency in NPC non-endemic areas than in endemic areas (18.48% vs 0.38%, P = 1.17 × 10−7), might represent a reduced activation potential of EBV. Further dual-luciferase assay showed Rp-V1 has higher promoter activity while compared with Rp-V2 (P < .0001). Notably, Rp-V1 impaired the transcription repression effect of YY1 while Rp-V2 strengthened the transcription repression effect of EBF1 on Rp. In addition, significant differences of Rta 393–407 CTL epitope which may influence the recognition of Rta by CD8+ T cells were detected between healthy people from NPC endemic area and non-endemic area. Conclusions This study identified natural variations in cis-acting elements (YY1 and EBF1) of EBV Rp altering Rp transcription activities, which may contribute to the elevated EBV activation level in NPC endemic areas than non-endemic areas.
Collapse
|
6
|
Xiao Z, Ye Z, Tadwal VS, Shen M, Ren EC. Dual non-contiguous peptide occupancy of HLA class I evoke antiviral human CD8 T cell response and form neo-epitopes with self-antigens. Sci Rep 2017; 7:5072. [PMID: 28698575 PMCID: PMC5505988 DOI: 10.1038/s41598-017-05171-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/24/2017] [Indexed: 01/27/2023] Open
Abstract
Host CD8 T cell response to viral infections involves recognition of 8-10-mer peptides presented by MHC-I molecules. However, proteasomes generate predominantly 2-7-mer peptides, but the role of these peptides is largely unknown. Here, we show that single short peptides of <8-mer from Latent Membrane Protein 2 (LMP2) of Epstein Barr Virus (EBV) can bind HLA-A*11:01 and stimulate CD8+ cells. Surprisingly, two peptide fragments between 4-7-mer derived from LMP2(340-349) were able to complement each other, forming combination epitopes that can stimulate specific CD8+ T cell responses. Moreover, peptides from self-antigens can complement non-self peptides within the HLA binding cleft, forming neoepitopes. Solved structures of a tetra-complex comprising two peptides, HLA and β2-microglobulin revealed the free terminals of the two peptides to adopt an upward conformation directed towards the T cell receptor. Our results demonstrate a previously unknown mix-and-match combination of dual peptide occupancy in HLA that can generate vast combinatorial complexity.
Collapse
Affiliation(s)
- Ziwei Xiao
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Zhiyong Ye
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Vikeramjeet Singh Tadwal
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Meixin Shen
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore.
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 119260, Singapore.
| |
Collapse
|
7
|
Harada N, Fukaya S, Wada H, Goto R, Osada T, Gomori A, Ikizawa K, Sakuragi M, Oda N. Generation of a Novel HLA Class I Transgenic Mouse Model Carrying a Knock-in Mutation at the β2-Microglobulin Locus. THE JOURNAL OF IMMUNOLOGY 2016; 198:516-527. [DOI: 10.4049/jimmunol.1502367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 10/07/2016] [Indexed: 11/19/2022]
|
8
|
Malm M, Tamminen K, Vesikari T, Blazevic V. Norovirus-Specific Memory T Cell Responses in Adult Human Donors. Front Microbiol 2016; 7:1570. [PMID: 27752254 PMCID: PMC5045929 DOI: 10.3389/fmicb.2016.01570] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/20/2016] [Indexed: 01/22/2023] Open
Abstract
Norovirus (NoV) is a leading cause of acute gastroenteritis in people of all ages worldwide. NoV-specific serum antibodies which block the binding of NoV virus-like particles (VLPs) to the cell receptors have been thoroughly investigated. In contrast, only a few publications are available on the NoV capsid VP1 protein-specific T cell responses in humans naturally infected with the virus. Freshly isolated peripheral blood mononuclear cells of eight healthy adult human donors previously exposed to NoV were stimulated with purified VLPs derived from NoV GII.4-1999, GII.4-2012 (Sydney), and GI.3, and IFN-γ production was measured by an ELISPOT assay. In addition, 76 overlapping synthetic peptides spanning the entire 539-amino acid sequence of GII.4 VP1 were pooled into two-dimensional matrices and used to identify putative T cell epitopes. Seven of the eight subjects produced IFN-γ in response to the peptides and five subjects produced IFN-γ in response to the VLPs of the same origin. In general, stronger T cell responses were induced with the peptides in each donor compared to the VLPs. A CD8+ T cell epitope in the shell domain of the VP1 (134SPSQVTMFPHIIVDVRQL151) was identified in two subjects, both having human leukocyte antigen (HLA)-A∗02:01 allele. To our knowledge, this is the first report using synthetic peptides to study NoV-specific T cell responses in human subjects and identify T cell epitopes.
Collapse
Affiliation(s)
- Maria Malm
- Vaccine Research Center, University of Tampere Tampere, Finland
| | - Kirsi Tamminen
- Vaccine Research Center, University of Tampere Tampere, Finland
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere Tampere, Finland
| | - Vesna Blazevic
- Vaccine Research Center, University of Tampere Tampere, Finland
| |
Collapse
|
9
|
Stein JM, Machulla HKG, Deschner J, Fickl S, Jockel-Schneider Y, Tamm M, Schulz S, Reichert S. Prevalence of periodontitis in individuals with human leukocyte antigens (HLA) A9, B15, A2, and B5. Clin Oral Investig 2016; 20:703-10. [DOI: 10.1007/s00784-015-1570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
|
10
|
Abbott RJM, Quinn LL, Leese AM, Scholes HM, Pachnio A, Rickinson AB. CD8+ T cell responses to lytic EBV infection: late antigen specificities as subdominant components of the total response. THE JOURNAL OF IMMUNOLOGY 2013; 191:5398-409. [PMID: 24146041 DOI: 10.4049/jimmunol.1301629] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
EBV elicits primary CD8(+) T cell responses that, by T cell cloning from infectious mononucleosis (IM) patients, appear skewed toward immediate early (IE) and some early (E) lytic cycle proteins, with late (L) proteins rarely targeted. However, L Ag-specific responses have been detected regularly in polyclonal T cell cultures from long-term virus carriers. To resolve this apparent difference between responses to primary and persistent infection, 13 long-term carriers were screened in ex vivo IFN-γ ELISPOT assays using peptides spanning the two IE, six representative E, and seven representative L proteins. This revealed memory CD8 responses to 44 new lytic cycle epitopes that straddle all three protein classes but, in terms of both frequency and size, maintain the IE > E > L hierarchy of immunodominance. Having identified the HLA restriction of 10 (including 7 L) new epitopes using memory CD8(+) T cell clones, we looked in HLA-matched IM patients and found such reactivities but typically at low levels, explaining why they had gone undetected in the original IM clonal screens. Wherever tested, all CD8(+) T cell clones against these novel lytic cycle epitopes recognized lytically infected cells naturally expressing their target Ag. Surprisingly, however, clones against the most frequently recognized L Ag, the BNRF1 tegument protein, also recognized latently infected, growth-transformed cells. We infer that BNRF1 is also a latent Ag that could be targeted in T cell therapy of EBV-driven B-lymphoproliferative disease.
Collapse
Affiliation(s)
- Rachel J M Abbott
- School of Cancer Sciences and Medical Research Council Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Zaman A, Rahaman MH, Razzaque S. Kaposi's sarcoma: a computational approach through protein-protein interaction and gene regulatory networks analysis. Virus Genes 2012; 46:242-54. [PMID: 23266878 DOI: 10.1007/s11262-012-0865-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/07/2012] [Indexed: 12/27/2022]
Abstract
Interactomic data for Kaposi's Sarcoma Associated Herpes virus (KSHV)-the causative agent of vascular origin tumor called Kaposi's sarcoma-is relatively modest to date. The objective of this study was to assign functions to the previously uncharacterized ORFs in the virus using computational approaches and subsequently fit them to the host interactome landscape on protein, gene, and cellular level. On the basis of expression data, predicted RNA interference data, reported experimental data, and sequence based functional annotation we also tried to hypothesize the ORFs role in lytic and latent cycle during viral infection. We studied 17 previously uncharacterized ORFs in KSHV and the host-virus interplay seems to work in three major functional pathways-cell division, transport, metabolic and enzymatic in general. Studying the host-virus crosstalk for lytic phase predicts ORF 10 and ORF 11 as a predicted virus hub whereas PCNA is predicted as a host hub. On the other hand, ORF31 has been predicted as a latent phase inducible protein. KSHV invests a lion's share of its coding potential to suppress host immune response; various inflammatory mediators such as IFN-γ, TNF, IL-6, and IL-8 are negatively regulated by the ORFs while Il-10 secretion is stimulated in contrast. Although, like any other computational prediction, the study requires further validation, keeping into account the reproducibility and vast sample size of the systems biology approach the study allows us to propose an integrated network for host-virus interaction with good confidence. We hope that the study, in the long run, would help us identify effective dug against potential molecular targets.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh.
| | | | | |
Collapse
|
12
|
Frankenberg N, Lischka P, Pepperl-Klindworth S, Stamminger T, Plachter B. Nucleocytoplasmic shuttling and CRM1-dependent MHC class I peptide presentation of human cytomegalovirus pp65. Med Microbiol Immunol 2012; 201:567-79. [PMID: 22965172 DOI: 10.1007/s00430-012-0269-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/25/2012] [Indexed: 10/27/2022]
Abstract
The phosphoprotein 65 (pp65) of human cytomegalovirus is a prominent target of the antiviral CD8 T lymphocyte response. This study focused on investigating the properties of pp65 that render it a privileged antigen. It was found that pp65 was metabolically stable. The tegument protein was introduced into MHC class I presentation following its delivery via non-replicating dense bodies. No ubiquitination was found on particle-associated pp65. Proof was obtained that pp65 was a nucleocytoplasmic shuttle protein, using heterokaryon analyses. Based on this finding, inhibition experiments showed that presentation of particle-derived pp65 by HLA-A2 was sensitive to the impairment of the CRM1-mediated nuclear export pathway. The data support the idea that particle-derived pp65 can serve as a nuclear reservoir for proteasomal processing and MHC class I presentation, following its CRM1-dependent nuclear export. The presentation of pp65-derived peptides was also impaired by CRM1-inhibition following de novo synthesis of the tegument protein. However, pp65 protein levels were also reduced when blocking CRM1-mediated export after transient expression. This indicated that pp65 expression rather than direct interference with its own nuclear export was responsible for its reduced presentation in this case. The functionality of CRM1-mediated nuclear export is thus important for the presentation of pp65-derived peptides in the context of MHC class I on organ cells, both after exogenous uptake and after de novo synthesis of the tegument protein, but different mechanisms may account for either case.
Collapse
Affiliation(s)
- Nadine Frankenberg
- Institute for Virology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | | | | | | | | |
Collapse
|
13
|
Xu FH, Xiong D, Xu YF, Cao SM, Xue WQ, Qin HD, Liu WS, Cao JY, Zhang Y, Feng QS, Chen LZ, Li MZ, Liu ZW, Liu Q, Hong MH, Shugart YY, Zeng YX, Zeng MS, Jia WH. An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein-Barr virus activation. J Natl Cancer Inst 2012; 104:1396-410. [PMID: 22972969 DOI: 10.1093/jnci/djs320] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Elevated levels of antibodies against antigens in the Epstein-Barr virus (EBV) lytic phase are important predictive markers for nasopharyngeal carcinoma (NPC) risk. Several lifestyle factors, including smoking, have also been associated with NPC risk. We hypothesized that some specific lifestyle factors induce transformation of EBV from the latent to the lytic stage and contribute to NPC occurrence. METHODS We conducted a case-control study using data from male case patients (n = 1316) and control subjects (n = 1571) living in Guangdong Province, an area in China at high risk for NPC, to study potential NPC risk factors and EBV inducers. Two independent healthy male populations from a second high-risk area (n = 1657) and a low-risk area (n = 1961) were also included in the analysis of potential EBV inducers using logistic regression models. In vitro assays were performed to investigate the effect of cigarette smoke extract on EBV activation in two EBV-positive cell lines. All statistical tests were two-sided. RESULTS Smoking was associated with an increased risk of NPC among the Guangdong participants with 20-40 and 40 or more pack-years vs never smokers (OR = 1.52, 95% CI = 1.22 to 1.88 and OR = 1.76, 95% CI = 1.34 to 2.32, respectively; P (trend) < .001). Smoking was the only factor linked to EBV seropositivity among the expanded control group and the independent low-risk population. In vitro experiments showed that cigarette smoke extract promoted EBV replication, induced the expression of the immediate-early transcriptional activators Zta and Rta, and increased transcriptional expression levels of BFRF3 and gp350 in the lytic phase. CONCLUSION Smoking is not only associated with NPC risk in individuals from China but is also associated with EBV seropositivity in healthy males and is involved in EBV activation.
Collapse
Affiliation(s)
- Feng-Hua Xu
- State Key Laboratory of Oncology in South China, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jia Y, Wang Y, Chao Y, Jing Y, Sun Z, Luo B. Sequence analysis of the Epstein-Barr virus (EBV) BRLF1 gene in nasopharyngeal and gastric carcinomas. Virol J 2010; 7:341. [PMID: 21106109 PMCID: PMC3002924 DOI: 10.1186/1743-422x-7-341] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/25/2010] [Indexed: 12/15/2022] Open
Abstract
Background Epstein-Barr virus (EBV) has a biphasic infection cycle consisting of a latent and a lytic replicative phase. The product of immediate-early gene BRLF1, Rta, is able to disrupt the latency phase in epithelial cells and certain B-cell lines. The protein Rta is a frequent target of the EBV-induced cytotoxic T cell response. In spite of our good understanding of this protein, little is known for the gene polymorphism of BRLF1. Results BRLF1 gene was successfully amplified in 34 EBV-associated gastric carcinomas (EBVaGCs), 57 nasopharyngeal carcinomas (NPCs) and 28 throat washings (TWs) samples from healthy donors followed by PCR-direct sequencing. Fourteen loci were found to be affected by amino acid changes, 17 loci by silent nucleotide changes. According to the phylogenetic tree, 5 distinct subtypes of BRLF1 were identified, and 2 subtypes BR1-A and BR1-C were detected in 42.9% (51/119), 42.0% (50/119) of samples, respectively. The distribution of these 2 subtypes among 3 types of specimens was significantly different. The subtype BR1-A preferentially existed in healthy donors, while BR1-C was seen more in biopsies of NPC. A silent mutation A/G was detected in all the isolates. Among 3 functional domains, the dimerization domain of Rta showed a stably conserved sequence, while DNA binding and transactivation domains were detected to have multiple mutations. Three of 16 CTL epitopes, NAA, QKE and ERP, were affected by amino acid changes. Epitope ERP was relatively conserved; epitopes NAA and QKE harbored more mutations. Conclusions This first detailed investigation of sequence variations in BRLF1 gene has identified 5 distinct subtypes. Two subtypes BR1-A and BR1-C are the dominant genotypes of BRLF1. The subtype BR1-C is more frequent in NPCs, while BR1-A preferentially presents in healthy donors. BR1-C may be associated with the tumorigenesis of NPC.
Collapse
Affiliation(s)
- Yuping Jia
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Xu YF, Liu WL, Dong JQ, Liu WS, Feng QS, Chen LZ, Zeng YX, Zeng MS, Jia WH. Sequencing of DC-SIGN promoter indicates an association between promoter variation and risk of nasopharyngeal carcinoma in cantonese. BMC MEDICAL GENETICS 2010; 11:161. [PMID: 21067616 PMCID: PMC2989958 DOI: 10.1186/1471-2350-11-161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 11/11/2010] [Indexed: 12/21/2022]
Abstract
Background The dendritic cell-specific intercellular adhesion molecule 3 grabbing non-integrin (DC-SIGN) is an important pathogen recognition receptor of the innate immune system. DC-SIGN promoter variants play important role in the susceptibility to various infectious diseases. Nasopharyngeal carcinoma (NPC) is a malignancy that is common in southern China and whether DC-SIGN promoter variants have effects on susceptibility to NPC is still unknown. The aim of this study is to ascertain the potential involvement of DC-SIGN promoter single nucleotide polymorphisms (SNPs) in NPC susceptibility. Methods We conducted a case control study based on Cantonese population including 444 NPC patients and 464 controls matched on age and sex. The 1041 bp of DC-SIGN promoter region was directly sequenced for all samples. Sequence alignment and SNP search were inspected using DNAStar analysis programs and haplotype frequencies were estimated in Haploview V 4.0. The associations between the SNPs and the risk of NPC were analyzed using chi-square test and non-conditional logistic regression analysis with SPSS 13.0 software. Results A total of six variants were observed in the DC-SIGN promoter region and DC-SIGN -139 GG and -939 AA were significantly associated with NPC risk with adjusted Odds Ratios (ORs) of 2.10 (95% confidence interval [CI] = 1.23-3.59; P = 0.006) and 2.52 (1.29-4.93; P = 0.007) respectively and subjects carrying the risk allele DC-SIGN -871 G had 1.47-fold (95% CI = 1.14-1.90) increased risks of developing NPC (P = 0.003). Haplotype analysis revealed that h1 'AAAG' was significantly associated with protection against NPC (OR = 0.69; P = 0.0002) and the association was still significant when using 1000 permutation test runs (P = 0.001). Conclusions Our study indicated that DC-SIGN promoter variants appear to be involved in the susceptibility to NPC and the detailed mechanism of this effect need further studies.
Collapse
Affiliation(s)
- Ya-Fei Xu
- State Key Laboratory of Oncology in South China, 651 Dongfeng Road East, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pasini E, Caggiari L, Dal Maso L, Martorelli D, Guidoboni M, Vaccher E, Barzan L, Franchin G, Gloghini A, De Re V, Sacchi N, Serraino D, Carbone A, Rosato A, Dolcetti R. Undifferentiated nasopharyngeal carcinoma from a nonendemic area: protective role of HLA allele products presenting conserved EBV epitopes. Int J Cancer 2009; 125:1358-64. [PMID: 19536817 DOI: 10.1002/ijc.24515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of genetic factors involved in the development of undifferentiated nasopharyngeal carcinoma (UNPC) in nonendemic areas has been poorly investigated. High-resolution human leukocyte antigen (HLA) class I genotyping carried out in 82 Italian UNPC patients and 286 bone marrow donors born in the same province showed that A*0201, B*1801, and B*3501, known to efficiently present Epstein-Barr virus (EBV)-derived epitopes, were significantly under-represented in UNPC patients. Moreover, the A*0201/B*1801 haplotype was significantly less frequent in UNPC cases, with a 90% reduced risk (odds ratio [OR] 0.1, 95% confidence interval [CI] = 0.0-0.5) to develop UNPC, suggesting an additive effect. Notably, all 5 BARF1 epitopes and 7 of the 8 LMP-2 epitopes known to bind A*0201 showed a fully conserved sequence in all the 31 Italian EBV isolates investigated. The 4 amino acid changes affecting the 436-447 LMP-2 epitope do not reduce, but rather increase in two cases, the predicted ability of "variant" epitopes to bind the HLA-A*0201 allele, as shown by immunoinformatic analysis. Moreover, a significantly increased risk for UNPC was associated with A*2601 (OR 2.4, 95% CI = 1.1-4.9) and B*4101 (OR 9.2, 95% CI = 2.5-34.3). These findings indicate that Italian UNPC patients have a distinct HLA-A and -B genotypic profile and suggest that the decreased risk for UNPC conferred by definite HLA class I molecules is probably related to their ability to efficiently present LMP-2 and BARF1 epitopes that are highly conserved in EBV isolates from this geographic region. These results have practical implications for the immunotherapy of UNPC.
Collapse
Affiliation(s)
- Elisa Pasini
- Cancer Bioimmunotherapy Unit, IRCCS-National Cancer Institute, Aviano (PN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stein JM, Machulla HKG, Smeets R, Lampert F, Reichert S. Human leukocyte antigen polymorphism in chronic and aggressive periodontitis among Caucasians: a meta-analysis. J Clin Periodontol 2008; 35:183-92. [DOI: 10.1111/j.1600-051x.2007.01189.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Zhu YH, Wei YS, Li H, Liang WB, Du B, Zhang GQ, Zhang L. Construction and characterization of monoclonal antibodies specific for the R transactivator 185 of Epstein-Barr virus. J Virol Methods 2007; 144:12-6. [PMID: 17532480 DOI: 10.1016/j.jviromet.2007.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 11/20/2022]
Abstract
Epstein-Barr virus (EBV) has been implicated in the pathogenesis of several human malignancies including B lymphomas and nasopharyngeal carcinoma. The EBV R transactivator (Rta) has been found to play essential roles in stimulating a lytic cycle and viral gene expression. Recently, it was shown that ELISA detecting serum IgG-Rta(150+185) (two internal fragments of Rta) levels may be useful as a serological parameter to assist in the diagnosis of nasopharyngeal carcinoma. The present studies were to prepare monoclonal antibodies specific for the Rta185 and provide a useful tool for the detection of Rta. For this purpose, two monoclonal antibodies (Mabs) specific for the Rta185 were generated. They were identified by Western blot, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence analysis. The results revealed two different immunofluorescence patterns in EBV-positive B cells and epithelial cells, and suggested that there might be a difference in EBV replication mode between B cells and epithelial cells. The Mabs obtained in this study have a potential for the diagnosis of EBV associated diseases.
Collapse
Affiliation(s)
- Yin-Hua Zhu
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Steven N. The potential of adoptive transfer of immunity for reducing post transplant Epstein-Barr virus-associated disease. Curr Opin Infect Dis 2006; 12:585-91. [PMID: 17035825 DOI: 10.1097/00001432-199912000-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- N Steven
- The University of Birmingham, CRC Institute for Cancer Studies, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Gandhi MK, Lambley E, Duraiswamy J, Dua U, Smith C, Elliott S, Gill D, Marlton P, Seymour J, Khanna R. Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood 2006; 108:2280-9. [PMID: 16757686 DOI: 10.1182/blood-2006-04-015164] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Hodgkin lymphoma (HL), the malignant Hodgkin Reed-Sternberg (HRS) cells constitute only 0.5% of 10% of the diseased tissue. The surrounding cellular infiltrate is enriched with T cells that are hypothesized to modulate antitumor immunity. We show that a marker of regulatory T cells, LAG-3, is strongly expressed on infiltrating lymphocytes present in proximity to HRS cells. Circulating regulatory T cells (CD4+ CD25hi CD45 ROhi, CD4+ CTLA4hi, and CD4+ LAG-3hi were elevated in HL patients with active disease when compared with remission. Longitudinal profiling of EBV-specific CD8+ T-cell responses in 94 HL patients revealed a selective loss of interferon-gamma expression by CD8+ T cells specific for latent membrane proteins 1 and 2 (LMP1/2), irrespective of EBV tissue status. Intratumoral LAG-3 expression was associated with EBV tissue positivity, whereas FOXP3 was linked with neither LAG-3 nor EBV tissue status. The level of LAG-3 and FOXP3 expression on the tumor-infiltrating lymphocytes was coincident with impairment of LMP1/2-specific T-cell function. In vitro pre-exposure of peripheral blood mononuclear cells to HRS cell line supernatant significantly increased the expansion of regulatory T cells and suppressed LMP-specific T-cell responses. Deletion of CD4+ LAG-3+ T cells enhanced LMP-specific reactivity. These findings indicate a pivotal role for regulatory T cells and LAG-3 in the suppression of EBV-specific cell-mediated immunity in HL.
Collapse
Affiliation(s)
- Maher K Gandhi
- Tumor Immunology Laboratory, Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ressing ME, Keating SE, van Leeuwen D, Koppers-Lalic D, Pappworth IY, Wiertz EJHJ, Rowe M. Impaired transporter associated with antigen processing-dependent peptide transport during productive EBV infection. THE JOURNAL OF IMMUNOLOGY 2005; 174:6829-38. [PMID: 15905524 DOI: 10.4049/jimmunol.174.11.6829] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human herpesviruses, including EBV, persist for life in infected individuals. During the lytic replicative cycle that is required for the production of infectious virus and transmission to another host, many viral Ags are expressed. Especially at this stage, immune evasion strategies are likely to be advantageous to avoid elimination of virus-producing cells. However, little is known about immune escape during productive EBV infection because no fully permissive infection model is available. In this study, we have developed a novel strategy to isolate populations of cells in an EBV lytic cycle based on the expression of a reporter gene under the control of an EBV early lytic cycle promoter. Thus, induction of the viral lytic cycle in transfected EBV(+) B lymphoma cells resulted in concomitant reporter expression, allowing us, for the first time, to isolate highly purified cell populations in lytic cycle for biochemical and functional studies. Compared with latently infected B cells, cells supporting EBV lytic cycle displayed down-regulation of surface HLA class I, class II, and CD20, whereas expression levels of other surface markers remained unaffected. Moreover, during lytic cycle peptide transport into the endoplasmic reticulum, was reduced to <30% of levels found in latent infection. Because steady-state levels of TAP proteins were unaffected, these results point toward EBV-induced interference with TAP function as a specific mechanism contributing to the reduced levels of cell surface HLA class I. Our data implicate that EBV lytic cycle genes encode functions to evade T cell recognition, thereby creating a window for the generation of viral progeny.
Collapse
Affiliation(s)
- Maaike E Ressing
- Department of Medical Microbiology, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Yu HX, Srinivasan N, Ren EE, Chan SH. A11 Tetramer-assisted characterization of Rta-specific CD8+ T-cell responses in healthy virus carriers. ACTA ACUST UNITED AC 2005; 65:539-43. [PMID: 15896201 DOI: 10.1111/j.1399-0039.2005.00403.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HLA Class I-restricted CD8(+) T-cell responses are believed to play an important role in controlling Epstein-Barr virus (EBV) infection, which has been consistently associated with nasopharyngeal carcinoma (NPC). Immediate early transactivator Rta of EBV has been shown to be associated with the reactivation of EBV from latency and drive the lytic cascade of EBV and comprise an important target for EBV-specific cellular cytotoxicity. Furthermore, BRLF1 is specifically expressed in NPC tumor cells. The protein product of BRLF1, Rta, could then be considered as a NPC tumor antigen. Therefore, cellular immunity against Rta represents a very important part of the immunity against NPC, as they should prevent the replication of EBV. In the present study, Rta-specific CD8(+) T-cell responses in healthy virus carriers were characterized by using A1101 tetramer containing the known Rta epitope ATIGTAMYK (134-142). We clearly showed A1101/ATIGTAMYK tetramer-reactive CD8(+) T cells in the circulation of healthy virus carriers, ranging from 2.13 to 9.03%. We then studied the expression of perforin and interferon-gamma (IFN-gamma) secretion in these Rta-specific T cells. Our study demonstrated that Rta-specific T cells are capable of IFN-gamma production and nearly 90% of the Rta-specific CD8(+) T cells expressed perforin. Presumably, these are the cells that play an important role in determining the initiation of the lytic cycle or the clearance of EBV.
Collapse
Affiliation(s)
- H X Yu
- WHO Immunology Center, Faculty of Medicine, National University of Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
23
|
Bihl FK, Loggi E, Chisholm JV, Hewitt HS, Henry LM, Linde C, Suscovich TJ, Wong JT, Frahm N, Andreone P, Brander C. Simultaneous assessment of cytotoxic T lymphocyte responses against multiple viral infections by combined usage of optimal epitope matrices, anti- CD3 mAb T-cell expansion and "RecycleSpot". J Transl Med 2005; 3:20. [PMID: 15888204 PMCID: PMC1164435 DOI: 10.1186/1479-5876-3-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 05/11/2005] [Indexed: 12/23/2022] Open
Abstract
The assessment of cellular anti-viral immunity is often hampered by the limited availability of adequate samples, especially when attempting simultaneous, high-resolution determination of T cell responses against multiple viral infections. Thus, the development of assay systems, which optimize cell usage, while still allowing for the detailed determination of breadth and magnitude of virus-specific cytotoxic T lymphocyte (CTL) responses, is urgently needed. This study provides an up-to-date listing of currently known, well-defined viral CTL epitopes for HIV, EBV, CMV, HCV and HBV and describes an approach that overcomes some of the above limitations through the use of peptide matrices of optimally defined viral CTL epitopes in combination with anti-CD3 in vitro T cell expansion and re-use of cells from negative ELISpot wells. The data show that, when compared to direct ex vivo cell preparations, antigen-unspecific in vitro T cell expansion maintains the breadth of detectable T cell responses and demonstrates that harvesting cells from negative ELISpot wells for re-use in subsequent ELISpot assays (RecycleSpot), further maximized the use of available cells. Furthermore when combining T cell expansion and RecycleSpot with the use of rationally designed peptide matrices, antiviral immunity against more than 400 different CTL epitopes from five different viruses can be reproducibly assessed from samples of less than 10 milliliters of blood without compromising information on the breadth and magnitude of these responses. Together, these data support an approach that facilitates the assessment of cellular immunity against multiple viral co-infections in settings where sample availability is severely limited.
Collapse
Affiliation(s)
- Florian K Bihl
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Elisabetta Loggi
- Dipartimento di Cardioangiologia ed Epatologia, Ospedale S. Orsola-Malpighi, Università degli Studi di Bologna, Italy
| | - John V Chisholm
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Hannah S Hewitt
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Leah M Henry
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Caitlyn Linde
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Todd J Suscovich
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Johnson T Wong
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Nicole Frahm
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Pietro Andreone
- Dipartimento di Cardioangiologia ed Epatologia, Ospedale S. Orsola-Malpighi, Università degli Studi di Bologna, Italy
| | - Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
24
|
Yu H, Srinivasan N, Ren E, Chan S. Identification of CD8+ T-Cell Epitopes Specific for Immediate-Early Transactivator Rta of Epstein-Barr Virus. Hum Immunol 2005; 66:483-93. [PMID: 15935885 DOI: 10.1016/j.humimm.2005.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 01/18/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a human epithelial tumor with a high incidence in Southern Chinese population, with contributions from Epstein-Barr virus (EBV), human leukocyte antigen (HLA), and environmental factors to its etiology. It has been shown previously that the recognition of immediate-early transactivator Rta of EBV by CD8+ T cells may have a significant impact on controlling EBV and, indirectly, NPC. The current study used two computer-aided prediction methods and competition-based HLA-peptide binding assays to screen for HLA B2704/B4601/B5801 restricted T-cell epitopes derived from Rta. HLA tetrameric complexes containing these potential T-cell epitopes were synthesized. Rta-specific CD8+ T-cell responses in healthy virus carriers were then defined by these tetramers and IFN-gamma ELISPOT assays. We clearly demonstrated that healthy virus carriers have detectable Rta-specific CD8+ T cells restricted by B2704 in the circulation. However, there were no B4601/B5801 tetramer-reactive T cells specific for Rta in the peripheral blood of matched/mismatched donors. On the other hand, B4601 tetramers containing the computer-predicted B4601 binder EBNA3A (318-326) showed detectable tetramer-reactive T cells in the circulation of healthy virus carriers. topes also elicited IFN-gamma responses as detected by ELISPOT.
Collapse
Affiliation(s)
- Hongxiang Yu
- WHO Immunology Centre, Faculty of Medicine, National University of Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
25
|
Pavlova I, Lin CY, Speck SH. Murine gammaherpesvirus 68 Rta-dependent activation of the gene 57 promoter. Virology 2005; 333:169-79. [PMID: 15708602 DOI: 10.1016/j.virol.2004.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 10/19/2004] [Accepted: 12/17/2004] [Indexed: 11/29/2022]
Abstract
The Rta homolog encoded by murine gammaherpesvirus 68 (gammaHV68) gene 50 is essential for virus replication and is capable of driving virus reactivation from the S11 latently infected B lymphoma cell line. Here we characterize Rta activation of gammaHV68 gene 57, which is abundantly transcribed during the early phase of virus replication. Infection of murine fibroblasts with an Rta null virus demonstrated that transcription of gene 57 is dependent on Rta expression. Analysis of the gene 57 promoter identified 2 distinct regions that are Rta responsive, either in the context of the gene 57 promoter or when cloned upstream of a heterologous promoter. Sequence analysis of these regions revealed homology to known Rta-responsive cis-elements in the closely related Kaposi's sarcoma-associated viral (KSHV) genome. In addition, two candidate binding sites for the cellular transcription factor RBP-Jkappa/CBF1 were also identified in one of the Rta-responsive regions, which may play a role in mediating Rta transactivation similar to that observed in some KSHV Rta-responsive genes. Overall, analysis of the gammaHV68 gene 57 promoter suggests that mechanisms of Rta activation are conserved among gamma2-herpesviruses.
Collapse
Affiliation(s)
- Iglika Pavlova
- Division for Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, NE, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
26
|
Lindesmith L, Moe C, Lependu J, Frelinger JA, Treanor J, Baric RS. Cellular and humoral immunity following Snow Mountain virus challenge. J Virol 2005; 79:2900-9. [PMID: 15709009 PMCID: PMC548455 DOI: 10.1128/jvi.79.5.2900-2909.2005] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the immune response to noroviruses. To elucidate the immunobiology of norovirus infection in humans, 15 volunteers were challenged with Snow Mountain virus (SMV), a genogroup 2 norovirus. We assessed the cellular and humoral immune response and infection by analyzing stool, serum, saliva, and peripheral blood mononuclear cell (PBMC) responses pre- and postchallenge. In contrast to Norwalk virus (NV), SMV infection was not dependent upon blood group secretor status. Nine of 15 volunteers were infected and showed a >/=4-fold increase over the prechallenge anti-SMV serum immunoglobulin G (IgG) titer, mostly subclass IgG1. Although serum IgG elicited by SMV infection was cross-reactive with Hawaii virus (HV), another genogroup 2 norovirus, salivary IgA was less cross-reactive. Neither SMV-elicited serum IgG nor salivary IgA cross-reacted with NV, a genogroup 1 norovirus. Significant increases in serum gamma interferon (IFN-gamma) and IL-2, but not IL-6 or IL-10, were noted on day 2 postchallenge. For the majority of volunteers, both infected and uninfected, PBMCs stimulated with norovirus virus-like particles secreted IFN-gamma and other Th1 cytokines, suggesting previous norovirus exposure in most volunteers. Like the IgG antibodies, the SMV-activated T cells were cross-reactive with HV but not NV. IFN-gamma production was dependent upon CD4(+) cells, consistent with a predominant, but not exclusive, Th1 response. To our knowledge, this is the first report characterizing T-cell and cytokine responses following live norovirus challenge.
Collapse
Affiliation(s)
- Lisa Lindesmith
- School of Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
27
|
Pudney VA, Leese AM, Rickinson AB, Hislop AD. CD8+ immunodominance among Epstein-Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. ACTA ACUST UNITED AC 2005; 201:349-60. [PMID: 15684323 PMCID: PMC2213038 DOI: 10.1084/jem.20041542] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antigen immunodominance is an unexplained feature of CD8+ T cell responses to herpesviruses, which are agents whose lytic replication involves the sequential expression of immediate early (IE), early (E), and late (L) proteins. Here, we analyze the primary CD8 response to Epstein-Barr virus (EBV) infection for reactivity to 2 IE proteins, 11 representative E proteins, and 10 representative L proteins, across a range of HLA backgrounds. Responses were consistently skewed toward epitopes in IE and a subset of E proteins, with only occasional responses to novel epitopes in L proteins. CD8+ T cell clones to representative IE, E, and L epitopes were assayed against EBV-transformed lymphoblastoid cell lines (LCLs) containing lytically infected cells. This showed direct recognition of lytically infected cells by all three sets of effectors but at markedly different levels, in the order IE > E ≫ L, indicating that the efficiency of epitope presentation falls dramatically with progress of the lytic cycle. Thus, EBV lytic cycle antigens display a hierarchy of immunodominance that directly reflects the efficiency of their presentation in lytically infected cells; the CD8+ T cell response thereby focuses on targets whose recognition leads to maximal biologic effect.
Collapse
Affiliation(s)
- Victoria A Pudney
- Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
28
|
Reichert S, Stein J, Gautsch A, Schaller HG, Machulla HKG. Gender differences in HLA phenotype frequencies found in German patients with generalized aggressive periodontitis and chronic periodontitis. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:360-8. [PMID: 12485327 DOI: 10.1034/j.1399-302x.2002.170605.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
HLA antigens have been considered as risk factors for periodontitis. Differences in prevalence and in the extent of attachment loss between males and females have suggested that gender-dependent HLA deviations could play a role in individual predisposition to periodontitis. The aim of the present study was therefore to investigate the incidence of gender-dependent HLA associations in 50 patients with generalized aggressive periodontitis (AP) and 102 patients with chronic periodontitis (CP) in comparison to 102 probands without any attachment loss caused by periodontitis. HLA typing was carried out using a microlymphocytotoxic test and a polymerase chain reaction with sequence-specific primers (PCR-SSP). Female AP patients showed an increase in the frequency of HLA-A*68/69 and a decrease in the frequency of DRBblank* (non-DRB3/4/5*) and DQB1*05-positive probands. Only in female CP patients was HLA-DQB1*0303 absent, whereas HLA-DQB1*06 homozygosity increased significantly. With regard to the (AP + CP) periodontitis group as a whole, the increased frequency of HLA-DQB1*06 homozygosity in females was similar to the findings obtained in the AP group. Evidently, gender is a confounding variable, which should be considered in further studies of HLA and periodontitis.
Collapse
Affiliation(s)
- S Reichert
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Institute of Medical Immunology, Martin-Luther-University, Halle, Salle, Germany
| | | | | | | | | |
Collapse
|
29
|
Ohga S, Nomura A, Takada H, Hara T. Immunological aspects of Epstein-Barr virus infection. Crit Rev Oncol Hematol 2002; 44:203-15. [PMID: 12467961 DOI: 10.1016/s1040-8428(02)00112-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is a member of ubiquitous gamma herpes viruses, which primarily induces acute infectious mononucleosis (IM) or subclinical infection in susceptible subjects. The host reactions account for the clinical manifestation of IM. This virus also contributes to the development of lymphoid or epithelial malignancies. The outgrowth of EBV-infected B-cells is first controlled by interferon (IFN)-gamma and natural killer (NK) cells, and later by EBV-specific cytotoxic T-lymphocytes (CTL). To overcome the host responses and establish the persistent infection, EBV conducts the protean strategies of immune evasion. Several EBV genes modulate apoptotic signals and cytokine balances to persist B-cell infection without insulting the host. Uncontrolled lymphoproliferation occurs as EBV(+) B-cell lymphoproliferative disease (LPD)/lymphoma in AIDS, posttransplant, or primary immunodeficiency diseases (PID). On the other hand, EBV(+) T/NK cells are involved in EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH) or chronic active EBV infection (CAEBV) in children having no underlying immunodeficiencies, and at times lead to the clonal evolution of T/NK-cell LPD/lymphomas. Recent advance in molecular techniques has enabled us to analyze the clonality of EBV-infected lymphocytes and to quantify the gene expression of EBV and cytokines. Dominant autocrine loop of T helper (Th) 2 and Th1 may exert in EBV(+) B-LPD and T-LPD, respectively. Intensive studies on the immunological interface between effector components and EBV(+) target cells will provide more information on clarifying the pathogenesis of EBV-associated lymphoid malignancies, as well as on exploiting the therapeutic and preventive strategies for the formidable EBV-associated disease in childhood.
Collapse
Affiliation(s)
- Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| | | | | | | |
Collapse
|
30
|
Keating S, Prince S, Jones M, Rowe M. The lytic cycle of Epstein-Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules. J Virol 2002; 76:8179-88. [PMID: 12134023 PMCID: PMC155144 DOI: 10.1128/jvi.76.16.8179-8188.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human herpesviruses utilize an impressive range of strategies to evade the immune system during their lytic replicative cycle, including reducing the expression of cell surface major histocompatibility complex (MHC) and immunostimulatory molecules required for recognition and lysis by virus-specific cytotoxic T cells. Study of possible immune evasion strategies by Epstein-Barr virus (EBV) in lytically infected cells has been hampered by the lack of an appropriate permissive culture model. Using two-color immunofluorescence staining of cell surface antigens and EBV-encoded lytic cycle antigens, we examined EBV-transformed B-cell lines in which a small subpopulation of cells had spontaneously entered the lytic cycle. Cells in the lytic cycle showed a four- to fivefold decrease in cell surface expression of MHC class I molecules relative to that in latently infected cells. Expression of MHC class II molecules, CD40, and CD54 was reduced by 40 to 50% on cells in the lytic cycle, while no decrease was observed in cell surface expression of CD19, CD80, and CD86. Downregulation of MHC class I expression was found to be an early-lytic-cycle event, since it was observed when progress through late lytic cycle was blocked by treatment with acyclovir. The immediate-early transactivator of the EBV lytic cycle, BZLF1, did not directly affect expression of MHC class I molecules. However, BZLF1 completely inhibited the upregulation of MHC class I expression mediated by the EBV cell-transforming protein, LMP1. This novel function of BZLF1 elucidates the paradox of how MHC class I expression can be downregulated when LMP1, which upregulates MHC class I expression in latent infection, remains expressed in the lytic cycle.
Collapse
Affiliation(s)
- Sinéad Keating
- Section of Infection and Immunity, University of Wales College of Medicine, Cardiff CF14 4XX, United Kingdom
| | | | | | | |
Collapse
|
31
|
Wang QJ, Huang XL, Rappocciolo G, Jenkins FJ, Hildebrand WH, Fan Z, Thomas EK, Rinaldo CR. Identification of an HLA A*0201-restricted CD8(+) T-cell epitope for the glycoprotein B homolog of human herpesvirus 8. Blood 2002; 99:3360-6. [PMID: 11964304 DOI: 10.1182/blood.v99.9.3360] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; Kaposi sarcoma-associated herpesvirus)-specific cytotoxic T-lymphocyte (CTL) and interferon-gamma (IFN-gamma) responses to proteins produced during the lytic cycle of HHV-8 replication are mediated by HLA class I-restricted, CD8(+) T cells. We have characterized the fine specificity of the CD8(+) T-cell response to 25 peptides derived from 5 HHV-8 lytic cycle proteins based on a prediction model for HLA A*0201 binding motifs. One of the 25 HLA A*0201 peptides derived from the glycoprotein B (gB) homolog of Epstein-Barr virus (gB(492-500); LMWYELSKI; single-letter amino acid codes) bound to HLA A*0201 and stimulated IFN-gamma responses in CD8(+) T cells from HHV-8(+), HLA A*0201 persons, but not HHV-8-seronegative or non-HLA A*0201 persons. The peptide also induced IFN-gamma and CTL reactivity to naturally processed gB protein. The peptide was a major immunogenic epitope of HHV-8 as indicated by induction of IFN-gamma responses in peripheral blood mononuclear cells from 5 of 5 HHV-8 seropositive, HLA A*0201 persons when gB(492-500) was presented by autologous dendritic cells. T-cell reactivity to gB(492-500) was not related to detectable HHV-8 DNA in the blood. These data show that CD8(+) T cells recognize an HLA A*0201-restricted epitope for HHV-8 lytic cycle protein gB, particularly when presented by dendritic cells. This epitope may be important in control of HHV-8 infection by CD8(+) T cells.
Collapse
Affiliation(s)
- Qiong J Wang
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Frankenberg N, Pepperl-Klindworth S, Meyer RG, Plachter B. Identification of a conserved HLA-A2-restricted decapeptide from the IE1 protein (pUL123) of human cytomegalovirus. Virology 2002; 295:208-16. [PMID: 12033779 DOI: 10.1006/viro.2001.1335] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Control of human cytomegalovirus (HCMV) infection is predominantly mediated by cytolytic CD8+ T lymphocytes (CTL). Among the roughly 200 HCMV-encoded polypeptides, the tegument protein pp65 (ppUL83) and the nonstructural IE1 protein are considered to be dominant CTL targets. Yet the importance of CTL against IE1 for protective immunity against HCMV reactivation and disease has remained elusive. Analyses have been difficult, as all MHC class I presented peptides of IE1 defined so far are located in parts of the protein that are variable between viral strains. In this study a conserved decameric peptide from IE1 (P6, IE1(354-363)) that bound to HLA-A2 was identified. Using peptide-pulsed, HLA-matched stimulator cells, CTL lines which recognized P6 after exogenous loading as well as after endogenous processing could repeatedly be generated. However, memory CTL directed against P6 were not readily detectable by ex vivo ELISPOT analysis in peripheral blood mononuclear cells of healthy seropositive individuals, indicating that this peptide represents a quantitatively subdominant determinant during latent HCMV infection. Using the conserved HLA-A2 presented peptide P6 will enable more detailed studies on the role of IE1-specific CTL in patients suffering from various HCMV-related disease conditions and investigation of the role of such cells for immune control of HCMV. Since IE1 is the first viral protein to be expressed after reactivation from latency, P6 may also serve as an important component of a future recombinant HCMV vaccine.
Collapse
Affiliation(s)
- Nadine Frankenberg
- Institut für Virologie, Johannes Gutenberg-Universität Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | | | | | | |
Collapse
|
33
|
Adler B, Schaadt E, Kempkes B, Zimber-Strobl U, Baier B, Bornkamm GW. Control of Epstein-Barr virus reactivation by activated CD40 and viral latent membrane protein 1. Proc Natl Acad Sci U S A 2002; 99:437-42. [PMID: 11752411 PMCID: PMC117578 DOI: 10.1073/pnas.221439999] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Accepted: 08/20/2001] [Indexed: 01/03/2023] Open
Abstract
In humans, Epstein-Barr virus (EBV) establishes a persistent latent infection in peripheral resting B lymphocytes. Virus reactivation is highly restricted. Whereas in healthy humans the infection usually is benign, immunocompromised patients show an increased risk for EBV-associated malignancies, accompanied by an increase in virus replication and in the number of virus-infected cells. To search for viral and host factors regulating virus reactivation, we used conditionally EBV-immortalized B cells. We found that CD40-CD40 ligand interaction and the viral mimic of activated CD40, EBV latent membrane protein 1, suppress virus reactivation. Both inhibit anti-IgM or phorbolester-induced transcription of the viral immediate early protein BZLF1, which controls entry into the viral lytic cycle. The finding that latent membrane protein 1 and CD40 contribute to the regulation of latency may have important implications for the balance between EBV and its host in normal as well as in immunocompromised individuals.
Collapse
Affiliation(s)
- Barbara Adler
- GSF-National Research Center for Environment and Health, Institute for Clinical Molecular Biology and Tumor Genetics, Marchioninistrasse 25, D-81377 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Bharadwaj M, Sherritt M, Khanna R, Moss DJ. Contrasting Epstein-Barr virus-specific cytotoxic T cell responses to HLA A2-restricted epitopes in humans and HLA transgenic mice: implications for vaccine design. Vaccine 2001; 19:3769-77. [PMID: 11395212 DOI: 10.1016/s0264-410x(01)00085-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigates the hierarchy of cytotoxic T cell (CTL) responses to twelve HLA A2-restricted epitopes from the latent, lytic and structural proteins of Epstein-Barr virus (EBV) in acute infectious mononucleosis and in healthy seropositive donors and the relative immunogenecity of these epitopes in transgenic mice. Responses to the lytic epitope were uniformly strong in all healthy seropositive individuals and acute infectious mononucleosis donors while moderate or low responses were observed to the latent and structural epitopes, respectively in both groups studied. In contrast, when HLA A2/Kb transgenic mice were immunised with these peptide epitopes, CTL responses were observed to all epitopes with a maximal response to the epitopes within the structural proteins and low to moderate responses to the latent epitopes. This hierarchy of CTL responses in mice was also reflected in an MHC stabilisation analysis. These contrasting CTL responses in humans following natural infection compared to the immunogenicity of these epitopes and their ability to stabilise MHC may need to be considered when designing an EBV vaccine.
Collapse
Affiliation(s)
- M Bharadwaj
- Co-operative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Australia 4029.
| | | | | | | |
Collapse
|
35
|
Moss DJ, Burrows SR, Silins SL, Misko I, Khanna R. The immunology of Epstein-Barr virus infection. Philos Trans R Soc Lond B Biol Sci 2001; 356:475-88. [PMID: 11313006 PMCID: PMC1088439 DOI: 10.1098/rstb.2000.0784] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus is a classic example of a persistent human virus that has caught the imagination of immunologists, virologists and oncologists because of the juxtaposition of a number of important properties. First, the ability of the virus to immortalize B lymphocytes in vitro has provided an antigen presenting cell in which all the latent antigens of the virus are displayed and are available for systematic study. Second, the virus presents an ideal system for studying the immune parameters that maintain latency and the consequences of disturbing this cell-virus relationship. Third, this wealth of immunological background has provided a platform for elucidating the role of the immune system in protection from viral-associated malignancies of B cell and epithelial cell origin. Finally, attention is now being directed towards the development of vaccine formulations which might have broad application in the control of human malignancies.
Collapse
Affiliation(s)
- D J Moss
- Infectious Disease and Immunology Division, Queensland Institute of Medical Research and Joint Oncology Program, University of Queensland, Bancroft Centre, Herston, Queensland 4029, Australia.
| | | | | | | | | |
Collapse
|
36
|
Wang QJ, Jenkins FJ, Jacobson LP, Kingsley LA, Day RD, Zhang ZW, Meng YX, Pellett PE, Kousoulas KG, Baghian A, Rinaldo CR, Pellet PE. Primary human herpesvirus 8 infection generates a broadly specific CD8(+) T-cell response to viral lytic cycle proteins. Blood 2001; 97:2366-73. [PMID: 11290599 DOI: 10.1182/blood.v97.8.2366] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) is a recently discovered gammaherpesvirus that is the etiologic agent of Kaposi sarcoma (KS). The natural history of primary HHV-8 infection, including clinical outcome and host immune responses that may be important in preventing disease related to HHV-8, has not been elucidated. The present study characterized the clinical, immunologic, and virologic parameters of primary HHV-8 infection in 5 cases detected during a 15-year longitudinal study of 108 human immunodeficiency virus type 1 seronegative men in the Multicenter AIDS Cohort Study. Primary HHV-8 infection was associated with mild, nonspecific signs and symptoms of diarrhea, fatigue, localized rash, and lymphadenopathy. There were no alterations in numbers of CD4(+) or CD8(+) T cells or CD8(+) T-cell interferon gamma (IFN-gamma) production to mitogen or nominal antigen. CD8(+) cytotoxic T-lymphocyte precursor (CTLp) and IFN-gamma reactivity were detected during primary HHV-8 infection, with broad specificity to 5 lytic cycle proteins of HHV-8 encoded by open reading frame 8 (ORF 8; glycoprotein B homolog of Epstein-Barr virus), ORF 22 (gH homolog), ORF 25 (major capsid protein homolog), ORF 26 (a minor capsid protein homolog), or ORF 57 (an early protein homolog), in association with increases in serum antibody titers and appearance of HHV-8 DNA in blood mononuclear cells. CD8(+) T-cell responses to HHV-8 decreased by 2 to 3 years after primary infection. This antiviral T-cell response may control initial HHV-8 infection and prevent development of disease.
Collapse
Affiliation(s)
- Q J Wang
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Adaptation of persistent infection within the cells of the immune system is a unique characteristic of gamma herpes viruses. A classic example of this is Epstein-Barr virus (EBV), which may have co-evolved with Homo sapiens over millions of years, thus achieving a balance between viral persistence and immune control. In this review, we present an overview of virus and the host immune system interactions that regulate the life-long host-virus relationship in healthy virus carriers and EBV-associated diseases. Extensive analysis of cytotoxic T lymphocyte-mediated immune responses in healthy virus carriers has revealed unique mechanisms used by EBV to maintain a benign persistent state in vivo. On the other hand, this relationship in EBV-associated diseases favors the escape of the virus from the hostile effects of the immune response. This escape is achieved by either down-regulating the expression of highly immunogenic antigens of the virus or by direct modulation of the host cytotoxic T lymphocyte response by virus-encoded proteins.
Collapse
Affiliation(s)
- R Khanna
- Tumor Immunology Laboratory, Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, University of Queensland, Bancroft Centre, Brisbane, Australia.
| | | |
Collapse
|
38
|
Feng P, Ren EC, Liu D, Chan SH, Hu H. Expression of Epstein-Barr virus lytic gene BRLF1 in nasopharyngeal carcinoma: potential use in diagnosis. J Gen Virol 2000; 81:2417-2423. [PMID: 10993929 DOI: 10.1099/0022-1317-81-10-2417] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tumour cells of undifferentiated nasopharyngeal carcinoma (NPC) consistently harbour Epstein-Barr virus (EBV) genes. Expression of mRNA transcripts associated with EBV latency has been demonstrated in such cells. However, expression of EBV lytic genes has not been well elucidated, although various lines of evidence have suggested that there is EBV replication in NPC tumour cells. We have studied mRNA expression of representative EBV lytic genes by RT-PCR in nasopharynx biopsies obtained from NPC and control individuals. In both NPC and control biopsies, EBV lytic genes BZLF1, BALF2 and BCLF1 were detected readily. However, BRLF1 was detected in NPC biopsies only. The BRLF1 gene was then cloned and expressed in vitro, and the protein product, Rta, was used as an antigen to detect specific antibodies by immunoprecipitation in plasma samples obtained from NPC patients and healthy controls. IgG antibodies directed against Rta were detected in 44 of 53 NPC plasma samples (83.0%), but only in 1 of 53 control samples (1.9%). Furthermore, the antibody binding regions were found in the C-terminal two-thirds of Rta. This serological result confirms indirectly that BRLF1 is specifically expressed in NPC tumour cells. Rta might play an important role in NPC pathogenesis, considering its multiple functions in EBV replication and cell cycles. Moreover, the detection of IgG antibodies directed against Rta could be developed into a diagnostic parameter for NPC.
Collapse
Affiliation(s)
- Ping Feng
- Department of Microbiology, Faculty of Medicine1 and Institute of Molecular Agrobiology2, National University of Singapore, Block MD4/4A, 5 Science Drive 2, Singapore 117597, Republic of Singapore
| | - Ee Chee Ren
- Department of Microbiology, Faculty of Medicine1 and Institute of Molecular Agrobiology2, National University of Singapore, Block MD4/4A, 5 Science Drive 2, Singapore 117597, Republic of Singapore
| | - Dingxiang Liu
- Department of Microbiology, Faculty of Medicine1 and Institute of Molecular Agrobiology2, National University of Singapore, Block MD4/4A, 5 Science Drive 2, Singapore 117597, Republic of Singapore
| | - Soh Ha Chan
- Department of Microbiology, Faculty of Medicine1 and Institute of Molecular Agrobiology2, National University of Singapore, Block MD4/4A, 5 Science Drive 2, Singapore 117597, Republic of Singapore
| | - Huaizhong Hu
- Department of Microbiology, Faculty of Medicine1 and Institute of Molecular Agrobiology2, National University of Singapore, Block MD4/4A, 5 Science Drive 2, Singapore 117597, Republic of Singapore
| |
Collapse
|
39
|
Pepperl S, Münster J, Mach M, Harris JR, Plachter B. Dense bodies of human cytomegalovirus induce both humoral and cellular immune responses in the absence of viral gene expression. J Virol 2000; 74:6132-46. [PMID: 10846097 PMCID: PMC112112 DOI: 10.1128/jvi.74.13.6132-6146.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 04/10/2000] [Indexed: 11/20/2022] Open
Abstract
Infection of fibroblast cell cultures with human cytomegalovirus (HCMV) leads to the production of significant amounts of defective enveloped particles, termed dense bodies (DB). These noninfectious structures contain major antigenic determinants which are responsible for induction of both the humoral and the cellular immune response against HCMV. We tested the hypothesis that, by virtue of their unique antigenic and structural properties, DB could induce a significant immune response in the absence of infectious virus. Mice were immunized with gradient-purified DB, which were either left untreated or subjected to sequential rounds of sonication and freeze-thawing to prevent cellular entry. Titers of neutralizing antibodies induced by DB were in a range comparable to levels present in convalescent human sera. The virus-neutralizing antibody response was surprisingly durable, with neutralizing antibodies detected 12 months following primary immunization. The HCMV-specific major histocompatibility complex class I-restricted cytolytic T-cell (CTL) response was assayed using mice transgenic for the human HLA-A2 molecule. Immunization with DB led to high levels of HCMV-specific CTL in the absence of de novo viral protein synthesis. Maximal total cytolytic activity in mice immunized with DB was nearly as efficient as the cytolytic activity induced by a standard immunization with murine cytomegalovirus. Furthermore, DB induced a typical T-helper 1 (Th1)-dominated immune response in mice, as determined by cytokine and immunoglobulin G isotype analysis. Induction of humoral and cellular immune responses was achieved without the concomitant use of adjuvant. We thus propose that DB can serve as a basis for the future development of a recombinant nonreplicating vaccine against HCMV. Finally, such particles could be engineered for efficient delivery of antigens from other pathogens to the immune system.
Collapse
Affiliation(s)
- S Pepperl
- Institute for Virology, University of Mainz, Germany
| | | | | | | | | |
Collapse
|
40
|
Application of the ELISPOT assay to the characterization of CD8+ responses to Epstein-Barr virus antigens. Blood 2000. [DOI: 10.1182/blood.v95.1.241] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
CD8+ cells have an important role in controlling Epstein-Barr virus (EBV) infection. We adapted the interferon-γ ELISPOT assay to the quantitative analysis of EBV-specific CD8+ cells. Using peripheral blood mononuclear cells (PBMCs) from healthy donors, we measured both the aggregate response to the virus, using EBV-transformed lymphoblastoid cell lines (LCLs) as stimulators, and the specific responses to 2 A2-restricted peptide epitopes: the subdominant latency membrane protein-2 (LMP2) peptide CLGGLLTMV and the early lytic BMLF1 peptide GLCTLVAML. LCL-responsive CD8+ cells were detected in all EBV-seropositive donors (range 954 to 37 830 spots/106CD8+ cells). LMP2 peptide-responsive CD8+cells were detected in 10 of 11 healthy seropositive A2 donors (range 11 to 83 spots/106 PBMC). BMLF1 peptide-responsive CD8+ cells were detected in all seropositive A2 donors examined (range 13 to 943 spots/106 PBMC). Cytotoxic T-lymphocyte (CTL) lines generated with weekly stimulation of LCLs for therapeutic purposes were also studied. Relative to PBMCs, these CTL lines showed a marked increase in the level of LCL-responsive and LMP2 peptide-responsive CD8+ cells and a lesser degree of expansion of BMLF1 peptide-responsive CD8+ cells. Finally, we applied the ELISPOT assay to monitor adoptive infusion of EBV CTL lines. In 2 patients examined, a transient increase in LCL-responsive CD8+ cells could be detected after infusion. Thus, the ELISPOT assay can be applied to the analysis of CD8+responses to EBV antigens in PBMCs, in ex vivo expanded CTL lines, and in PBMCs from patients treated with ex vivo expanded CTL lines. (Blood. 2000;95:241-248)
Collapse
|
41
|
Abstract
CD8+ cells have an important role in controlling Epstein-Barr virus (EBV) infection. We adapted the interferon-γ ELISPOT assay to the quantitative analysis of EBV-specific CD8+ cells. Using peripheral blood mononuclear cells (PBMCs) from healthy donors, we measured both the aggregate response to the virus, using EBV-transformed lymphoblastoid cell lines (LCLs) as stimulators, and the specific responses to 2 A2-restricted peptide epitopes: the subdominant latency membrane protein-2 (LMP2) peptide CLGGLLTMV and the early lytic BMLF1 peptide GLCTLVAML. LCL-responsive CD8+ cells were detected in all EBV-seropositive donors (range 954 to 37 830 spots/106CD8+ cells). LMP2 peptide-responsive CD8+cells were detected in 10 of 11 healthy seropositive A2 donors (range 11 to 83 spots/106 PBMC). BMLF1 peptide-responsive CD8+ cells were detected in all seropositive A2 donors examined (range 13 to 943 spots/106 PBMC). Cytotoxic T-lymphocyte (CTL) lines generated with weekly stimulation of LCLs for therapeutic purposes were also studied. Relative to PBMCs, these CTL lines showed a marked increase in the level of LCL-responsive and LMP2 peptide-responsive CD8+ cells and a lesser degree of expansion of BMLF1 peptide-responsive CD8+ cells. Finally, we applied the ELISPOT assay to monitor adoptive infusion of EBV CTL lines. In 2 patients examined, a transient increase in LCL-responsive CD8+ cells could be detected after infusion. Thus, the ELISPOT assay can be applied to the analysis of CD8+responses to EBV antigens in PBMCs, in ex vivo expanded CTL lines, and in PBMCs from patients treated with ex vivo expanded CTL lines. (Blood. 2000;95:241-248)
Collapse
|
42
|
Benninger-Döring G, Pepperl S, Deml L, Modrow S, Wolf H, Jilg W. Frequency of CD8(+) T lymphocytes specific for lytic and latent antigens of Epstein-Barr virus in healthy virus carriers. Virology 1999; 264:289-97. [PMID: 10562493 DOI: 10.1006/viro.1999.9996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated CD8(+) T cell frequencies of five different Epstein-Barr virus-specific cytotoxic T lymphocyte epitopes located within proteins of the replicative cycle and the latent state in healthy long-term virus carriers with IFN-gamma enzyme-linked immunospot assay. Frequencies of the HLA-A3-restricted epitope RVRAYTYSK (RVR) whose minimal length was mapped in this study to amino acid position 148-156 of the immediate-early protein BRLF1 were compared with those of a further known HLA-A3-restricted epitope within EBNA3A, RLRAEAQVK (RLR). Determination of frequencies of CD8(+) T lymphocytes directed against lytic antigen epitope RVR revealed that only one of eight donors recognized this epitope. Frequency was calculated to be 65 RVR-specific CD8(+) T lymphocytes per 10(6) PBMC. None of the HLA-A3-positive donors exhibited IFN-gamma release after antigenic stimulation with the EBNA3A-specific peptide epitope RLR. Furthermore, we chose three known HLA-B8-restricted epitopes, RAKFKQLL (RAK), FLRGRAYGL (FLR), and QAKWRLQTL (QAK), of the lytic protein BZLF1 and the latent protein EBNA3A. Examination of eight HLA-B8-positive virus carriers revealed that the BZLF1-specific epitope RAK was recognized by all donors with a median frequency of 233 RAK-specific CD8(+) T lymphocytes per 10(6) PBMC. Only 50% of these donors reacted against EBNA3A-specific epitope FLR and a minority (25%) reacted against EBNA3A-specific epitope QAK.
Collapse
Affiliation(s)
- G Benninger-Döring
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Regensburg, D-93053, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Khanna R, Moss DJ, Burrows SR. Vaccine strategies against Epstein-Barr virus-associated diseases: lessons from studies on cytotoxic T-cell-mediated immune regulation. Immunol Rev 1999; 170:49-64. [PMID: 10566141 DOI: 10.1111/j.1600-065x.1999.tb01328.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of a vaccine against Epstein-Barr virus (EBV) is constrained by the latency phenotypes adopted by different EBV-associated diseases. Over the last few years an immense body of information on the pattern of viral gene expression in EBV-associated diseases and the role of cytotoxic T cells in the control of these diseases has accumulated. It would seem reasonable to suggest that emerging technologies are at a level where vaccine trials aimed at controlling infectious mononucleosis, post-transplant lymphoproliferative disease, nasopharyngeal carcinoma and Hodgkin's disease are justified. On the other hand, a more cautious approach may be required for the development of vaccines or immunotherapeutic strategies against Burkitt's lymphoma.
Collapse
Affiliation(s)
- R Khanna
- Tumour Immunology Laboratory, Epstein-Barr Virus Unit, Queensland Institute of Medical Research and Joint Oncology Program, University of Queensland, Bancroft Centre, Herston, Australia.
| | | | | |
Collapse
|
44
|
Osman M, Kubo T, Gill J, Neipel F, Becker M, Smith G, Weiss R, Gazzard B, Boshoff C, Gotch F. Identification of human herpesvirus 8-specific cytotoxic T-cell responses. J Virol 1999; 73:6136-40. [PMID: 10364372 PMCID: PMC112681 DOI: 10.1128/jvi.73.7.6136-6140.1999] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/1999] [Accepted: 03/26/1999] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) (or Kaposi's sarcoma-associated herpesvirus) is implicated in the etiopathogenesis of Kaposi's sarcoma (KS) and certain lymphoproliferations. The introduction of more effective therapies to treat human immunodeficiency virus infection has led to a decline in the incidence of KS and also in the resolution of KS in those already affected. This suggests that cellular immune responses including cytotoxic T lymphocytes (CTLs) could play a vital role in the control of HHV-8 infection and in KS pathogenesis. Here we elucidate HLA class I-restricted, HHV-8-specific cellular immune responses that could be important in the control of HHV-8 infection and subsequent tumor development. We show the presence of CTLs against HHV-8 latent (K12), lytic (K8.1), and highly variable (K1) proteins in infected individuals.
Collapse
Affiliation(s)
- M Osman
- Departments of Oncology and Molecular Pathology, Royal Free and University College Medical School, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|