1
|
Munis AM, Bentley EM, Takeuchi Y. A tool with many applications: vesicular stomatitis virus in research and medicine. Expert Opin Biol Ther 2020; 20:1187-1201. [PMID: 32602788 DOI: 10.1080/14712598.2020.1787981] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Vesicular stomatitis virus (VSV) has long been a useful research tool in virology and recently become an essential part of medicinal products. Vesiculovirus research is growing quickly following its adaptation to clinical gene and cell therapy and oncolytic virotherapy. AREAS COVERED This article reviews the versatility of VSV as a research tool and biological reagent, its use as a viral and vaccine vector delivering therapeutic and immunogenic transgenes and an oncolytic virus aiding cancer treatment. Challenges such as the immune response against such advanced therapeutic medicinal products and manufacturing constraints are also discussed. EXPERT OPINION The field of in vivo gene and cell therapy is advancing rapidly with VSV used in many ways. Comparison of VSV's use as a versatile therapeutic reagent unveils further prospects and problems for each application. Overcoming immunological challenges to aid repeated administration of viral vectors and minimizing harmful host-vector interactions remains one of the major challenges. In the future, exploitation of reverse genetic tools may assist the creation of recombinant viral variants that have improved onco-selectivity and more efficient vaccine vector activity. This will add to the preferential features of VSV as an excellent advanced therapy medicinal product (ATMP) platform.
Collapse
Affiliation(s)
- Altar M Munis
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , Oxford, UK.,Division of Advanced Therapies, National Institute for Biological Standards and Control , South Mimms, UK
| | - Emma M Bentley
- Division of Virology, National Institute for Biological Standards and Control , South Mimms, UK
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control , South Mimms, UK.,Division of Infection and Immunity, University College London , London, UK
| |
Collapse
|
2
|
Tijani M, Munis AM, Perry C, Sanber K, Ferraresso M, Mukhopadhyay T, Themis M, Nisoli I, Mattiuzzo G, Collins MK, Takeuchi Y. Lentivector Producer Cell Lines with Stably Expressed Vesiculovirus Envelopes. Mol Ther Methods Clin Dev 2018; 10:303-312. [PMID: 30182034 PMCID: PMC6118154 DOI: 10.1016/j.omtm.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/30/2018] [Indexed: 01/19/2023]
Abstract
Retroviral and lentiviral vectors often use the envelope G protein from the vesicular stomatitis virus Indiana strain (VSVind.G). However, lentivector producer cell lines that stably express VSVind.G have not been reported, presumably because of its cytotoxicity, preventing simple scale-up of vector production. Interestingly, we showed that VSVind.G and other vesiculovirus G from the VSV New Jersey strain (VSVnj), Cocal virus (COCV), and Piry virus (PIRYV) could be constitutively expressed and supported lentivector production for up to 10 weeks. All G-enveloped particles were robust, allowing concentration and freeze-thawing. COCV.G and PIRYV.G were resistant to complement inactivation, and, using chimeras between VSVind.G and COCV.G, the determinant for complement inactivation of VSVind.G was mapped to amino acid residues 136-370. Clonal packaging cell lines using COCV.G could be generated; however, during attempts to establish LV producer cells, vector superinfection was observed following the introduction of a lentivector genome. This could be prevented by culturing the cells with the antiviral drug nevirapine. As an alternative countermeasure, we demonstrated that functional lentivectors could be reconstituted by admixing supernatant from stable cells producing unenveloped virus with supernatant containing envelopes harvested from cells stably expressing VSVind.G, COCV.G, or PIRYV.G.
Collapse
Affiliation(s)
- Maha Tijani
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Altar M. Munis
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Christopher Perry
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Department of Biochemical Engineering, University College London, London WC1H 0AH, UK
| | - Khaled Sanber
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Marta Ferraresso
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tarit Mukhopadhyay
- Department of Biochemical Engineering, University College London, London WC1H 0AH, UK
| | - Michael Themis
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Ilaria Nisoli
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Mary K. Collins
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
3
|
Blockade of type I interferon (IFN) production by retroviral replicating vectors and reduced tumor cell responses to IFN likely contribute to tumor selectivity. J Virol 2014; 88:10066-77. [PMID: 24965455 DOI: 10.1128/jvi.02300-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED We developed a Moloney mouse leukemia virus (MLV)-based retroviral replicating vector (RRV), Toca 511, which has displayed tumor specificity in resected brain tumor material and blood in clinical trials. Here, we investigated the interaction between Toca 511 and human host cells, and we show that RRVs do not induce type I interferon (IFN) responses in cultured human tumor cells or cultured human primary cells. However, exogenous type I IFN inhibited RRV replication in tumor cells and induced IFN-regulated genes, albeit at a lower level than in primary cells. Unexpectedly, RRVs did not induce IFN-α production upon incubation in vitro with human plasmacytoid dendritic cells (pDCs), whereas lentivirus vector and heat-treated RRVs did. Coincubation of RRVs with heat-treated RRVs or with lentivirus vector suppressed IFN-α production in pDCs, suggesting that native RRV has a dominant inhibitory effect on type I IFN induction. This effect is sensitive to trypsin treatment. In addition, heat treatment inactivated that activity but exposed an immune-stimulatory activity. The immune-stimulating component is sensitive to deglycosidases, trypsin, and phospholipase C treatment. Experiments with retroviral nonreplicating vectors and virus-like particles demonstrated that the immunosuppressive activity is not associated with the amphotropic envelope or the glyco-Gag protein. In summary, our data provide evidence that RRVs do not directly trigger type I IFN responses in IFN-responsive tumor cells. Moreover, RRVs appear to carry a heat-labile component that actively suppresses activation of cellular innate immune responses in pDCs. Inhibition of IFN induction by RRVs and the reduced response to IFN should facilitate tumor-specific infection in vivo. IMPORTANCE RRVs have a convincing preference for replicating in tumor cells in animal models, and we observed similar preferences in the initial treatment of human glioblastoma patients. This study investigates the basis for the interaction between RRV and human host cells (tumor versus nontumor) in vitro. We found that RRVs do not trigger an IFN-α/β response in tumor cells, but the cells are capable of responding to type I IFNs and of producing them when stimulated with known agonists. Surprisingly, the data show that RRVs can actively inhibit induction of cellular innate immunity and that this inhibitory activity is heat labile and trypsin sensitive and not attributable to the envelope protein. These data partially explain the observed in vivo tumor specificity.
Collapse
|
4
|
Ho YP, Schnabel V, Swiersy A, Stirnnagel K, Lindemann D. A small-molecule-controlled system for efficient pseudotyping of prototype foamy virus vectors. Mol Ther 2012; 20:1167-76. [PMID: 22472951 DOI: 10.1038/mt.2012.61] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Foamy virus (FV) vector systems have recently demonstrated their power as efficient gene transfer tools for different target tissues. Unfortunately, FVs cannot be naturally pseudotyped by heterologous viral glycoproteins due to an unusual particle morphogenesis involving a FV Env-dependent particle release process. Therefore, current FV vector systems are constrained to the broad host cell range provided by the cognate viral glycoprotein. We evaluated different approaches for pseudotyping of FV vectors, in which the specific FV Gag-Env interaction, essential for particle egress, is substituted by a small-molecule controlled heterodimerization (HD) system. In one system developed, one HD-domain (HDD) is fused to a membrane-targeting domain (MTD), such as the human immunodeficiency virus (HIV) Gag matrix (MA) subunit, with a second fused to the FV capsid protein. Coexpression of both components with different heterologous viral glycoproteins allowed an efficient, dimerizer-dependent pseudotyping of FV capsids. With this system FV vesicular stomatitis virus glycoprotein (VSV-G) pseudotype titers greater than 1 × 10(6) IU/ml were obtained, at levels comparable to authentic FV vector particles. As a proof-of-principle we demonstrate that Pac2 cells, naturally resistant to FV vectors, become permissive to FV VSV-G pseudotypes. Similar to other retroviral vectors, this FV pseudotyping system now enables adaptation of cell-specific targeting approaches for FVs.
Collapse
Affiliation(s)
- Yu-Ping Ho
- Institut für Virologie, Medizinische Fakultät "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | | | | | | | | |
Collapse
|
5
|
Preparation of vesicular stomatitis virus-G (VSV-G) conjugate and its use in gene transfer. Cold Spring Harb Protoc 2012; 2012:453-6. [PMID: 22474657 DOI: 10.1101/pdb.prot068528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The fusiogenic envelope G glycoprotein of the vesicular stomatitis virus (VSV-G) that has been used to pseudotype retrovirus and lentivirus vectors can be used alone as an efficient vehicle for gene transfer. VSV-G protein is secreted into the culture medium as sendimentable vesicles from cells transfected with a VSV-G expression plasmid in the absence of other viral components. The VSV-G vesicles in the conditioned medium can be partially purified by pelleting through sucrose cushion ultracentrifugation. Protein-DNA complexes are formed by mixing the VSV-G vesicles with naked plasmid DNA. Such complexes show markedly enhanced transfection efficiency when added to the culture medium of recipient cells. The cell tropism of VSV-G-DNA complex-mediated gene transfer resembles that of VSV-G-pseudotyped retrovirus and lentivirus vectors, and the complex is therefore particularly useful for transfection of cells that are refractory to other methods. Still, some cells are refractory to VSV-G-mediated transfection. It should also be noted that overdose of VSV-G can be quite toxic to the recipient cells. The primitive complexes formed by mixing a viral fusiogenic envelope protein with naked DNA may represent a step toward fusing useful features of viral and nonviral vectors for safer and more efficient gene transfer. This protocol describes simple methods for preparation of VSV-G and for gene transfer with DNA-VSV-G complexes.
Collapse
|
6
|
Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 2009; 30:588-98. [PMID: 19362021 DOI: 10.1016/j.immuni.2009.02.009] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 01/28/2009] [Accepted: 02/11/2009] [Indexed: 11/21/2022]
Abstract
Intrinsic innate immune mechanisms are the first line of defense against pathogens and exist to control infection autonomously in infected cells. Here, we showed that autophagy, an intrinsic mechanism that can degrade cytoplasmic components, played a direct antiviral role against the mammalian viral pathogen vesicular stomatitis virus (VSV) in the model organism Drosophila. We found that the surface glycoprotein, VSV-G, was likely the pathogen-associated molecular pattern (PAMP) that initiated this cell-autonomous response. Once activated, autophagy decreased viral replication, and repression of autophagy led to increased viral replication and pathogenesis in cells and animals. Lastly, we showed that the antiviral response was controlled by the phosphatidylinositol 3-kinase (PI3K)-Akt-signaling pathway, which normally regulates autophagy in response to nutrient availability. Altogether, these data uncover an intrinsic antiviral program that links viral recognition to the evolutionarily conserved nutrient-signaling and autophagy pathways.
Collapse
|
7
|
Vu HN, Ramsey JD, Pack DW. Engineering of a Stable Retroviral Gene Delivery Vector by Directed Evolution. Mol Ther 2008; 16:308-14. [DOI: 10.1038/sj.mt.6300350] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
8
|
Characterization of the gene delivery properties of baculoviral-based virosomal vectors. J Virol Methods 2008; 148:277-82. [PMID: 18207578 DOI: 10.1016/j.jviromet.2007.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/14/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
The current study reports the production of baculoviral-virosomal vectors consisting of lipoplexes and of the viral glycoprotein (GP64) of baculovirus Autographa californica multiple nucleopolyhdrovirus (AcMNPV). This study demonstrates that such complexes have an increased transfection capability in a number of cells, including undifferentiated H9 human embryonic stem H9hES cells compared to lipoplexes alone. The GP64-mediated enhancement of gene transfer of lipoplexes is inhibited by the addition of anti-GP64 neutralizing antibody and by a modified GP64 protein, but is however less potent than vesicular stomatitis virus glycoprotein (VSV-G)-mediated enhancement of gene transfer of lipoplexes. This difference may be explained in part by the dissimilarity in the fusogenic properties of their respective viral glycoprotein.
Collapse
|
9
|
Yang SH, Agca Y, Cheng PH, Yang JJ, Agca C, Chan AWS. Enhanced transgenesis by intracytoplasmic injection of envelope-free lentivirus. Genesis 2007; 45:177-83. [PMID: 17417786 PMCID: PMC4381737 DOI: 10.1002/dvg.20289] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We demonstrate enhanced transgenesis in mice by intracytoplasmic injection of envelope-free lentivirus. Envelope-free lentivirus carrying the green fluorescent protein (GFP) gene under the control of the ubiquitin promoter (LVU-GFP) was microinjected into the cytoplasm of mouse zygotes prior to embryo transfer. Ninety-seven percent (31/32) of the adult mice were confirmed transgenic by PCR and Southern blot analysis; all founder mice express GFP when tail snips were examined by fluorescent microscopy prior to genomic DNA extraction. Transgene insertion numbers ranging from 1 to 32 were revealed by Southern blot analysis. Germline transmission was confirmed by the presence of transgene in F1 offspring. As expected, a lower transgenic rate (2.2%; 1/46) resulted when envelope-free LVU-GFP was microinjected into the perivitelline space (PVS) because cell recognition followed by membrane fusion between the viral envelope and the target cell is prerequisite for successful infection by envelope viruses. Here we demonstrate the competence of envelope-free lentivirus in establishing stable gene integration by germline transgenesis in mice at high efficiency, by intracytoplasmic viral injection (INVI) of envelope-free lentivirus into mouse zygotes.
Collapse
Affiliation(s)
- Shang-Hsun Yang
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
- Genetic and Molecular Biology Program, Emory University, Atlanta, Georgia
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia
| | - Yuksel Agca
- Department of Veterinary Pathobiology, School of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri
| | - Pei-Hsun Cheng
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia
| | - Jin-Jing Yang
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia
| | - Cansu Agca
- Department of Veterinary Pathobiology, School of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri
| | - Anthony Wing Sang Chan
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
- Genetic and Molecular Biology Program, Emory University, Atlanta, Georgia
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia
- Correspondence to: Anthony W.S. Chan, Yerkes National Primate, Research Center, Rm.2212 Neuroscience Research Bldg., 954 Gatewood, Rd. N.E., Atlanta, Georgia 30329.,
| |
Collapse
|
10
|
Tolmachov O. A heterologous system for assembly of retroviral gene vectors: intracellular budding in yeast? Med Hypotheses 2006; 67:807-9. [PMID: 16759811 DOI: 10.1016/j.mehy.2006.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 04/10/2006] [Indexed: 11/16/2022]
Abstract
Mammalian retroviral gene vectors are of particular importance in gene therapy because of their efficient chromosomal integration and resulting stable maintenance of transgenes. These vectors are currently produced in mammalian cells, with low yield and at substantial expense. Therefore, a more efficient heterologous production system for retroviral vectors would be desirable. With their impressive track record in biotechnology, various yeast species appear like ideal organisms to generate retroviral vectors. Typically, retroviral vector particles emerge from mammalian cells after budding at the plasma membrane. However, in yeast, viral budding at the plasma membrane is blocked by the cell wall. At the same time, mass production of enveloped viral vectors in yeast protoplasts is technically challenging. Recent reports indicated the generation of infectious virions via intracellular budding for some combinations of retroviruses and mammalian cells. Relying on these data I hypothesise that a successful assembly of the retroviral transducing particles can be accomplished intracellularly inside yeast cells with a normal cell wall. Firstly, it is possible that some of the intracellular yeast compartments have all the necessary host factors that are required for successful RNA packaging, budding and maturation of infectious retroviral vector particles. Secondly, it might be possible to improve intracellular viral vector production by artificially targeting viral cores to bud at specific intracellular vesicular structures using appropriate targeting or retention signals. A suitable envelope protein, conferring infectivity and specific cellular tropism to the vector particles, can be expressed in yeast or, alternatively, 'bald' viral particles without envelope protein can be produced in yeast and later complexed with a desired envelope protein in vitro. Retroviral budding on yeast intracellular membranes can rely on the same host factors that are used by yeast retrotransposons driving intracellular formation of non-infectious virus-like particles. It is likely that optimal vector packaging system can be found as a result of the dedicated screening of the various retroviral vectors against an array of yeast species. The central implication of the hypothesis is that budding of retroviral vector particles inside yeast cells, with no need for obtaining and maintaining yeast spheroplasts or protoplasts, can be an efficient and economical method of mass production of these valuable gene therapy vectors.
Collapse
Affiliation(s)
- Oleg Tolmachov
- Section of Molecular and Cellular Medicine, Division of Biomedical Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
11
|
Abe A, Emi N, Kanie T, Imagama S, Kuno Y, Takahashi M, Saito H, Naoe T. Expression cloning of oligomerization-activated genes with cell-proliferating potency by pseudotype retrovirus vector. Biochem Biophys Res Commun 2004; 320:920-6. [PMID: 15240136 DOI: 10.1016/j.bbrc.2004.06.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Indexed: 11/16/2022]
Abstract
We developed a method of clone proliferation promoting fusion genes whose proteins were activated by protein oligomerization through the helix-loop-helix region (PNT domain) of TEL. We inserted a cDNA library downstream of the PNT domain with a retrovirus vector. The resulting retrovirus infected cytokine-dependent 32D cells and cells with cytokine-independent growth were analyzed for the inserted cDNA. We cloned 25 independent fusion genes including seven kinds of partner genes. Six of the seven were a fusion of TEL with protein tyrosine kinase, LYN, HCK, FGR, SYK, FLT3, and TYK2. A serine/threonine kinase, ARAF1, was also found to fuse with TEL. These kinase fusion proteins included kinase domains with proper reading frames. These fusions may be a useful model for clarifying the downstream signal transduction of constitutive active kinase and this expression cloning method may provide a new tool with which to study cell proliferation signalling.
Collapse
Affiliation(s)
- Akihiro Abe
- Department of Hematology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kanie T, Abe A, Matsuda T, Kuno Y, Towatari M, Yamamoto T, Saito H, Emi N, Naoe T. TEL-Syk fusion constitutively activates PI3-K/Akt, MAPK and JAK2-independent STAT5 signal pathways. Leukemia 2004; 18:548-55. [PMID: 14749700 DOI: 10.1038/sj.leu.2403266] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 12/01/2003] [Indexed: 11/09/2022]
Abstract
We previously reported the fusion of the TEL gene to the Syk gene in myelodysplastic syndrome with t(9;12)(q22;p12). TEL-Syk fusion transformed interleukin-3 (IL-3)-dependent murine hematopoietic cell line BaF3 to growth factor independence. Here, we investigate the intracellular signal transduction of the stable transfectants. TEL-Syk fusion protein was associated with the p85 subunit of phosphatidyl inositol 3 kinase (PI3-K) followed by the activation of Akt in the absence of IL-3. Vav, phospholipase C-gamma2 and mitogen-activated protein kinase (MAPK) were also constitutively activated. TEL-Syk also activated the signal transducer and activator of transcription 5 (STAT5) in the absence of Janus kinase 2 activation. None of these kinases were phosphorylated in the BaF3 cells transfected with TELDeltaPNT-Syk in which the oligomerization domain of TEL was deleted. Inhibitor analysis showed that the MAPK pathway was important in TEL-Syk-mediated cell proliferation. The immunofluorescence technique revealed that the TEL-Syk fusion protein was located in the cytoplasm. These data suggest that TEL-Syk fusion protein in the cytoplasm leads to the constitutive activation of PI3-K/Akt, MAPK and STAT5 signal pathways, which are closely involved in IL-3-independent cell proliferation of BaF3 cells.
Collapse
Affiliation(s)
- T Kanie
- Department of Hematology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kahl CA, Marsh J, Fyffe J, Sanders DA, Cornetta K. Human immunodeficiency virus type 1-derived lentivirus vectors pseudotyped with envelope glycoproteins derived from Ross River virus and Semliki Forest virus. J Virol 2004; 78:1421-30. [PMID: 14722297 PMCID: PMC321387 DOI: 10.1128/jvi.78.3.1421-1430.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ross River virus (RRV) and Semliki Forest virus (SFV) are two alphaviruses that have a high degree of amino acid homology, as well as a very broad host range. We show here that envelope glycoproteins derived from both viruses can pseudotype human immunodeficiency virus type 1 (HIV-1)-derived lentivirus vectors. Both RRV and SFV glycoproteins considerably expand the host range of the lentivirus vector, and vectors can be efficiently concentrated by ultracentrifugation. A systematic analysis comparing the alphaviral glycoproteins to the vesicular stomatitis virus glycoprotein (VSV-G) revealed that lentivirus vectors incorporate RRV glycoproteins with an efficiency comparable to that of VSV-G. Both pseudotypes have comparable physical titers, but infectious titers with the RRV pseudotype are lower than with VSV-G. Incorporation of SFV glycoproteins into lentivirus vector is less efficient, leading to decreased physical and infectious titers. The transduction rates with VSV-G-, RRV-, and SFV-pseudotyped lentivirus vectors into adherent cell lines can be significantly increased by using a combination of Polybrene and plates coated with CH-296 recombinant fibronectin fragments. Together, our data suggest that RRV and SFV glycoproteins might be suitable as alternatives to VSV-G for pseudotyping lentivirus vectors.
Collapse
Affiliation(s)
- Christoph A Kahl
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
14
|
Guibinga GH, Hall FL, Gordon EM, Ruoslahti E, Friedmann T. Ligand-Modified Vesicular Stomatitis Virus Glycoprotein Displays a Temperature-Sensitive Intracellular Trafficking and Virus Assembly Phenotype. Mol Ther 2004; 9:76-84. [PMID: 14741780 DOI: 10.1016/j.ymthe.2003.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The production of potentially targetable VSV-G-pseudotyped retrovirus vectors has been hampered by inadequate understanding of the structure-function relationships of the VSV-G protein. In these studies we demonstrate assembly and production of MLV-based and HIV-1-based vector particles using VSV-G proteins modified by the insertion of a peptide ligand into a site corresponding to amino acid position 24 of the native VSV-G molecule. The inserted ligand represents the decapeptide encoding the collagen-binding domain of von Willebrand factor. We have used deconvolution microscopy to demonstrate that the modified VSV-G molecules sequester in perinuclear structures and are unavailable for assembly of infectious virus particles at the cell surface under standard tissue culture conditions at 37 degrees C. In contrast, at a lower permissive temperature of 30 degrees C, the modified VSV-G protein traffics appropriately to the cell surface and participates in useful titers. Furthermore, VSV-G-pseudotyped MLV-based and HIV-1-based vectors displaying the collagen-binding domain demonstrate a statistically significant increased attachment to a collagen matrix as indicated by an ELISA-like cell binding assay and by a focus transduction assay.
Collapse
Affiliation(s)
- Ghiabe H Guibinga
- Department of Pediatrics, Center for Molecular Genetics, University of California at San Diego School of Medicine, La Jolla, CA 92093-0634, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Retroviral vectors capable of efficient in vivo gene delivery to specific target cell types or to specific locations of disease pathology would greatly facilitate many gene therapy applications. The surface glycoproteins of membrane-enveloped viruses stand among the choice candidates to control the target cell receptor recognition and host range of retroviral vectors onto which they are incorporated. This can be achieved in many ways, such as the exchange of glycoprotein by pseudotyping, their biochemical modifications, their conjugation with virus-cell bridging agents or their structural modifications. Understanding the fundamental properties of the viral glycoproteins and the molecular mechanism of virus entry into cells has been instrumental in the functional alteration of their tropism. Here we briefly review the current state of our understanding of the structure and function of viral envelope glycoproteins and we discuss the emerging targeting strategies based on retroviral and lentiviral vector systems.
Collapse
Affiliation(s)
- V Sandrin
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, Unité de Virologie Humaine, INSERM U412, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
16
|
Kwon YJ, Hung G, Anderson WF, Peng CA, Yu H. Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis. J Virol 2003; 77:5712-20. [PMID: 12719564 PMCID: PMC154030 DOI: 10.1128/jvi.77.10.5712-5720.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The colony formation assay is the most commonly used titration method for defining the concentration of replication-incompetent murine leukemia virus-derived retroviral vectors. However, titer varies with target cell type and number, transduction time, and concentration of polycation (e.g., Polybrene). Moreover, because most of the viruses cannot encounter target cells due to Brownian motion, their short half-lives, and the requirement for target cell division for activity, the actual infectious retrovirus concentration in the collected supernatant is higher than the viral titer. Here we correlate the physical viral particle concentration with the infectious virus concentration and colony formation titer with the help of a mathematical model. Ecotropic murine leukemia retrovirus supernatant, collected from the GP+E86/LNCX retroviral vector producer cell line, was concentrated by centrifugation and further purified by a sucrose density gradient. The physical concentration of purified viral vectors was determined by direct particle counting with an electron microscope. The concentrations of fresh and concentrated supernatant were determined by a quantitative reverse transcriptase activity assay. Titration of all supernatants by neomycin-resistant colony formation assay was also performed. There were 767 +/- 517 physical viral particles per infectious CFU in the crude viral supernatant. However, the infectious viral concentration determined by mathematical simulation was 143 viral particles per infectious unit, which is more consistent with the concentration determined by particle counting in purified viral solution. Our results suggest that the mathematical model can be used to extract a more accurate and reliable concentration of infectious retrovirus.
Collapse
Affiliation(s)
- Young Jik Kwon
- Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | |
Collapse
|
17
|
Bartosch B, Dubuisson J, Cosset FL. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J Exp Med 2003; 197:633-42. [PMID: 12615904 PMCID: PMC2193821 DOI: 10.1084/jem.20021756] [Citation(s) in RCA: 868] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The study of hepatitis C virus (HCV), a major cause of chronic liver disease, has been hampered by the lack of a cell culture system supporting its replication. Here, we have successfully generated infectious pseudo-particles that were assembled by displaying unmodified and functional HCV glycoproteins onto retroviral and lentiviral core particles. The presence of a green fluorescent protein marker gene packaged within these HCV pseudo-particles allowed reliable and fast determination of infectivity mediated by the HCV glycoproteins. Primary hepatocytes as well as hepato-carcinoma cells were found to be the major targets of infection in vitro. High infectivity of the pseudo-particles required both E1 and E2 HCV glycoproteins, and was neutralized by sera from HCV-infected patients and by some anti-E2 monoclonal antibodies. In addition, these pseudo-particles allowed investigation of the role of putative HCV receptors. Although our results tend to confirm their involvement, they provide evidence that neither LDLr nor CD81 is sufficient to mediate HCV cell entry. Altogether, these studies indicate that these pseudo-particles may mimic the early infection steps of parental HCV and will be suitable for the development of much needed new antiviral therapies.
Collapse
Affiliation(s)
- Birke Bartosch
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, Institut National de la Santé et de la Recherche Médicale U412, IFR 128, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
18
|
Abstract
BACKGROUND Retroviral particles that are inappropriately enveloped can transduce target cells if pre-associated with cationic liposomes. This study optimises and addresses the mechanism of liposome-enhanced gene delivery, and explores the potential for such agents to compensate for fusion deficiency associated with chimaeric envelope proteins. METHODS Particles bearing wild-type, chimaeric or no envelope proteins were complexed with DOTAP or DC-Chol/DOPE cationic liposomes and added to target cells for various times. Particle binding was determined by detection of cell-associated capsid protein and infectivity was measured histochemically. RESULTS Stable association of cationic liposomes with retrovirus particles significantly enhanced their binding rate to target cells in proportion to the increase of transduction kinetics for infectious virus. Binding of virus was equivalent with or without envelope protein and/or virus receptor, indicating that a non-specific interaction precedes receptor recognition. Non-infectious combinations were rescued by the intrinsic fusogenicity of the cationic liposomes, which enabled entry of the viral core, but left subsequent events unaltered. The optimised transduction rate with non-enveloped particles and DOTAP approached that of amphotropic-enveloped virus in some cases, although the effect was target-cell-dependent. DC-Chol/DOPE was less potent at direct fusion but was able to enhance 600-fold the receptor-dependent action of chimaeric envelopes that were deficient in fusion by virtue of the addition of targeting domains. CONCLUSIONS These data have implications for the development of retroviral vector targeting strategies from the perspectives of the specificity of target cell interaction and compensating for chimaeric envelope fusion deficiency.
Collapse
Affiliation(s)
- Colin D Porter
- Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
19
|
Lavillette D, Ruggieri A, Boson B, Maurice M, Cosset FL. Relationship between SU subdomains that regulate the receptor-mediated transition from the native (fusion-inhibited) to the fusion-active conformation of the murine leukemia virus glycoprotein. J Virol 2002; 76:9673-85. [PMID: 12208946 PMCID: PMC136517 DOI: 10.1128/jvi.76.19.9673-9685.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All these different mutations call for a critical role of the PRR in mediating conformational changes of the Env glycoprotein during fusion activation. Our results suggest a model of MLV Env fusion activation in which unlocking of the fusion-inhibitory conformation is initiated by receptor binding of the viral RBD, which, upon disruption of the PRR, allows the NTR domain to promote further events in Env fusion activation. This involves a second type of interaction, in cis or in trans, between the receptor-activated RBD and a median segment of the freed C-terminal domain.
Collapse
Affiliation(s)
- Dimitri Lavillette
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, INSERM U412, IFR 74, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | |
Collapse
|
20
|
Ikeda Y, Collins MKL, Radcliffe PA, Mitrophanous KA, Takeuchi Y. Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Ther 2002; 9:932-8. [PMID: 12085241 DOI: 10.1038/sj.gt.3301708] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2002] [Accepted: 02/18/2002] [Indexed: 11/09/2022]
Abstract
The ability of human immunodeficiency virus (HIV)- and equine infectious anaemia virus (EIAV)-based vectors to transduce cell lines from a range of species was compared. Both vectors carried the vesicular stomatitis virus G (VSV-G) envelope protein and encoded an enhanced green fluorescent protein (eGFP) gene driven by a human cytomegalovirus (CMV) early promoter. Immunostaining for viral core proteins and VSV-G was used to demonstrate that the HIV and EIAV vector preparations contained similar numbers of virus particles. Various cell lines were transduced with these vectors and the transduction efficiency was estimated by measuring eGFP expression. Efficient transduction by both vectors was observed in human, hamster, pig, horse, cat and dog cell lines, although EIAV vector was about 10-fold less efficient in human, hamster and pig cells normalised to the total number of viral particles. This could be partly explained by the lower RNA genome levels per particle for EIAV as measured by real-time RT-PCR. Rodent cells appeared to be transduced inefficiently with both vectors, but when the CMV promoter was substituted with the EF1alpha promoter in the HIV vectors, the expression level increased leading to an increase in the measurable level of transduction.
Collapse
Affiliation(s)
- Y Ikeda
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, London, UK
| | | | | | | | | |
Collapse
|
21
|
Sung VMH, Lai MMC. Murine retroviral pseudotype virus containing hepatitis B virus large and small surface antigens confers specific tropism for primary human hepatocytes: a potential liver-specific targeting system. J Virol 2002; 76:912-7. [PMID: 11752180 PMCID: PMC136820 DOI: 10.1128/jvi.76.2.912-917.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have developed a system for producing murine leukemia virus (MLV) pseudotyped with human hepatitis B virus (HBV) large (L) and small (S) surface antigens (HBsAg) for targeting primary human hepatocytes. Using the MLV(HBV) pseudotype virus containing a beta-galactosidase reporter gene, we demonstrated that this pseudotype virus exhibits strict tropism for primary human hepatocytes, similar to the natural target cell specificity of HBV. It does not infect any of the established tissue culture cell lines, including human hepatoma cell lines (HepG2 and Huh-7), or rat primary hepatocytes. The infectivity of MLV(HBV) for human hepatocytes was inhibited by anti-HBs antibody. The L form of HBsAg was both necessary and sufficient for virus infectivity, but the presence of both L and S forms enhanced the surface expression of HBsAg and thus increased virus production. The middle form of HBsAg was not necessary. This pseudotype virus bypasses the requirement for the liver-specific transcription factors for HBV replication, enabling direct study of HBV tissue tropism conferred by the viral envelope proteins. This virus also offers a potential liver-specific targeting system for gene therapy.
Collapse
Affiliation(s)
- Vicky M H Sung
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
22
|
Zhang B, Xia HQ, Cleghorn G, Gobe G, West M, Wei MQ. A highly efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors. Gene Ther 2001; 8:1745-51. [PMID: 11892843 DOI: 10.1038/sj.gt.3301587] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lentiviral vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) are emerging as the vectors of choice for in vitro and in vivo gene therapy studies. However, the current method for harvesting lentivectors relies upon ultracentrifugation at 50,000 g for 2 h. At this ultra-high speed, rotors currently in use generally have small volume capacity. Therefore, preparations of large volumes of high-titre vectors are time-consuming and laborious to perform. In the present study, viral vector supernatant harvests from vector-producing cells (VPCs) were pre-treated with various amounts of poly-L-lysine (PLL) and concentrated by low speed centrifugation. Optimal conditions were established when 0.005% of PLL (w/v) was added to vector supernatant harvests, followed by incubation for 30 min and centrifugation at 10,000 g for 2 h at 4 degrees C. Direct comparison with ultracentrifugation demonstrated that the new method consistently produced larger volumes (6 ml) of high-titre viral vector at 1 x 10(8) transduction unit (TU)/ml (from about 3,000 ml of supernatant) in one round of concentration. Electron microscopic analysis showed that PLL/viral vector formed complexes, which probably facilitated easy precipitation at low-speed concentration (10,000 g), a speed which does not usually precipitate viral particles efficiently. Transfection of several cell lines in vitro and transduction in vivo in the liver with the lentivector/PLL complexes demonstrated efficient gene transfer without any significant signs of toxicity. These results suggest that the new method provides a convenient means for harvesting large volumes of high-titre lentivectors, facilitate gene therapy experiments in large animal or human gene therapy trials, in which large amounts of lentiviral vectors are a prerequisite.
Collapse
Affiliation(s)
- B Zhang
- Department of Medicine, Prince Charles Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Vogt B, Roscher S, Abel B, Hildinger M, Lamarre A, Baum C, von Laer D. Lack of superinfection interference in retroviral vector producer cells. Hum Gene Ther 2001; 12:359-65. [PMID: 11242528 DOI: 10.1089/10430340150503984] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vesicular stomatitis virus G protein (VSV-G)-pseudotyped retroviral vectors have become more feasible for clinical gene transfer protocols since stable tetracycline (tet)-regulated packaging cell lines have become available. Here, we analyzed superinfection interference in VSV-G-pseudotyped and classic amphotropic packaging cell lines. No superinfection interference was observed in VSV-G-pseudotyped packaging cell lines. Thus, integrated retroviral vector genomes accumulated during culture. Similar results were obtained with the amphotropic packaging cells, but to a lesser degree. In addition, VSV-G packaging cells were susceptible to infection with vector particles devoid of envelope proteins, which are produced by these cells in high titers when VSV-G expression is suppressed by tetracycline. For both packaging systems, superinfection could be blocked by azidothymidine (AZT). With regard to safety, this study suggests that in clinical protocols amphotropic producer clones should be tested for superinfection interference and VSV-G packaging cells should always be cultured in the presence of AZT.
Collapse
Affiliation(s)
- B Vogt
- Heinrich-Pette-Institute für Experimentelle Virologie und Immunologie, Universität Hamburg, 20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Kuno Y, Abe A, Emi N, Iida M, Yokozawa T, Towatari M, Tanimoto M, Saito H. Constitutive kinase activation of the TEL-Syk fusion gene in myelodysplastic syndrome with t(9;12)(q22;p12). Blood 2001; 97:1050-5. [PMID: 11159536 DOI: 10.1182/blood.v97.4.1050] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The TEL gene on 12p12-13 is a target for a number of translocations associated with various hematological malignancies. The fusion of the TEL gene to the Syk gene in a patient with myelodysplastic syndrome (MDS) with t(9;12)(q22;p12) is reported. Southern blot analysis of patient bone marrow cells with TEL and Syk gene probes detected rearranged fragments. Anchored polymerase chain reaction identified the Syk gene, a nonreceptor tyrosine kinase, on 9q22 fused downstream of TEL exon 5. The TEL gene was fused in-frame to Syk and produced a fusion protein that was constitutively phosphorylated in tyrosine with dimerization that was mediated by the helix-loop-helix domain of TEL. A TEL-Syk fusion product transformed the murine hematopoietic cell line BaF3 to interleukin-3 growth factor independence. TEL-Syk is a novel transforming protein and leads to the transformation of hematopoietic cells. These data implicate that the rearranged Syk gene is involved in the pathogenesis of hematopoietic malignancies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- COS Cells
- Cell Division/drug effects
- Cell Line/drug effects
- Cell Transformation, Neoplastic/genetics
- Chlorocebus aethiops
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 12/ultrastructure
- Chromosomes, Human, Pair 9/genetics
- Chromosomes, Human, Pair 9/ultrastructure
- Dimerization
- Enzyme Activation
- Enzyme Precursors/genetics
- Enzyme Precursors/physiology
- Exons/genetics
- Gene Expression Regulation, Neoplastic
- HL-60 Cells/enzymology
- Helix-Loop-Helix Motifs
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/enzymology
- Hematopoietic Stem Cells/pathology
- Humans
- Interleukin-3/pharmacology
- Intracellular Signaling Peptides and Proteins
- Mice
- Myelodysplastic Syndromes/enzymology
- Myelodysplastic Syndromes/genetics
- Oncogene Proteins, Fusion
- Phosphorylation
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Recombinant Fusion Proteins
- Signal Transduction
- Syk Kinase
- Transfection
- Translocation, Genetic
- src Homology Domains
Collapse
Affiliation(s)
- Y Kuno
- First Department of Internal Medicine, Nagoya University School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sharma S, Miyanohara A, Friedmann T. Separable mechanisms of attachment and cell uptake during retrovirus infection. J Virol 2000; 74:10790-5. [PMID: 11044124 PMCID: PMC110954 DOI: 10.1128/jvi.74.22.10790-10795.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the absence of viral envelope gene expression, cells expressing human immunodeficiency virus type 1 (HIV-1) gag and pol, accessory HIV functions, and a vector genome RNA produce and secrete large amount of noninfectious virus-like particles (VLPs) into the conditioned medium. After partial purification, such HIV-1 VLPs can be made infectious in cell-free conditions in vitro by complex formation with lipofection reagents or with the G protein of vesicular stomatitis virus (VSV-G). The resulting in vitro-modified HIV-1 particles are able to infect nondividing cells. Infectivity of envelope-free HIV VLPs can also be induced by prior modification of target cells through exposure to partially purified VSV-G vesicles. Similarly, infection can be carried out by attachment of envelope-free noninfectious VLPs to unmodified cells followed by subsequent treatment of cells with VSV-G. We interpret these findings to indicate that interaction between a viral envelope and a cell surface receptor is not necessary for the initial virus binding to the cells but is required for subsequent cell entry and infection.
Collapse
Affiliation(s)
- S Sharma
- Center for Molecular Genetics and Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California 92093-0634, USA
| | | | | |
Collapse
|
26
|
Anderson DB, Laquerre S, Ghosh K, Ghosh HP, Goins WF, Cohen JB, Glorioso JC. Pseudotyping of glycoprotein D-deficient herpes simplex virus type 1 with vesicular stomatitis virus glycoprotein G enables mutant virus attachment and entry. J Virol 2000; 74:2481-7. [PMID: 10666285 PMCID: PMC111736 DOI: 10.1128/jvi.74.5.2481-2487.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1999] [Accepted: 11/24/1999] [Indexed: 11/20/2022] Open
Abstract
The use of herpes simplex virus (HSV) vectors for in vivo gene therapy will require the targeting of vector infection to specific cell types in certain in vivo applications. Because HSV glycoprotein D (gD) imparts a broad host range for viral infection through recognition of ubiquitous host cell receptors, vector targeting will require the manipulation of gD to provide new cell recognition specificities in a manner designed to preserve gD's essential role in virus entry. In this study, we have determined whether an entry-incompetent HSV mutant with deletions of all Us glycoproteins, including gD, can be complemented by a foreign attachment/entry protein with a different receptor-binding specificity, the vesicular stomatitis virus glycoprotein G (VSV-G). The results showed that transiently expressed VSV-G was incorporated into gD-deficient HSV envelopes and that the resulting pseudotyped virus formed plaques on gD-expressing VD60 cells, albeit at a 50-fold-reduced level compared to that of wild-type gD. This reduction may be related to differences in the entry pathways used by VSV and HSV or to the observed lower rate of incorporation of VSV-G into virus envelopes than that of gD. The rate of VSV-G incorporation was greatly improved by using recombinant molecules in which the transmembrane domain of HSV glycoprotein B or D was substituted for that of VSV-G, but these recombinant molecules failed to promote virus entry. These results show that foreign glycoproteins can be incorporated into the HSV envelope during replication and that gD can be dispensed with on the condition that a suitable attachment/entry function is provided.
Collapse
Affiliation(s)
- D B Anderson
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Pakkanen TM, Laitinen M, Hippeläinen M, Hiltunen MO, Lehtolainen P, Leppänen P, Luoma JS, Alhava E, Ylä-Herttuala S. Improved gene transfer efficiency in liver with vesicular stomatitis virus G-protein pseudotyped retrovirus after partial liver resection and thymidine kinase-ganciclovir pre-treatment. Pharmacol Res 1999; 40:451-7. [PMID: 10527661 DOI: 10.1006/phrs.1999.0537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver-directed gene therapy is a promising alternative for the treatment of various liver diseases. Pseudotyped (VSV-G) retroviruses can be produced in high titres which is essential to overcome the problem of low gene transfer efficiency detected previously with first generation Moloney murine (MMLV) retroviruses and plasmid vectors. We compared the lacZ gene transfer efficiency of MMLV retroviruses and VSV-G retroviruses in Watanabe heritable hyperlipidaemic rabbit liver using an intraportal administration route. Hepatocyte proliferation was stimulated by a partial (10%) liver resection and a thymidine kinase-ganciclovir treatment. We also studied the safety of the gene transfer by clinical chemistry, tissue pathology and PCR analysis of lung, kidney, spleen and gonads. Gene transfer efficiency with the VSV-G retrovirus was significantly higher than with the traditional MMLV-based retrovirus (9.5+/-5.26 vs 0.21+/-0.10 positive hepatocytes mm(-2), P<0.05). After a 12-month follow-up period no lacZ expression was detected in liver samples. No transgene was detected in plasma or in lung, kidney, spleen and gonads by PCR analysis 7 days after gene transfer. Transient increases were found in plasma c-reactive protein, aspartyl aminotransferase and alanine aminotransferase levels shortly after the operation with both types of retroviruses. VSV-G retrovirus was well tolerated and may become an efficient new tool in liver gene therapy. The absence of transgene in systemic circulation or in extrahepatic tissues including gonads is an important safety feature required for in vivo gene therapy.
Collapse
Affiliation(s)
- T M Pakkanen
- A.I. Virtanen Institute, Department of Surgery, University of Kuopio, Kuopio, FIN 70211, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|