1
|
Functional Relevance of the Interaction between Human Cyclins and the Cytomegalovirus-Encoded CDK-Like Protein Kinase pUL97. Viruses 2021; 13:v13071248. [PMID: 34198986 PMCID: PMC8310212 DOI: 10.3390/v13071248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The replication of human cytomegalovirus (HCMV) is characterized by a complex network of virus–host interaction. This involves the regulatory viral protein kinase pUL97, which represents a viral cyclin-dependent kinase ortholog (vCDK) combining typical structural and functional features of host CDKs. Notably, pUL97 interacts with the three human cyclin types T1, H and B1, whereby the binding region of cyclin T1 and the region conferring oligomerization of pUL97 were both assigned to amino acids 231–280. Here, we addressed the question of whether recombinant HCMVs harboring deletions in this region were impaired in cyclin interaction, kinase functionality or viral replication. To this end, recombinant HCMVs were generated by traceless BACmid mutagenesis and were phenotypically characterized using a methodological platform based on qPCR, coimmunoprecipitation, in vitro kinase assay (IVKA), Phos-tag Western blot and confocal imaging analysis. Combined data illustrate the following: (i) infection kinetics of all three recombinant HCMVs, i.e., ORF-UL97 ∆231–255, ∆256–280 and ∆231–280, showed impaired replication efficiency compared to the wild type, amongst which the largest deletion exhibited the most pronounced defect; (ii) specifically, this mutant ∆231–280 showed a loss of interaction with cyclin T1, as demonstrated by CoIP and confocal imaging; (iii) IVKA and Phos-tag analyses revealed strongly affected kinase activity for ∆231–280, with strong impairment of both autophosphorylation and substrate phosphorylation, but less pronounced impairments for ∆231–255 and ∆256–280; and (iv) a bioinformatic assessment of the pUL97–cyclin T1 complex led to the refinement of our current binding model. Thus, the results provide initial evidence for the functional importance of the pUL97–cyclin interaction concerning kinase activity and viral replication fitness.
Collapse
|
2
|
Caruso A, Ceramella J, Iacopetta D, Saturnino C, Mauro MV, Bruno R, Aquaro S, Sinicropi MS. Carbazole Derivatives as Antiviral Agents: An Overview. Molecules 2019; 24:E1912. [PMID: 31109016 PMCID: PMC6572111 DOI: 10.3390/molecules24101912] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Keywords: carbazole; tetrahydrocarbazole; antiviral agents.
Collapse
Affiliation(s)
- Anna Caruso
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Jessica Ceramella
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Domenico Iacopetta
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Potenza 85100, Italy.
| | | | - Rosalinda Bruno
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Stefano Aquaro
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| |
Collapse
|
3
|
Oberstein A, Perlman DH, Shenk T, Terry LJ. Human cytomegalovirus pUL97 kinase induces global changes in the infected cell phosphoproteome. Proteomics 2015; 15:2006-22. [PMID: 25867546 DOI: 10.1002/pmic.201400607] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 12/12/2022]
Abstract
Replication of human cytomegalovirus (HCMV) is regulated in part by cellular kinases and the single viral Ser/Thr kinase, pUL97. The virus-coded kinase augments the replication of HCMV by enabling nuclear egress and altering cell cycle progression. These roles are accomplished through direct phosphorylation of nuclear lamins and the retinoblastoma protein, respectively. In an effort to identify additional pUL97 substrates, we analyzed the phosphoproteome of SILAC-labeled human fibroblasts during infection with either wild-type HCMV or a pUL97 kinase-dead mutant virus. Phosphopeptides were enriched over a titanium dioxide matrix and analyzed by high-resolution MS. We identified 157 unambiguous phosphosites from 106 cellular and 17 viral proteins whose phosphorylation required UL97. Analysis of peptides containing these sites allowed the identification of several candidate pUL97 phosphorylation motifs, including a completely novel phosphorylation motif, LxSP. Substrates harboring the LxSP motif were enriched in nucleocytoplasmic transport functions, including a number of components of the nuclear pore complex. These results extend the known functions of pUL97 and suggest that modulation of nuclear pore function may be important during HCMV replication.
Collapse
Affiliation(s)
- Adam Oberstein
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David H Perlman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Laura J Terry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Milbradt J, Kraut A, Hutterer C, Sonntag E, Schmeiser C, Ferro M, Wagner S, Lenac T, Claus C, Pinkert S, Hamilton ST, Rawlinson WD, Sticht H, Couté Y, Marschall M. Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus. Mol Cell Proteomics 2014; 13:2132-46. [PMID: 24969177 DOI: 10.1074/mcp.m113.035782] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpesviral capsids are assembled in the host cell nucleus before being translocated into the cytoplasm for further maturation. The crossing of the nuclear envelope represents a major event that requires the formation of the nuclear egress complex (NEC). Previous studies demonstrated that human cytomegalovirus (HCMV) proteins pUL50 and pUL53, as well as their homologs in all members of Herpesviridae, interact with each other at the nuclear envelope and form the heterodimeric core of the NEC. In order to characterize further the viral and cellular protein content of the multimeric NEC, the native complex was isolated from HCMV-infected human primary fibroblasts at various time points and analyzed using quantitative proteomics. Previously postulated components of the HCMV-specific NEC, as well as novel potential NEC-associated proteins such as emerin, were identified. In this regard, interaction and colocalization between emerin and pUL50 were confirmed by coimmunoprecipitation and confocal microscopy analyses, respectively. A functional validation of viral and cellular NEC constituents was achieved through siRNA-mediated knockdown experiments. The important role of emerin in NEC functionality was demonstrated by a reduction of viral replication when emerin expression was down-regulated. Moreover, under such conditions, reduced production of viral proteins and deregulation of viral late cytoplasmic maturation were observed. Combined, these data prove the functional importance of emerin as an NEC component, associated with pUL50, pUL53, pUL97, p32/gC1qR, and further regulatory proteins. Summarized, our findings provide the first proteomics-based characterization and functional validation of the HCMV-specific multimeric NEC.
Collapse
Affiliation(s)
- Jens Milbradt
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Alexandra Kraut
- Université Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France; ¶CEA, iRTSV-BGE, F-38000 Grenoble, France; INSERM, BGE, F-38000 Grenoble, France
| | - Corina Hutterer
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Eric Sonntag
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Cathrin Schmeiser
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Myriam Ferro
- Université Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France; ¶CEA, iRTSV-BGE, F-38000 Grenoble, France; INSERM, BGE, F-38000 Grenoble, France
| | - Sabrina Wagner
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Tihana Lenac
- **Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Claudia Claus
- ‡‡Institute for Virology, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Pinkert
- §§Institute of Biotechnology, University of Technology Berlin, 13353 Berlin, Germany
| | - Stuart T Hamilton
- ¶¶Virology Division, SEALS Microbiology, Prince of Wales Hospital, University of New South Wales, 2052 Sydney, Australia
| | - William D Rawlinson
- ¶¶Virology Division, SEALS Microbiology, Prince of Wales Hospital, University of New South Wales, 2052 Sydney, Australia
| | - Heinrich Sticht
- ‖‖Division of Bioinformatics, Institute of Biochemistry, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Yohann Couté
- Université Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France; ¶CEA, iRTSV-BGE, F-38000 Grenoble, France; INSERM, BGE, F-38000 Grenoble, France;
| | - Manfred Marschall
- From the Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| |
Collapse
|
5
|
Xiaofei E, Kowalik TF. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses 2014; 6:2155-85. [PMID: 24859341 PMCID: PMC4036536 DOI: 10.3390/v6052155] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
Viruses use different strategies to overcome the host defense system. Recent studies have shown that viruses can induce DNA damage response (DDR). Many of these viruses use DDR signaling to benefit their replication, while other viruses block or inactivate DDR signaling. This review focuses on the effects of DDR and DNA repair on human cytomegalovirus (HCMV) replication. Here, we review the DDR induced by HCMV infection and its similarities and differences to DDR induced by other viruses. As DDR signaling pathways are critical for the replication of many viruses, blocking these pathways may represent novel therapeutic opportunities for the treatment of certain infectious diseases. Lastly, future perspectives in the field are discussed.
Collapse
Affiliation(s)
- E Xiaofei
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Human cytomegalovirus UL97 kinase is involved in the mechanism of action of methylenecyclopropane analogs with 6-ether and -thioether substitutions. Antimicrob Agents Chemother 2013; 58:274-8. [PMID: 24145545 DOI: 10.1128/aac.01726-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylenecyclopropane nucleoside (MCPN) analogs are being investigated for treatment of human cytomegalovirus (HCMV) infection because of favorable preclinical data and limited ganciclovir cross-resistance. Monohydroxymethyl MCPNs bearing ether and thioether functionalities at the purine 6 position have antiviral activity against herpes simplex virus (HSV) and varicella-zoster virus (VZV) in addition to HCMV. The role of the HCMV UL97 kinase in the mechanism of action of these derivatives was examined. When tested against a kinase-inactive UL97 K355M virus, a moderate 5- to 7-fold increase in 50% effective concentration (EC50) was observed, in comparison to a 13- to 25-fold increase for either cyclopropavir or ganciclovir. Serial propagation of HCMV under two of these compounds selected for three novel UL97 mutations encoding amino acid substitutions D456N, C480R,and Y617del. When transferred to baseline laboratory HCMV strains, these mutations individually conferred resistance to all of the tested MCPNs, ganciclovir, and maribavir. However, the engineered strains also demonstrated severe growth defects and abnormal cytopathic effects similar to the kinase-inactive mutant. Expressed and purified UL97 kinase showed in vitro phosphorylation of the newly tested MCPNs. Thus, HCMV UL97 kinase is involved in the antiviral action of these MCPNs, but the in vitro selection of UL97-defective viruses suggests that their activity against more typical ganciclovir-resistant growth-competent UL97 mutants may be relatively preserved.
Collapse
|
7
|
Bommer M, Michel D. Prevention of cytomegalovirus disease in patients with impaired cell-mediated immunity – is there a need for maribavir? Expert Opin Orphan Drugs 2013. [DOI: 10.1517/21678707.2013.842166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Cytomegalovirus UL97 kinase catalytic domain mutations that confer multidrug resistance. Antimicrob Agents Chemother 2013; 57:3375-9. [PMID: 23650173 DOI: 10.1128/aac.00511-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus UL97 kinase mutations that commonly confer ganciclovir resistance cluster in different parts of the gene than those conferring resistance to maribavir, an experimental UL97 kinase inhibitor. The drug resistance, growth, and autophosphorylation phenotypes of several unusual UL97 mutations in the kinase catalytic domain were characterized. Mutations V466G and P521L, described in clinical specimens from ganciclovir-treated subjects, conferred a UL97 kinase knockout phenotype with no autophosphorylation, a severe growth defect, and high-level ganciclovir, cyclopropavir, and maribavir resistance, similar to mutations at the catalytic lysine residue K355. Mutations F342S and V356G, observed after propagation under cyclopropavir in vitro, showed much less growth attenuation and moderate- to high-level resistance to all three drugs while maintaining UL97 autophosphorylation competence and normal cytopathic effect in cell culture, a novel phenotype. F342S is located in the ATP-binding P-loop and is homologous to a c-Abl kinase mutation conferring resistance to imatinib. UL97 mutants with relatively preserved growth fitness and multidrug resistance are of greater concern in antiviral therapy than the severely growth-impaired UL97 knockout mutants. Current diagnostic genotyping assays are unlikely to detect F342S and V356G, and the frequency of their appearance in clinical specimens remains undefined.
Collapse
|
9
|
Zhang Y, Zhao Z, Sun J, Cao G, Zhao F, Hu J, Liu L, Ji Y. A new mutation in the human cytomegalovirus UL97 gene may confer ganciclovir resistance in Chinese kidney transplant recipients. Arch Virol 2012; 158:247-50. [DOI: 10.1007/s00705-012-1479-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022]
|
10
|
Shao PL, Lu MY, Liau YJ, Kao CL, Chang SY, Huang LM. Lack of resistance-associated mutations in UL54 and UL97 genes of circulating Cytomegalovirus strains isolated in a medical center in Taiwan. J Formos Med Assoc 2012; 111:456-60. [DOI: 10.1016/j.jfma.2011.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 06/07/2011] [Accepted: 08/22/2011] [Indexed: 11/25/2022] Open
|
11
|
Abstract
The study of human cytomegalovirus (HCMV) antiviral drug resistance has enhanced knowledge of the virological targets and the mechanisms of antiviral activity. The currently approved drugs, ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), target the viral DNA polymerase. GCV anabolism also requires phosphorylation by the virus-encoded UL97 kinase. GCV resistance mutations have been identified in both genes, while FOS and CDV mutations occur only in the DNA polymerase gene. Confirmation of resistance mutations requires phenotypic analysis; however, phenotypic assays are too time-consuming for diagnostic purposes. Genotypic assays based on sequencing provide more rapid results but are dependent on prior validation by phenotypic methods. Reports from many laboratories have produced an evolving list of confirmed resistance mutations, although differences in interpretation have led to some confusion. Recombinant phenotyping methods performed in a few research laboratories have resolved some of the conflicting results. Treatment options for drug-resistant HCMV infections are complex and have not been subjected to controlled clinical trials, although consensus guidelines have been proposed. This review summarizes the virological and clinical data pertaining to HCMV antiviral drug resistance.
Collapse
|
12
|
Shannon-Lowe CD, Emery VC. The effects of maribavir on the autophosphorylation of ganciclovir resistant mutants of the cytomegalovirus UL97 protein. HERPESVIRIDAE 2010; 1:4. [PMID: 21429239 PMCID: PMC3050433 DOI: 10.1186/2042-4280-1-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/07/2010] [Indexed: 11/21/2022]
Abstract
Background The UL97 protein kinase of human cytomegalovirus phosphorylates the antiviral drug ganciclovir and is the target of maribavir action. A detailed enzyme kinetic analysis of maribavir on the various enzymatic functions of wild type and ganciclovir resistant forms of UL97 is required. Methods Wild type and site directed mutant forms of the human cytomegalovirus UL97 gene product were expressed using recombinant baculoviruses and the purified products used to assess the effects of maribavir on the ganciclovir (GCV) kinase and protein kinase (PK) activities. Results Maribavir was a potent inhibitor of the autophosporylation of the wild type and all the major GCV resistant UL97 mutants analysed (M460I, H520Q, A594V and L595F) with a mean IC50 of 35 nM. The M460I mutation resulted in hypersensitivity to maribavir with an IC50 of 4.8 nM. A maribavir resistant mutant of UL97 (L397R) was functionally compromised as both a GCV kinase and a protein kinase (~ 10% of wild type levels). Enzyme kinetic experiments demonstrated that maribavir was a competitive inhibitor of ATP with a Ki of 10 nM. Discussion Maribavir is a potent competitive inhibitor of the UL97 protein kinase function and shows increased activity against the M460I GCV-resistant mutant which may impact on the management of GCV drug resistance in patients.
Collapse
Affiliation(s)
- Claire D Shannon-Lowe
- Department of Infection, Centre for Virology, UCL (Royal Free Campus Campus), Rowland Hill Street, Hampstead, London NW3 2QG, UK.
| | | |
Collapse
|
13
|
Abstract
Phosphorylation represents one the most abundant and important posttranslational modifications of proteins, including viral proteins. Virus-encoded serine/threonine protein kinases appear to be a feature that is unique to large DNA viruses. Although the importance of these kinases for virus replication in cell culture is variable, they invariably play important roles in virus virulence. The current review provides an overview of the different viral serine/threonine protein kinases of several large DNA viruses and discusses their function, importance, and potential as antiviral drug targets.
Collapse
|
14
|
Key motifs in EBV (Epstein-Barr virus)-encoded protein kinase for phosphorylation activity and nuclear localization. Biochem J 2010; 431:227-35. [PMID: 20704565 DOI: 10.1042/bj20100558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A sole EBV (Epstein-Barr virus)-encoded protein kinase (EBV-PK) (the BGLF4 gene product) plays important roles in viral infection. Although a number of targets of this protein have been identified, the kinase itself remains largely unstudied with regard to its enzymology and structure. In the present study, site-directed mutagenesis has been employed to generate mutations targeting residues involved in nuclear localization of the EBV-PK, core residues in subdomain III of the protein kinase domain conserved in most protein kinases or residues in subdomain VIa conserved only within the HPK (herpesvirus-encoded protein kinase) group. Deletion of amino acids 389-391 resulted in exclusive cytoplasmic localization of the protein, indicating the involvement of this region in nuclear translocation of the EBV-PK. Mutations at the amino acids Glu113 (core component), Phe175, Leu178, Phe184, Leu185 and Asn186 (conserved in HPKs) resulted in loss of EBV-PK autophosphorylation, protein substrate [EBV EA-D (early antigen diffused)] phosphorylation, and ability to facilitate ganciclovir phosphorylation. These results reiterate the unique features of this group of kinases and present an opportunity for designing more specific antiviral compounds.
Collapse
|
15
|
Prichard MN. Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 2009; 19:215-29. [PMID: 19434630 DOI: 10.1002/rmv.615] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine/threonine kinase expressed by human cytomegalovirus from gene UL97 phosphorylates the antiviral drug ganciclovir, but its biological function is the phosphorylation of its natural viral and cellular protein substrates which affect viral replication at many levels. The UL97 kinase null phenotype is therefore complex, as is the mechanism of action of maribavir, a highly specific inhibitor of its enzymatic activity. Studies that utilise the drug corroborate results from genetic approaches and together have elucidated many functions of the UL97 kinase that are critical for viral replication. The kinase phosphorylates eukaryotic elongation factor 1delta, the carboxyl terminal domain of the large subunit of RNA polymerase II, the retinoblastoma tumour suppressor and lamins A and C. Each of these is also phosphorylated and regulated by cdc2/cyclin-dependent kinase 1, suggesting that the viral kinase may perform a similar function. These and other activities of the UL97 kinase appear to stimulate the cell cycle to support viral DNA synthesis, enhance the expression of viral genes, promote virion morphogenesis and facilitate the egress of mature capsids from the nucleus. In the absence of UL97 kinase activity, viral DNA synthesis is inefficient and structural proteins are sequestered in nuclear aggresomes, reducing the efficiency of virion morphogenesis. Mature capsids that do form fail to egress the nucleus as the nuclear lamina are not dispersed by the kinase. The critical functions performed by the UL97 kinase illustrate its importance in viral replication and confirm that the kinase is a target for the development of antiviral therapies.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| |
Collapse
|
16
|
Schreiber A, Härter G, Schubert A, Bunjes D, Mertens T, Michel D. Antiviral treatment of cytomegalovirus infection and resistant strains. Expert Opin Pharmacother 2009; 10:191-209. [PMID: 19236193 DOI: 10.1517/14656560802678138] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review discusses the management of resistant cytomegalovirus and prevention strategies for fatal therapy failures. Five drugs, ganciclovir/valganciclovir, cidofovir, foscarnet and fomivirsen, have been approved so far for the treatment of human cytomegalovirus (HCMV) diseases. Except for fomivirsen, all of the approved drugs share the same target molecule, the viral DNA polymerase. The emergence of drug-resistant HCMV has also been reported for all of them. For optimal care of patients, the clinical virologist has to provide the most meaningful assays for monitoring of therapy and early detection of emerging drug-resistant HCMV. Additionally, a quantitative drug monitoring would be helpful. New antiviral agents are urgently needed with less adverse effects, good oral bioavailability and possibly novel targets or mechanisms of action to avoid cross-resistance and to improve the ability to suppress the selection of resistant virus strains by combination therapy. Compounds like maribavir, leflunomide and artesunate, which exhibit anti-HCMV activity in vitro and in patients need to be evaluated in clinical studies. Besides these, new therapy approaches like immunotherapy or new diagnostic techniques like pyrosequencing have to be considered in the future.
Collapse
Affiliation(s)
- Andreas Schreiber
- Universitätsklinikum Ulm, Institut für Virologie, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Chou S. Cytomegalovirus UL97 mutations in the era of ganciclovir and maribavir. Rev Med Virol 2008; 18:233-46. [PMID: 18383425 DOI: 10.1002/rmv.574] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in the human CMV UL97 kinase gene are a major mechanism of viral resistance to two anti-CMV drugs, ganciclovir (GCV) and maribavir (MBV). GCV, the most widely used and established therapy for CMV, is a substrate for the UL97 kinase. Well-characterised GCV-resistance mutations at UL97 codons 460, 520 and 590-607 impair the phosphorylation of GCV that is necessary for its antiviral activity, presumably by altering substrate recognition. In contrast, MBV is an inhibitor of the UL97 kinase and is the first new CMV therapy to reach later stage clinical trials in many years. No MBV-resistant CMV isolates have yet been detected in clinical trials, but after culture propagation under drug, UL97 mutations that confer moderate to high-level MBV resistance have been identified at codons 353, 397, 409 and 411. These mutations are located upstream of the GCV-resistance mutations and are close to the ATP-binding and catalytic domains common to all kinases, consistent with MBV acting as a small molecule ATP-competitive kinase inhibitor. So far, no UL97 mutations are known to confer resistance to both GCV and MBV.
Collapse
Affiliation(s)
- Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
18
|
Cano-Monreal GL, Tavis JE, Morrison LA. Substrate specificity of the herpes simplex virus type 2 UL13 protein kinase. Virology 2008; 374:1-10. [PMID: 18207213 DOI: 10.1016/j.virol.2007.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/27/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
The UL13 protein kinase is conserved among many herpesviruses but HSV-2 UL13 specificity is not known. Here, we found that HSV-2 UL13 is a phosphoprotein that autophosphorylates, and that serines within ERK and Cdc2 motifs were important for autophosphorylation but not for UL13 phosphorylation of exogenous substrates. HSV-2 UL13 phosphorylated a peptide also recognized by ERK and Cdc2. However, mutation of substrate residues critical for Cdc2 or Erk phosphorylation did not alter HSV-2 UL13 phosphorylation of the peptide, and HSV-2 UL13 did not phosphorylate standard Cdc2 or Erk peptide substrates. Mutation of prolines surrounding the peptide phosphoacceptor site reduced phosphorylation by HSV-2 UL13, and a peptide containing serine-proline amid alanines and glycines was phosphorylated. Thus, HSV-2 UL13 does not mimic ERK or Cdc2 substrate recognition and its minimal recognition motif can be serine-proline. This motif's simplicity indicates that distal sequence or protein structure contributes to HSV-2 UL13 substrate specificity.
Collapse
Affiliation(s)
- Gina L Cano-Monreal
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
19
|
Gershburg E, Pagano JS. Conserved herpesvirus protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:203-12. [PMID: 17881303 PMCID: PMC2265104 DOI: 10.1016/j.bbapap.2007.08.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/08/2007] [Accepted: 08/09/2007] [Indexed: 11/21/2022]
Abstract
Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however, along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown. Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against Epstein-Barr virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology between the members of this group complicates development of compounds targeting the whole group, and suggesting that individualized, structure-based inhibitor design will be more effective. Determination of CHPK structures will greatly facilitate this task.
Collapse
Affiliation(s)
- Edward Gershburg
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
20
|
Schregel V, Auerochs S, Jochmann R, Maurer K, Stamminger T, Marschall M. Mapping of a self-interaction domain of the cytomegalovirus protein kinase pUL97. J Gen Virol 2007; 88:395-404. [PMID: 17251555 DOI: 10.1099/vir.0.82393-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus-encoded protein kinase pUL97 is a determinant of efficient virus replication and fulfils several regulatory functions. In particular, pUL97 interacts with and phosphorylates viral and cellular proteins. Substrate phosphorylation has regulatory consequences on viral replicative stages such as DNA synthesis, transcription and nuclear capsid egress. pUL97, in accordance with related herpesviral protein kinases, possesses strong autophosphorylation activity. Here, we demonstrate that pUL97 shows a pronounced potential to self-interact. Self-interaction of pUL97 is not dependent on its kinase activity, as seen with a catalytically inactive point mutant. The property of self-interaction maps to the amino acid region 231-280 which is separable from the postulated kinase domain. The detection of high-molecular-mass complexes of pUL97 suggests the formation of dimers and oligomers. Importantly, the analysis of pUL97 mutants by in vitro kinase assays demonstrated a correlation between self-interaction and protein kinase activity, i.e. all mutants lacking the ability to self-interact were negative or reduced in their kinase activity. Thus, our findings provide novel insights into the pUL97 structure-activity relationship suggesting an importance of self-interaction for pUL97 functionality.
Collapse
Affiliation(s)
- Vera Schregel
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Germany
| | - Sabrina Auerochs
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Germany
| | - Ramona Jochmann
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Germany
| | - Katja Maurer
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Germany
| |
Collapse
|
21
|
Romaker D, Schregel V, Maurer K, Auerochs S, Marzi A, Sticht H, Marschall M. Analysis of the structure-activity relationship of four herpesviral UL97 subfamily protein kinases reveals partial but not full functional conservation. J Med Chem 2007; 49:7044-53. [PMID: 17125257 DOI: 10.1021/jm060696s] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herpesviral protein kinases of the UL97 subfamily are expressed by all known herpesviruses but the degree of functional conservation is unclear. A selection of representative members was investigated by a comparative structural and functional analysis. The coding sequences of human cytomegalovirus (HCMV) pUL97, rat CMV pR97, Epstein-Barr virus BGLF4, and herpes simplex virus UL13 showed a low degree of amino acid identity. A computational approach employing fold recognition techniques revealed structural similarity to the cellular kinase Cdk2 with a high level of conservation of the functionally important residues in ATP binding sites and the catalytic centers. Analyses of in vitro activities of these herpesviral protein kinases, including measurements of phosphorylation of cellular substrates, trans-complementation experiments with a UL97-deleted HCMV mutant, and sensitivity profiles toward protein kinase inhibitors, demonstrated marked similarities between pUL97 and pR97 and to a lesser extent between pUL97 and BGLF4 or UL13. Thus, the structure-activity analysis of pUL97-like herpesviral protein kinases indicates a partial but not a full conservation of their functional properties among the herpesviruses.
Collapse
Affiliation(s)
- Daniel Romaker
- Institute for Clinical and Molecular Virology, and Department of Bioinformatics, University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Chou S, Marousek GI. Maribavir antagonizes the antiviral action of ganciclovir on human cytomegalovirus. Antimicrob Agents Chemother 2006; 50:3470-2. [PMID: 17005835 PMCID: PMC1610080 DOI: 10.1128/aac.00577-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytomegalovirus (CMV) UL97 kinase inhibitor maribavir antagonized the anti-CMV effect of ganciclovir, increasing the ganciclovir 50% inhibitory concentration against a sensitive strain by up to 13-fold. Antiviral activities of foscarnet and cidofovir were unaffected by maribavir.
Collapse
Affiliation(s)
- Sunwen Chou
- Medical and Research Services, VA Medical Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
23
|
Azzeh M, Honigman A, Taraboulos A, Rouvinski A, Wolf DG. Structural changes in human cytomegalovirus cytoplasmic assembly sites in the absence of UL97 kinase activity. Virology 2006; 354:69-79. [PMID: 16872656 DOI: 10.1016/j.virol.2006.05.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/17/2006] [Accepted: 05/31/2006] [Indexed: 11/24/2022]
Abstract
Studies of human cytomegalovirus (HCMV) UL97 kinase deletion mutant (DeltaUL97) indicated a multi-step role for this kinase in early and late phases of the viral life cycle, namely, in DNA replication, capsid maturation and nuclear egress. Here, we addressed its possible involvement in cytoplasmic steps of HCMV assembly. Using the DeltaUL97 and the UL97 kinase inhibitor NGIC-I, we demonstrate that the absence of UL97 kinase activity results in a modified subcellular distribution of the viral structural protein assembly sites, from compact structures impacting upon the nucleus to diffuse perinuclear structures punctuated by large vacuoles. Infection by either wild type or DeltaUL97 viruses induced a profound reorganization of wheat germ agglutinin (WGA)-positive Golgi-related structures. Importantly, the viral-induced Golgi remodeling along with the reorganization of the nuclear architecture was substantially altered in the absence of UL97 kinase activity. These findings suggest that UL97 kinase activity might contribute to organization of the viral cytoplasmic assembly sites.
Collapse
Affiliation(s)
- Maysa Azzeh
- Department of Clinical Microbiology and Infectious Diseases, Hadassah University Hospital, Jerusalem, Israel 91120
| | | | | | | | | |
Collapse
|
24
|
Prichard MN, Britt WJ, Daily SL, Hartline CB, Kern ER. Human cytomegalovirus UL97 Kinase is required for the normal intranuclear distribution of pp65 and virion morphogenesis. J Virol 2006; 79:15494-502. [PMID: 16306620 PMCID: PMC1316036 DOI: 10.1128/jvi.79.24.15494-15502.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant human cytomegaloviruses that do not express UL97 kinase activity exhibit a distinctive plaque morphology characterized by the formation of highly refractile bodies late in infection. These structures were also observed in infected cells treated with the UL97 kinase inhibitor maribavir. Nuclear inclusions were purified to near homogeneity, and the constituent proteins were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. This analysis demonstrated that the aggregates were formed principally of the tegument proteins pp65 and ppUL25 but also contained additional virion structural proteins including the major capsid protein. Immunoblotting experiments confirmed these results and identified a number of additional viral proteins present in the purified tegument aggregates. Interestingly, the formation of these structures appeared to be dependent on pp65, since it was not induced in cells infected with a recombinant virus with this open reading frame deleted. Morphologically similar aggregates could be reproduced in nuclei of uninfected cells by overexpressing pp65, and their formation was prevented by coexpressing the UL97 kinase. Inhibition of UL97 kinase activity with maribavir or mutation of an essential amino acid in the kinase abolished its ability to prevent aggregate formation. These data taken together suggest that the UL97 kinase impacts the aggregation of pp65 in the nuclei of infected cells. We propose that the kinase plays an important role in the acquisition of tegument during virion morphogenesis in the nucleus and that this activity represents an important step in the production of mature virus particles.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| | | | | | | | | |
Collapse
|
25
|
De Bolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 2005; 18:217-45. [PMID: 15653828 PMCID: PMC544175 DOI: 10.1128/cmr.18.1.217-245.2005] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) is a betaherpesvirus that is closely related to human cytomegalovirus. It was discovered in 1986, and HHV-6 literature has expanded considerably in the past 10 years. We here present an up-to-date and complete overview of the recent developments concerning HHV-6 biological features, clinical associations, and therapeutic approaches. HHV-6 gene expression regulation and gene products have been systematically characterized, and the multiple interactions between HHV-6 and the host immune system have been explored. Moreover, the discovery of the cellular receptor for HHV-6, CD46, has shed a new light on HHV-6 cell tropism. Furthermore, the in vitro interactions between HHV-6 and other viruses, particularly human immunodeficiency virus, and their relevance for the in vivo situation are discussed, as well as the transactivating capacities of several HHV-6 proteins. The insight into the clinical spectrum of HHV-6 is still evolving and, apart from being recognized as a major pathogen in transplant recipients (as exemplified by the rising number of prospective clinical studies), its role in central nervous system disease has become increasingly apparent. Finally, we present an overview of therapeutic options for HHV-6 therapy (including modes of action and resistance mechanisms).
Collapse
Affiliation(s)
- Leen De Bolle
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
26
|
Michel D, Mertens T. The UL97 protein kinase of human cytomegalovirus and homologues in other herpesviruses: impact on virus and host. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:169-80. [PMID: 15023359 DOI: 10.1016/j.bbapap.2003.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2003] [Accepted: 11/12/2003] [Indexed: 11/16/2022]
Abstract
The human herpesviruses, herpes simplex virus 1 (HSV-1), HSV-2, varicella zoster virus (VZV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), human herpesvirus 6A (HHV-6A), HHV-6B, HHV-7 and HHV-8, establish persistent infections with possible recurrence during immunosuppression. HCMV replication is inhibited by the nucleoside analogue ganciclovir (GCV), the compound of choice for the treatment of HCMV diseases and preemptive treatment of infections. The viral UL97 protein (pUL97) which shares homologies with protein kinases and bacterial phosphotransferases is able to monophosphorylate GCV. Homologues of pUL97 are found in HSV (UL13), VZV (ORF47), EBV (BGLF4), HHV-6 (U69), HHV-8 (ORF36) as well as in murine CMV (M97) or rat CMV (R97). Several indolocarbazoles have been reported to be specific inhibitors of pUL97. The protein is important for efficient replication of the virus. Autophosphorylation of pUL97 was observed using different experimental systems. Most recently, it has been shown that pUL97 interacts with the DNA polymerase processivity factor pUL44. Indolocarbazole protein kinase inhibitors are promising lead compounds for the development of more specific inhibitors of HCMV.
Collapse
Affiliation(s)
- Detlef Michel
- Universitätsklinikum Ulm, Abteilung Virologie, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | |
Collapse
|
27
|
Safronetz D, Petric M, Tellier R, Parvez B, Tipples GA. Mapping ganciclovir resistance in the human herpesvirus-6 U69 protein kinase. J Med Virol 2003; 71:434-9. [PMID: 12966551 DOI: 10.1002/jmv.10510] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human herpesvirus-6 (HHV-6) is a growing concern in immunocompromised individuals, such as in the transplant setting. Alone, or in concert with human cytomegalovirus (HCMV), infections with HHV-6 are often severe enough to require antiviral therapy, generally in the form of ganciclovir (GCV). GCV resistance in HCMV is well documented, both clinically and in the laboratory, and has been shown to result from mutations in the UL97 protein kinase and/or UL54 DNA polymerase. GCV resistance in HHV-6 has been documented. However, to date, it has only been investigated to a limited extent. The baculovirus system has previously been shown to be useful in studying GCV resistance with respect to herpesvirus protein kinase mutations. Using the baculovirus system, we created recombinant baculoviruses expressing either a wild-type HHV-6 U69 protein kinase or a mutated form containing homologous mutations to those documented in the UL97 protein kinase of GCV resistant HCMV isolates. The recombinant baculoviruses were used to infect Sf-9 cells and cultured in the presence of GCV to determine the effect of the HHV-6 U69 protein kinase mutations on GCV susceptibility. Mutations in the HHV-6 U69 protein kinase, homologous to those in the HCMV UL97 protein kinase documented to cause GCV resistance, result in GCV resistance in the recombinant baculoviruses.
Collapse
Affiliation(s)
- D Safronetz
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
28
|
Marschall M, Freitag M, Suchy P, Romaker D, Kupfer R, Hanke M, Stamminger T. The protein kinase pUL97 of human cytomegalovirus interacts with and phosphorylates the DNA polymerase processivity factor pUL44. Virology 2003; 311:60-71. [PMID: 12832203 DOI: 10.1016/s0042-6822(03)00147-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The protein kinase pUL97 of human cytomegalovirus plays important but incompletely defined roles in viral replication. Concerning the early phase of infection, it is postulated that pUL97 possesses regulatory functions in gene expression and/or DNA synthesis. Here we report that pUL97 interacts with an essential component of the replication complex, the DNA polymerase processivity factor pUL44. Interaction was determined by yeast two-hybrid and coimmunoprecipitation analyses and was mapped to the pUL97 region 366-459. In vitro kinase assays demonstrated that pUL44, coimmunoprecipitated either from transfected or from infected cells, is phosphorylated by pUL97 (but not by a catalytically inactive pUL97-mutant). In infected fibroblasts, immunofluorescence analysis revealed that pUL97 and pUL44 accumulate in the nucleus and are both incorporated into viral replication centers. The treatment with inhibitors of DNA synthesis or pUL97 kinase activity largely prevented colocalization. Thus, pUL97 may be indirectly involved in viral genome replication by modifying the replication cofactor pUL44.
Collapse
Affiliation(s)
- Manfred Marschall
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nümberg, Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Baek MC, Krosky PM, Coen DM. Relationship between autophosphorylation and phosphorylation of exogenous substrates by the human cytomegalovirus UL97 protein kinase. J Virol 2002; 76:11943-52. [PMID: 12414936 PMCID: PMC136897 DOI: 10.1128/jvi.76.23.11943-11952.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus encodes an unusual protein kinase, UL97, which is a member of the HvU(L) family of protein kinases encoded by diverse herpesviruses. UL97 is able to autophosphorylate and to phosphorylate certain exogenous substrates, including nucleoside analogs such as ganciclovir. It has previously been concluded that phosphorylation of UL97 is essential for its phosphorylation of ganciclovir. We examined the relationship between autophosphorylation of UL97 and its activity on exogenous substrates. Glutathione S-transferase-UL97 fusion protein purified from insect cells was found to be already partially phosphorylated, but neither extensive autophosphorylation nor phosphatase treatment meaningfully altered the time course of its phosphorylation of the exogenous substrate, histone H2B. Sequencing and mass spectrometric analyses of (32)P-labeled tryptic peptides of the UL97 fusion protein identified nine sites of autophosphorylation, all within the first 200 residues of the protein, outside of conserved protein kinase subdomains. A peptide corresponding to the N-terminal UL97 segment that was most extensively autophosphorylated was readily phosphorylated by UL97, confirming that fusion protein sequences are not required for phosphorylation at this site. Deletion mutants lacking at least the first 239 residues exhibited drastically reduced autophosphorylation (<5%) but retained near-wild-type H2B phosphorylation activity. Baculoviruses expressing these mutants efficiently directed the phosphorylation of ganciclovir in insect cells. Taken together, these results identify the autophosphorylation sites of a herpesvirus protein kinase and show that autophosphorylation of UL97 is not required for phosphorylation of exogenous substrates.
Collapse
Affiliation(s)
- Moon-Chang Baek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
30
|
De Bolle L, Michel D, Mertens T, Manichanh C, Agut H, De Clercq E, Naesens L. Role of the human herpesvirus 6 u69-encoded kinase in the phosphorylation of ganciclovir. Mol Pharmacol 2002; 62:714-21. [PMID: 12181449 DOI: 10.1124/mol.62.3.714] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human herpesvirus 6 (HHV-6) U69 gene product (pU69) is the presumed functional homolog of the human cytomegalovirus (HCMV) UL97-encoded kinase (pUL97), which converts ganciclovir to its monophosphate metabolite in HCMV-infected cells. It has been reported that insertion of U69 into baculovirus confers sensitivity to ganciclovir in insect cells (J Virol 73:3284-3291, 1999). Our metabolic studies in HHV-6-infected human T-lymphoblast cells indicated that the efficiency of ganciclovir phosphorylation induced by HHV-6 was relatively poor. Recombinant vaccinia viruses (rVVs), expressing high levels of pU69 from two HHV-6 strains (representing the A and B variant), were constructed and used to compare the ganciclovir-phosphorylating capacity of pU69 and pUL97 in human cells. Metabolic studies with [8-(3)H]ganciclovir showed that ganciclovir was phosphorylated in human cells infected with pU69-expressing rVVs, although the levels of phosphorylated ganciclovir metabolites were approximately 10-fold lower than those observed with pUL97. We also demonstrated that pU69, like pUL97, is expressed as a nuclear protein. Our results indicate that the limited phosphorylation of ganciclovir by pU69 may contribute to its modest antiviral activity against HHV-6 in certain cell systems.
Collapse
Affiliation(s)
- Leen De Bolle
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
31
|
Marschall M, Stein-Gerlach M, Freitag M, Kupfer R, van den Bogaard M, Stamminger T. Direct targeting of human cytomegalovirus protein kinase pUL97 by kinase inhibitors is a novel principle for antiviral therapy. J Gen Virol 2002; 83:1013-1023. [PMID: 11961255 DOI: 10.1099/0022-1317-83-5-1013] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein kinase pUL97, encoded by human cytomegalovirus (HCMV), is an important determinant of virus replication. Recently, indolocarbazoles were identified as a class of substances that inhibit the pUL97 kinase activity in vitro. In parallel, it was shown that indolocarbazoles interfere with HCMV replication; however, the causal relationship between inhibition of pUL97 kinase activity and virus replication has not been clarified. Here evidence is provided that indolocarbazole-mediated inhibition of virus replication is a direct result of diminished pUL97 protein kinase activity. In cell culture infections, a strong and selective antiviral activity was measured with respect to several strains of HCMV in contrast with other related or non-related viruses. For fine quantification, recombinant HCMVs expressing green fluorescent protein were used, demonstrating the high sensitivity towards compounds NGIC-I and Gö6976. Interestingly, a ganciclovir-resistant virus mutant (UL97-M460I) showed increased sensitivity to both compounds. Supporting this concept, transfection experiments with cloned pUL97 revealed that ganciclovir-resistant mutants were characterized by reduced levels of autophosphorylation compared with wild-type and possessed particularly high sensitivity to indolocarbazoles. Moreover, the Epstein-Barr virus-encoded homologous kinase, BGLF4, which showed a similar pattern of autophosphorylation and ganciclovir phosphorylation activities, was not inhibited. Importantly, a cytomegalovirus deletion mutant, lacking a functional UL97 gene and showing a severe impairment of replication, was completely insensitive to indolocarbazoles. Thus, our findings indicate that a specific block in the activity of pUL97 is the critical step in indolocarbazole-mediated inhibition of virus replication and that pUL97 might be targeted very efficiently by a novel antiviral therapy.
Collapse
Affiliation(s)
- Manfred Marschall
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany1
| | | | - Martina Freitag
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany1
| | - Regina Kupfer
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany1
| | | | - Thomas Stamminger
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany1
| |
Collapse
|
32
|
Baldanti F, Michel D, Simoncini L, Heuschmid M, Zimmermann A, Minisini R, Schaarschmidt P, Schmid T, Gerna G, Mertens T. Mutations in the UL97 ORF of ganciclovir-resistant clinical cytomegalovirus isolates differentially affect GCV phosphorylation as determined in a recombinant vaccinia virus system. Antiviral Res 2002; 54:59-67. [PMID: 11888658 DOI: 10.1016/s0166-3542(01)00211-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mutations in the human cytomegalovirus (HCMV) UL97 phosphotransferase have been associated with ganciclovir (GCV) resistance due to an impairment of GCV monophosphorylation. Vaccinia virus recombinants (rVV) were generated that encoded different HCMV UL97 proteins (pUL97) with mutations previously detected in resistant HCMV clinical isolates at codons 460, 520, 592, 594, 595, 598 and 607. These rVVs allowed quantification of GCV phosphorylation catalyzed by the different mutated pUL97s. When compared to rVV-UL97 wild type, mean levels of residual intracellular GCV phosphorylation differed by a factor of 10 for the mutated UL97 proteins ranging from 5.2 to 51.8%. Mutations M460V (located in a UL97 region homologous to domain VIb of protein kinases) and H520Q (located in a cytomegalovirus-specific, functionally critical domain) were responsible for the lowest levels of residual GCV phosphorylation (9.3 and 5.2%). Mutations in a region homologous to the domain IX had a lower impact on GCV phosphorylation (15.8-51.8%). The relevance of pUL97 mutation G598S in inducing GCV resistance was demonstrated for the first time.
Collapse
Affiliation(s)
- Fausto Baldanti
- Servizio di Virologia, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ijichi O, Michel D, Mertens T, Miyata K, Eizuru Y. GCV resistance due to the mutation A594P in the cytomegalovirus protein UL97 is partially reconstituted by a second mutation at D605E. Antiviral Res 2002; 53:135-42. [PMID: 11750939 DOI: 10.1016/s0166-3542(01)00202-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A ganciclovir (GCV)-resistant human cytomegalovirus (HCMV) was isolated from an AIDS patient. Molecular analysis of the HCMV UL97 gene revealed two point mutations, A594P and D605E, respectively. In order to evaluate quantitatively the impact of the individual mutations on GCV phosphorylation, recombinant vaccinia viruses (rVVs) were generated carrying either the two mutations (rVV-594/605) or only one mutation (rVV-594 or rVV-605, respectively). In cells infected with the rVV-594/605 double mutant, the GCV phosphorylation was decreased to 50% compared with the phosphorylation in cells infected with the rVV-UL97 wild-type. In cells infected with the rVV-594, however, the GCV phosphorylation was further decreased to 30%. Interestingly, the mutation D605E led to an even better GCV phosphorylation than that measured in cells infected with the rVV-UL97 wild type. These results were confirmed by plaque reduction assays, indicating that rVV-594 was more resistant to GCV than rVV-594/605. In contrast, rVV-605 was more sensitive to GCV than the rVV-UL97 wild type. Therefore, our results demonstrated for the first time that compensatory mutations can also occur in HCMV, as already shown for human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Osamu Ijichi
- Department of Pediatrics, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, 890-8520, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
34
|
Michel D, Höhn S, Haller T, Jun D, Mertens T. Aciclovir selects for ganciclovir-cross-resistance of human cytomegalovirus in vitro that is only in part explained by known mutations in the UL97 protein*. J Med Virol 2001. [DOI: 10.1002/jmv.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Marschall M, Stein-Gerlach M, Freitag M, Kupfer R, van den Bogaard M, Stamminger T. Inhibitors of human cytomegalovirus replication drastically reduce the activity of the viral protein kinase pUL97. J Gen Virol 2001; 82:1439-1450. [PMID: 11369889 DOI: 10.1099/0022-1317-82-6-1439] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UL97-encoded protein kinase (pUL97) of human cytomegalovirus (HCMV) plays a critical role in the control of virus replication. Deletion of the UL97 gene results in a drastic reduction in the replication efficiency. Although the exact function of pUL97 remains unclear and its sensitivity to specific inhibitors is speculative, protein kinase inhibitors of the indolocarbazole class are effective inhibitors of cytomegalovirus. Based on the phosphorylation of ganciclovir (GCV), a novel quantification system for pUL97 kinase activity was established: the phosphorylated form of GCV exerts an easily quantifiable cytotoxic effect in transfected cells. Importantly, the addition of indolocarbazole compounds, Gö6976 and NGIC-I, which were highly effective at nanomolar concentrations while other protein kinase inhibitors were not, led to a significant reduction of pUL97 kinase activity. It was also demonstrated that a catalytically inactive mutant of pUL97, K355M, and a GCV-resistant mutant, M460I, were both negative for GCV phosphorylation, although protein phosphorylation remained detectable for the latter mutant. In vitro kinase assays were used to confirm the levels of pUL97-mediated phosphorylation recorded. To generate a tool for screening large numbers of putative inhibitors that preferentially interfere with GCV as well as protein phosphorylation, pUL97-expressing cell clones with stable pUL97 kinase activity were selected. This study demonstrates that certain indolocarbazole compounds are potent pUL97 inhibitors and, therefore, represent novel candidates for antiviral drugs that target viral protein kinase functions.
Collapse
Affiliation(s)
- Manfred Marschall
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany1
| | | | - Martina Freitag
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany1
| | - Regina Kupfer
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany1
| | | | - Thomas Stamminger
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany1
| |
Collapse
|
36
|
Wolf DG, Courcelle CT, Prichard MN, Mocarski ES. Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation. Proc Natl Acad Sci U S A 2001; 98:1895-900. [PMID: 11172047 PMCID: PMC29353 DOI: 10.1073/pnas.98.4.1895] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus UL97 kinase, an important target of antiviral therapy, has an impact on at least two distinct phases of viral replication. Compared with wild-type virus, the UL97 deletion mutant exhibits an early replication defect that reduces DNA accumulation by 4- to 6-fold, as well as a late capsid maturation defect responsible for most of the observed 100- to 1000-fold reduction in replication. Block-release experiments with the antiviral 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)-benzimidazole revealed an important role for UL97 kinase in capsid assembly. Although cleavage of concatemeric DNA intermediates to unit-length genomes remained unaffected, progeny mutant virus maturation was delayed, with accumulation of progeny at significantly reduced levels compared with wild type after release of this block. Transmission electron microscopy confirmed the aberrant accumulation of empty A-like capsids containing neither viral DNA nor an internal scaffold structure, consistent with a failure to stably package DNA in mutant virus-infected cells. The function of UL97 in DNA synthesis as well as capsid assembly suggests that protein phosphorylation mediated by this herpesvirus-conserved kinase increases the efficiency of these two distinct phases of virus replication.
Collapse
Affiliation(s)
- D G Wolf
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305-5124, USA
| | | | | | | |
Collapse
|
37
|
Wolf DG, Yaniv I, Ashkenazi S, Honigman A. Emergence of multiple human cytomegalovirus ganciclovir-resistant mutants with deletions and substitutions within the UL97 gene in a patient with severe combined immunodeficiency. Antimicrob Agents Chemother 2001; 45:593-5. [PMID: 11158760 PMCID: PMC90332 DOI: 10.1128/aac.45.2.593-595.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with multiple ganciclovir-resistant human cytomegalovirus mutants, containing different substitutions and deletions in the UL97 gene, was found in a patient with severe combined immunodeficiency (SCID) within 3 weeks of ganciclovir therapy. A novel 11-codon deletion at positions 590 to 600 was identified. These unique findings may be related to the nature of the immunodeficiency in the SCID patient.
Collapse
Affiliation(s)
- D G Wolf
- Department of Clinical Microbiology and Infectious Diseases, Hadassah University Hospital, Jerusalem, and Schneider Children Medical Center, Petach Tiqva, Israel.
| | | | | | | |
Collapse
|
38
|
Wagner M, Michel D, Schaarschmidt P, Vaida B, Jonjic S, Messerle M, Mertens T, Koszinowski U. Comparison between human cytomegalovirus pUL97 and murine cytomegalovirus (MCMV) pM97 expressed by MCMV and vaccinia virus: pM97 does not confer ganciclovir sensitivity. J Virol 2000; 74:10729-36. [PMID: 11044117 PMCID: PMC110947 DOI: 10.1128/jvi.74.22.10729-10736.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UL97 protein (pUL97) of human cytomegalovirus (HCMV) is a protein kinase that also phosphorylates ganciclovir (GCV), but its biological function is not yet clear. The M97 protein (pM97) of mouse cytomegalovirus (MCMV) is the homolog of pUL97. First, we studied the consequences of genetic replacement of M97 by UL97. Using the infectious bacterial plasmid clone of the full-length MCMV genome (M. Wagner, S. Jonjic, U. H. Koszinowski, and M. Messerle, J. Virol. 73:7056-7060, 1999), we replaced the M97 gene with the UL97 gene and constructed an MCMV M97 deletion mutant and a revertant virus. In addition, pUL97 and pM97 were expressed by recombinant vaccinia virus to compare both for known functions. Remarkably, pM97 proved not to be the reason for the GCV sensitivity of MCMV. When expressed by the recombinant MCMV, however, pUL97 was phosphorylated and endowed MCMV with the capacity to phosphorylate GCV, thereby rendering MCMV more susceptible to GCV. We found that deletion of pM97, although it is not essential for MCMV replication, severely affected virus growth. This growth deficit was only partially amended by pUL97 expression. When expressed by recombinant vaccinia viruses, both proteins were phosphorylated and supported phosphorylation of GCV, but pUL97 was about 10 times more effective than pM97. One hint of the functional differences between the proteins was provided by the finding that pUL97 accumulates in the nucleus, whereas pM97 is predominantly located in the cytoplasm of infected cells. In vivo testing revealed that the UL97-MCMV recombinant should allow evaluation of novel antiviral drugs targeted to the UL97 protein of HCMV in mice.
Collapse
Affiliation(s)
- M Wagner
- Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zimmermann A, Wilts H, Lenhardt M, Hahn M, Mertens T. Indolocarbazoles exhibit strong antiviral activity against human cytomegalovirus and are potent inhibitors of the pUL97 protein kinase. Antiviral Res 2000; 48:49-60. [PMID: 11080540 DOI: 10.1016/s0166-3542(00)00118-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have analyzed a panel of protein kinase inhibitors (PKIs) and found that some indolocarbazoles (Gö6976, K252a, K252c) proved to be highly effective inhibitors of GCV-sensitive and -resistant human cytomegalovirus (HCMV) strains, but did not show any effect against herpes simplex virus. Antiviral activity was determined by focus reduction assays (IC(50) ranging from 0.009 to 0.4 microM). Other inhibitors of serine/threonine kinases (Gö6850, H-7, roscovitine) were found to be ineffective. Virus yield at 5 days after infection was reduced by three orders of magnitude with nanomolar concentrations of the indolocarbazoles. These compounds were fully effective when added up to 24 h post infection and showed reduced activity up to 72 h post infection. Cytotoxicity assays in proliferating and non-proliferating cells demonstrated that the effective antiviral concentration of these compounds was significantly lower than either antiproliferative (IC(50)/CC(50) ranging from 6.5 to 390) or cytotoxic (IC(50)/CC(50) ranging from 72. 5 to 1000) doses. The effects of PKIs on the virus-encoded protein kinase pUL97 were studied using recombinant vaccinia viruses. Indolocarbazoles strongly inhibited both pUL97 autophosphorylation (IC(50) ranging from 0.0012 to 0.013 microM) and pUL97-dependent ganciclovir phosphorylation (IC(50) ranging from 0.05 to 0.26 microM). Other inhibitors of serine/threonine kinases showed only weak (Gö6850) or no (H-7, roscovitine) effect on these pUL97 functions, while oxoflavone tyrosine kinase inhibitors had no effect at all.
Collapse
Affiliation(s)
- A Zimmermann
- Abteilung Virologie, Institut für Mikrobiologie, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | | | | | |
Collapse
|