1
|
Jalilian S, Bastani MN. From virus to cancer: Epstein-Barr virus miRNA connection in Burkitt's lymphoma. Infect Agent Cancer 2024; 19:54. [PMID: 39425210 PMCID: PMC11487968 DOI: 10.1186/s13027-024-00615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
In Burkitt's lymphoma (BL), Epstein-Barr virus-encoded microRNAs (EBV miRNAs) are emerging as crucial regulatory agents that impact cellular and viral gene regulation. This review investigates the multifaceted functions of EBV miRNAs in the pathogenesis of Burkitt lymphoma. EBV miRNAs regulate several cellular processes that are essential for BL development, such as apoptosis, immune evasion, and cellular proliferation. These small, non-coding RNAs target both viral and host mRNAs, finely adjusting the cellular environment to favor oncogenesis. Prominent miRNAs, such as BART (BamHI-A rightward transcript) and BHRF1 (BamHI fragment H rightward open reading frame 1), are emphasized for their roles in tumor growth and immune regulation. For example, BART miRNAs prevent apoptosis by suppressing pro-apoptotic proteins, whereas BHRF1 miRNAs promote viral latency and immunological evasion. Understanding the intricate connections among EBV miRNAs and their targets illuminates BL pathogenesis and suggests novel treatment approaches. Targeting EBV miRNAs or their specific pathways offers a feasible option for developing innovative therapies that aim to disrupt the carcinogenic processes initiated by these viral components. future studies should focus on precisely mapping miRNA‒target networks and developing miRNA-based diagnostic and therapeutic tools. This comprehensive article highlights the importance of EBV miRNAs in Burkitt lymphoma, indicating their potential as biomarkers and targets for innovative treatment strategies.
Collapse
Affiliation(s)
- Shahram Jalilian
- Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 15794 - 61357, Iran
| | - Mohammad-Navid Bastani
- Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 15794 - 61357, Iran.
| |
Collapse
|
2
|
Sun Y, Shi D, Sun J, Zhang Y, Liu W, Luo B. Regulation mechanism of EBV-encoded EBER1 and LMP2A on YAP1 and the impact of YAP1 on the EBV infection status in EBV-associated gastric carcinoma. Virus Res 2024; 343:199352. [PMID: 38462175 PMCID: PMC10982081 DOI: 10.1016/j.virusres.2024.199352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
This study aims to explore the role and regulatory mechanism of Yes-associated protein 1 (YAP1) in the development of Epstein-Barr virus-associated gastric cancer (EBVaGC). Here we showed that EBV can upregulate the expression and activity of YAP1 protein through its encoded latent products EBV-encoded small RNA 1 (EBER1) and latent membrane protein 2A (LMP2A), enhancing the malignant characteristics of EBVaGC cells. In addition, we also showed that overexpression of YAP1 induced the expression of EBV encoding latent and lytic phase genes and proteins in the epithelial cell line AGS-EBV infected with EBV, and increased the copy number of the EBV genome, while loss of YAP1 expression reduced the aforementioned indicators. Moreover, we found that YAP1 enhanced EBV lytic reactivation induced by two known activators, 12-O-tetradecanoylhorbol-13-acetate (TPA) and sodium butyrate (NaB). These results indicated a bidirectional regulatory mechanism between EBV and YAP1 proteins, providing new experimental evidence for further understanding the regulation of EBV infection patterns and carcinogenic mechanisms in gastric cancer.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jiting Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Department of Clinical Laboratory, Zibo Central Hospital, ZiBo 255036, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Kanno H, Osada T, Tateishi A. Establishment of Epstein-Barr Virus (EBV) Latent Gene-Expressing T-Cell Lines with an Expression Vector Harboring EBV Nuclear Antigen 1. Microorganisms 2023; 11:2624. [PMID: 38004636 PMCID: PMC10673024 DOI: 10.3390/microorganisms11112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic active Epstein-Barr virus (EBV) infection (CAEBV) is characterized by chronic or recurrent infectious mononucleosis-like symptoms and is associated with EBV-associated T/natural killer (NK)-cell lymphoproliferative disorders, which frequently lead to the development of life-threatening complications, such as virus-associated hemophagocytic syndrome and EBV-positive apparent leukemia/lymphoma mainly in T- and NK-cell lineages. In order to clarify the EBV genes responsible for the diseases, we introduced the plasmid coding sequences of EBV-encoded small RNAs (EBERs) and/or latent membrane protein (LMP) 1 into human T-lymphocyte virus-I-negative human T-cell lines using a gene expression vector harboring EBV nuclear antigen 1, established the G418-resistant transformants of five T-cell lines, and quantitatively examined the expression of EBERs and LMP1 using real-time reverse transcriptase-polymerase chain reaction. The expression levels of EBERs in T-cell transformants with EBER DNA paralleled those in EBV-positive human T- and NK-cell lines, SNTK cells. The expression of LMP1 mRNA varied in SNTK cells and in human T-cell transformants, and the expression of LMP1 mRNA in T-cell lines expressing both EBERs and LMP1 was much lower than that in the same cell line expressing LMP1 mRNA alone. The currently employed gene expression system and currently obtained transformants may be useful for the analyses of the pathophysiology of CAEBV and EBV-positive T/NK-cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- Hiroyuki Kanno
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan; (T.O.)
| | | | | |
Collapse
|
4
|
Gorbea C, Elhakiem A, Cazalla D. Shaping the host cell environment with viral noncoding RNAs. Semin Cell Dev Biol 2023; 146:20-30. [PMID: 36581481 PMCID: PMC10101873 DOI: 10.1016/j.semcdb.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Just like the cells they infect viruses express different classes of noncoding RNAs (ncRNAs). Viral ncRNAs come in all shapes and forms, and they usually associate with cellular proteins that are important for their functions. Viral ncRNAs have diverse functions, but they all contribute to the viral control of the cellular environment. Viruses utilize ncRNAs to regulate viral replication, to decide whether they should remain latent or reactivate, to evade the host immune responses, or to promote cellular transformation. In this review we describe the diverse functions played by different classes of ncRNAs expressed by adenoviruses and herpesviruses, how they contribute to the viral infection, and how their study led to insights into RNA-based mechanisms at play in host cells.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Abdalla Elhakiem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Demián Cazalla
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Yu H, Robertson ES. Epstein-Barr Virus History and Pathogenesis. Viruses 2023; 15:714. [PMID: 36992423 PMCID: PMC10056551 DOI: 10.3390/v15030714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first identified human oncogenic virus that can establish asymptomatic life-long persistence. It is associated with a large spectrum of diseases, including benign diseases, a number of lymphoid malignancies, and epithelial cancers. EBV can also transform quiescent B lymphocytes into lymphoblastoid cell lines (LCLs) in vitro. Although EBV molecular biology and EBV-related diseases have been continuously investigated for nearly 60 years, the mechanism of viral-mediated transformation, as well as the precise role of EBV in promoting these diseases, remain a major challenge yet to be completely explored. This review will highlight the history of EBV and current advances in EBV-associated diseases, focusing on how this virus provides a paradigm for exploiting the many insights identified through interplay between EBV and its host during oncogenesis, and other related non-malignant disorders.
Collapse
Affiliation(s)
- Hui Yu
- Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Chapman J. Immunodeficiency-Associated Epstein-Barr Virus-Positive B-cell Lymphoproliferative Disorders. Surg Pathol Clin 2023; 16:213-231. [PMID: 37149357 DOI: 10.1016/j.path.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Sources of immune deficiency and dysregulation (IDD) are being increasingly recognized and defined, as are IDD-related B-cell lymphoproliferative lesions and lymphomas occurring in these patients. In this review, basic biology of Epstein-Barr virus (EBV) as it relates to classification of EBV-positive B-cell lymphoproliferative disorders (LPDs) is reviewed. Also discussed is the new paradigm of classification of IDD-related LPDs adopted by the fifth edition World Health Organization classification. IDD-related EBV-positive B-cell hyperplasias, LPDs, and lymphomas are discussed with particular attention to unifying and unique features that assist with recognition of these IDD-related lesions and their classification scheme.
Collapse
Affiliation(s)
- Jennifer Chapman
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami Hospital/Sylvester Comprehensive Cancer Center, 1400 Northwest 12th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
7
|
Ward BJH, Schaal DL, Nkadi EH, Scott RS. EBV Association with Lymphomas and Carcinomas in the Oral Compartment. Viruses 2022; 14:2700. [PMID: 36560704 PMCID: PMC9783324 DOI: 10.3390/v14122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus infecting approximately 90% of the world's population. The oral cavity serves a central role in the life cycle, transmission, and pathogenesis of EBV. Transmitted to a new host via saliva, EBV circulates between cellular compartments within oral lymphoid tissues. Epithelial cells primarily support productive viral replication, while B lymphocytes support viral latency and reactivation. EBV infections are typically asymptomatic and benign; however, the latent virus is associated with multiple lymphomas and carcinomas arising in the oral cavity. EBV association with cancer is complex as histologically similar cancers often test negative for the virus. However, the presence of EBV is associated with distinct features in certain cancers. The intrinsic ability of EBV to immortalize B-lymphocytes, via manipulation of survival and growth signaling, further implicates the virus as an oncogenic cofactor. A distinct mutational profile and burden have been observed in EBV-positive compared to EBV-negative tumors, suggesting that viral infection can drive alternative pathways that converge on oncogenesis. Taken together, EBV is also an important prognostic biomarker that can direct alternative therapeutic approaches. Here, we discuss the prevalence of EBV in oral malignancies and the EBV-dependent mechanisms associated with tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
8
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
9
|
The Impact of Deleting Stem-Loop 1 of Epstein-Barr Virus-Encoded RNA 1 on Cell Proliferation. Viruses 2022; 14:v14112538. [PMID: 36423146 PMCID: PMC9696203 DOI: 10.3390/v14112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus-encoded RNAs (EBERs) are two small, noncoding, structurally conserved transcripts, constitutively expressed at >106 copies per EBV-infected cell. They have been shown to drive cell growth. However, the mechanism(s) involved in EBER-induced proliferation is not clear. In this study, we investigated the molecular mechanisms and structural impact of EBER1. Sequences of EBER1 stem-loops (SL) 1, 3, and 4 were deleted, creating three mutants: ∆SL1, ∆SL3, and ∆SL4. These mutants were cloned into pHebo plasmids and expressed in Jurkat cell lines. Cells transfected with wildtype EBER1 and pHebo were used as controls. Cell proliferation was monitored by microscopy and flow cytometry. Microarray, qPCR, and Western blotting were used to investigate the cell cycle markers. We found significantly higher cell proliferation in wildtype EBER1 cells compared to pHebo, ∆SL1, and ∆SL3, but not ∆SL4 mutants. There was also significant upregulation of S-phase and G2/M phase markers in wildtype EBER1 and ∆SL4 mutant. Furthermore, CDT1, a factor for DNA replication, was upregulated in wildtype EBER1 and ∆SL4 mutant. However, in ∆SL1 mutant, CDT1 was significantly downregulated and translocated to the cytoplasm. These data indicate that the structure of EBER1 is important in cell proliferation.
Collapse
|
10
|
Effects of Exosomal Viral Components on the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143552. [PMID: 35884611 PMCID: PMC9317196 DOI: 10.3390/cancers14143552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Oncogenic viral infection may lead to cancers, such as nasopharyngeal carcinoma, hepatocellular carcinoma, and cervical cancer. In addition to the tumor cells themselves, the tumor microenvironment also plays a decisive role in tumor evolution. Oncogenic viruses can affect the tumor microenvironment via exosomes influencing the occurrence and development of tumors by encapsulating and transporting viral components. This review focuses on the effects of virus-infected cancer exosomes on tumor microenvironment and tumor progression. Abstract Exosomes are extracellular membrane vesicles with a diameter of 30–100 nm, produced by different eukaryotic cells that contain multitudinous lipids, nucleic acids, and proteins. They transfer membrane components and nucleic acids between cells, thereby performing an information exchange between cells. Many studies have shown that a variety of tumor-associated viruses can exert their biological functions through exosomes. The tumor microenvironment (TME) is very important in the occurrence, development, and chemoresistance of tumors. It is composed of tumor cells, fibroblasts, endothelial cells, immune cells, stromal cells, and acellular components, such as exosomes and cytokines. This review focuses on the effects of virus-related components secreted by tumor cells over the TME in several virus-associated cancers.
Collapse
|
11
|
Wyżewski Z, Mielcarska MB, Gregorczyk-Zboroch KP, Myszka A. Virus-Mediated Inhibition of Apoptosis in the Context of EBV-Associated Diseases: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137265. [PMID: 35806271 PMCID: PMC9266970 DOI: 10.3390/ijms23137265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Epstein-Barr virus (EBV), the representative of the Herpesviridae family, is a pathogen extensively distributed in the human population. One of its most characteristic features is the capability to establish latent infection in the host. The infected cells serve as a sanctuary for the dormant virus, and therefore their desensitization to apoptotic stimuli is part of the viral strategy for long-term survival. For this reason, EBV encodes a set of anti-apoptotic products. They may increase the viability of infected cells and enhance their resistance to chemotherapy, thereby contributing to the development of EBV-associated diseases, including Burkitt’s lymphoma (BL), Hodgkin’s lymphoma (HL), gastric cancer (GC), nasopharyngeal carcinoma (NPC) and several other malignancies. In this paper, we have described the molecular mechanism of anti-apoptotic actions of a set of EBV proteins. Moreover, we have reviewed the pro-survival role of non-coding viral transcripts: EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs), in EBV-carrying malignant cells. The influence of EBV on the expression, activity and/or intracellular distribution of B-cell lymphoma 2 (Bcl-2) protein family members, has been presented. Finally, we have also discussed therapeutic perspectives of targeting viral anti-apoptotic products or their molecular partners.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
- Correspondence: ; Tel.: +48-728-208-338
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | | - Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
| |
Collapse
|
12
|
The Epstein-Barr virus noncoding RNA EBER2 transactivates the UCHL1 deubiquitinase to accelerate cell growth. Proc Natl Acad Sci U S A 2021; 118:2115508118. [PMID: 34686609 DOI: 10.1073/pnas.2115508118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
The Epstein-Barr virus (EBV) transforms resting B cells and is involved in the development of B cell lymphomas. We report here that the viral noncoding RNA EBER2 accelerates B cell growth by potentiating expression of the UCHL1 deubiquitinase that itself increased expression of the Aurora kinases and of cyclin B1. Importantly, this effect was also visible in Burkitt's lymphoma cells that express none of the virus's known oncogenes. Mechanistically, EBER2 bound the UCHL1 messenger RNA (mRNA), thereby bringing a protein complex that includes PU.1, a UCHL1 transactivator, to the vicinity of its promoter. Although the EBV oncogene LMP1 has been suggested to induce UCHL1, we show here that EBER2 plays a much more important role to reach significant levels of the deubiquitinase in infected cells. However, some viruses that carried a polymorphic LMP1 had an increased ability to achieve full UCHL1 expression. This work identifies a direct cellular target of a viral noncoding RNA that is likely to be central to EBV's oncogenic properties.
Collapse
|
13
|
Rochford R. Reframing Burkitt lymphoma: virology not epidemiology defines clinical variants. ANNALS OF LYMPHOMA 2021; 5:22. [PMID: 34888589 PMCID: PMC8654190 DOI: 10.21037/aol-21-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In 1964, Epstein-Barr virus (EBV) was identified in a biopsy from a patient with Burkitt lymphoma (BL) launching a new field of study into this ubiquitous human virus. Almost 60 years later, insights into the role of EBV in lymphomagenesis are still emerging. While all BL carry the hallmark c-myc translocation, the epidemiologic classification of BL (e.g., endemic, sporadic or immunodeficiency-associated) has traditionally been used to define BL clinical variants. However, recent studies using molecular methods to characterize the transcriptional and genetic landscape of BL have identified several unique features are observed that distinguish EBV+ BL including a high level of activation induced deaminase mutation load, evidence of antigen selection in the B cell receptor, and a decreased mutation frequency of TCF3/ID3, all found predominantly in EBV+ compared to EBV- BL. In this review, the focus will be on summarizing recent studies that have done in depth characterization of genetic and transcriptional profiles of BL, describing the differences and similarities of EBV+ and EBV- BL, and what they reveal about the etiology of BL. The new studies put forth a compelling argument that the association with EBV should be the defining etiologic feature of clinical variants of BL. This reframing of BL has important implications for therapeutic interventions for BL that distinguish the EBV+ from the EBV- lymphomas.
Collapse
Affiliation(s)
- Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Ahmed W, Hassan Z, Abdelmowla YAA, Philip PS, Shmygol A, Khan G. Epstein-Barr virus noncoding small RNA (EBER1) induces cell proliferation by up-regulating cellular mitochondrial activity and calcium influx. Virus Res 2021; 305:198550. [PMID: 34454973 DOI: 10.1016/j.virusres.2021.198550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022]
Abstract
Epstein-Barr virus encoded RNAs (EBER1 and EBER2) are two non-polyadenylated, non-protein coding small RNAs expressed at high levels in all forms of EBV latent infections. Although not directly involved in cell transformation, a number of studies have reported that these RNAs may be involved in cell proliferation. However, which of the two EBERs play a major role in this process and the mechanisms involved remains unknown. The aim of this study was to investigate the role and mechanism of EBER1-induced cell proliferation. Using stably transfected EBER1 cell lines, and multiple methodologies, we show that EBER1 transfected epithelial, B and T cell lines proliferate at a higher rate, have higher metabolic activity and increased DNA synthesis. The mitochondrial number and activity was also observed to be higher in the EBER1 transfected cells. Moreover, cytochrome c activity and store operated calcium entry (SOCE) were potentiated in the EBER1 expressing cells. Finally, the genes associated with cell proliferation were also observed to be up-regulated in the EBER1 transfected cells. Taken together, our data has unravelled the role of mitochondria and cellular calcium pathway that appear to be involved in EBER1 induced cell proliferation of EBV infected cells.
Collapse
Affiliation(s)
- Waqar Ahmed
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zubaida Hassan
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yasmeen A A Abdelmowla
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Pretty S Philip
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anatoliy Shmygol
- Departments of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
15
|
Ikeda T, Gion Y, Nishimura Y, Nishimura MF, Yoshino T, Sato Y. Epstein-Barr Virus-Positive Mucocutaneous Ulcer: A Unique and Curious Disease Entity. Int J Mol Sci 2021; 22:ijms22031053. [PMID: 33494358 PMCID: PMC7865427 DOI: 10.3390/ijms22031053] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV)-positive mucocutaneous ulcer (EBVMCU) was first described as a lymphoproliferative disorder in 2010. EBVMCU is a unifocal mucosal or cutaneous ulcer that often occurs after local trauma in patients with immunosuppression; the patients generally have a good prognosis. It is histologically characterized by proliferating EBV-positive atypical B cells accompanied by ulcers. On the basis of conventional pathologic criteria, EBVMCU may be misdiagnosed as EBV-positive diffuse large B-cell lymphoma or other lymphomas. However, its prognosis differs from that of EBV-associated lymphomas, in that patients with EBVMCU frequently show spontaneous regression or complete remission without chemotherapy. Therefore, EBVMCU is now recognized as a low-grade malignancy or a pseudo-malignant lesion. Avoiding unnecessary chemotherapy by distinguishing EBVMCU from other EBV-associated lymphomas will reduce the burden and unnecessary harm on patients. On the basis of these facts, EBVMCU was first described as a new clinicopathological entity by the World Health Organization in 2017. In this review, we discuss the clinicopathological characteristics of previously reported EBVMCU cases, while focusing on up-to-date clinical, pathological, and genetic aspects.
Collapse
Affiliation(s)
- Tomoka Ikeda
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (T.I.); (M.F.N.); (T.Y.)
| | - Yuka Gion
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan;
| | - Yoshito Nishimura
- Department of General Medicine, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Midori Filiz Nishimura
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (T.I.); (M.F.N.); (T.Y.)
| | - Tadashi Yoshino
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (T.I.); (M.F.N.); (T.Y.)
| | - Yasuharu Sato
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (T.I.); (M.F.N.); (T.Y.)
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan;
- Correspondence: ; Tel.: +81-86-235-7150; Fax: +81-86-235-7156
| |
Collapse
|
16
|
Weidner-Glunde M, Kruminis-Kaszkiel E, Savanagouder M. Herpesviral Latency-Common Themes. Pathogens 2020; 9:E125. [PMID: 32075270 PMCID: PMC7167855 DOI: 10.3390/pathogens9020125] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Latency establishment is the hallmark feature of herpesviruses, a group of viruses, of which nine are known to infect humans. They have co-evolved alongside their hosts, and mastered manipulation of cellular pathways and tweaking various processes to their advantage. As a result, they are very well adapted to persistence. The members of the three subfamilies belonging to the family Herpesviridae differ with regard to cell tropism, target cells for the latent reservoir, and characteristics of the infection. The mechanisms governing the latent state also seem quite different. Our knowledge about latency is most complete for the gammaherpesviruses due to previously missing adequate latency models for the alpha and beta-herpesviruses. Nevertheless, with advances in cell biology and the availability of appropriate cell-culture and animal models, the common features of the latency in the different subfamilies began to emerge. Three criteria have been set forth to define latency and differentiate it from persistent or abortive infection: 1) persistence of the viral genome, 2) limited viral gene expression with no viral particle production, and 3) the ability to reactivate to a lytic cycle. This review discusses these criteria for each of the subfamilies and highlights the common strategies adopted by herpesviruses to establish latency.
Collapse
Affiliation(s)
- Magdalena Weidner-Glunde
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (E.K.-K.); (M.S.)
| | | | | |
Collapse
|
17
|
Ikeda T, Gion Y, Yoshino T, Sato Y. A review of EBV-positive mucocutaneous ulcers focusing on clinical and pathological aspects. J Clin Exp Hematop 2019; 59:64-71. [PMID: 31257347 PMCID: PMC6661964 DOI: 10.3960/jslrt.18039] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV)-positive mucocutaneous ulcers (EBVMCUs) were first described as a lymphoproliferative disorder in 2010. Clinically, EBVMCUs are shallow, sharply circumscribed, unifocal mucosal or cutaneous ulcers that occur in immunosuppressed patients, including those with advanced age-associated immunosenescence, iatrogenic immunosuppression, primary immune disorders, and HIV/AIDS-associated immune deficiencies. In general, patients exhibit indolent disease progression and spontaneous regression. Histologically, EBVMCUs are characterized by the proliferation of EBV-positive, variable-sized, atypical B-cells. According to conventional histopathologic criteria, EBVMCUs may diagnosed as lymphomas. However, EBVMCUs are recognized as pseudomalignant lesions because they spontaneously regress without anti-cancer treatment. Therefore, overtreatment must be carefully avoided and multilateral differentiation is important. In this article, we reviewed previously reported EBVMCUs focusing on their clinical and pathological aspects in comparison with other EBV-positive B-cell neoplasms.
Collapse
|
18
|
The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019; 5:e02624. [PMID: 31840114 PMCID: PMC6893087 DOI: 10.1016/j.heliyon.2019.e02624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
p53, p63, and p73, the members of the p53 family of proteins, are structurally similar proteins that play central roles regulating cell cycle and apoptotic cell death. Alternative splicing at the carboxyl terminus and the utilization of different promoters further categorizes these proteins as having different isoforms for each. Among such isoforms, TA and ΔN versions of each protein serve as the pro and the anti-apoptotic proteins, respectively. Changes in the expression patterns of these isoforms are noted in many human cancers. Proteins of certain human herpesviruses, like Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), interact with p53 family members and alter their expressions in many malignancies. Upon infections in the B cells and epithelial cells, EBV expresses different lytic or latent proteins during viral replication and latency respectively to preserve viral copy number, chromosomal integrity and viral persistence inside the host. In this review, we have surveyed and summarised the interactions of EBV gene products, known so far, with the p53 family proteins. The interactions between P53 and EBV oncoproteins are observed in stomach cancer, non-Hodgkin's lymphoma (NHL) of the head and neck, Nasopharyngeal Cancer (NPC), Gastric carcinoma (GC) and Burkitt's lymphoma (BL). EBV latent protein EBNA1, EBNA3C, LMP-1, and lytic proteins BZLF-1 can alter p53 expressions in many cancer cell lines. Interactions of p63 with EBNA-1, 2, 5, LMP-2A and BARF-1 have also been investigated in several cancers. Similarly, associations of p73 isoform with EBV latent proteins EBNA3C and LMP-1 have been reported. Methylation and single nucleotide polymorphisms in p53 have also been found to be correlated with EBV infection. Therefore, interactions and altered expression strategies of the isoforms of p53 family proteins in EBV associated cancers propose an important field for further molecular research.
Collapse
|
19
|
Epstein–Barr virus ncRNA from a nasopharyngeal carcinoma induces an inflammatory response that promotes virus production. Nat Microbiol 2019; 4:2475-2486. [DOI: 10.1038/s41564-019-0546-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
|
20
|
Ito Y, Makita S, Maeshima AM, Hatta S, Yuda S, Suzuki T, Fukuhara S, Munakata W, Taniguchi H, Suzuki T, Maruyama D, Izutsu K. EBV-encoded RNA1-positive cells in the bone marrow specimens of patients with EBV-negative lymphomas and sarcomas. Pathol Int 2019; 69:392-397. [PMID: 31328350 DOI: 10.1111/pin.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/12/2019] [Indexed: 12/01/2022]
Abstract
Epstein-Barr virus (EBV) infection is associated with pathogenesis of various cancers, including extranodal natural killer/T-cell lymphoma, nasal type (ENKL). ENKL tumor cells are positive for EBV-encoded RNA1 (EBER1), which is the most useful marker to identify ENKL tumor cells in histopathology. Currently, EBER1 in situ hybridization (ISH) is recommended to evaluate bone marrow (BM) involvement of ENKL. However, the actual burden of EBER1-positive cells in normal BM specimens remains unclear. In the present study, we performed EBER1 ISH on 111 BM specimens, which were obtained during an initial staging procedure in patients with EBV-negative cancers and were also negative for BM involvement. One or more EBER1-positive cells per whole specimen were observed in 38 specimens (34%). The number of EBER1-positive cells was distributed as follows: single positive cell, n = 17; two positive cells, n = 13; three positive cells, n = 3; and four positive cells, n = 5. These findings suggest that four or fewer EBER1-positive cells can be observed in BM specimens of patients with non-EBV-related cancers. The clinical implications of a small number of EBER1-positive cells in BM specimens of patients with ENKL should be evaluated in further studies.
Collapse
Affiliation(s)
- Yuta Ito
- Departments of Hematology and National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shinichi Makita
- Departments of Hematology and National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akiko Miyagi Maeshima
- Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shunsuke Hatta
- Departments of Hematology and National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Sayako Yuda
- Departments of Hematology and National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tomotaka Suzuki
- Departments of Hematology and National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Suguru Fukuhara
- Departments of Hematology and National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Wataru Munakata
- Departments of Hematology and National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hirokazu Taniguchi
- Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tatsuya Suzuki
- Departments of Hematology and National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Dai Maruyama
- Departments of Hematology and National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Koji Izutsu
- Departments of Hematology and National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
21
|
Wu R, Tang W, Tang D, Li Y, Bian L, Li Y. EBV-associated myoid tumor with lipoblast-like cells in a patient with normal immunity. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2733-2742. [PMID: 31934105 PMCID: PMC6949543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 04/23/2019] [Indexed: 06/10/2023]
Abstract
EBV-associated myoid tumor (EBVMT) comprises a specific group of soft tissue tumors with divergent histologic appearances, which typically occur in immunocompromised patients. To the best of our knowledge, there have been no previous reported of EBVMT in patients with normal immunity. EBVMT with lipoblast-like cells (EBVMT-LIC) is an extremely rare variant of EBVMT. Here, a male patient with normal immunity and EBVMT-LIC is presented. Comprehensive EBV latency expression pattern and tumorigenesis molecular analyses are performed to detail the pathologic features of this disease. Our patient was a 14-year-old who suffered from Burkitt's lymphoma 6 years ago and got complete remission for 5 years. At his last visit, he presented with pain and weakness in arms and legs. Subsequent MRI revealed an extramedullary mass at the cervical areas. CT-guided resection was then performed and comprehensive histopathologic examination was conducted. We found a haemangiopericytoma-like pattern with EBER-positive lipoblasts exist in this neoplasm and these features were in accordance with the diagnosis of EBVMT-LIC. Also, the EBV type I latency pattern was observed and the activation of Akt/mTOR pathway and Bcl-2 overexpression were found to be involved in the tumorigenesis of EBVMT-LIC. In conclusion, the results of this study suggest that EBVMT can occur in patients with normal immunity. EBV could achieve a latency type I pattern and may promote the development of EBVMT by activation of Akt/mTOR pathway and Bcl-2 overexpression. The role of chronic latent EBV infection in the development of EBVMT may be more important than previously thought.
Collapse
Affiliation(s)
- Ruohao Wu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, P. R. China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen UniversityGuangzhou 510120, P. R. China
| | - Wenting Tang
- Department of Research and Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen UniversityGuangzhou 510060, P. R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer CenterGuangzhou 510060, P. R. China
| | - Danxia Tang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, P. R. China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen UniversityGuangzhou 510120, P. R. China
| | - Yu Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, P. R. China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen UniversityGuangzhou 510120, P. R. China
| | - Lijuan Bian
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, P. R. China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen UniversityGuangzhou 510120, P. R. China
| | - Yang Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, P. R. China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen UniversityGuangzhou 510120, P. R. China
| |
Collapse
|
22
|
Mechanisms of B-Cell Oncogenesis Induced by Epstein-Barr Virus. J Virol 2019; 93:JVI.00238-19. [PMID: 30971472 PMCID: PMC6580952 DOI: 10.1128/jvi.00238-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus which asymptomatically infects the majority of the world population. Under immunocompromised conditions, EBV can trigger human cancers of epithelial and lymphoid origin. The oncogenic potential of EBV is demonstrated by in vitro infection and transformation of quiescent B cells into lymphoblastoid cell lines (LCLs). These cell lines, along with primary infection using genetically engineered viral particles coupled with recent technological advancements, have elucidated the underlying mechanisms of EBV-induced B-cell lymphomagenesis.
Collapse
|
23
|
Inhibition of Epstein-Barr Virus Replication in Human Papillomavirus-Immortalized Keratinocytes. J Virol 2019; 93:JVI.01216-18. [PMID: 30381489 DOI: 10.1128/jvi.01216-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is implicated in the pathogenesis of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OSCC). EBV-associated cancers harbor a latent EBV infection characterized by a lack of viral replication and the expression of viral oncogenes. Cellular changes promoted by HPV are comparable to those shown to facilitate EBV latency, though whether HPV-positive cells support a latent EBV infection has not been demonstrated. Using a model of direct EBV infection into HPV16-immortalized tonsillar cells grown in organotypic raft culture, we showed robust EBV replication in HPV-negative rafts but little to no replication in HPV-immortalized rafts. The reduced EBV replication was independent of immortalization, as human telomerase-immortalized normal oral keratinocytes supported robust EBV replication. Furthermore, we observed reduced EBV lytic gene expression and increased expression of EBER1, a noncoding RNA highly expressed in latently infected cells, in the presence of HPV. The use of human foreskin keratinocyte rafts expressing the HPV16 E6 and/or E7 oncogene(s) (HPV E6 and E7 rafts) showed that E7 was sufficient to reduce EBV replication. EBV replication is dependent upon epithelial differentiation and the differentiation-dependent expression of the transcription factors KLF4 and PRDM1. While KLF4 and PRDM1 levels were unaltered, the expression levels of KLF4 transcriptional targets, including late differentiation markers, were reduced in HPV E6 and E7 rafts compared to their levels in parental rafts. However, the HPV E7-mediated block in EBV replication correlated with delayed expression of early differentiation markers. Overall, this study reveals an HPV16-mediated block in EBV replication, through E7, that may facilitate EBV latency and long-term persistence in the tumor context.IMPORTANCE Using a model examining the establishment of EBV infection in HPV-immortalized tissues, we showed an HPV-induced interruption of the normal EBV life cycle reminiscent of a latent EBV infection. Our data support the notion that a persistent EBV epithelial infection depends upon preexisting cellular alterations and suggest the ability of HPV to promote such changes. More importantly, these findings introduce a model for how EBV coinfection may influence HPV-positive (HPV-pos) OSCC pathogenesis. Latently EBV-infected epithelial cells, as well as other EBV-associated head-and-neck carcinomas, exhibit oncogenic phenotypes commonly seen in HPV-pos OSCC. Therefore, an HPV-induced shift in the EBV life cycle toward latency would not only facilitate EBV persistence but also provide additional viral oncogene expression, which can contribute to the rapid progression of HPV-pos OSCC. These findings provide a step toward defining a role for EBV as a cofactor in HPV-positive oropharyngeal tumors.
Collapse
|
24
|
Yin H, Qu J, Peng Q, Gan R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol Immunol 2018; 208:573-583. [PMID: 30386928 PMCID: PMC6746687 DOI: 10.1007/s00430-018-0570-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/13/2018] [Indexed: 12/11/2022]
Abstract
The early stage of oncogenesis is linked to the disorder of the cell cycle. Abnormal gene expression often leads to cell cycle disorders, resulting in malignant transformation of human cells. Epstein–Barr virus (EBV) is associated with a diverse range of human neoplasms, such as malignant lymphoma, nasopharyngeal carcinoma and gastric cancer. EBV mainly infects human lymphocytes and oropharyngeal epithelial cells. EBV is latent in lymphocytes for a long period of time, is detached from the cytoplasm by circular DNA, and can integrate into the chromosome of cells. EBV expresses a variety of latent genes during latent infection. The interaction between EBV latent genes and oncogenes leads to host cell cycle disturbances, including the promotion of G1/S phase transition and inhibition of cell apoptosis, thereby promoting the development of EBV-associated neoplasms. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis involve diverse genes and signal pathways. Here, we review the molecular mechanisms of EBV-driven cell cycle progression and promoting oncogenesis.
Collapse
Affiliation(s)
- Huali Yin
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.,Department of Pathology, Central Hospital of Shaoyang, Hunan, China
| | - Jiani Qu
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Qiu Peng
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Runliang Gan
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Ahmed W, Tariq S, Khan G. Tracking EBV-encoded RNAs (EBERs) from the nucleus to the excreted exosomes of B-lymphocytes. Sci Rep 2018; 8:15438. [PMID: 30337610 PMCID: PMC6193935 DOI: 10.1038/s41598-018-33758-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus-encoded RNAs (EBER1 and EBER2) are two highly abundant, non-protein coding RNAs consistently expressed in all EBV infected cells, but their function remains poorly understood. Conventional in situ hybridization studies have indicated that these RNAs are present exclusively in the nucleus. We have recently demonstrated that EBERs can be excreted from infected cells via exosomes. However, the details of the steps involved in their excretion remain unknown. In this study, we aimed to directly track the journey of EBERs from the nucleus to the excretory exosomes of EBV immortalized B-lymphocytes. Using a combination of molecular and novel immuno-gold labelled electron microscopy (EM) based techniques, we demonstrate the presence of EBERs, not only in the nucleus, but also in the cytoplasm of EBV infected B cell lines. EBERs were also seen in exosomes shed from infected cells along with the EBER binding protein La. Our results show, for the first time, that at least a proportion of EBERs are transported from the nucleus to the cytoplasm where they appear to be loaded into multi-vesicular bodies for eventual excretion via exosomes.
Collapse
Affiliation(s)
- Waqar Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
26
|
Bullard WL, Flemington EK, Renne R, Tibbetts SA. Connivance, Complicity, or Collusion? The Role of Noncoding RNAs in Promoting Gammaherpesvirus Tumorigenesis. Trends Cancer 2018; 4:729-740. [PMID: 30352676 DOI: 10.1016/j.trecan.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
EBV and KSHV are etiologic agents of multiple types of lymphomas and carcinomas. The frequency of EBV+ or KSHV+ malignancies arising in immunocompromised individuals reflects the intricate evolutionary balance established between these viruses and their immunocompetent hosts. However, the specific mechanisms by which these pathogens drive tumorigenesis remain poorly understood. In recent years an enormous array of cellular and viral noncoding RNAs (ncRNAs) have been discovered, and host ncRNAs have been revealed as contributory factors to every single cancer hallmark cellular process. As new evidence emerges that gammaherpesvirus ncRNAs also alter host processes and viral factors dysregulate host ncRNA expression, and as novel viral ncRNAs continue to be discovered, we examine the contribution of small, non-miRNA ncRNAs and long ncRNAs to gammaherpesvirus tumorigenesis.
Collapse
Affiliation(s)
- Whitney L Bullard
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Erik K Flemington
- Department of Pathology, Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
27
|
Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood 2018; 131:2552-2567. [PMID: 29685921 DOI: 10.1182/blood-2017-07-794529] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) causes various diseases in the elderly, including B-cell lymphoma such as Hodgkin's lymphoma and diffuse large B-cell lymphoma. Here, we show that EBV acts in trans on noninfected macrophages in the tumor through exosome secretion and augments the development of lymphomas. In a humanized mouse model, the different formation of lymphoproliferative disease (LPD) between 2 EBV strains (Akata and B95-8) was evident. Furthermore, injection of Akata-derived exosomes affected LPD severity, possibly through the regulation of macrophage phenotype in vivo. Exosomes collected from Akata-lymphoblastoid cell lines reportedly contain EBV-derived noncoding RNAs such as BamHI fragment A rightward transcript (BART) micro-RNAs (miRNAs) and EBV-encoded RNA. We focused on the exosome-mediated delivery of BART miRNAs. In vitro, BART miRNAs could induce the immune regulatory phenotype in macrophages characterized by the gene expressions of interleukin 10, tumor necrosis factor-α, and arginase 1, suggesting the immune regulatory role of BART miRNAs. The expression level of an EBV-encoded miRNA was strongly linked to the clinical outcomes in elderly patients with diffuse large B-cell lymphoma. These results implicate BART miRNAs as 1 of the factors regulating the severity of lymphoproliferative disease and as a diagnostic marker for EBV+ B-cell lymphoma.
Collapse
|
28
|
Fitzsimmons L, Boyce AJ, Wei W, Chang C, Croom-Carter D, Tierney RJ, Herold MJ, Bell AI, Strasser A, Kelly GL, Rowe M. Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells. Cell Death Differ 2018; 25:241-254. [PMID: 28960205 PMCID: PMC5762840 DOI: 10.1038/cdd.2017.150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/26/2022] Open
Abstract
While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. We report that, while loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. Importantly, reinfection of EBV-loss clones with EBV, but surprisingly not transduction with individual BL-associated latent viral genes, restored protection from apoptosis. Expression profiling and functional analysis of apoptosis-related proteins and transcripts in BL cells revealed that EBV inhibits the upregulation of the proapoptotic BH3-only proteins, BIM and PUMA. We conclude that latent EBV genes cooperatively enhance the survival of BL cells by suppression of the intrinsic apoptosis pathway signalling via inhibition of the potent apoptosis initiators, BIM and PUMA.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Andrew J Boyce
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Wenbin Wei
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Catherine Chang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Rosemary J Tierney
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Marco J Herold
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew I Bell
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| | - Andreas Strasser
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Martin Rowe
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, UK
| |
Collapse
|
29
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
30
|
Yin Q, Sides M, Parsons CH, Flemington EK, Lasky JA. Arsenic trioxide inhibits EBV reactivation and promotes cell death in EBV-positive lymphoma cells. Virol J 2017. [PMID: 28637474 PMCID: PMC5480106 DOI: 10.1186/s12985-017-0784-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Epstein-Barr Virus (EBV) is associated with hematopoietic malignancies, such as Burkitt’s lymphoma, post-transplantation lymphoproliferative disorder, and diffuse large B-cell lymphoma. The current approach for EBV-associated lymphoma involves chemotherapy to eradicate cancer cells, however, normal cells may be injured and organ dysfunction may occur with currently employed regimens. This research is focused on employing arsenic trioxide (ATO) as EBV-specific cancer therapy takes advantage of the fact the EBV resides within the malignant cells. Methods and results Our research reveals that low ATO inhibits EBV gene expression and genome replication. EBV spontaneous reactivation starts as early as 6 h after re-suspending EBV-positive Mutu cells in RPMI media in the absence of ATO, however this does not occur in Mutu cells cultured with ATO. ATO’s inhibition of EBV spontaneous reactivation is dose dependent. The expression of the EBV immediate early gene Zta and early gene BMRF1 is blocked with low concentrations of ATO (0.5 nM – 2 nM) in EBV latency type I cells and EBV-infected PBMC cells. The combination of ATO and ganciclovir further diminishes EBV gene expression. ATO-mediated reduction of EBV gene expression can be rescued by co-treatment with the proteasome inhibitor MG132, indicating that ATO promotes ubiquitin conjugation and proteasomal degradation of EBV genes. Co-immunoprecipitation assays with antibodies against Zta pulls down more ubiquitin in ATO treated cell lysates. Furthermore, MG132 reverses the inhibitory effect of ATO on anti-IgM-, PMA- and TGF-β-mediated EBV reactivation. Thus, mechanistically ATO’s inhibition of EBV gene expression occurs via the ubiquitin pathway. Moreover, ATO treatment results in increased cell death in EBV-positive cells compared to EBV-negative cells, as demonstrated by both MTT and trypan blue assays. ATO-induced cell death in EBV-positive cells is dose dependent. ATO and ganciclovir in combination further enhances cell death specifically in EBV-positive cells. Conclusion ATO-mediated inhibition of EBV lytic gene expression results in cell death selectively in EBV-positive lymphocytes, suggesting that ATO may potentially serve as a drug to treat EBV-related lymphomas in the clinical setting.
Collapse
Affiliation(s)
- Qinyan Yin
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Mark Sides
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.,Department of Internal Medicine, University of Texas Medical Branch, 300 University Blvd, Galveston, TX, 77550, USA
| | - Christopher H Parsons
- Department of Internal Medicine, Louisiana University School of Medicine, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Joseph A Lasky
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
31
|
Zhao Z, Sun L, Liu S, Shu J, Luo B. Characterization of Epstein-Barr virus-encoded small RNA gene variations in virus associated lymphomas in Northern China. Arch Virol 2017; 162:1609-1616. [PMID: 28220325 DOI: 10.1007/s00705-017-3278-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/21/2017] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV)-encoded small RNAs (EBER1 and EBER2) are highly expressed in all forms of EBV latency in EBV-associated malignancies. EBER gene variations and their association with EBV-associated disease still remain poorly characterized. To investigate the patterns of EBER gene variations and their roles in tumorigenesis, EBER gene sequences were analyzed by nested-PCR and DNA sequencing in 101 lymphomas from Northern China, a non-nasopharyngeal carcinoma (NPC) endemic area. In addition, EBV type 1 and type 2 classifications were made by using nested-PCR assays across type-specific regions in the EBNA2 gene. EB-6m was the dominant subtype (95.0%, 96/101) in lymphoma. The distribution of the EBER subtypes in the four lymphoma groups was not significantly different (p > 0.05), neither was that of the EBNA2 type (p > 0.05). Compared with previous data in the same area, the distribution of EBER subtypes in lymphoma was similar to that in EBV-associated gastric carcinoma (EBVaGC) and throat washing (TW) from healthy donors (p > 0.05), but was significantly different from that of NPC. The EBNA2 type distribution between lymphoma and the other three groups was significantly different (p < 0.05). The proportion of type 1 and type 2 dual infections was higher in lymphoma than that in GC, NPC and TW. The mutation 7123nt A → T was identified in 11 of 101 (10.9%, 11/101) lymphomas, significantly more than that in EBV-associated gastric carcinomas (EBVaGC) (0%, 0/50) and throat washings (TWs) from healthy donors (3.3%, 3/92) (p < 0.05). These findings indicate that EBER subtypes may not be associated with pathogenesis of lymphoma, but that a point mutation at position 7123nt (A → T) provides a new area for further exploration. Furthermore it is necessary to investigate the role of EBNA2-subtype mixed infections in the establishment of lymphoma.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Lingling Sun
- Department of Pathology, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Song Liu
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Jun Shu
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| |
Collapse
|
32
|
Abstract
It is more than 50 years since the Epstein-Barr virus (EBV), the first human tumour virus, was discovered. EBV has subsequently been found to be associated with a diverse range of tumours of both lymphoid and epithelial origin. Progress in the molecular analysis of EBV has revealed fundamental mechanisms of more general relevance to the oncogenic process. This Timeline article highlights key milestones in the 50-year history of EBV and discusses how this virus provides a paradigm for exploiting insights at the molecular level in the diagnosis, treatment and prevention of cancer.
Collapse
Affiliation(s)
- Lawrence S Young
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences and Oral Cancer Research Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul G Murray
- Institute of Cancer and Genomic Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
33
|
Li Z, Duan Y, Cheng S, Chen Y, Hu Y, Zhang L, He J, Liao Q, Yang L, Sun LQ. EBV-encoded RNA via TLR3 induces inflammation in nasopharyngeal carcinoma. Oncotarget 2016; 6:24291-303. [PMID: 26172457 PMCID: PMC4695186 DOI: 10.18632/oncotarget.4552] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/20/2015] [Indexed: 12/11/2022] Open
Abstract
Pathogen-induced inflammation has been one of the intensive research areas in carcinogenesis. EBV encoded RNAs (EBERs) have been suggested to play roles in anti-apoptosis and growth-promotion in lymphoid and immune disorders. However, pathological roles of EBERs in solid tumors of epithelia origin remain to be elucidated. Given their characteristic dsRNA structures, recent studies provided evidences for the activation of some pattern recognition receptors (PRR) by EBERs, which is fundamental in the process of pathogenesis. Here, we show that EBERs induce inflammatory response in nasopharyngeal carcinoma (NPC) cells through Toll-like receptor 3 (TLR3), mainly featured by high level of TNFα production. Interestingly, EBERs and EBV latent membrane protein 1 (LMP1) form a positive regulatory loop with NF-κB as a key node that amplifies the inflammatory signals in EBV infected epithelial cells. We demonstrate in vivo that EBERs can interact with TLR3 and induce tumor cells to produce cytokines in B16 synergetic tumor and human NPC xenograft models, in which macrophages are recruited and activated, leading to a favorable microenvironment for solid tumor growth. Lastly, we verify a positive association between EBER and TNFα levels in NPC clinical samples and the combination of EBER and TNFα expressions provides a predictor of poor survival of NPC patients. In conclusion, EBERs play a pivotal role in inflammation-to-oncogenesis transition in NPC development.
Collapse
Affiliation(s)
- Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Yumei Duan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Shiyue Cheng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Yan Chen
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, China 100193
| | - Lu Zhang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Qiong Liao
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Lifang Yang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China 410008.,Cancer Research Institute, Central South University, Changsha, China 410008
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| |
Collapse
|
34
|
Sharma N, Singh SK. Implications of non-coding RNAs in viral infections. Rev Med Virol 2016; 26:356-68. [PMID: 27401792 DOI: 10.1002/rmv.1893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023]
Abstract
The advances in RNA sequencing have unveiled various non-coding RNAs (ncRNAs), which modulate the gene expression. ncRNAs do not get translated into proteins. These include transfer RNAs, ribosomal RNAs, microRNA (miRNA), short interfering RNA, long non-coding RNA, piwi-interacting RNA and small nuclear RNA. ncRNAs regulate gene expression at various levels and control cellular machinery. miRNAs have been reported in plants, animals, several invertebrates and viruses. The miRNAs regulate the gene expression post-transcriptionally. Viral infection strongly influences the abundance and the distribution of miRNAs and other ncRNAs within the host cells. Viruses may encode their own miRNA, which help in the viral life cycle and other aspects of pathogenesis. Viruses are known to successfully modulate the expression pattern of ncRNAs. The ncRNA-based strategies adopted by viruses for their survival present a complex picture of host-virus interactions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nikhil Sharma
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sunit K Singh
- Laboratory of Human Molecular Virology and Immunology, Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, India.
| |
Collapse
|
35
|
Roberts TK, Chen X, Liao JJ. Diagnostic and therapeutic challenges of EBV-positive mucocutaneous ulcer: a case report and systematic review of the literature. Exp Hematol Oncol 2016; 5:13. [PMID: 27127726 PMCID: PMC4848873 DOI: 10.1186/s40164-016-0042-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epstein-Barr virus-positive mucocutaneous ulcer (EBVMCU) is a recently recognized B cell lymphoproliferative disorder that is driven by latent EBV infection and causes discrete ulcerations in the oropharynx, gastrointestinal tract, and skin. Local attenuation of immunosurveillance associated with iatrogenic immunosuppressant use, primary immunodeficiency, or age-associated immunosenescence has been implicated as a predisposing factor. This disorder is likely under reported, as it was only first defined in 2010 and shares histological features with other B-cell proliferative neoplasms. The first case series that described EBVMCU suggested that EBVMCU is generally self-limited and is likely to resolve without treatment. Since that publication, additional cases have been reported that describe a more heterogeneous clinical course, often requiring aggressive therapy. We now systematically review all published cases of EBVMCU and detail a case of aggressive and progressive EBVMCU, including diagnostic and management challenges, as well as successful treatment with radiation therapy. CASE PRESENTATION A forty-nine year old woman presented with painful and debilitating multifocal oral EBVMCU that initially responded to four weekly doses of rituximab. Her disease relapsed within 3 months and continued to progress and cause significant morbidity. She was successfully treated with local external beam radiation therapy of 30 Gy in 15 fractions, with duration of response of at least 6 months. CONCLUSIONS We suggest that although many patients with EBVMCU experience a self-limited course, for others EBVMCU can be a debilitating, persistent disorder that requires aggressive therapy to prevent disease progression. CD20- and CD30-directed antibody therapy, local radiation therapy, local surgical excision, systemic chemotherapy, and a combination of these therapies have all been successfully used to treat EBVMCU with high rates of durable clinical remission. As EBVMCU is not currently included in the 2008 WHO classification of lymphoproliferative disorders and no evidence-based guidelines or expert opinions have been proposed to guide therapy, this case report and systematic review provides a foundation on which to guide therapeutic decisions.
Collapse
Affiliation(s)
- Toni K. Roberts
- Department of Hematology Oncology, Fred Hutchinson Cancer Research Center, University of Washington Allied Hospitals, 1100 Fairview Ave N-D5-100, Seattle, WA 98109-1024 USA
| | - Xueyan Chen
- Department of Laboratory Medicine, UW Hematopathology Laboratory, University of Washington, Box 358081, 825 Eastlake Ave E, Seattle, WA 98109 USA
| | - Jay Justin Liao
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, 1st floor, NN106, Seattle, WA 98195 USA
| |
Collapse
|
36
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
37
|
Elgui de Oliveira D, Müller-Coan BG, Pagano JS. Viral Carcinogenesis Beyond Malignant Transformation: EBV in the Progression of Human Cancers. Trends Microbiol 2016; 24:649-664. [PMID: 27068530 DOI: 10.1016/j.tim.2016.03.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 03/02/2016] [Accepted: 03/16/2016] [Indexed: 01/31/2023]
Abstract
Cancer progression begins when malignant cells colonize adjacent sites, and it is characterized by increasing tumor heterogeneity, invasion and dissemination of cancer cells. Clinically, progression is the most relevant stage in the natural history of cancers. A given virus is usually regarded as oncogenic because of its ability to induce malignant transformation of cells. Nonetheless, oncogenic viruses may also be important for the progression of infection-associated cancers. Recently this hypothesis has been addressed because of studies on the contribution of the Epstein-Barr virus (EBV) to the aggressiveness of nasopharyngeal carcinoma (NPC). Several EBV products modulate cancer progression phenomena, such as the epithelial-mesenchymal transition, cell motility, invasiveness, angiogenesis, and metastasis. In this regard, there are compelling data about the effects of EBV latent membrane proteins (LMPs) and EBV nuclear antigens (EBNAs), as well as nontranslated viral RNAs, such as the EBV-encoded small nonpolyadenylated RNAs (EBERs) and viral microRNAs, notably EBV miR-BARTs. The available data on the mechanisms and players involved in the contribution of EBV infection to the aggressiveness of NPC are discussed in this review. Overall, this conceptual framework may be valuable for the understanding of the contribution of some infectious agents in the progression of cancers.
Collapse
Affiliation(s)
- Deilson Elgui de Oliveira
- Viral Carcinogenesis and Cancer Biology Research Group (ViriCan) at Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Brazil; Pathology Department at Botucatu Medical School, São Paulo State University (UNESP), Brazil.
| | - Bárbara G Müller-Coan
- Viral Carcinogenesis and Cancer Biology Research Group (ViriCan) at Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Brazil
| | - Joseph S Pagano
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
38
|
Jha HC, Banerjee S, Robertson ES. The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 2016; 5:pathogens5010018. [PMID: 26861404 PMCID: PMC4810139 DOI: 10.3390/pathogens5010018] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Worldwide, one fifth of cancers in the population are associated with viral infections. Among them, gammaherpesvirus, specifically HHV4 (EBV) and HHV8 (KSHV), are two oncogenic viral agents associated with a large number of human malignancies. In this review, we summarize the current understanding of the molecular mechanisms related to EBV and KSHV infection and their ability to induce cellular transformation. We describe their strategies for manipulating major cellular systems through the utilization of cell cycle, apoptosis, immune modulation, epigenetic modification, and altered signal transduction pathways, including NF-kB, Notch, Wnt, MAPK, TLR, etc. We also discuss the important EBV latent antigens, namely EBNA1, EBNA2, EBNA3’s and LMP’s, which are important for targeting these major cellular pathways. KSHV infection progresses through the engagement of the activities of the major latent proteins LANA, v-FLIP and v-Cyclin, and the lytic replication and transcription activator (RTA). This review is a current, comprehensive approach that describes an in-depth understanding of gammaherpes viral encoded gene manipulation of the host system through targeting important biological processes in viral-associated cancers.
Collapse
Affiliation(s)
- Hem Chandra Jha
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Erle S Robertson
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Abstract
Over 12 % of all human cancers are caused by oncoviruses, primarily including Epstein-Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B and C viruses (HBV and HCV, respectively), and Kaposi's sarcoma herpesvirus (KSHV). In addition to viral oncoproteins, a variety of noncoding RNAs (ncRNAs) produced by oncoviruses have been recognized as important cofactors that contribute to the oncogenic events. In this chapter, we will focus on the recent understanding of the long and short noncoding RNAs, as well as microRNAs of the viruses, and discuss their roles in the biology of multistep oncogenesis mediated by established human oncoviruses.
Collapse
|
40
|
Chan JKI, Tai WM, Wen JM. Collision of lymphoepithelioma-like carcinoma and adenocarcinoma of the lung: a case report. CLINICAL RESPIRATORY JOURNAL 2015; 11:1052-1056. [PMID: 26476129 DOI: 10.1111/crj.12404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
Abstract
We report a rare case of collision of lymphoepithelioma-like carcinoma (LELC) and adenocarcinoma (AC) in the lung. A 59-year-old woman had a history of fever and cough. A mass was found by X-ray in the left upper lung. Magnetic resonance imaging (MRI) shows a dumbbell-like mass in the fore and tongue segment of the left upper lung with irregular spiculate margin. Positron emission tomography/computed tomography (PET/CT) (18F-FDG) shows strong concentration of radioactivity (SUVmax 6.9-12.3 cm) in the lung mass only. The patient subsequently underwent resection of left upper lung and associated hilar lymph nodes. Histological examination revealed it was a collision carcinoma comprising LELC and AC. The hilar lymph nodes were tumuor free. The immunoreactions, Epstein-Barr early RNA in situ hybridization and molecular analyses, such as EGFR mutation, c-Met, anaplastic lymphoma kinase were different in both tumuor components, indicating they derived from different cell origin. This rare case was discussed.
Collapse
Affiliation(s)
- Jammy Kin Iong Chan
- Department of Pathology, Kiang Wu Hospital, Macau Special Administrative Region, China
| | - Wai Meng Tai
- Department of Pathology, Kiang Wu Hospital, Macau Special Administrative Region, China
| | - Jian Ming Wen
- Department of Pathology, Kiang Wu Hospital, Macau Special Administrative Region, China
| |
Collapse
|
41
|
Kikuchi K, Noguchi Y, de Rivera MWGN, Hoshino M, Sakashita H, Yamada T, Inoue H, Miyazaki Y, Nozaki T, González-López BS, Ide F, Kusama K. Detection of Epstein-Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity. Tumour Biol 2015; 37:3389-404. [PMID: 26449822 DOI: 10.1007/s13277-015-4167-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022] Open
Abstract
A relationship between Epstein-Barr virus (EBV) infection and cancer of lymphoid and epithelial tissues such as Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma (NPC), gastric carcinoma, and oral cancer has been reported. EBV is transmitted orally and infects B cells and epithelial cells. However, it has remained uncertain whether EBV plays a role in carcinogenesis of oral mucosal tissue. In the present study, we detected the EBV genome and latent EBV gene expression in normal mucosal epithelia, epithelial dysplasia, and oral squamous cell carcinoma (OSCC) to clarify whether EBV is involved in carcinogenesis of the oral cavity. We examined 333 formalin-fixed, paraffin-embedded tissue samples (morphologically normal oral mucosa 30 samples, gingivitis 32, tonsillitis 17, oral epithelial dysplasia 83, OSCC 150, and NPC 21). EBV latent infection genes (EBNA-2, LMP-1) were detected not only in OSCC (50.2 %, 10.7 %) but also in severe epithelial dysplasia (66.7 %, 44.4 %), mild to moderate epithelial dysplasia (43.1 %, 18.5 %), gingivitis (78.1 %, 21.9 %), and normal mucosa (83.3 %, 23.3 %). Furthermore, the intensity of EBV latent infection gene expression (EBER, LMP-1) was significantly higher in severe epithelial dysplasia (94.4 %, 72.2 %) than in OSCC (34.7 %, 38.7 %). These results suggest that EBV latent infection genes and their increased expression in severe epithelial dysplasia might play an important role in the dysplasia-carcinoma sequence in the oral cavity.
Collapse
Affiliation(s)
- Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan.
| | - Yoshihiro Noguchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | | | - Miyako Hoshino
- Second Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Hideaki Sakashita
- Second Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Tsutomu Yamada
- Department of Pathology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Tadashige Nozaki
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, 573-1211, Japan
| | - Blanca Silvia González-López
- Department of Oral Pathology, Faculty of Dentistry, Autonomous University State of México, Jesús Carranza esquina paseo Tollocan, C.P. 50130, Toluca, Mexico
| | - Fumio Ide
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Kaoru Kusama
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| |
Collapse
|
42
|
Geng L, Wang X. Epstein-Barr Virus-associated lymphoproliferative disorders: experimental and clinical developments. Int J Clin Exp Med 2015; 8:14656-14671. [PMID: 26628948 PMCID: PMC4658837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
Epstein-Barr Virus (EBV), the first human virus related to oncogenesis, was initially identified in a Burkitt lymphoma cell line in 1964. EBV infects over 90% of the world's population. Most infected people maintain an asymptomatic but persistent EBV infection lifelong. However, in some individuals, EBV infection has been involved in the development of cancer and autoimmune disease. Nowadays, oncogenic potential of EBV has been intensively studied in a wide range of human neoplasms, including Hodgkin's lymphoma (HL), non-Hodgkin's lymphoma (NHL), nasopharyngeal carcinoma (NPC), gastric carcinoma (GC), etc. EBV encodes a series of viral protein and miRNAs, promoting its persistent infection and the transformation of EBV-infected cells. Although the exact role of EBV in the oncogenesis remains to be clarified, novel diagnostic and targeted therapeutic approaches are encouraging for the management of EBV-related malignancies. This review mainly focuses on the experimental and clinical advances of EBV-associated lymphoproliferative disorders.
Collapse
Affiliation(s)
- Lingyun Geng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong, P. R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong, P. R. China
- Department of Diagnostics, Shandong University School of MedicineJinan 250012, Shandong, P. R. China
| |
Collapse
|
43
|
Iwakiri D. Multifunctional non-coding Epstein-Barr virus encoded RNAs (EBERs) contribute to viral pathogenesis. Virus Res 2015; 212:30-8. [PMID: 26292159 DOI: 10.1016/j.virusres.2015.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
Epstein-Barr Virus (EBV) is known as an oncogenic herpesvirus implicated in the pathogenesis of various malignancies. It has been reported that EBV non-coding RNAs (ncRNAs) including EBV-encoded small RNAs (EBERs) and EBV-miRNAs contribute to viral pathogenesis. EBERs that are expressed abundantly in latently EBV-infected cells have been reported to play significant roles in tumorigenesis by EBV. Furthermore, it was demonstrated that the modulation of host innate immune signals by EBERs contributes to EBV-mediated pathogenesis including oncogenesis. Recently it was demonstrated that EBERs are secreted via exosomes by EBV-infected cells. It was also demonstrated that exosomes contain a number of EBV-encoded miRNAs. Various mRNAs have been identified as targets for regulation by EBV-miRNAs in host cells, therefore, EBERs and EBV-miRNAs might function through the transfer of exosomes.
Collapse
Affiliation(s)
- Dai Iwakiri
- Institute for Genetic Medicine, Hokkaido University, N15 W7 Kita-Ku, Sapporo 060-0815, Japan.
| |
Collapse
|
44
|
Duan Y, Li Z, Cheng S, Chen Y, Zhang L, He J, Liao Q, Yang L, Gong Z, Sun LQ. Nasopharyngeal carcinoma progression is mediated by EBER-triggered inflammation via the RIG-I pathway. Cancer Lett 2015; 361:67-74. [PMID: 25721089 DOI: 10.1016/j.canlet.2015.02.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022]
Abstract
EBERs (EBER1 and EBER2) are suggested to be involved in cellular transformation and tumor growth. Cytoplasmic pattern recognition receptor-RIG-I, which is characterized by the recognition of viral dsRNAs, could efficiently trigger the downstream pathways of innate immunity. Although some previous reports have shown that EBERs and RIG-I associate with hematological malignancies, the role of EBERs-RIG-I signaling in solid tumors remains to be clarified. Here we demonstrate that EBER mediation of the inflammatory response via RIG-I contributes to NPC development in vitro and in vivo. We first verified that the expression level of RIG-I was associated with EBER transcription in a dose-dependent manner in NPC cells and specimens from NPC patients. Furthermore, pro-inflammatory cytokine transcription and release were sharply reduced after RIG-I knockdown compared with the control shRNA group in the presence of EBERs, accompanied by an attenuation of the NF-κB and MAPK signaling pathways. Consequently, the tumor burden was greatly alleviated in the RIG-I knockdown group in a xenograft model. In addition, macrophage colony-stimulating factor (M-CSF) and monocyte chemoattractant protein (MCP-1), which promote the maturation and attraction of tumor-associated macrophages, were stimulated upon the introduction of EBERs, and this upregulation conceivably led to the tumor-promoting subset transition of the macrophages. Taken together, our results reveal that EBERs could promote NPC progression through RIG-I-mediated cancer-related inflammation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma
- Cell Differentiation
- Coculture Techniques
- Cytokines/genetics
- Cytokines/metabolism
- DEAD Box Protein 58
- DEAD-box RNA Helicases/antagonists & inhibitors
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Disease Progression
- Female
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/analysis
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nasopharyngeal Carcinoma
- Nasopharyngeal Neoplasms/immunology
- Nasopharyngeal Neoplasms/metabolism
- Nasopharyngeal Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Immunologic
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yumei Duan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; The department of pathology of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shiyue Cheng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Chen
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Zhang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Liao
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lifang Yang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Cancer Research Institute, Central South University, Changsha 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
45
|
Shen ZC, Luo B, Chen JN, Chao Y, Shao CK, Liu QQ, Wang Y. High prevalence of the EBER variant EB-8m in endemic nasopharyngeal carcinomas. PLoS One 2015; 10:e0121420. [PMID: 25807550 PMCID: PMC4373760 DOI: 10.1371/journal.pone.0121420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/01/2015] [Indexed: 01/26/2023] Open
Abstract
Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are the most highly expressed transcripts in all EBV-associated tumors and are involved in both lymphoid and epithelioid carcinogenesis. Our previous study on Chinese isolates from non-endemic area of nasopharyngeal carcinoma (NPC) identified new EBER variants (EB-8m and EB-10m) which were less common but relatively more frequent in NPC cases than healthy donors. In the present study, we determined the EBER variants in NPC cases and healthy donors from endemic and non-endemic areas of NPC within China and compared the EBER variants, in relation to the genotypes at BamHI F region (prototype F and f variant), between population groups and between two areas. According to the phylogenetic tree, four EBER variants (EB-6m, EB-8m, EB-10m and B95-8) were identified. EB-6m was dominant in all population groups except for endemic NPC group, in which EB-8m was dominant. EB-8m was more common in endemic NPC cases (82.0%, 41/50) than non-endemic NPC cases (33.7%, 32/95) (p<0.0001), and it was also more frequent in healthy donors from endemic area (32.4%, 24/74) than healthy donors from non-endemic area (1.1%, 1/92) (p<0.0001). More importantly, the EB-8m was more prevalent in NPC cases than healthy donors in both areas (p<0.0001). The f variant, which has been suggested to associate with endemic NPC, demonstrated preferential linkage with EB-8m in endemic isolates, however, the EB-8m variant seemed to be more specific to NPC isolates than f variant. These results reveal high prevalence of EBER EB-8m variant in endemic NPC cases, suggesting an association between NPC development and EBV isolates carrying EB-8m variant. Our finding identified a small healthy population group that shares the same viral strain which predominates in NPC cases. It could be interesting to carry extensive cohort studies following these individuals to evaluate the risk to develop NPC.
Collapse
Affiliation(s)
- Zhi-chao Shen
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
| | - Jian-ning Chen
- Department of Pathology, The Third Affiliated Hospitals of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yan Chao
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Chun-kui Shao
- Department of Pathology, The Third Affiliated Hospitals of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qian-qian Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
| | - Yun Wang
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
- * E-mail:
| |
Collapse
|
46
|
Abstract
Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles--including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation--have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action.
Collapse
Affiliation(s)
- Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Yang Eric Guo
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Tenaya K Vallery
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Mingyi Xie
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
47
|
Lee N, Moss WN, Yario TA, Steitz JA. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 2015; 160:607-618. [PMID: 25662012 DOI: 10.1016/j.cell.2015.01.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/14/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
EBER2 is an abundant nuclear noncoding RNA expressed by the Epstein-Barr virus (EBV). Probing its possible chromatin localization by CHART revealed EBER2's presence at the terminal repeats (TRs) of the latent EBV genome, overlapping previously identified binding sites for the B cell transcription factor PAX5. EBER2 interacts with PAX5 and is required for the localization of PAX5 to the TRs. EBER2 knockdown phenocopies PAX5 depletion in upregulating the expression of LMP2A/B and LMP1, genes nearest the TRs. Knockdown of EBER2 also decreases EBV lytic replication, underscoring the essential role of the TRs in viral replication. Recruitment of the EBER2-PAX5 complex is mediated by base-pairing between EBER2 and nascent transcripts from the TR locus. The interaction is evolutionarily conserved in the related primate herpesvirus CeHV15 despite great sequence divergence. Using base-pairing with nascent RNA to guide an interacting transcription factor to its DNA target site is a previously undescribed function for a trans-acting noncoding RNA.
Collapse
Affiliation(s)
- Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Therese A Yario
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| |
Collapse
|
48
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Ressing ME, van Gent M, Gram AM, Hooykaas MJG, Piersma SJ, Wiertz EJHJ. Immune Evasion by Epstein-Barr Virus. Curr Top Microbiol Immunol 2015; 391:355-81. [PMID: 26428381 DOI: 10.1007/978-3-319-22834-1_12] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epstein-Bar virus (EBV) is widespread within the human population with over 90% of adults being infected. In response to primary EBV infection, the host mounts an antiviral immune response comprising both innate and adaptive effector functions. Although the immune system can control EBV infection to a large extent, the virus is not cleared. Instead, EBV establishes a latent infection in B lymphocytes characterized by limited viral gene expression. For the production of new viral progeny, EBV reactivates from these latently infected cells. During the productive phase of infection, a repertoire of over 80 EBV gene products is expressed, presenting a vast number of viral antigens to the primed immune system. In particular the EBV-specific CD4+ and CD8+ memory T lymphocytes can respond within hours, potentially destroying the virus-producing cells before viral replication is completed and viral particles have been released. Preceding the adaptive immune response, potent innate immune mechanisms provide a first line of defense during primary and recurrent infections. In spite of this broad range of antiviral immune effector mechanisms, EBV persists for life and continues to replicate. Studies performed over the past decades have revealed a wide array of viral gene products interfering with both innate and adaptive immunity. These include EBV-encoded proteins as well as small noncoding RNAs with immune-evasive properties. The current review presents an overview of the evasion strategies that are employed by EBV to facilitate immune escape during latency and productive infection. These evasion mechanisms may also compromise the elimination of EBV-transformed cells, and thus contribute to malignancies associated with EBV infection.
Collapse
Affiliation(s)
- Maaike E Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna M Gram
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein J G Hooykaas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sytse J Piersma
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
50
|
Rowe M, Fitzsimmons L, Bell AI. Epstein-Barr virus and Burkitt lymphoma. CHINESE JOURNAL OF CANCER 2014; 33:609-19. [PMID: 25418195 PMCID: PMC4308657 DOI: 10.5732/cjc.014.10190] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 12/12/2022]
Abstract
In 1964, a new herpesvirus, Epstein-Barr virus (EBV), was discovered in cultured tumor cells derived from a Burkitt lymphoma (BL) biopsy taken from an African patient. This was a momentous event that reinvigorated research into viruses as a possible cause of human cancers. Subsequent studies demonstrated that EBV was a potent growth-transforming agent for primary B cells, and that all cases of BL carried characteristic chromosomal translocations resulting in constitutive activation of the c-MYC oncogene. These results hinted at simple oncogenic mechanisms that would make Burkitt lymphoma paradigmatic for cancers with viral etiology. In reality, the pathogenesis of this tumor is rather complicated with regard to both the contribution of the virus and the involvement of cellular oncogenes. Here, we review the current understanding of the roles of EBV and c-MYC in the pathogenesis of BL and the implications for new therapeutic strategies to treat this lymphoma.
Collapse
Affiliation(s)
- Martin Rowe
- School of Cancer Sciences, University of Bir-mingham CMDS, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|