1
|
Anisenko AN, Nefedova AA, Kireev II, Gottikh MB. Post-Integrational DNA Repair of HIV-1 Is Associated with Activation of the DNA-PK and ATM Cellular Protein Kinases and Phosphorylation of Their Targets. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1122-1132. [PMID: 38981705 DOI: 10.1134/s0006297924060117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 07/11/2024]
Abstract
Integration of the DNA copy of HIV-1 genome into the cellular genome results in series of damages, repair of which is critical for successful replication of the virus. We have previously demonstrated that the ATM and DNA-PK kinases, normally responsible for repairing double-strand breaks in the cellular DNA, are required to initiate the HIV-1 DNA postintegrational repair, even though integration does not result in DNA double-strand breaks. In this study, we analyzed changes in phosphorylation status of ATM (pSer1981), DNA-PK (pSer2056), and their related kinase ATR (pSer428), as well as their targets: Chk1 (pSer345), Chk2 (pThr68), H2AX (pSer139), and p53 (pSer15) during the HIV-1 DNA postintegrational repair. We have shown that ATM and DNA-PK, but not ATR, undergo autophosphorylation during postintegrational DNA repair and phosphorylate their target proteins Chk2 and H2AX. These data indicate common signaling mechanisms between the double-strand DNA break repair and postintegrational repair of HIV-1 DNA.
Collapse
Affiliation(s)
- Andrey N Anisenko
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasiia A Nefedova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Marina B Gottikh
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Batisse C, Lapaillerie D, Humbert N, Real E, Zhu R, Mély Y, Parissi V, Ruff M, Batisse J. Integrase-LEDGF/p75 complex triggers the formation of biomolecular condensates that modulate HIV-1 integration efficiency in vitro. J Biol Chem 2024; 300:107374. [PMID: 38762180 PMCID: PMC11208922 DOI: 10.1016/j.jbc.2024.107374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024] Open
Abstract
The pre-integration steps of the HIV-1 viral cycle are some of the most valuable targets of recent therapeutic innovations. HIV-1 integrase (IN) displays multiple functions, thanks to its considerable conformational flexibility. Recently, such flexible proteins have been characterized by their ability to form biomolecular condensates as a result of Liquid-Liquid-Phase-Separation (LLPS), allowing them to evolve in a restricted microenvironment within cells called membrane-less organelles (MLO). The LLPS context constitutes a more physiological approach to study the integration of molecular mechanisms performed by intasomes (complexes containing viral DNA, IN, and its cellular cofactor LEDGF/p75). We investigated here if such complexes can form LLPS in vitro and if IN enzymatic activities were affected by this LLPS environment. We observed that the LLPS formed by IN-LEDGF/p75 functional complexes modulate the in vitro IN activities. While the 3'-processing of viral DNA ends was drastically reduced inside LLPS, viral DNA strand transfer was strongly enhanced. These two catalytic IN activities appear thus tightly regulated by the environment encountered by intasomes.
Collapse
Affiliation(s)
- Claire Batisse
- Department of Integrated Structural Biology, Chromatin Stability and DNA Mobility, IGBMC, U-596 INSERM, UMR-7104 CNRS, University of Strasbourg, Illkirch Cedex, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France
| | - Delphine Lapaillerie
- Fundamental Microbiology and Pathogenicity Laboratory (MFP), UMR-5234 CNRS-University of Bordeaux, Bordeaux, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France
| | - Nicolas Humbert
- Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Eleonore Real
- Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Rui Zhu
- Department of Integrated Structural Biology, Chromatin Stability and DNA Mobility, IGBMC, U-596 INSERM, UMR-7104 CNRS, University of Strasbourg, Illkirch Cedex, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Vincent Parissi
- Fundamental Microbiology and Pathogenicity Laboratory (MFP), UMR-5234 CNRS-University of Bordeaux, Bordeaux, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France.
| | - Marc Ruff
- Department of Integrated Structural Biology, Chromatin Stability and DNA Mobility, IGBMC, U-596 INSERM, UMR-7104 CNRS, University of Strasbourg, Illkirch Cedex, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France.
| | - Julien Batisse
- Department of Integrated Structural Biology, Chromatin Stability and DNA Mobility, IGBMC, U-596 INSERM, UMR-7104 CNRS, University of Strasbourg, Illkirch Cedex, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France.
| |
Collapse
|
3
|
Kikhai TF, Agapkina YY, Prikazchikova TA, Vdovina MV, Shekhtman SP, Fomicheva SV, Korolev SP, Gottikh MB. Role of I182, R187, and K188 Amino Acid Residues in the Catalytic Domain of HIV-1 Integrase in the Processes of Reverse Transcription and Integration. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:462-473. [PMID: 38648766 DOI: 10.1134/s0006297924030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 04/25/2024]
Abstract
Structural organization of HIV-1 integrase is based on a tetramer formed by two protein dimers. Within this tetramer, the catalytic domain of one subunit of the first dimer interacts with the N-terminal domain of the second dimer subunit. It is the tetrameric structure that allows both ends of the viral DNA to be correctly positioned relative to the cellular DNA and to realize catalytic functions of integrase, namely 3'-processing and strand transfer. However, during the HIV-1 replicative cycle, integrase is responsible not only for the integration stage, it is also involved in reverse transcription and is necessary at the stage of capsid formation of the newly formed virions. It has been suggested that HIV-1 integrase is a structurally dynamic protein and its biological functions depend on its structure. Accordingly, studying interactions between the domains of integrase that provide its tetrameric structure is important for understanding its multiple functions. In this work, we investigated the role of three amino acids of the catalytic domain, I182, R187, and K188, located in the contact region of two integrase dimers in the tetramer structure, in reverse transcription and integration. It has been shown that the R187 residue is extremely important for formation of the correct integrase structure, which is necessary at all stages of its functional activity. The I182 residue is necessary for successful integration and is not important for reverse transcription, while the K188 residue, on the contrary, is involved in formation of the integrase structure, which is important for the effective reverse transcription.
Collapse
Affiliation(s)
- Tatiana F Kikhai
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Yulia Yu Agapkina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Maria V Vdovina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sofia P Shekhtman
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sofia V Fomicheva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sergey P Korolev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Marina B Gottikh
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Ajoge HO, Renner TM, Bélanger K, Greig M, Dankar S, Kohio HP, Coleman MD, Ndashimye E, Arts EJ, Langlois MA, Barr SD. Antiretroviral APOBEC3 cytidine deaminases alter HIV-1 provirus integration site profiles. Nat Commun 2023; 14:16. [PMID: 36627271 PMCID: PMC9832166 DOI: 10.1038/s41467-022-35379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
APOBEC3 (A3) proteins are host-encoded deoxycytidine deaminases that provide an innate immune barrier to retroviral infection, notably against HIV-1. Low levels of deamination are believed to contribute to the genetic evolution of HIV-1, while intense catalytic activity of these proteins can induce catastrophic hypermutation in proviral DNA leading to near-total HIV-1 restriction. So far, little is known about how A3 cytosine deaminases might impact HIV-1 proviral DNA integration sites in human chromosomal DNA. Using a deep sequencing approach, we analyze the influence of catalytic active and inactive APOBEC3F and APOBEC3G on HIV-1 integration site selections. Here we show that DNA editing is detected at the extremities of the long terminal repeat regions of the virus. Both catalytic active and non-catalytic A3 mutants decrease insertions into gene coding sequences and increase integration sites into SINE elements, oncogenes and transcription-silencing non-B DNA features. Our data implicates A3 as a host factor influencing HIV-1 integration site selection and also promotes what appears to be a more latent expression profile.
Collapse
Affiliation(s)
- Hannah O Ajoge
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Tyler M Renner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kasandra Bélanger
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew Greig
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hinissan P Kohio
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Macon D Coleman
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Emmanuel Ndashimye
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Eric J Arts
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Ottawa Center for Infection, Immunity and Inflammation (CI3), Ottawa, ON, Canada.
| | - Stephen D Barr
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada.
| |
Collapse
|
5
|
Shema Mugisha C, Dinh T, Kumar A, Tenneti K, Eschbach JE, Davis K, Gifford R, Kvaratskhelia M, Kutluay SB. Emergence of Compensatory Mutations Reveals the Importance of Electrostatic Interactions between HIV-1 Integrase and Genomic RNA. mBio 2022; 13:e0043122. [PMID: 35975921 PMCID: PMC9601147 DOI: 10.1128/mbio.00431-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023] Open
Abstract
HIV-1 integrase (IN) has a noncatalytic function in virion maturation through its binding to the viral RNA genome (gRNA). Class II IN substitutions inhibit IN-gRNA binding and result in the formation of virions with aberrant morphologies marked by mislocalization of the gRNA between the capsid lattice and the lipid envelope. These viruses are noninfectious due to a block at an early reverse transcription stage in target cells. HIV-1 IN utilizes basic residues within its C-terminal domain (CTD) to bind to the gRNA; however, the molecular nature of how these residues mediate gRNA binding and whether other regions of IN are involved remain unknown. To address this, we have isolated compensatory substitutions in the background of a class II IN mutant virus bearing R269A/K273A substitutions within the IN-CTD. We found that the nearby D256N and D270N compensatory substitutions restored the ability of IN to bind gRNA and led to the formation of mature infectious virions. Reinstating the local positive charge of the IN-CTD through individual D256R, D256K, D278R, and D279R substitutions was sufficient to specifically restore IN-gRNA binding and reverse transcription for the IN R269A/K273A as well as the IN R262A/R263A class II mutants. Structural modeling suggested that compensatory substitutions in the D256 residue created an additional interaction interface for gRNA binding, whereas other substitutions acted locally within the unstructured C-terminal tail of IN. Taken together, our findings highlight the essential role of CTD in gRNA binding and reveal the importance of pliable electrostatic interactions between the IN-CTD and the gRNA. IMPORTANCE In addition to its catalytic function, HIV-1 integrase (IN) binds to the viral RNA genome (gRNA) through positively charged residues (i.e., R262, R263, R269, K273) within its C-terminal domain (CTD) and regulates proper virion maturation. Mutation of these residues results in the formation of morphologically aberrant viruses blocked at an early reverse transcription stage in cells. Here we show that compensatory substitutions in nearby negatively charged aspartic acid residues (i.e., D256N, D270N) restore the ability of IN to bind gRNA for these mutant viruses and result in the formation of accurately matured infectious virions. Similarly, individual charge reversal substitutions at D256 as well as other nearby positions (i.e., D278, D279) are all sufficient to enable the respective IN mutants to bind gRNA, and subsequently restore reverse transcription and virion infectivity. Taken together, our findings reveal the importance of highly pliable electrostatic interactions in IN-gRNA binding.
Collapse
Affiliation(s)
- Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tung Dinh
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Abhishek Kumar
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Keanu Davis
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, United Kingdom
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
6
|
Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022; 14:v14071397. [PMID: 35891378 PMCID: PMC9316232 DOI: 10.3390/v14071397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Vincent Parissi
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Fundamental Microbiology and Pathogenicity (MFP), CNRS, University of Bordeaux, UMR5234, 33405 Bordeaux, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Correspondence: ; Tel.: +33-4-72722624; Fax: +33-4-72722616
| |
Collapse
|
7
|
Engelman AN, Kvaratskhelia M. Multimodal Functionalities of HIV-1 Integrase. Viruses 2022; 14:926. [PMID: 35632668 PMCID: PMC9144474 DOI: 10.3390/v14050926] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.
Collapse
Affiliation(s)
- Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Capsid Lattice Destabilization Leads to Premature Loss of the Viral Genome and Integrase Enzyme during HIV-1 Infection. J Virol 2020; 95:JVI.00984-20. [PMID: 33115869 DOI: 10.1128/jvi.00984-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/24/2020] [Indexed: 01/28/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral ribonucleoprotein complex (vRNP) consisting of a dimeric viral genome and associated proteins, together constituting the viral core. Upon entry into target cells, the viral core undergoes a process termed uncoating, during which CA molecules are shed from the lattice. Although the timing and degree of uncoating are important for reverse transcription and integration, the molecular basis of this phenomenon remains unclear. Using complementary approaches, we assessed the impact of core destabilization on the intrinsic stability of the CA lattice in vitro and fates of viral core components in infected cells. We found that substitutions in CA can impact the intrinsic stability of the CA lattice in vitro in the absence of vRNPs, which mirrored findings from an assessment of CA stability in virions. Altering CA stability tended to increase the propensity to form morphologically aberrant particles, in which the vRNPs were mislocalized between the CA lattice and the viral lipid envelope. Importantly, destabilization of the CA lattice led to premature dissociation of CA from vRNPs in target cells, which was accompanied by proteasomal-independent losses of the viral genome and integrase enzyme. Overall, our studies show that the CA lattice protects the vRNP from untimely degradation in target cells and provide the mechanistic basis of how CA stability influences reverse transcription.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral RNA genome and the associated viral enzymes and proteins, together constituting the viral core. Upon infection of a new cell, viral cores are released into the cytoplasm where they undergo a process termed "uncoating," i.e., shedding of CA molecules from the conical lattice. Although proper and timely uncoating has been shown to be important for reverse transcription, the molecular mechanisms that link these two events remain poorly understood. In this study, we show that destabilization of the CA lattice leads to premature dissociation of CA from viral cores, which exposes the viral genome and the integrase enzyme for degradation in target cells. Thus, our studies demonstrate that the CA lattice protects the viral ribonucleoprotein complexes from untimely degradation in target cells and provide the first causal link between how CA stability affects reverse transcription.
Collapse
|
9
|
Elliott JL, Eschbach JE, Koneru PC, Li W, Puray-Chavez M, Townsend D, Lawson DQ, Engelman AN, Kvaratskhelia M, Kutluay SB. Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis. eLife 2020; 9:54311. [PMID: 32960169 PMCID: PMC7671690 DOI: 10.7554/elife.54311] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/22/2020] [Indexed: 01/29/2023] Open
Abstract
A large number of human immunodeficiency virus 1 (HIV-1) integrase (IN) alterations, referred to as class II substitutions, exhibit pleiotropic effects during virus replication. However, the underlying mechanism for the class II phenotype is not known. Here we demonstrate that all tested class II IN substitutions compromised IN-RNA binding in virions by one of the three distinct mechanisms: (i) markedly reducing IN levels thus precluding the formation of IN complexes with viral RNA; (ii) adversely affecting functional IN multimerization and consequently impairing IN binding to viral RNA; and (iii) directly compromising IN-RNA interactions without substantially affecting IN levels or functional IN multimerization. Inhibition of IN-RNA interactions resulted in the mislocalization of viral ribonucleoprotein complexes outside the capsid lattice, which led to premature degradation of the viral genome and IN in target cells. Collectively, our studies uncover causal mechanisms for the class II phenotype and highlight an essential role of IN-RNA interactions for accurate virion maturation.
Collapse
Affiliation(s)
- Jennifer L Elliott
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Jenna E Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Pratibha C Koneru
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Dana Townsend
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Dana Q Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| |
Collapse
|
10
|
Elliott JL, Kutluay SB. Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis. Viruses 2020; 12:E1005. [PMID: 32916894 PMCID: PMC7551943 DOI: 10.3390/v12091005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.
Collapse
Affiliation(s)
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
11
|
Kleinpeter AB, Freed EO. HIV-1 Maturation: Lessons Learned from Inhibitors. Viruses 2020; 12:E940. [PMID: 32858867 PMCID: PMC7552077 DOI: 10.3390/v12090940] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Since the emergence of HIV and AIDS in the early 1980s, the development of safe and effective therapies has accompanied a massive increase in our understanding of the fundamental processes that drive HIV biology. As basic HIV research has informed the development of novel therapies, HIV inhibitors have been used as probes for investigating basic mechanisms of HIV-1 replication, transmission, and pathogenesis. This positive feedback cycle has led to the development of highly effective combination antiretroviral therapy (cART), which has helped stall the progression to AIDS, prolong lives, and reduce transmission of the virus. However, to combat the growing rates of virologic failure and toxicity associated with long-term therapy, it is important to diversify our repertoire of HIV-1 treatments by identifying compounds that block additional steps not targeted by current drugs. Most of the available therapeutics disrupt early events in the replication cycle, with the exception of the protease (PR) inhibitors, which act at the virus maturation step. HIV-1 maturation consists of a series of biochemical changes that facilitate the conversion of an immature, noninfectious particle to a mature infectious virion. These changes include proteolytic processing of the Gag polyprotein by the viral protease (PR), structural rearrangement of the capsid (CA) protein, and assembly of individual CA monomers into hexamers and pentamers that ultimately form the capsid. Here, we review the development and therapeutic potential of maturation inhibitors (MIs), an experimental class of anti-HIV-1 compounds with mechanisms of action distinct from those of the PR inhibitors. We emphasize the key insights into HIV-1 biology and structure that the study of MIs has provided. We will focus on three distinct groups of inhibitors that block HIV-1 maturation: (1) compounds that block the processing of the CA-spacer peptide 1 (SP1) cleavage intermediate, the original class of compounds to which the term MI was applied; (2) CA-binding inhibitors that disrupt capsid condensation; and (3) allosteric integrase inhibitors (ALLINIs) that block the packaging of the viral RNA genome into the condensing capsid during maturation. Although these three classes of compounds have distinct structures and mechanisms of action, they share the ability to block the formation of the condensed conical capsid, thereby blocking particle infectivity.
Collapse
Affiliation(s)
| | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
12
|
Nguyen PDM, Zheng J, Gremminger TJ, Qiu L, Zhang D, Tuske S, Lange MJ, Griffin PR, Arnold E, Chen SJ, Zou X, Heng X, Burke DH. Binding interface and impact on protease cleavage for an RNA aptamer to HIV-1 reverse transcriptase. Nucleic Acids Res 2020; 48:2709-2722. [PMID: 31943114 PMCID: PMC7049723 DOI: 10.1093/nar/gkz1224] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit RT in enzymatic and viral replication assays. Some aptamers inhibit RT from only a few viral clades, while others show broad-spectrum inhibition. Biophysical determinants of recognition specificity are poorly understood. We investigated the interface between HIV-1 RT and a broad–spectrum UCAA-family aptamer. SAR and hydroxyl radical probing identified aptamer structural elements critical for inhibition and established the role of signature UCAA bulge motif in RT-aptamer interaction. HDX footprinting on RT ± aptamer shows strong contacts with both subunits, especially near the C-terminus of p51. Alanine scanning revealed decreased inhibition by the aptamer for mutants P420A, L422A and K424A. 2D proton nuclear magnetic resonance and SAXS data provided constraints on the solution structure of the aptamer and enable computational modeling of the docked complex with RT. Surprisingly, the aptamer enhanced proteolytic cleavage of precursor p66/p66 by HIV-1 protease, suggesting that it stabilizes the productive conformation to allow maturation. These results illuminate features at the RT-aptamer interface that govern recognition specificity by a broad-spectrum antiviral aptamer, and they open new possibilities for accelerating RT maturation and interfering with viral replication.
Collapse
Affiliation(s)
- Phuong D M Nguyen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University Missouri, Columbia, MO 65211, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Liming Qiu
- Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA
| | - Dong Zhang
- Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA
| | - Steve Tuske
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Margaret J Lange
- Department of Molecular Microbiology & Immunology, University Missouri, Columbia, MO 65211, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shi-Jie Chen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science and Informatics, University Missouri, Columbia, MO 65211, USA
| | - Xiaoqin Zou
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science and Informatics, University Missouri, Columbia, MO 65211, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology & Immunology, University Missouri, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Larguet F, Caté C, Barbeau B, Rassart E, Edouard E. Histone deacetylase 1 interacts with HIV-1 Integrase and modulates viral replication. Virol J 2019; 16:138. [PMID: 31744547 PMCID: PMC6862858 DOI: 10.1186/s12985-019-1249-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/05/2019] [Indexed: 01/09/2023] Open
Abstract
Background HIV-1 hijacks the cellular machinery for its own replication through protein-protein interactions between viral and host cell factors. One strategy against HIV-1 infection is thus to target these key protein complexes. As the integration of reverse transcribed viral cDNA into a host cell chromosome is an essential step in the HIV-1 life cycle, catalyzed by the viral integrase and other important host factors, we aimed at identifying new integrase binding partners through a novel approach. Methods A LTR-derived biotinylated DNA fragment complexed with the integrase on magnetic beads was incubated with extracts from integrase-expressing 293 T cells. Liquid chromatography-mass spectrometry/mass spectrometry and co-immunoprecipitation/pull-down experiments were used for the identification of binding partners. Transfections of histone deacetylase 1 (HDAC1) expression vectors and/or specific siRNA were conducted in HeLa-CD4 and 293 T cells followed by infection with fully infectious NL4–3 and luciferase-expressing pseudotyped viruses or by proviral DNA transfection. Fully infectious and pseudotyped viruses produced from HDAC1-silenced 293 T cells were tested for their infectivity toward HeLa-CD4 cells, T cell lines and primary CD4+ T cells. Late RT species and integrated viral DNA were quantified by qPCR and infectivity was measured by luciferase activity and p24 ELISA assay. Results were analyzed by the Student’s t-test. Results Using our integrase-LTR bait approach, we successfully identified new potential integrase-binding partners, including HDAC1. We further confirmed that HDAC1 interacted with the HIV-1 integrase in co-immunoprecipitation and pull-down experiments. HDAC1 knockdown in infected HeLa cells was shown to interfere with an early preintegration step of the HIV-1 replication cycle, which possibly involves reverse transcription. We also observed that, while HDAC1 overexpression inhibited HIV-1 expression after integration, HDAC1 knockdown had no effect on this step. In virus producer cells, HDAC1 knockdown had a limited impact on virus infectivity in either cell lines or primary CD4+ T cells. Conclusions Our results show that HDAC1 interacts with the HIV-1 integrase and affects virus replication before and after integration. Overall, HDAC1 appears to facilitate HIV-1 replication with a major effect on a preintegration step, which likely occurs at the reverse transcription step.
Collapse
Affiliation(s)
- Fadila Larguet
- Département des sciences biologiques, and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Clément Caté
- Département des sciences biologiques, and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Benoit Barbeau
- Département des sciences biologiques, and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Eric Rassart
- Département des sciences biologiques, and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada.
| | - Elsy Edouard
- Département des sciences biologiques, and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
14
|
Engelman AN. Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. J Biol Chem 2019; 294:15137-15157. [PMID: 31467082 DOI: 10.1074/jbc.rev119.006901] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antiretroviral inhibitors that are used to manage HIV infection/AIDS predominantly target three enzymes required for virus replication: reverse transcriptase, protease, and integrase. Although integrase inhibitors were the last among this group to be approved for treating people living with HIV, they have since risen to the forefront of treatment options. Integrase strand transfer inhibitors (INSTIs) are now recommended components of frontline and drug-switch antiretroviral therapy formulations. Integrase catalyzes two successive magnesium-dependent polynucleotidyl transferase reactions, 3' processing and strand transfer, and INSTIs tightly bind the divalent metal ions and viral DNA end after 3' processing, displacing from the integrase active site the DNA 3'-hydroxyl group that is required for strand transfer activity. Although second-generation INSTIs present higher barriers to the development of viral drug resistance than first-generation compounds, the mechanisms underlying these superior barrier profiles are incompletely understood. A separate class of HIV-1 integrase inhibitors, the allosteric integrase inhibitors (ALLINIs), engage integrase distal from the enzyme active site, namely at the binding site for the cellular cofactor lens epithelium-derived growth factor (LEDGF)/p75 that helps to guide integration into host genes. ALLINIs inhibit HIV-1 replication by inducing integrase hypermultimerization, which precludes integrase binding to genomic RNA and perturbs the morphogenesis of new viral particles. Although not yet approved for human use, ALLINIs provide important probes that can be used to investigate the link between HIV-1 integrase and viral particle morphogenesis. Herein, I review the mechanisms of retroviral integration as well as the promises and challenges of using integrase inhibitors for HIV/AIDS management.
Collapse
Affiliation(s)
- Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
15
|
Noncovalent SUMO-interaction motifs in HIV integrase play important roles in SUMOylation, cofactor binding, and virus replication. Virol J 2019; 16:42. [PMID: 30940169 PMCID: PMC6446281 DOI: 10.1186/s12985-019-1134-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background HIV integrase (IN) and its cellular cofactors, including lens-epithelium-derived growth factor (LEDGF/p75), Ku70, p300, and Rad52, are subject to small ubiquitin-like modifier (SUMO) modification. In addition to covalent SUMOylation, SUMO paralogs can also noncovalently bind proteins through SUMO-interacting motifs (SIMs). However, little is known about whether HIV IN contains SIMs and the roles of these motifs. Results We searched for the amino acid sequence of HIV IN and investigated three putative SIMs of IN: SIM1 72VILV75, SIM2 200IVDI203 and SIM3 257IKVV260. Our mutational analysis showed that 200IVDI203 and 257IKVV260 are two bona fide SIMs that mediate IN-SUMO noncovalent interactions. Additionally, a cell-based SUMOylation assay revealed that IN SIMs negatively regulate the SUMOylation of IN, as well as the interaction between IN and SUMO E2 conjugation enzyme Ubc9. Conversely, IN SIMs are required for its interactions with LEDGF/p75 but not with Ku70. Furthermore, our study reveals that SIM2 and SIM3 are required for the nuclear localization of IN. Finally, we investigated the impact of IN SIM2 and SIM3 on HIV single cycle replication in CD4+ C8166 T cells, and the results showed that viruses carrying IN SIM mutants are replication defective at the steps of the early viral life cycle, including reverse transcription, nuclear import and integration. Conclusion Our data suggested that the INSIM-SUMO interaction constitutes a new regulatory mechanism of IN functions and might be important for HIV-1 replication.
Collapse
|
16
|
Ali H, Mano M, Braga L, Naseem A, Marini B, Vu DM, Collesi C, Meroni G, Lusic M, Giacca M. Cellular TRIM33 restrains HIV-1 infection by targeting viral integrase for proteasomal degradation. Nat Commun 2019; 10:926. [PMID: 30804369 PMCID: PMC6389893 DOI: 10.1038/s41467-019-08810-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
Productive HIV-1 replication requires viral integrase (IN), which catalyzes integration of the viral genome into the host cell DNA. IN, however, is short lived and is rapidly degraded by the host ubiquitin-proteasome system. To identify the cellular factors responsible for HIV-1 IN degradation, we performed a targeted RNAi screen using a library of siRNAs against all components of the ubiquitin-conjugation machinery using high-content microscopy. Here we report that the E3 RING ligase TRIM33 is a major determinant of HIV-1 IN stability. CD4-positive cells with TRIM33 knock down show increased HIV-1 replication and proviral DNA formation, while those overexpressing the factor display opposite effects. Knock down of TRIM33 reverts the phenotype of an HIV-1 molecular clone carrying substitution of IN serine 57 to alanine, a mutation known to impair viral DNA integration. Thus, TRIM33 acts as a cellular factor restricting HIV-1 infection by preventing provirus formation. HIV-1 integration into host DNA is mediated by the viral integrase (IN). Here, using siRNA screen and high-content microscopy, the authors identify the host E3 RING ligase TRIM33 to affect IN stability and show that TRIM33 prevents viral integration by triggering IN proteasome-mediated degradation.
Collapse
Affiliation(s)
- Hashim Ali
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Department of Cardiovascular Medicine & Sciences, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9N, UK
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, 3060-197, Portugal
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Department of Cardiovascular Medicine & Sciences, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9N, UK
| | - Asma Naseem
- Cellular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy
| | - Bruna Marini
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Ulisse BioMed S.r.l., AREA Science Park, Basovizza, 34149, Trieste, Italy
| | - Diem My Vu
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy
| | - Chiara Collesi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Marina Lusic
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,University Hospital Heidelberg and German Center for Infection Research, 69120, Heidelberg, Germany
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy. .,Department of Cardiovascular Medicine & Sciences, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9N, UK. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
17
|
Induction of HIF-1α by HIV-1 Infection in CD4 + T Cells Promotes Viral Replication and Drives Extracellular Vesicle-Mediated Inflammation. mBio 2018; 9:mBio.00757-18. [PMID: 30206166 PMCID: PMC6134101 DOI: 10.1128/mbio.00757-18] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a very important global pathogen that preferentially targets CD4+ T cells and causes acquired immunodeficiency syndrome (AIDS) if left untreated. Although antiretroviral treatment efficiently suppresses viremia, markers of immune activation and inflammation remain higher in HIV-1-infected patients than in uninfected individuals. The hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that plays a fundamental role in coordinating cellular metabolism and function. Here we show that HIV-1 infection induces HIF-1α activity and that this transcription factor upholds HIV-1 replication. Moreover, we demonstrate that HIF-1α plays a key role in HIV-1-associated inflammation by promoting the release of extracellular vesicles which, in turn, trigger the secretion of inflammatory mediators by noninfected bystander lymphocytes and macrophages. In summary, we identify that the coordinated actions of HIF-1α and extracellular vesicles promote viral replication and inflammation, thus contributing to HIV-1 pathogenesis. Chronic immune activation and inflammation are hallmarks of HIV-1 infection and a major cause of serious non-AIDS events in HIV-1-infected individuals on antiretroviral treatment (ART). Herein, we show that cytosolic double-stranded DNA (dsDNA) generated in infected CD4+ T cells during the HIV-1 replication cycle promotes the mitochondrial reactive oxygen species (ROS)-dependent stabilization of the transcription factor hypoxia-inducible factor 1α (HIF-1α), which in turn, enhances viral replication. Furthermore, we show that induction of HIF-1α promotes the release of extracellular vesicles (EVs). These EVs foster inflammation by inducing the secretion of gamma interferon by bystander CD4+ T cells and secretion of interleukin 6 (IL-6) and IL-1β by bystander macrophages through an HIF-1α-dependent pathway. Remarkably, EVs obtained from plasma samples from HIV-1-infected individuals also induced HIF-1α activity and inflammation. Overall, this study demonstrates that HIF-1α plays a crucial role in HIV-1 pathogenesis by promoting viral replication and the release of EVs that orchestrate lymphocyte- and macrophage-mediated inflammatory responses.
Collapse
|
18
|
Critical Contribution of Tyr15 in the HIV-1 Integrase (IN) in Facilitating IN Assembly and Nonenzymatic Function through the IN Precursor Form with Reverse Transcriptase. J Virol 2016; 91:JVI.02003-16. [PMID: 27795445 DOI: 10.1128/jvi.02003-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/28/2022] Open
Abstract
Nonenzymatic roles for HIV-1 integrase (IN) at steps prior to the enzymatic integration step have been reported. To obtain structural and functional insights into the nonenzymatic roles of IN, we performed genetic analyses of HIV-1 IN, focusing on a highly conserved Tyr15 in the N-terminal domain (NTD), which has previously been shown to regulate an equilibrium state between two NTD dimer conformations. Replacement of Tyr15 with alanine, histidine, or tryptophan prevented HIV-1 infection and caused severe impairment of reverse transcription without apparent defects in reverse transcriptase (RT) or in capsid disassembly kinetics after entry into cells. Cross-link analyses of recombinant IN proteins demonstrated that lethal mutations of Tyr15 severely impaired IN structure for assembly. Notably, replacement of Tyr15 with phenylalanine was tolerated for all IN functions, demonstrating that a benzene ring of the aromatic side chain is a key moiety for IN assembly and functions. Additional mutagenic analyses based on previously proposed tetramer models for IN assembly suggested a key role of Tyr15 in facilitating the hydrophobic interaction among IN subunits, together with other proximal residues within the subunit interface. A rescue experiment with a mutated HIV-1 with RT and IN deleted (ΔRT ΔIN) and IN and RT supplied in trans revealed that the nonenzymatic IN function might be exerted through the IN precursor conjugated with RT (RT-IN). Importantly, the lethal mutations of Tyr15 significantly reduced the RT-IN function and assembly. Taken together, Tyr15 seems to play a key role in facilitating the proper assembly of IN and RT on viral RNA through the RT-IN precursor form. IMPORTANCE Inhibitors of the IN enzymatic strand transfer function (INSTI) have been applied in combination antiretroviral therapies to treat HIV-1-infected patients. Recently, allosteric IN inhibitors (ALLINIs) that interact with HIV-1 IN residues, the locations of which are distinct from the catalytic sites targeted by INSTI, have been discovered. Importantly, ALLINIs affect the nonenzymatic role(s) of HIV-1 IN, providing a rationale for the development of next-generation IN inhibitors with a mechanism that is distinct from that of INSTI. Here, we demonstrate that Tyr15 in the HIV-1 IN NTD plays a critical role during IN assembly by facilitating the hydrophobic interaction of the NTD with the other domains of IN. Importantly, we found that the functional assembly of IN through its fusion form with RT is critical for IN to exert its nonenzymatic function. Our results provide a novel mechanistic insight into the nonenzymatic function of HIV-1 IN and its prevention.
Collapse
|
19
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
20
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
21
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|
22
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
23
|
Drug Susceptibility and Viral Fitness of HIV-1 with Integrase Strand Transfer Inhibitor Resistance Substitution Q148R or N155H in Combination with Nucleoside/Nucleotide Reverse Transcriptase Inhibitor Resistance Substitutions. Antimicrob Agents Chemother 2015; 60:757-65. [PMID: 26574015 DOI: 10.1128/aac.02096-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023] Open
Abstract
In clinical trials of coformulated elvitegravir (EVG), cobicistat (COBI), emtricitabine (FTC), and tenofovir disoproxil fumarate (TDF), emergent drug resistance predominantly involved the FTC resistance substitution M184V/I in reverse transcriptase (RT), with or without the tenofovir (TFV) resistance substitution K65R, accompanied by a primary EVG resistance substitution (E92Q, N155H, or Q148R) in integrase (IN). We previously reported that the RT-K65R, RT-M184V, and IN-E92Q substitutions lacked cross-class phenotypic resistance and replicative fitness compensation. As a follow-up, the in vitro characteristics of mutant HIV-1 containing RT-K65R and/or RT-M184V with IN-Q148R or IN-N155H were also evaluated, alone and in combination, for potential interactions. Single mutants displayed reduced susceptibility to their corresponding inhibitor classes, with no cross-class resistance. Viruses with IN-Q148R or IN-N155H exhibited reduced susceptibility to EVG (137- and 40-fold, respectively) that was not affected by the addition of RT-M184V or RT-K65R/M184V. All viruses containing RT-M184V were resistant to FTC (>1,000-fold). Mutants with RT-K65R had reduced susceptibility to TFV (3.3- to 3.6-fold). Without drugs present, the viral fitness of RT and/or IN mutants was diminished relative to that of the wild type in the following genotypic order: wild type > RT-M184V ≥ IN-N155H ≈ IN-Q148R ≥ RT-M184V + IN-N155H ≥ RT-M184V + IN-Q148R ≥ RT-K65R/M184V + IN-Q148R ≈ RT-K65R/M184V + IN-N155H. In the presence of drug concentrations approaching physiologic levels, drug resistance counteracted replication defects, allowing single mutants to outcompete the wild type with one drug present and double mutants to outcompete single mutants with two drugs present. These results suggest that during antiretroviral treatment with multiple drugs, the development of viruses with combinations of resistance substitutions may be favored despite diminished viral fitness.
Collapse
|
24
|
Abstract
The retroviral integrases are virally encoded, specialized recombinases that catalyze the insertion of viral DNA into the host cell's DNA, a process that is essential for virus propagation. We have learned a great deal since the existence of an integrated form of retroviral DNA (the provirus) was first proposed by Howard Temin in 1964. Initial studies focused on the genetics and biochemistry of avian and murine virus DNA integration, but the pace of discovery increased substantially with advances in technology, and an influx of investigators focused on the human immunodeficiency virus. We begin with a brief account of the scientific landscape in which some of the earliest discoveries were made, and summarize research that led to our current understanding of the biochemistry of integration. A more detailed account of recent analyses of integrase structure follows, as they have provided valuable insights into enzyme function and raised important new questions.
Collapse
Affiliation(s)
- Mark D Andrake
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111; ,
| | - Anna Marie Skalka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111; ,
| |
Collapse
|
25
|
Interaction between Reverse Transcriptase and Integrase Is Required for Reverse Transcription during HIV-1 Replication. J Virol 2015; 89:12058-69. [PMID: 26401032 DOI: 10.1128/jvi.01471-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/10/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively. In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle. IMPORTANCE To establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts with RT, but the importance of this interaction during HIV-1 replication has not been fully characterized. In this study, we have established the biological significance of the HIV-1 RT-IN interaction during the viral life cycle by demonstrating that altering the RT-binding surface on IN disrupts both reverse transcription and viral replication. These findings contribute to our understanding of the RT-IN binding mechanism, as well as indicate that the RT-IN interaction can be exploited as a new antiviral drug target.
Collapse
|
26
|
St. Gelais C, Roger J, Wu L. Non-POU Domain-Containing Octamer-Binding Protein Negatively Regulates HIV-1 Infection in CD4(+) T Cells. AIDS Res Hum Retroviruses 2015; 31:806-16. [PMID: 25769457 DOI: 10.1089/aid.2014.0313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HIV-1 interacts with numerous cellular proteins during viral replication. Identifying such host proteins and characterizing their roles in HIV-1 infection can deepen our understanding of the dynamic interplay between host and pathogen. We previously identified non-POU domain-containing octamer-binding protein (NonO or p54nrb) as one of host factors associated with catalytically active preintegration complexes (PIC) of HIV-1 in infected CD4(+) T cells. NonO is involved in nuclear processes including transcriptional regulation and RNA splicing. Although NonO has been identified as an HIV-1 interactant in several recent studies, its role in HIV-1 replication has not been characterized. We investigated the effect of NonO on the HIV-1 life cycle in CD4(+) T cell lines and primary CD4(+) T cells using single-cycle and replication-competent HIV-1 infection assays. We observed that short hairpin RNA (shRNA)-mediated stable NonO knockdown in a CD4(+) Jurkat T cell line and primary CD4(+) T cells did not affect cell viability or proliferation, but enhanced HIV-1 infection. The enhancement of HIV-1 infection in Jurkat T cells correlated with increased viral reverse transcription and gene expression. Knockdown of NonO expression in Jurkat T cells modestly enhanced HIV-1 gag mRNA expression and Gag protein synthesis, suggesting that viral gene expression and RNA regulation are the predominantly affected events causing enhanced HIV-1 replication in NonO knockdown (KD) cells. Furthermore, overexpression of NonO in Jurkat T cells reduced HIV-1 single-cycle infection by 41% compared to control cells. Our data suggest that NonO negatively regulates HIV-1 infection in CD4(+) T cells, albeit it has modest effects on early and late stages of the viral life cycle, highlighting the importance of host proteins associated with HIV-1 PIC in regulating viral replication.
Collapse
Affiliation(s)
- Corine St. Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Jonathan Roger
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
27
|
Reduced viral fitness and lack of cross-class resistance with integrase strand transfer inhibitor and nucleoside reverse transcriptase inhibitor resistance mutations. Antimicrob Agents Chemother 2015; 59:3441-9. [PMID: 25824231 DOI: 10.1128/aac.00040-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/24/2015] [Indexed: 01/26/2023] Open
Abstract
The most common pattern of emergent resistance in the phase III clinical trials of coformulated elvitegravir (EVG)-cobicistat (COBI)-emtricitabine (FTC)-tenofovir disoproxil fumarate (TDF) was the EVG resistance substitution E92Q in integrase (IN) with the FTC resistance substitution M184V in reverse transcriptase (RT), with or without the tenofovir (TFV) resistance substitution K65R. In this study, the effect of these IN and RT substitutions alone and in combination in the same genome on susceptibility to antiretroviral inhibitors and viral replication fitness was characterized. Single resistance substitutions (E92Q in IN [IN-E92Q], M184V in RT [RT-M184V], and K65R in RT [RT-K65R]) specifically affected susceptibility to the corresponding inhibitor classes, with no cross-class resistance observed. The IN-E92Q mutant displayed reduced susceptibility to EVG (50-fold), which was not impacted by the addition of RT-M184V or RT-K65R/M184V. Viruses containing RT-M184V had high-level resistance to FTC (>1,000-fold) that was not affected by the addition of IN-E92Q or RT-K65R. During pairwise growth competitions, each substitution contributed to decreased viral fitness, with the RT-K65R/M184V + IN-E92Q triple mutant being the least fit in the absence of drug. In the presence of drug concentrations approaching physiologic levels, however, drug resistance offset the replication defects, resulting in single mutants outcompeting the wild type with one drug present, and double and triple mutants outcompeting single mutants with two drugs present. Taken together, these results suggest that the reduced replication fitness and phenotypic resistance associated with RT and IN resistance substitutions are independent and additive. In the presence of multiple drugs, viral growth is favored for viruses with multiple substitutions, despite the presence of fitness defects.
Collapse
|
28
|
Structural dynamics of native and V260E mutant C-terminal domain of HIV-1 integrase. J Comput Aided Mol Des 2015; 29:371-85. [PMID: 25586721 DOI: 10.1007/s10822-015-9830-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/06/2015] [Indexed: 12/22/2022]
Abstract
The C-terminal domain (CTD) of HIV-1 integrase is a five stranded β-barrel resembling an SH3 fold. Mutational studies on isolated CTD and full-length IN have reported V260E mutant as either homo-dimerization defective or affecting the stability and folding of CTD. In this study, molecular dynamics simulation techniques were used to unveil the effect of V260E mutation on isolated CTD monomer and dimer. Both monomeric and dimeric forms of wild type and V260E mutant are highly stable during the simulated period. However, the stabilizing π-stacking interaction between Trp243 and Trp243' at the dimer interface is highly disturbed in CTD-V260E (>6 Å apart). The loss in entropy for dimerization is -30 and -25 kcal/mol for CTD-wt and CTD-V260E respectively signifying a weak hydrophobic interaction and its perturbation in CTD-V260E. The mutant Glu260 exhibits strong attraction/repulsion with all the basic/acidic residues of CTD. In addition to this, the dynamics of CTD-wild type and V260E monomers at 498 K was analyzed to elucidate the effect of V260E mutation on CTD folding. Increase in SASA and reduction in the number of contacts in CTD-V260E during simulation highlights the instability caused by the mutation. In general, V260E mutation affects both multimerization and protein folding with a pronounced effect on protein folding rather than multimerization. This study emphasizes the importance of the hydrophobic nature and SH3 fold of CTD in proper functioning of HIV integrase and perturbing this nature would be a rational approach toward designing more selective and potent allosteric anti-HIV inhibitors.
Collapse
|
29
|
Potempa M, Lee SK, Wolfenden R, Swanstrom R. The triple threat of HIV-1 protease inhibitors. Curr Top Microbiol Immunol 2015; 389:203-41. [PMID: 25778681 DOI: 10.1007/82_2015_438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
30
|
Feng L, Larue RC, Slaughter A, Kessl JJ, Kvaratskhelia M. HIV-1 integrase multimerization as a therapeutic target. Curr Top Microbiol Immunol 2015; 389:93-119. [PMID: 25778682 PMCID: PMC4791179 DOI: 10.1007/82_2015_439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multimeric HIV-1 integrase (IN) plays an essential, multifunctional role in virus replication and serves as an important therapeutic target. Structural and biochemical studies have revealed the importance of the ordered interplay between IN molecules for its function. In the presence of viral DNA ends, individual IN subunits assemble into a tetramer and form a stable synaptic complex (SSC), which mediates integration of the reverse transcribed HIV-1 genome into chromatin. Cellular chromatin-associated protein LEDGF/p75 engages the IN tetramer in the SSC and directs HIV-1 integration into active genes. A mechanism to deregulate the productive interplay between IN subunits with small molecule inhibitors has recently received considerable attention. Most notably, allosteric IN inhibitors (ALLINIs) have been shown to bind to the IN dimer interface at the LEDGF/p75 binding pocket, stabilize interacting IN subunits, and promote aberrant, higher order IN multimerization. Consequently, these compounds impair formation of the SSC and associated LEDGF/p75-independent IN catalytic activities as well as inhibit LEDGF/p75 binding to the SSC in vitro. However, in infected cells, ALLINIs more potently impaired correct maturation of virus particles than the integration step. ALLINI treatments induced aberrant, higher order IN multimerization in virions and resulted in eccentric, non-infectious virus particles. These studies have suggested that the correctly ordered IN structure is important for virus particle morphogenesis and highlighted IN multimerization as a plausible therapeutic target for developing new inhibitors to enhance treatment options for HIV-1-infected patients.
Collapse
Affiliation(s)
- Lei Feng
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ross C. Larue
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Alison Slaughter
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jacques J. Kessl
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Mamuka Kvaratskhelia
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Abstract
Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive.
Collapse
Affiliation(s)
- Anna Marie Skalka
- Fox Chase Cancer Center 333 Cottman Avenue Philadelphia, PA 19111 United States 2157282192 2157282778 (fax)
| |
Collapse
|
32
|
Shkriabai N, Dharmarajan V, Slaughter A, Kessl JJ, Larue RC, Feng L, Fuchs JR, Griffin PR, Kvaratskhelia M. A critical role of the C-terminal segment for allosteric inhibitor-induced aberrant multimerization of HIV-1 integrase. J Biol Chem 2014; 289:26430-26440. [PMID: 25118283 DOI: 10.1074/jbc.m114.589572] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising class of antiretroviral agents for clinical development. Although ALLINIs promote aberrant IN multimerization and inhibit IN interaction with its cellular cofactor LEDGF/p75 with comparable potencies in vitro, their primary mechanism of action in infected cells is through inducing aberrant multimerization of IN. Crystal structures have shown that ALLINIs bind at the IN catalytic core domain dimer interface and bridge two interacting subunits. However, how these interactions promote higher-order protein multimerization is not clear. Here, we used mass spectrometry-based protein footprinting to monitor surface topology changes in full-length WT and the drug-resistant A128T mutant INs in the presence of ALLINI-2. These experiments have identified protein-protein interactions that extend beyond the direct inhibitor binding site and which lead to aberrant multimerization of WT but not A128T IN. Specifically, we demonstrate that C-terminal residues Lys-264 and Lys-266 play an important role in the inhibitor induced aberrant multimerization of the WT protein. Our findings provide structural clues for exploiting IN multimerization as a new, attractive therapeutic target and are expected to facilitate development of improved inhibitors.
Collapse
Affiliation(s)
- Nikoloz Shkriabai
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | | | - Alison Slaughter
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Jacques J Kessl
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Ross C Larue
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Lei Feng
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210,.
| |
Collapse
|
33
|
The combined anti-HIV-1 activities of emtricitabine and tenofovir plus the integrase inhibitor elvitegravir or raltegravir show high levels of synergy in vitro. Antimicrob Agents Chemother 2014; 58:6145-50. [PMID: 25092710 DOI: 10.1128/aac.03591-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) involves combination treatment with three or more antiretroviral agents. The antiviral effects of combinations of emtricitabine (FTC) plus tenofovir (TFV) plus antiretroviral agents of all the major drug classes were investigated. Combinations of FTC and TFV with a nonnucleoside reverse transcriptase inhibitor (NNRTI) (efavirenz or rilpivirine) or with a protease inhibitor (PI) (atazanavir, lopinavir, or darunavir) showed additive to synergistic anti-HIV-1 activity. FTC-TFV with an HIV-1 integrase strand transfer inhibitor (INSTI) (elvitegravir or raltegravir) showed the strongest synergy. Anti-HIV-1 synergy suggests enhancement of individual anti-HIV-1 activities within cells that may contribute to potent treatment efficacy and open new areas of research into interactions between reverse transcriptase (RT) and integrase inhibitors.
Collapse
|
34
|
van Bel N, van der Velden Y, Bonnard D, Le Rouzic E, Das AT, Benarous R, Berkhout B. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome. PLoS One 2014; 9:e103552. [PMID: 25072705 PMCID: PMC4114784 DOI: 10.1371/journal.pone.0103552] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 12/30/2022] Open
Abstract
The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.
Collapse
Affiliation(s)
- Nikki van Bel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yme van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Atze T. Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
35
|
Altered viral fitness and drug susceptibility in HIV-1 carrying mutations that confer resistance to nonnucleoside reverse transcriptase and integrase strand transfer inhibitors. J Virol 2014; 88:9268-76. [PMID: 24899199 DOI: 10.1128/jvi.00695-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTI) and integrase (IN) strand transfer inhibitors (INSTI) are key components of antiretroviral regimens. To explore potential interactions between NNRTI and INSTI resistance mutations, we investigated the combined effects of these mutations on drug susceptibility and fitness of human immunodeficiency virus type 1 (HIV-1). In the absence of drug, single-mutant viruses were less fit than the wild type; viruses carrying multiple mutations were less fit than single-mutant viruses. These findings were explained in part by the observation that mutant viruses carrying NNRTI plus INSTI resistance mutations had reduced amounts of virion-associated RT and/or IN protein. In the presence of efavirenz (EFV), a virus carrying RT-K103N together with IN-G140S and IN-Q148H (here termed IN-G140S/Q148H) mutations was fitter than a virus with a RT-K103N mutation alone. Similarly, in the presence of EFV, the RT-E138K plus IN-G140S/Q148H mutant virus was fitter than one with the RT-E138K mutation alone. No effect of INSTI resistance mutations on the fitness of RT-Y181C mutant viruses was observed. Conversely, RT-E138K and -Y181C mutations improved the fitness of the IN-G140S/Q148H mutant virus in the presence of raltegravir (RAL); the RT-K103N mutation had no effect. The NNRTI resistance mutations had no effect on RAL susceptibility. Likewise, the IN-G140S/Q148H mutations had no effect on EFV or RPV susceptibility. However, both the RT-K103N plus IN-G140S/Q148H and the RT-E138K plus IN-G140S/Q148H mutant viruses had significantly greater fold increases in 50% inhibitory concentration (IC50) of EFV than viruses carrying a single NNRTI mutation. Likewise, the RT-E138K plus IN-G140S/Q148H mutant virus had significantly greater fold increases in RAL IC50 than that of the IN-G140S/Q148H mutant virus. These results suggest that interactions between RT and IN mutations are important for NNRTI and INSTI resistance and viral fitness. IMPORTANCE Nonnucleoside reverse transcriptase inhibitors and integrase inhibitors are used to treat infection with HIV-1. Mutations that confer resistance to these drugs reduce the ability of HIV-1 to reproduce (that is, they decrease viral fitness). It is known that reverse transcriptase and integrase interact and that some mutations can disrupt their interaction, which is necessary for proper functioning of these two enzymes. To determine whether resistance mutations in these enzymes interact, we investigated their effects on drug sensitivity and viral fitness. Although individual drug resistance mutations usually reduced viral fitness, certain combinations of mutations increased fitness. When present in certain combinations, some integrase inhibitor resistance mutations increased resistance to nonnucleoside reverse transcriptase inhibitors and vice versa. Because these drugs are sometimes used together in the treatment of HIV-1 infection, these interactions could make viruses more resistant to both drugs, further limiting their clinical benefit.
Collapse
|
36
|
Mendonça LM, Poeys SC, Abreu CM, Tanuri A, Costa LJ. HIV-1 Nef inhibits Protease activity and its absence alters protein content of mature viral particles. PLoS One 2014; 9:e95352. [PMID: 24748174 PMCID: PMC3991643 DOI: 10.1371/journal.pone.0095352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/25/2014] [Indexed: 12/15/2022] Open
Abstract
Nef is an important player for viral infectivity and AIDS progression, but the mechanisms involved are not completely understood. It was previously demonstrated that Nef interacts with GagPol through p6*-Protease region. Because p6* and Protease are involved in processing, we explored the effect of Nef on viral Protease activity and virion assembly. Using in vitro assays, we observed that Nef is highly capable of inhibiting Protease activity. The IC50 for nef-deficient viruses in drug susceptibility assays were 1.7- to 3.5-fold higher than the wild-type counterpart varying with the type of the Protease inhibitor used. Indicating that, in the absence of Nef, Protease is less sensitive to Protease inhibitors. We compared the protein content between wild-type and nef-deficient mature viral particles by gradient sedimentation and observed up to 2.7-fold reduction in the Integrase levels in nef-deficient mature particles. This difference in levels of Integrase correlated with the difference in infectivity levels of wild type and nef-deficient viral progeny. In addition, an overall decrease in the production of mature particles was detected in nef-deficient viruses. Collectively, our data support the hypothesis that the decreased infectivity typical of nef-deficient viruses is due to an abnormal function of the viral Protease, which is in turn associated with less mature particles being produced and the loss of Integrase content in these particles, and these results may characterize Nef as a regulator of viral Protease activity.
Collapse
Affiliation(s)
- Luiza M. Mendonça
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandro C. Poeys
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina M. Abreu
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana J. Costa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
37
|
Guenzel CA, Hérate C, Benichou S. HIV-1 Vpr-a still "enigmatic multitasker". Front Microbiol 2014; 5:127. [PMID: 24744753 PMCID: PMC3978352 DOI: 10.3389/fmicb.2014.00127] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/12/2014] [Indexed: 11/13/2022] Open
Abstract
Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle.
Collapse
Affiliation(s)
- Carolin A Guenzel
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Cécile Hérate
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Serge Benichou
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| |
Collapse
|
38
|
Giroud C, Chazal N, Gay B, Eldin P, Brun S, Briant L. HIV-1-associated PKA acts as a cofactor for genome reverse transcription. Retrovirology 2013; 10:157. [PMID: 24344931 PMCID: PMC3880072 DOI: 10.1186/1742-4690-10-157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/02/2013] [Indexed: 11/15/2022] Open
Abstract
Background Host cell proteins, including cellular kinases, are embarked into intact HIV-1 particles. We have previously shown that the Cα catalytic subunit of cAMP-dependent protein kinase is packaged within HIV-1 virions as an enzymatically active form able to phosphorylate a synthetic substrate in vitro (Cartier et al. J. Biol. Chem. 278:35211 (2003)). The present study was conceived to investigate the contribution of HIV-1-associated PKA to the retroviral life cycle. Results NL4.3 viruses were produced from cells cultured in the presence of PKA inhibitors H89 (H89-NL4.3) or Myr-PKI (PKI-NL4.3) and analyzed for viral replication. Despite being mature and normally assembled, and containing expected levels of genomic RNA and RT enzymatic activity, such viruses showed poor infectivity. Indeed, infection generated reduced amounts of strong-strop minus strand DNA, while incoming RNA levels in target cells were unaffected. Decreased cDNA synthesis was also evidenced in intact H89-NL4.3 and PKI-NL4.3 cell free particles using endogenous reverse transcription (ERT) experiments. Moreover, similar defects were reproduced when wild type NL4.3 particles preincubated with PKA inhibitors were subjected to ERT reactions. Conclusions Altogether, our results indicate that HIV-1-associated PKA is required for early reverse transcription of the retroviral genome both in cell free intact viruses and in target cells. Accordingly, virus-associated PKA behaves as a cofactor of an intraviral process required for optimal reverse transcription and for early post-entry events.
Collapse
Affiliation(s)
| | | | | | | | | | - Laurence Briant
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS)-CNRS UMR 5236, Université Montpellier 1,2, 1919 route de Mende, Montpellier, cedex 2 34293, France.
| |
Collapse
|
39
|
Abstract
Integrase (IN) is required for lentivirus replication and is a proven drug target for the prevention of AIDS in HIV-1-infected patients. While clinical strand transfer inhibitors disarm the IN active site, allosteric inhibition of enzyme activity through the disruption of IN-IN protein interfaces holds great therapeutic potential. A promising class of allosteric IN inhibitors (ALLINIs), 2-(quinolin-3-yl) acetic acid derivatives, engage the IN catalytic core domain dimerisation interface at the binding site for the host integration co-factor LEDGF/p75. ALLINIs promote IN multimerisation and, independent of LEDGF/p75 protein, block the formation of the active IN-DNA complex, as well as inhibit the IN-LEDGF/p75 interaction in vitro. Yet, rather unexpectedly, the full inhibitory effect of these compounds is exerted during the late phase of HIV-1 replication. ALLINIs impair particle core maturation as well as reverse transcription and integration during the subsequent round of virus infection. Recapitulating the pleiotropic phenotypes observed with numerous IN mutant viruses, ALLINIs provide insight into underlying aspects of IN biology that extend beyond its catalytic activity. Therefore, in addition to the potential to expand our repertoire of HIV-1 antiretrovirals, ALLINIs afford important structural probes to dissect the multifaceted nature of the IN protein throughout the course of HIV-1 replication.
Collapse
|
40
|
Posttranslational modifications of HIV-1 integrase by various cellular proteins during viral replication. Viruses 2013; 5:1787-801. [PMID: 23863879 PMCID: PMC3738961 DOI: 10.3390/v5071787] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
Abstract
HIV-1 integrase (IN) is a key viral enzyme during HIV-1 replication that catalyzes the insertion of viral DNA into the host genome. Recent studies have provided important insights into the multiple posttranslational modifications (PTMs) of IN (e.g., ubiquitination, SUMOylation, acetylation and phosphorylation), which regulate its multifaceted functions. A number of host cellular proteins, including Lens Epithelium‑derived Growth factor (LEDGF/p75), p300 and Ku70 have been shown to interact with IN and be involved in the PTM process of IN, either facilitating or counteracting the IN PTMs. Although previous studies have revealed much about the important roles of IN PTMs, how IN functions are fine-tuned by these PTMs under the physiological setting still needs to be determined. Here, we review the advances in the understanding of the mechanisms and roles of multiple IN PTMs.
Collapse
|
41
|
Boso G, Tasaki T, Kwon YT, Somia NV. The N-end rule and retroviral infection: no effect on integrase. Virol J 2013; 10:233. [PMID: 23849394 PMCID: PMC3716682 DOI: 10.1186/1743-422x-10-233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/05/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Integration of double stranded viral DNA is a key step in the retroviral life cycle. Virally encoded enzyme, integrase, plays a central role in this reaction. Mature forms of integrase of several retroviruses (i.e. HIV-1 and MLV) bear conserved destabilizing N-terminal residues of the N-end rule pathway - a ubiquitin dependent proteolytic system in which the N-terminal residue of a protein determines its half life. Substrates of the N-end rule pathway are recognized by E3 ubiquitin ligases called N-recognins. We have previously shown that the inactivation of three of these N-recognins, namely UBR1, UBR2 and UBR4 in mouse embryonic fibroblasts (MEFs) leads to increased stability of ectopically expressed HIV-1 integrase. These findings have prompted us to investigate the involvement of the N-end rule pathway in the HIV-1 life cycle. RESULTS The infectivity of HIV-1 but not MLV was decreased in N-recognin deficient cells in which three N-recognins (UBR1, UBR2 and UBR4) were depleted. HIV-1 integrase mutants of N-terminal amino acids (coding for stabilizing or destabilizing residues) were severely impaired in their infectivity in both human and mouse cells. Quantitative PCR analysis revealed that this inhibition was mainly caused by a defect in reverse transcription. The decreased infectivity was independent of the N-end rule since cells deficient in N-recognins were equally refractory to infection by the integrase mutants. MLV integrase mutants showed no difference in their infectivity or intravirion processing of integrase. CONCLUSIONS The N-end rule pathway impacts the early phase of the HIV-1 life cycle; however this effect is not the result of the direct action of the N-end rule pathway on the viral integrase. The N-terminal amino acid residue of integrase is highly conserved and cannot be altered without causing a substantial decrease in viral infectivity.
Collapse
Affiliation(s)
- Guney Boso
- Developmental Biology and Genetics Graduate Program, Molecular, Cellular, University of Minnesota, Minneapolis, MN, USA
| | | | | | | |
Collapse
|
42
|
Mathew S, Nguyen M, Wu X, Pal A, Shah VB, Prasad VR, Aiken C, Kalpana GV. INI1/hSNF5-interaction defective HIV-1 IN mutants exhibit impaired particle morphology, reverse transcription and integration in vivo. Retrovirology 2013; 10:66. [PMID: 23799881 PMCID: PMC3708822 DOI: 10.1186/1742-4690-10-66] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/05/2013] [Indexed: 01/10/2023] Open
Abstract
Background Retroviral integrase catalyzes integration of viral DNA into the host genome. Integrase interactor (INI)1/hSNF5 is a host factor that binds to HIV-1 IN within the context of Gag-Pol and is specifically incorporated into HIV-1 virions during assembly. Previous studies have indicated that INI1/hSNF5 is required for late events in vivo and for integration in vitro. To determine the effects of disrupting the IN-INI1 interaction on the assembly and infectivity of HIV-1 particles, we isolated mutants of IN that are defective for binding to INI1/hSNF5 and tested their effects on HIV-1 replication. Results A reverse yeast two-hybrid system was used to identify INI1-interaction defective IN mutants (IID-IN). Since protein-protein interactions depend on the surface residues, the IID-IN mutants that showed high surface accessibility on IN crystal structures (K71R, K111E, Q137R, D202G, and S147G) were selected for further study. In vitro interaction studies demonstrated that IID-IN mutants exhibit variable degrees of interaction with INI1. The mutations were engineered into HIV-1NL4-3 and HIV-Luc viruses and tested for their effects on virus replication. HIV-1 harboring IID-IN mutations were defective for replication in both multi- and single-round infection assays. The infectivity defects were correlated to the degree of INI1 interaction of the IID-IN mutants. Highly defective IID-IN mutants were blocked at early and late reverse transcription, whereas partially defective IID-IN mutants proceeded through reverse transcription and nuclear localization, but were partially impaired for integration. Electron microscopic analysis of mutant particles indicated that highly interaction-defective IID-IN mutants produced morphologically aberrant virions, whereas the partially defective mutants produced normal virions. All of the IID-IN mutant particles exhibited normal capsid stability and reverse transcriptase activity in vitro. Conclusions Our results demonstrate that a severe defect in IN-INI1 interaction is associated with production of defective particles and a subsequent defect in post-entry events. A partial defect in IN-INI1 interaction leads to production of normal virions that are partially impaired for early events including integration. Our studies suggest that proper interaction of INI1 with IN within Gag-Pol is necessary for proper HIV-1 morphogenesis and integration.
Collapse
Affiliation(s)
- Sheeba Mathew
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Maillot B, Lévy N, Eiler S, Crucifix C, Granger F, Richert L, Didier P, Godet J, Pradeau-Aubreton K, Emiliani S, Nazabal A, Lesbats P, Parissi V, Mely Y, Moras D, Schultz P, Ruff M. Structural and functional role of INI1 and LEDGF in the HIV-1 preintegration complex. PLoS One 2013; 8:e60734. [PMID: 23593299 PMCID: PMC3623958 DOI: 10.1371/journal.pone.0060734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/01/2013] [Indexed: 02/07/2023] Open
Abstract
Integration of the HIV-1 cDNA into the human genome is catalyzed by the viral integrase (IN) protein. Several studies have shown the importance of cellular cofactors that interact with integrase and affect viral integration and infectivity. In this study, we produced a stable complex between HIV-1 integrase, viral U5 DNA, the cellular cofactor LEDGF/p75 and the integrase binding domain of INI1 (INI1-IBD), a subunit of the SWI/SNF chromatin remodeling factor. The stoichiometry of the IN/LEDGF/INI1-IBD/DNA complex components was found to be 4/2/2/2 by mass spectrometry and Fluorescence Correlation Spectroscopy. Functional assays showed that INI1-IBD inhibits the 3′ processing reaction but does not interfere with specific viral DNA binding. Integration assays demonstrate that INI1-IBD decreases the amount of integration events but inhibits by-product formation such as donor/donor or linear full site integration molecules. Cryo-electron microscopy locates INI1-IBD within the cellular DNA binding site of the IN/LEDGF complex, constraining the highly flexible integrase in a stable conformation. Taken together, our results suggest that INI1 could stabilize the PIC in the host cell, by maintaining integrase in a stable constrained conformation which prevents non-specific interactions and auto integration on the route to its integration site within nucleosomes, while LEDGF organizes and stabilizes an active integrase tetramer suitable for specific vDNA integration. Moreover, our results provide the basis for a novel type of integrase inhibitor (conformational inhibitor) representing a potential new strategy for use in human therapy.
Collapse
Affiliation(s)
- Benoit Maillot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Biologie Structurale intégrative, Université de Strasbourg, U596 INSERM, UMR7104 CNRS, Illkirch, France
| | - Nicolas Lévy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Biologie Structurale intégrative, Université de Strasbourg, U596 INSERM, UMR7104 CNRS, Illkirch, France
| | - Sylvia Eiler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Biologie Structurale intégrative, Université de Strasbourg, U596 INSERM, UMR7104 CNRS, Illkirch, France
| | - Corinne Crucifix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Biologie Structurale intégrative, Université de Strasbourg, U596 INSERM, UMR7104 CNRS, Illkirch, France
| | - Florence Granger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Biologie Structurale intégrative, Université de Strasbourg, U596 INSERM, UMR7104 CNRS, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, UDS, Faculté de Pharmacie, Illkirch, France
| | - Pascal Didier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, UDS, Faculté de Pharmacie, Illkirch, France
| | - Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, UDS, Faculté de Pharmacie, Illkirch, France
| | - Karine Pradeau-Aubreton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Biologie Structurale intégrative, Université de Strasbourg, U596 INSERM, UMR7104 CNRS, Illkirch, France
| | - Stéphane Emiliani
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM (U567), Paris, France
| | | | - Paul Lesbats
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, CNRS (UMR5234), Université de Bordeaux 2, Bordeaux, France
| | - Vincent Parissi
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, CNRS (UMR5234), Université de Bordeaux 2, Bordeaux, France
| | - Yves Mely
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, UDS, Faculté de Pharmacie, Illkirch, France
| | - Dino Moras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Biologie Structurale intégrative, Université de Strasbourg, U596 INSERM, UMR7104 CNRS, Illkirch, France
| | - Patrick Schultz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Biologie Structurale intégrative, Université de Strasbourg, U596 INSERM, UMR7104 CNRS, Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Biologie Structurale intégrative, Université de Strasbourg, U596 INSERM, UMR7104 CNRS, Illkirch, France
- * E-mail:
| |
Collapse
|
44
|
|
45
|
Involvement of human topoisomerase II isoforms in HIV-1 reverse transcription. Arch Biochem Biophys 2013; 532:91-102. [PMID: 23399433 DOI: 10.1016/j.abb.2013.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/20/2022]
Abstract
HIV-1 reverse transcription (RTn) involves synthesis of double strand DNA (dsDNA) from viral genomic RNA. Topoisomerase II (Topo II) alpha and beta maintains topological reorganization of dsDNA regions and catalytic inhibition of these isoforms repressed viral replicative cycle. Present study is aimed to understand the role of Topo II isoforms in HIV-1 early replication. Topo IIα and β showed differential expression in SupT1 cells and PBMCs during early hours of HIV-1 infection where Topo IIα expression increased after 4h, while Topo IIβ showed relatively higher expression at 1 and 4h. In Topo IIα and/or β down regulated cells, transcription of viral genes gag, pol and env as well as proviral DNA synthesis was abolished. In Topo IIα and/or β down regulated cells, strong stop DNA synthesis was unaffected while other downstream events of reverse transcription such as first strand transfer, full length minus strand synthesis, and second strand transfer were completely inhibited, which affects HIV-1 replication. Further, co-localization of Topo II isoforms with HIV-1 reverse transcriptase was observed in SupT1 cells and PBMCs by immunofluorescence. These results collectively suggest a role of Topo II isoforms during HIV-1 RTn probably by promoting the alignment of viral RNA-DNA hybrids.
Collapse
|
46
|
Métifiot M, Marchand C, Pommier Y. HIV integrase inhibitors: 20-year landmark and challenges. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:75-105. [PMID: 23885999 DOI: 10.1016/b978-0-12-405880-4.00003-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the discovery of HIV as the cause for AIDS 30 years ago, major progress has been made, including the discovery of drugs that now control the disease. Here, we review the integrase (IN) inhibitors from the discovery of the first compounds 20 years ago to the approval of two highly effective IN strand transfer inhibitors (INSTIs), raltegravir (Isentress) and elvitegravir (Stribild), and the promising clinical activity of dolutegravir. After summarizing the molecular mechanism of action of the INSTIs as interfacial inhibitors, we discuss the remaining challenges. Those include: overcoming resistance to clinical INSTIs, long-term safety of INSTIs, cost of therapy, place of the INSTIs in prophylactic treatments, and the development of new classes of inhibitors (the LEDGINs) targeting IN outside its catalytic site. We also discuss the role of chromatin and host DNA repair factor for the completion of integration.
Collapse
Affiliation(s)
- Mathieu Métifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
47
|
Chakraborty A, Sun GQ, Mustavich L, Huang SH, Li BL. Biochemical interactions between HIV-1 integrase and reverse transcriptase. FEBS Lett 2012; 587:425-9. [DOI: 10.1016/j.febslet.2012.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
48
|
Passaes CPB, Guimarães ML, Cardoso SW, Pilotto JH, Veloso V, Grinsztejn B, Morgado MG. Monitoring the emergence of resistance mutations in patients infected with HIV-1 under salvage therapy with raltegravir in Rio de Janeiro, Brazil: a follow-up study. J Med Virol 2012; 84:1869-75. [PMID: 23080489 DOI: 10.1002/jmv.23409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study describes a follow-up of a prospective and observational cohort of patients infected with HIV-1 and treated with raltegravir for salvage therapy in Brazil. Two groups of patients were analyzed: switching from T20 to RAL (Group 1, n = 9) and salvage therapy containing RAL (Group 2, n = 10). Blood samples were drawn for CD4(+) T-cell counts and HIV-1 viral load determinations. Protease, reverse transcriptase, and integrase genotyping were performed at baseline and at the time of virologic failure. CD4(+) T-cells increased at 6 and 12 months in both groups; HIV-1 viral load was continuously suppressed for Group 1, and for Group 2 it significantly decreased after starting a RAL-containing regimen. Three out of 10 patients from Group 2 could not suppress HIV-1 viral load. The mutations Q148H + G140S were observed for two patients and for the third patient only mutations to PR/RT inhibitors were detected. The genotypic sensitivity score (GSS) was analyzed for all patients of Group 2 and both patients who developed resistance to raltegravir presented a GSS < 2.0 for the RAL-containing scheme, which could be associated to the lack of effectiveness of the proposed scheme. The present study describes, for the first time in Brazil, the close follow-up of a series of patients using a raltegravir-containing HAART, showing the safety of the enfuvirtide switch to RAL and the effectiveness of a therapeutic regimen with RAL in promoting immune reconstitution and suppressing HIV replication, as well as documenting the occurrence of resistance to integrase inhibitors in the country.
Collapse
|
49
|
Abstract
Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.
Collapse
Affiliation(s)
- Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
50
|
Serrao E, Thys W, Demeulemeester J, Al-Mawsawi LQ, Christ F, Debyser Z, Neamati N. A symmetric region of the HIV-1 integrase dimerization interface is essential for viral replication. PLoS One 2012; 7:e45177. [PMID: 23028829 PMCID: PMC3445459 DOI: 10.1371/journal.pone.0045177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/17/2012] [Indexed: 01/06/2023] Open
Abstract
HIV-1 integrase (IN) is an important target for contemporary antiretroviral drug design research. Historically, efforts at inactivating the enzyme have focused upon blocking its active site. However, it has become apparent that new classes of allosteric inhibitors will be necessary to advance the antiretroviral field in light of the emergence of viral strains resistant to contemporary clinically used IN drugs. In this study we have characterized the importance of a close network of IN residues, distant from the active site, as important for the obligatory multimerization of the enzyme and viral replication as a whole. Specifically, we have determined that the configuration of six residues within a highly symmetrical region at the IN dimerization interface, composed of a four-tiered aromatic interaction flanked by two salt bridges, significantly contributes to proper HIV-1 replication. Additionally, we have utilized a quantitative luminescence assay to examine IN oligomerization and have determined that there is a very low tolerance for amino acid substitutions along this region. Even conservative residue substitutions negatively impacted IN multimerization, resulting in an inactive viral enzyme and a non-replicative virus. We have shown that there is a very low tolerance for amino acid variation at the symmetrical dimeric interface region characterized in this study, and therefore drugs designed to target the amino acid network detailed here could be expected to yield a significantly reduced number of drug-resistant escape mutations compared to contemporary clinically-evaluated antiretrovirals.
Collapse
Affiliation(s)
- Erik Serrao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Wannes Thys
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Jonas Demeulemeester
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Laith Q. Al-Mawsawi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Flanders, Belgium
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|