1
|
VanderGiessen M, Jamiu A, Heath B, Akhrymuk I, Kehn-Hall K. Cellular takeover: How new world alphaviruses impact host organelle function. Virology 2025; 603:110365. [PMID: 39733515 DOI: 10.1016/j.virol.2024.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Alphavirus replication is dependent on host cell organelles to facilitate multiple steps of the viral life cycle. New world alphaviruses (NWA) consisting of eastern, western and Venezuelan equine encephalitis viruses are a subgroup of alphaviruses associated with central nervous system disease. Despite differing morbidity and mortality amongst these viruses, all are important human pathogens due to their transmission through viral aerosolization and mosquito transmission. In this review, we summarize the utilization of host organelles for NWA replication and the subversion of the host innate immune responses. The impact of viral proteins and replication processes on organelle function is also discussed. Literature involving old world alphaviruses (OWA), such as chikungunya virus and Sindbis virus, is included to compare and contrast between OWA and NWA and highlight gaps in knowledge for NWA. Finally, potential targets for therapeutics or vaccine candidates are highlighted with a focus on host-directed therapeutics.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Abdullahi Jamiu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Brittany Heath
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ivan Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
3
|
Martin MF, Bonaventure B, McCray NE, Peersen OB, Rozen-Gagnon K, Stapleford KA. Distinct chikungunya virus polymerase palm subdomains contribute to viral protein accumulation and virion production. PLoS Pathog 2024; 20:e1011972. [PMID: 39401243 PMCID: PMC11501042 DOI: 10.1371/journal.ppat.1011972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/24/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus has established the importance of the nsP4 residue cysteine 483 in replication. Given the location of residue C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and surrounding subdomains would also contribute to polymerase function. To test this hypothesis, we designed a panel of nsP4 variants via homology modeling based on the coxsackievirus B3 3D polymerase. We rescued each variant in mammalian and mosquito cells and discovered that the palm domain and ring finger subdomain contribute to host-specific replication. In C6/36 cells, we found that while the nsP4 variants had replicase function similar to that of wild-type CHIKV, many variants presented changes in protein accumulation and virion production even when viral nonstructural and structural proteins were produced. Finally, we found that WT CHIKV and nsP4 variant replication and protein production could be enhanced in mammalian cells at 28°C, yet growing virus under these conditions led to changes in virus infectivity. Taken together, these studies highlight that distinct nsP4 subdomains are required for proper RNA transcription and translation, having major effects on virion production.
Collapse
Affiliation(s)
- Marie-France Martin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Boris Bonaventure
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nia E. McCray
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Olve B. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
4
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Wang L, Wang G, Mao W, Chen Y, Rahman MM, Zhu C, Prisinzano PM, Kong B, Wang J, Lee LP, Wan Y. Bioinspired engineering of fusogen and targeting moiety equipped nanovesicles. Nat Commun 2023; 14:3366. [PMID: 37291242 PMCID: PMC10250350 DOI: 10.1038/s41467-023-39181-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Cell-derived small extracellular vesicles have been exploited as potent drug vehicles. However, significant challenges hamper their clinical translation, including inefficient cytosolic delivery, poor target-specificity, low yield, and inconsistency in production. Here, we report a bioinspired material, engineered fusogen and targeting moiety co-functionalized cell-derived nanovesicle (CNV) called eFT-CNV, as a drug vehicle. We show that universal eFT-CNVs can be produced by extrusion of genetically modified donor cells with high yield and consistency. We demonstrate that bioinspired eFT-CNVs can efficiently and selectively bind to targets and trigger membrane fusion, fulfilling endo-lysosomal escape and cytosolic drug delivery. We find that, compared to counterparts, eFT-CNVs significantly improve the treatment efficacy of drugs acting on cytosolic targets. We believe that our bioinspired eFT-CNVs will be promising and powerful tools for nanomedicine and precision medicine.
Collapse
Affiliation(s)
- Lixue Wang
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Guosheng Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjun Mao
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Md Mofizur Rahman
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Chuandong Zhu
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Peter M Prisinzano
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Bo Kong
- Deparment of General, Visceral and Transplantation Surgery, Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Jing Wang
- Department of Oncology and Hematology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, Jiangsu, China.
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
6
|
Lucas CJ, Davenport BJ, Carpentier KS, Tinega AN, Morrison TE. Two Conserved Phenylalanine Residues in the E1 Fusion Loop of Alphaviruses Are Essential for Viral Infectivity. J Virol 2022; 96:e0006422. [PMID: 35416719 PMCID: PMC9093095 DOI: 10.1128/jvi.00064-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/13/2022] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses infect cells by a low pH-dependent fusion reaction between viral and host cell membranes that is mediated by the viral E1 glycoprotein. Most reported alphavirus E1 sequences include two phenylalanines (F87 and F95) in the fusion loop, yet the role of these residues in viral infectivity remains to be defined. Following introduction of wild type (WT), E1-F87A, and E1-F95A chikungunya virus (CHIKV) RNA genomes into cells, viral particle production was similar in magnitude. However, CHIKV E1-F87A and E1-F95A virions displayed impaired infectivity compared with WT CHIKV particles. Although WT, E1-F87A, and E1-F95A particles bound cells with similar efficiencies, E1-F87A and E1-F95A particles were unable to undergo fusion and entry into cells. Introduction of an F95A mutation in the E1 fusion loop of Mayaro virus or Venezuelan equine encephalitis virus also resulted in poorly infectious virions. We further tested whether an E1-F87A or E1-F95A mutation could be incorporated into a live-attenuated vaccine strain, CHIKV 181/25, to enhance vaccine safety. Infection of immunocompromised Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice with 181/25E1-F87A or 181/25E1-F95A resulted in 0% mortality, compared with 100% mortality following 181/25 infection. Despite this enhanced attenuation, surviving Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice were protected against virulent virus re-challenge. Moreover, single-dose immunization of WT mice with either 181/25, 181/25E1-F87A, or 181/25E1-F95A elicited CHIKV-specific antibody responses and protected against pathogenic CHIKV challenge. These studies define a critical function for residues E1-F87 and E1-F95 in alphavirus fusion and entry into target cells and suggest that incorporation of these mutations could enhance the safety of live-attenuated alphavirus vaccine candidates. IMPORTANCE Alphaviruses are human pathogens that cause both debilitating acute and chronic musculoskeletal disease and potentially fatal encephalitis. In this study, we determined that two highly conserved phenylalanine residues in the alphavirus E1 glycoprotein are required for fusion of viral and host cell membranes and viral entry into target cells. We further demonstrated that mutation of these phenylalanines results in a substantial loss of viral virulence but not immunogenicity. These data enhance an understanding of the viral determinants of alphavirus entry into host cells and could contribute to the development of new antivirals targeting these conserved phenylalanines or new live-attenuated alphavirus vaccines.
Collapse
Affiliation(s)
- Cormac J. Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kathryn S. Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alex N. Tinega
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
7
|
Structure of infective Getah virus at 2.8 Å resolution determined by cryo-electron microscopy. Cell Discov 2022; 8:12. [PMID: 35149682 PMCID: PMC8832435 DOI: 10.1038/s41421-022-00374-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
Getah virus (GETV), a member of the genus alphavirus, is a mosquito-borne pathogen that can cause pyrexia and reproductive losses in animals. Although antibodies to GETV have been found in over 10% of healthy people, there are no reports of clinical symptoms associated with GETV. The biological and pathological properties of GETV are largely unknown and antiviral or vaccine treatments against GETV are still unavailable due to a lack of knowledge of the structure of the GETV virion. Here, we present the structure of infective GETV at a resolution of 2.8 Å with the atomic models of the capsid protein and the envelope glycoproteins E1 and E2. We have identified numerous glycosylation and S-acylation sites in E1 and E2. The surface-exposed glycans indicate a possible impact on viral immune evasion and host cell invasion. The S-acylation sites might be involved in stabilizing the transmembrane assembly of E1 and E2. In addition, a cholesterol and a phospholipid molecule are observed in a transmembrane hydrophobic pocket, together with two more cholesterols surrounding the pocket. The cholesterol and phospholipid stabilize the hydrophobic pocket in the viral envelope membrane. The structural information will assist structure-based antiviral and vaccine screening, design, and optimization.
Collapse
|
8
|
Alphavirus Virulence Determinants. Pathogens 2021; 10:pathogens10080981. [PMID: 34451445 PMCID: PMC8401390 DOI: 10.3390/pathogens10080981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
Alphaviruses are important pathogens that continue to cause outbreaks of disease in humans and animals worldwide. Diseases caused by alphavirus infections include acute symptoms of fever, rash, and nausea as well as chronic arthritis and severe-to-fatal conditions including myocarditis and encephalitis. Despite their prevalence and the significant public health threat they pose, there are currently no effective antiviral treatments or vaccines against alphaviruses. Various genetic determinants of alphavirus virulence, including genomic RNA elements and specific protein residues and domains, have been described by researchers to play key roles in the development of disease, the immune response to infection, and virus transmissibility. Here, we focus on the determinants that are currently described in the literature. Understanding how these molecular determinants shape viral infections can lead to new strategies for the development of therapies and vaccines to combat these viruses.
Collapse
|
9
|
Li X, Zhu W, Fan M, Zhang J, Peng Y, Huang F, Wang N, He L, Zhang L, Holmdahl R, Meng L, Lu S. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Comput Struct Biotechnol J 2021; 19:1933-1943. [PMID: 33850607 PMCID: PMC8028701 DOI: 10.1016/j.csbj.2021.04.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 is a kind of viral pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the mechanism whereby SARS-CoV-2 invades host cells remains poorly understood. Here we used SARS-CoV-2 pseudoviruses to infect human angiotensin-converting enzyme 2 (ACE2) expressing HEK293T cells and evaluated virus infection. We confirmed that SARS-CoV-2 entry was dependent on ACE2 and sensitive to pH of endosome/lysosome in HEK293T cells. The infection of SARS-CoV-2 pseudoviruses is independent of dynamin, clathrin, caveolin and endophilin A2, as well as macropinocytosis. Instead, we found that the infection of SARS-CoV-2 pseudoviruses was cholesterol-rich lipid raft dependent. Cholesterol depletion of cell membranes with methyl-β-cyclodextrin resulted in reduction of pseudovirus infection. The infection of SARS-CoV-2 pseudoviruses resumed with cholesterol supplementation. Together, cholesterol-rich lipid rafts, and endosomal acidification, are key steps of SARS-CoV-2 required for infection of host cells. Therefore, our finding expands the understanding of SARS-CoV-2 entry mechanism and provides a new anti-SARS-CoV-2 strategy.
Collapse
Affiliation(s)
- Xiaowei Li
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Jing Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Yizhao Peng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Fumeng Huang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, 710061 Xi'an, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, 710061 Xi'an, China
| | - Lei Zhang
- Shaanxi Provincial Centre for Disease Control and Prevention, 710054 Xi'an, China
| | - Rikard Holmdahl
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China.,Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Liesu Meng
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| | - Shemin Lu
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, China.,Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061 Xi'an, China
| |
Collapse
|
10
|
|
11
|
Current Understanding of the Role of Cholesterol in the Life Cycle of Alphaviruses. Viruses 2020; 13:v13010035. [PMID: 33383613 PMCID: PMC7823518 DOI: 10.3390/v13010035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/28/2022] Open
Abstract
Enveloped viruses rely on different lipid classes present in cell membranes to accomplish several steps of their life cycle in the host. Particularly for alphaviruses, a medically important group of arboviruses, which are part of the Togaviridae family, cholesterol seems to be a critical lipid exploited during infection, although its relevance may vary depending on which stage of the virus life cycle is under consideration and whether infection takes place in vertebrate or invertebrate hosts. In this review, the role of cholesterol in both early and late events of alphavirus infection and how viral replication may affect cholesterol metabolism are summarized, taking into account studies on Old World and New World alphaviruses in different cell lines. Moreover, the importance of cholesterol for the structural stability of alphavirus particles is also discussed, shedding light on the role played by this lipid when they leave the host cell.
Collapse
|
12
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
13
|
Noval MG, Rodriguez-Rodriguez BA, Rangel MV, Stapleford KA. Evolution-Driven Attenuation of Alphaviruses Highlights Key Glycoprotein Determinants Regulating Viral Infectivity and Dissemination. Cell Rep 2020; 28:460-471.e5. [PMID: 31291581 DOI: 10.1016/j.celrep.2019.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/08/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023] Open
Abstract
Understanding the fundamental mechanisms of arbovirus transmission and pathogenesis is essential to develop strategies for treatment and prevention. We previously took an in vivo evolution-based approach and identified the chikungunya virus E1 glycoprotein residue 80 to play a critical role in viral transmission and pathogenesis. In this study, we address the genetic conservation and function of position 80 and demonstrate that this residue is a key determinant in alphavirus infectivity and dissemination through modulation of viral fusion and cholesterol dependence. In addition, in studying the evolution of position 80, we identified a network of glycoprotein residues, including epidemic determinants, that regulate virus dissemination and infectivity. These studies underscore the importance of taking evolution-based approaches to not only identify key viral determinants driving arbovirus transmission and pathogenesis but also to uncover fundamental aspects of arbovirus biology.
Collapse
Affiliation(s)
- Maria G Noval
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Margarita V Rangel
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
14
|
Altinli M, Lequime S, Atyame C, Justy F, Weill M, Sicard M. Wolbachia modulates prevalence and viral load of Culex pipiens densoviruses in natural populations. Mol Ecol 2020; 29:4000-4013. [PMID: 32854141 DOI: 10.1111/mec.15609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/25/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
The inadequacy of standard mosquito control strategies calls for ecologically safe novel approaches, for example the use of biological agents such as the endosymbiotic α-proteobacteria Wolbachia or insect-specific viruses (ISVs). Understanding the ecological interactions between these "biocontrol endosymbionts" is thus a fundamental step. Wolbachia are transmitted vertically from mother to offspring and modify their hosts' phenotypes, including reproduction (e.g., cytoplasmic incompatibility) and survival (e.g., viral interference). In nature, Culex pipiens (sensu lato) mosquitoes are always found infected with genetically diverse Wolbachia called wPip that belong to five phylogenetic groups. In recent years, ISVs have also been discovered in these mosquito species, although their interactions with Wolbachia in nature are unknown. Here, we studied the interactions between a widely prevalent ISV, the Culex pipiens densovirus (CpDV, Densovirinae), and Wolbachia in northern Tunisian C. pipiens populations. We showed an influence of different Wolbachia groups on CpDV prevalence and a general positive correlation between Wolbachia and CpDV loads. By investigating the putative relationship between CpDV diversification and wPip groups in the different sites, we detected a signal linked to wPip groups in CpDV phylogeny in sites where all larvae were infected by the same wPip group. However, no such signal was detected where the wPip groups coexisted, suggesting CpDV horizontal transfer between hosts. Overall, our results provide good evidence for an ecological influence of Wolbachia on an ISV, CpDV, in natural populations and highlight the importance of integrating Wolbachia in our understanding of ISV ecology in nature.
Collapse
Affiliation(s)
- Mine Altinli
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Centre for Infection research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Celestine Atyame
- Ile de La Réunion, Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM U1187, IRD 249, Sainte-Clotilde, France
| | - Fabienne Justy
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mylene Weill
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
15
|
Fu JYL, Chua CL, Vythilingam I, Sulaiman WYW, Wong HV, Chan YF, Sam IC. An amino acid change in nsP4 of chikungunya virus confers fitness advantage in human cell lines rather than in Aedes albopictus. J Gen Virol 2020; 100:1541-1553. [PMID: 31613205 DOI: 10.1099/jgv.0.001338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus (CHIKV) has caused large-scale epidemics of fever, rash and arthritis since 2004. This unprecedented re-emergence has been associated with mutations in genes encoding structural envelope proteins, providing increased fitness in the secondary vector Aedes albopictus. In the 2008-2013 CHIKV outbreaks across Southeast Asia, an R82S mutation in non-structural protein 4 (nsP4) emerged early in Malaysia or Singapore and quickly became predominant. To determine whether this nsP4-R82S mutation provides a selective advantage in host cells, which may have contributed to the epidemic, the fitness of infectious clone-derived CHIKV with wild-type nsP4-82R and mutant nsP4-82S were compared in Ae. albopictus and human cell lines. Viral infectivity, dissemination and transmission in Ae. albopictus were not affected by the mutation when the two variants were tested separately. In competition, the nsP4-82R variant showed an advantage over nsP4-82S in dissemination to the salivary glands, but only in late infection (10 days). In human rhabdomyosarcoma (RD) and embryonic kidney (HEK-293T) cell lines coinfected at a 1 : 1 ratio, wild-type nsP4-82R virus was rapidly outcompeted by nsP4-82S virus as early as one passage (3 days). In conclusion, the nsP4-R82S mutation provides a greater selective advantage in human cells than in Ae. albopictus, which may explain its apparent natural selection during CHIKV spread in Southeast Asia. This is an unusual example of a naturally occurring mutation in a non-structural protein, which may have facilitated epidemic transmission of CHIKV.
Collapse
Affiliation(s)
- Jolene Yin Ling Fu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chong Long Chua
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wan Yusoff Wan Sulaiman
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hui Vern Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Palmitoylated Cysteines in Chikungunya Virus nsP1 Are Critical for Targeting to Cholesterol-Rich Plasma Membrane Microdomains with Functional Consequences for Viral Genome Replication. J Virol 2020; 94:JVI.02183-19. [PMID: 32132240 DOI: 10.1128/jvi.02183-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, alphavirus replication complexes are anchored to the plasma membrane. This interaction with lipid bilayers is mediated through the viral methyl/guanylyltransferase nsP1 and reinforced by palmitoylation of cysteine residue(s) in the C-terminal region of this protein. Lipid content of membranes supporting nsP1 anchoring remains poorly studied. Here, we explore the membrane binding capacity of nsP1 with regard to cholesterol. Using the medically important chikungunya virus (CHIKV) as a model, we report that nsP1 cosegregates with cholesterol-rich detergent-resistant membrane microdomains (DRMs), also called lipid rafts. In search for the critical factor for cholesterol partitioning, we identify nsP1 palmitoylated cysteines as major players in this process. In cells infected with CHIKV or transfected with CHIKV trans-replicase plasmids, nsP1, together with the other nonstructural proteins, are detected in DRMs. While the functional importance of CHIKV nsP1 preference for cholesterol-rich membrane domains remains to be determined, we observed that U18666A- and imipramine-induced sequestration of cholesterol in late endosomes redirected nsP1 to these compartments and simultaneously dramatically decreased CHIKV genome replication. A parallel study of Sindbis virus (SINV) revealed that nsP1 from this divergent alphavirus displays a low affinity for cholesterol and only moderately segregates with DRMs. Behaviors of CHIKV and SINV with regard to cholesterol, therefore, match with the previously reported differences in the requirement for nsP1 palmitoylation, which is dispensable for SINV but strictly required for CHIKV replication. Altogether, this study highlights the functional importance of nsP1 segregation with DRMs and provides new insight into the functional role of nsP1 palmitoylated cysteines during alphavirus replication.IMPORTANCE Functional alphavirus replication complexes are anchored to the host cell membranes through the interaction of nsP1 with the lipid bilayers. In this work, we investigate the importance of cholesterol for such an association. We show that nsP1 has affinity for cholesterol-rich membrane microdomains formed at the plasma membrane and identify conserved palmitoylated cysteine(s) in nsP1 as the key determinant for cholesterol affinity. We demonstrate that drug-induced cholesterol sequestration in late endosomes not only redirects nsP1 to this compartment but also dramatically decreases genome replication, suggesting the functional importance of nsP1 targeting to cholesterol-rich plasma membrane microdomains. Finally, we show evidence that nsP1 from chikungunya and Sindbis viruses displays different sensitivity to cholesterol sequestering agents that parallel with their difference in the requirement for nsP1 palmitoylation for replication. This research, therefore, gives new insight into the functional role of palmitoylated cysteines in nsP1 for the assembly of functional alphavirus replication complexes in their mammalian host.
Collapse
|
17
|
Wang WH, Urbina AN, Chang MR, Assavalapsakul W, Lu PL, Chen YH, Wang SF. Dengue hemorrhagic fever - A systemic literature review of current perspectives on pathogenesis, prevention and control. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:963-978. [PMID: 32265181 DOI: 10.1016/j.jmii.2020.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dengue is an arboviral disease caused by dengue virus. Symptomatic dengue infection causes a wide range of clinical manifestations, from mild dengue fever (DF) to potentially fatal disease, such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). We conducted a literature review to analyze the risks of DHF and current perspectives for DHF prevention and control. METHODS According to the PRISMA guidelines, the references were selected from PubMed, Web of Science and Google Scholar database using search strings containing a combination of terms that included dengue hemorrhagic fever, pathogenesis, prevention and control. Quality of references were evaluated by independent reviewers. RESULTS DHF was first reported in the Philippines in 1953 and further transmitted to the countries in the region of South-East Asia and Western Pacific. Plasma leakages is the main pathophysiological hallmark that distinguishes DHF from DF. Severe plasma leakage can result in hypovolemic shock. Various factors are thought to impact disease presentation and severity. Virus virulence, preexisting dengue antibodies, immune dysregulation, lipid change and host genetic susceptibility are factors reported to be correlated with the development of DHF. However, the exact reasons and mechanisms that triggers DHF remains controversial. Currently, no specific drugs and licensed vaccines are available to treat dengue disease in any of its clinical presentations. CONCLUSION This study concludes that antibody-dependent enhancement, cytokine dysregulation and variation of lipid profiles are correlated with DHF occurrence. Prompt diagnosis, appropriate treatment, active and continuous surveillance of cases and vectors are the essential determinants for dengue prevention and control.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Aspiro Nayim Urbina
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| | - Max R Chang
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Po-Liang Lu
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
18
|
Mittler E, Dieterle ME, Kleinfelter LM, Slough MM, Chandran K, Jangra RK. Hantavirus entry: Perspectives and recent advances. Adv Virus Res 2019; 104:185-224. [PMID: 31439149 DOI: 10.1016/bs.aivir.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (β1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lara M Kleinfelter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
19
|
McCrae C, Dzgoev A, Ståhlman M, Horndahl J, Svärd R, Große A, Großkopf T, Skujat MA, Williams N, Schubert S, Echeverri C, Jackson C, Guedán A, Solari R, Vaarala O, Kraan M, Rådinger M. Lanosterol Synthase Regulates Human Rhinovirus Replication in Human Bronchial Epithelial Cells. Am J Respir Cell Mol Biol 2019; 59:713-722. [PMID: 30084659 DOI: 10.1165/rcmb.2017-0438oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human rhinovirus (RV) infections are a significant risk factor for exacerbations of asthma and chronic obstructive pulmonary disease. Thus, approaches to prevent RV infection in such patients would give significant benefit. Through RNA interference library screening, we identified lanosterol synthase (LSS), a component of the cholesterol biosynthetic pathway, as a novel regulator of RV replication in primary normal human bronchial epithelial cells. Selective knock down of LSS mRNA with short interfering RNA inhibited RV2 replication in normal human bronchial epithelial cells. Small molecule inhibitors of LSS mimicked the effect of LSS mRNA knockdown in a concentration-dependent manner. We further demonstrated that the antiviral effect is not dependent on a reduction in total cellular cholesterol but requires a 24-hour preincubation with the LSS inhibitor. The rank order of antiviral potency of the LSS inhibitors used was consistent with LSS inhibition potency; however, all compounds showed remarkably higher potency against RV compared with the LSS enzyme potency. We showed that LSS inhibition led to an induction of 24(S),25 epoxycholesterol, an important regulator of the sterol pathway. We also demonstrated that LSS inhibition led to a profound increase in expression of the innate antiviral defense protein, IFN-β. We found LSS to be a novel regulator of RV replication and innate antiviral immunity and identified a potential molecular mechanism for this effect, via induction of 24(S),25 epoxycholesterol. Inhibition of LSS could therefore be a novel therapeutic target for prevention of RV-induced exacerbations.
Collapse
Affiliation(s)
- Christopher McCrae
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden.,2 Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, and
| | - Anatoly Dzgoev
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcus Ståhlman
- 3 Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Horndahl
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Rebecka Svärd
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | | | | | - Nicola Williams
- 5 AstraZeneca Research and Development, Charnwood, Loughborough, United Kingdom
| | | | | | - Clive Jackson
- 5 AstraZeneca Research and Development, Charnwood, Loughborough, United Kingdom
| | - Anabel Guedán
- 7 Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Roberto Solari
- 7 Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Outi Vaarala
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maarten Kraan
- 1 Respiratory Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Madeleine Rådinger
- 2 Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, and
| |
Collapse
|
20
|
Silva JVJ, Ludwig-Begall LF, Oliveira-Filho EFD, Oliveira RAS, Durães-Carvalho R, Lopes TRR, Silva DEA, Gil LHVG. A scoping review of Chikungunya virus infection: epidemiology, clinical characteristics, viral co-circulation complications, and control. Acta Trop 2018; 188:213-224. [PMID: 30195666 PMCID: PMC7092809 DOI: 10.1016/j.actatropica.2018.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Chikungunya fever is a mosquito-borne viral illness characterized by a sudden onset of fever associated with joint pains. It was first described in the 1950s during a Chikungunya virus (CHIKV) outbreak in southern Tanzania and has since (re-) emerged and spread to several other geographical areas, reaching large populations and causing massive epidemics. In recent years, CHIKV has gained considerable attention due to its quick spread to the Caribbean and then in the Americas, with many cases reported between 2014 and 2017. CHIKV has further garnered attention due to the clinical diagnostic difficulties when Zika (ZIKV) and dengue (DENV) viruses are simultaneously present. In this review, topical CHIKV-related issues, such as epidemiology and transmission, are examined. The different manifestations of infection (acute, chronic and atypical) are described and a particular focus is placed upon the diagnostic handling in the case of ZIKV and DENV co-circulating. Natural and synthetic compounds under evaluation for treatment of chikungunya disease, including drugs already licensed for other purposes, are also discussed. Finally, previous and current vaccine strategies, as well as the control of the CHIKV transmission through an integrated vector management, are reviewed in some detail.
Collapse
Affiliation(s)
- José V J Silva
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil; Federal University of Santa Maria, Department of Preventive Veterinary Medicine, Virology Section, Santa Maria, RS, Brazil.
| | - Louisa F Ludwig-Begall
- Liège University, Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, Belgium
| | | | - Renato A S Oliveira
- Federal University of Paraíba, Department of Fisiology and Pathology, João Pessoa, PB, Brazil
| | - Ricardo Durães-Carvalho
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil
| | - Thaísa R R Lopes
- Federal University of Pernambuco, Laboratory of Immunopathology Keizo Asami, Virology Section, Recife, PE, Brazil
| | - Daisy E A Silva
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil
| | - Laura H V G Gil
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil.
| |
Collapse
|
21
|
Wang MKM, Ren T, Liu H, Lim SY, Lee K, Honko A, Zhou H, Dyall J, Hensley L, Gartin AK, Cunningham JM. Critical role for cholesterol in Lassa fever virus entry identified by a novel small molecule inhibitor targeting the viral receptor LAMP1. PLoS Pathog 2018; 14:e1007322. [PMID: 30265711 PMCID: PMC6179309 DOI: 10.1371/journal.ppat.1007322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/10/2018] [Accepted: 09/07/2018] [Indexed: 12/03/2022] Open
Abstract
Lassa fever virus (LASV) is endemic in West Africa and causes severe hemorrhagic fever and sensorineural hearing loss. We identified a small molecule inhibitor of LASV and used it to analyze the mechanism of entry. Using a photo-reactive analog that retains antiviral activity as a probe, we identified the inhibitor target as lysosome-associated membrane protein 1 (LAMP1), a host factor that binds to the LASV glycoprotein (GP) during infection. We found that LAMP1 binding to LASV GP is cholesterol-dependent, and that the inhibitor blocks infection by competing with cholesterol in LAMP1. Mutational analysis of a docking-based model identified a putative inhibitor binding site in the cholesterol-binding pocket within the LAMP1 domain that binds GP. These findings identify a critical role for cholesterol in LASV entry and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- May Kwang-Mei Wang
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tao Ren
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hu Liu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sun-Young Lim
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Kyungae Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anna Honko
- United States Army Medical Research institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Huanying Zhou
- NIAID/NIH Integrated Research Facility, Fort Detrick, Maryland, United States of America
| | - Julie Dyall
- NIAID/NIH Integrated Research Facility, Fort Detrick, Maryland, United States of America
| | - Lisa Hensley
- NIAID/NIH Integrated Research Facility, Fort Detrick, Maryland, United States of America
| | - Ashley K. Gartin
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James M. Cunningham
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Amuzu HE, Tsyganov K, Koh C, Herbert RI, Powell DR, McGraw EA. Wolbachia enhances insect-specific flavivirus infection in Aedes aegypti mosquitoes. Ecol Evol 2018; 8:5441-5454. [PMID: 29938064 PMCID: PMC6010864 DOI: 10.1002/ece3.4066] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Mosquitoes transmit a diverse group of human flaviviruses including West Nile, dengue, yellow fever, and Zika viruses. Mosquitoes are also naturally infected with insect-specific flaviviruses (ISFs), a subgroup of the family not capable of infecting vertebrates. Although ISFs are not medically important, they are capable of altering the mosquito's susceptibility to flaviviruses and may alter host fitness. Wolbachia is an endosymbiotic bacterium of insects that when present in mosquitoes limits the replication of co-infecting pathogens, including flaviviruses. Artificially created Wolbachia-infected Aedes aegypti mosquitoes are being released into the wild in a series of trials around the globe with the hope of interrupting dengue and Zika virus transmission from mosquitoes to humans. Our work investigated the effect of Wolbachia on ISF infection in wild-caught Ae. aegypti mosquitoes from field release zones. All field mosquitoes were screened for the presence of ISFs using general degenerate flavivirus primers and their PCR amplicons sequenced. ISFs were found to be common and widely distributed in Ae. aegypti populations. Field mosquitoes consistently had higher ISF infection rates and viral loads compared to laboratory colony material indicating that environmental conditions may modulate ISF infection in Ae. aegypti. Surprisingly, higher ISF infection rates and loads were found in Wolbachia-infected mosquitoes compared to the Wolbachia-free mosquitoes. Our findings demonstrate that the symbiont is capable of manipulating the mosquito virome and that Wolbachia-mediated viral inhibition is not universal for flaviviruses. This may have implications for the Wolbachia-based DENV control strategy if ISFs confer fitness effects or alter mosquito susceptibility to other flaviviruses.
Collapse
Affiliation(s)
- Hilaria E. Amuzu
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Kirill Tsyganov
- Monash Bioinformatics PlatformMonash UniversityClaytonVic.Australia
| | - Cassandra Koh
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | | | - David R. Powell
- Monash Bioinformatics PlatformMonash UniversityClaytonVic.Australia
| | - Elizabeth A. McGraw
- School of Biological SciencesMonash UniversityClaytonVic.Australia
- Department of EntomologyPennsylvania State UniversityUniversity ParkPennsylvania
| |
Collapse
|
23
|
Conflict in the Intracellular Lives of Endosymbionts and Viruses: A Mechanistic Look at Wolbachia-Mediated Pathogen-blocking. Viruses 2018; 10:v10040141. [PMID: 29561780 PMCID: PMC5923435 DOI: 10.3390/v10040141] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
At the forefront of vector control efforts are strategies that leverage host-microbe associations to reduce vectorial capacity. The most promising of these efforts employs Wolbachia, a maternally transmitted endosymbiotic bacterium naturally found in 40% of insects. Wolbachia can spread through a population of insects while simultaneously inhibiting the replication of viruses within its host. Despite successes in using Wolbachia-transfected mosquitoes to limit dengue, Zika, and chikungunya transmission, the mechanisms behind pathogen-blocking have not been fully characterized. Firstly, we discuss how Wolbachia and viruses both require specific host-derived structures, compounds, and processes to initiate and maintain infection. There is significant overlap in these requirements, and infection with either microbe often manifests as cellular stress, which may be a key component of Wolbachia’s anti-viral effect. Secondly, we discuss the current understanding of pathogen-blocking through this lens of cellular stress and develop a comprehensive view of how the lives of Wolbachia and viruses are fundamentally in conflict with each other. A thorough understanding of the genetic and cellular determinants of pathogen-blocking will significantly enhance the ability of vector control programs to deploy and maintain effective Wolbachia-mediated control measures.
Collapse
|
24
|
The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections. Curr Opin Infect Dis 2018; 30:108-116. [PMID: 27849636 PMCID: PMC5325245 DOI: 10.1097/qco.0000000000000342] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose of review Wolbachia is a genus of Gram-negative intracellular bacteria that is naturally found in more than half of all arthropod species. These bacteria cannot only reduce the fitness and the reproductive capacities of arthropod vectors, but also increase their resistance to arthropod-borne viruses (arboviruses). This article reviews the evidence supporting a Wolbachia-based strategy for controlling the transmission of dengue and other arboviral infections. Recent findings Studies conducted 1 year after the field release of Wolbachia-infected mosquitoes in Australia have demonstrated the suppression of dengue virus (DENV) replication in and dissemination by mosquitoes. Recent mathematical models show that this strategy could reduce the transmission of DENV by 70%. Consequently, the WHO is encouraging countries to boost the development and implementation of Wolbachia-based prevention strategies against other arboviral infections. However, the evidence regarding the efficacy of Wolbachia to prevent the transmission of other arboviral infections is still limited to an experimental framework with conflicting results in some cases. There is a need to demonstrate the efficacy of such strategies in the field under various climatic conditions, to select the Wolbachia strain that has the best pathogen interference/spread trade-off, and to continue to build community acceptance. Summary Wolbachia represents a promising tool for controlling the transmission of arboviral infections that needs to be developed further. Long-term environmental monitoring will be necessary for timely detection of potential changes in Wolbachia/vector/virus interactions.
Collapse
|
25
|
Mosquitoes as Arbovirus Vectors: From Species Identification to Vector Competence. PARASITOLOGY RESEARCH MONOGRAPHS 2018. [PMCID: PMC7122353 DOI: 10.1007/978-3-319-94075-5_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mosquitoes and other arthropods transmit a large number of medically important pathogens, in particular viruses. These arthropod-borne viruses (arboviruses) include a wide variety of RNA viruses belonging to the Flaviviridae family (West Nile virus (WNV), Usutu virus (USUV), Dengue virus (DENV), Japanese encephalitis virus (JEV), Zika virus (ZIKV)), the Togaviridae family (Chikungunya virus (CHIKV)), and Bunyavirales order (Rift Valley fever virus (RVFV)) (please refer also to Table 9.1). Arboviral transmission to humans and livestock constitutes a major threat to public health and economy as illustrated by the emergence of ZIKV in the Americas, RVFV outbreaks in Africa, and the worldwide outbreaks of DENV. To answer the question if those viral pathogens also pose a risk to Europe, we need to first answer the key questions (summarized in Fig. 9.1):Who could contribute to such an outbreak? Information about mosquito species resident or imported, potential hosts and viruses able to infect vectors and hosts in Germany is needed. Where would competent mosquito species meet favorable conditions for transmission? Information on the minimum requirements for efficient replication of the virus in a given vector species and subsequent transmission is needed. How do viruses and vectors interact to facilitate transmission? Information on the vector immunity, vector physiology, vector genetics, and vector microbiomes is needed.
Collapse
|
26
|
Wudiri GA, Nicola AV. Cellular Cholesterol Facilitates the Postentry Replication Cycle of Herpes Simplex Virus 1. J Virol 2017; 91:e00445-17. [PMID: 28446672 PMCID: PMC5487575 DOI: 10.1128/jvi.00445-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential component of cell membranes and is required for herpes simplex virus 1 (HSV-1) entry (1-3). Treatment of HSV-1-infected Vero cells with methyl beta-cyclodextrin from 2 to 9 h postentry reduced plaque numbers. Transport of incoming viral capsids to the nuclear periphery was unaffected by the cholesterol reduction, suggesting that cell cholesterol is important for the HSV-1 replicative cycle at a stage(s) beyond entry, after the arrival of capsids at the nucleus. The synthesis and release of infectious HSV-1 and cell-to-cell spread of infection were all impaired in cholesterol-reduced cells. Propagation of HSV-1 on DHCR24-/- fibroblasts, which lack the desmosterol-to-cholesterol conversion enzyme, resulted in the generation of infectious extracellular virions (HSVdes) that lack cholesterol and likely contain desmosterol. The specific infectivities (PFU per viral genome) of HSVchol and HSVdes were similar, suggesting cholesterol and desmosterol in the HSV envelope support similar levels of infectivity. However, infected DHCR24-/- fibroblasts released ∼1 log less infectious HSVdes and ∼1.5 log fewer particles than release of cholesterol-containing particles (HSVchol) from parental fibroblasts, suggesting that the hydrocarbon tail of cholesterol facilitates viral synthesis. Together, the results suggest multiple roles for cholesterol in the HSV-1 replicative cycle.IMPORTANCE HSV-1 infections are associated with a wide range of clinical manifestations that are of public health importance. Cholesterol is a key player in the complex interaction between viral and cellular factors that allows HSV-1 to enter host cells and establish infection. Previous reports have demonstrated a role for cellular cholesterol in the entry of HSV-1 into target cells. Here, we employed both chemical treatment and cells that were genetically defined to synthesize only desmosterol to demonstrate that cholesterol is important at stages following the initial entry and transport of viral capsids to the nucleus. Viral protein expression, encapsidation of the viral genome, and the release of mature virions were impacted by the reduction of cellular cholesterol. Cholesterol was also critical for cell-to-cell spread of infection. These findings provide new insights into the cholesterol dependence of HSV-1 replication.
Collapse
Affiliation(s)
- George A Wudiri
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
27
|
Amuzu HE, McGraw EA. Wolbachia-Based Dengue Virus Inhibition Is Not Tissue-Specific in Aedes aegypti. PLoS Negl Trop Dis 2016; 10:e0005145. [PMID: 27855218 PMCID: PMC5113870 DOI: 10.1371/journal.pntd.0005145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Background Dengue fever, caused by the dengue virus (DENV), is now the most common arbovirus transmitted disease globally. One novel approach to control DENV is to use the endosymbiotic bacterium, Wolbachia pipientis, to limit DENV replication inside the primary mosquito vector, Aedes aegypti. Wolbachia that is naturally present in a range of insects reduces the capacity for viruses, bacteria, parasites and fungi to replicate inside insects. Wolbachia’s mode of action is not well understood but may involve components of immune activation or competition with pathogens for limited host resources. The strength of Wolbachia-based anti DENV effects appear to correlate with bacterial density in the whole insect and in cell culture. Here we aimed to determine whether particular tissues, especially those with high Wolbachia densities or immune activity, play a greater role in mediating the anti DENV effect. Methodology/findings Ae. aegypti mosquito lines with and without Wolbachia (Wildtype) were orally fed DENV 3 and their viral loads subsequently measured over two time points post infection in the midgut, head, salivary glands, Malpighian tubules, fat body and carcass. We did not find correlations between Wolbachia densities and DENV loads in any tissue, nor with DENV loads in salivary glands, the endpoint of infection. This is in contrast with strong positive correlations between DENV loads in a range of tissues and salivary gland loads for Wildtype mosquitoes. Lastly, there was no evidence of a heightened role for tissues with known immune function including the fat body and the Malpighian tubules in Wolbachia’s limitation of DENV. Conclusion/significance We conclude that the efficacy of DENV blocking in Wolbachia infected mosquitoes is not reliant on any particular tissue. This work therefore suggests that the mechanism of Wolbachia-based antiviral effects is either systemic or acts locally via processes that are fundamental to diverse cell types. We further conclude that the relationship between DENV blocking and Wolbachia density is not linear in mosquito tissues Dengue fever caused by the dengue virus (DENV) is transmitted by the mosquito, Aedes aegypti. To control the disease, an intracellular bacterium called Wolbachia has been introduced into Ae. aegypti where it blocks/limits success of infection of DENV. The mechanistic basis of blocking is not well understood but may involve Wolbachia activating the host immune system or competing with DENV for host resources. The strength of blocking appears to correlate with Wolbachia density. Here, we aimed to determine if any particular tissues inside the mosquito play a greater role in blocking. Tissues were chosen based on their Wolbachia density and their roles in infection and immunity. Wolbachia infected and uninfected mosquitoes were orally infected with DENV and Wolbachia density and DENV load were assessed in midgut, salivary gland, head, Malpighian tubules, fat body and carcass. Wolbachia density did not correlate with DENV loads in the same tissues nor with DENV loads in the salivary glands. We also showed that no one tissue appeared to play a greater role in blocking. In summary, these finding suggest that in the mosquito a threshold Wolbachia density may be required for DENV blocking. Our findings also suggest that blocking may involve mechanisms that are fundamental to all cells.
Collapse
Affiliation(s)
- Hilaria E. Amuzu
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Elizabeth A. McGraw
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
28
|
Marzinek J, Holdbrook D, Huber R, Verma C, Bond P. Pushing the Envelope: Dengue Viral Membrane Coaxed into Shape by Molecular Simulations. Structure 2016; 24:1410-1420. [DOI: 10.1016/j.str.2016.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022]
|
29
|
Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells. J Virol 2016; 90:4745-4756. [PMID: 26912616 DOI: 10.1128/jvi.03184-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/19/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne human pathogen causing major outbreaks in Africa, Asia, and the Americas. The cell entry pathway hijacked by CHIKV to infect a cell has been studied previously using inhibitory compounds. There has been some debate on the mechanism by which CHIKV enters the cell: several studies suggest that CHIKV enters via clathrin-mediated endocytosis, while others show that it enters independently of clathrin. Here we applied live-cell microscopy and monitored the cell entry behavior of single CHIKV particles in living cells transfected with fluorescent marker proteins. This approach allowed us to obtain detailed insight into the dynamic events that occur during CHIKV entry. We observed that almost all particles fused within 20 min after addition to the cells. Of the particles that fused, the vast majority first colocalized with clathrin. The average time from initial colocalization with clathrin to the moment of membrane fusion was 1.7 min, highlighting the rapidity of the cell entry process of CHIKV. Furthermore, these results show that the virus spends a relatively long time searching for a receptor. Membrane fusion was observed predominantly from within Rab5-positive endosomes and often occurred within 40 s after delivery to endosomes. Furthermore, we confirmed that a valine at position 226 of the E1 protein enhances the cholesterol-dependent membrane fusion properties of CHIKV. To conclude, our work confirms that CHIKV enters cells via clathrin-mediated endocytosis and shows that fusion occurs from within acidic early endosomes. IMPORTANCE Since its reemergence in 2004, chikungunya virus (CHIKV) has spread rapidly around the world, leading to millions of infections. CHIKV often causes chikungunya fever, a self-limiting febrile illness with severe arthralgia. Currently, no vaccine or specific antiviral treatment against CHIKV is available. A potential antiviral strategy is to interfere with the cell entry process of the virus. However, conflicting results with regard to the cell entry pathway used by CHIKV have been published. Here we applied a novel technology to visualize the entry behavior of single CHIKV particles in living cells. Our results show that CHIKV cell entry is extremely rapid and occurs via clathrin-mediated endocytosis. Membrane fusion from within acidic early endosomes is observed. Furthermore, the membrane fusion capacity of CHIKV is strongly promoted by cholesterol in the target membrane. Taking these findings together, this study provides detailed insight into the cell entry process of CHIKV.
Collapse
|
30
|
Reid CR, Airo AM, Hobman TC. The Virus-Host Interplay: Biogenesis of +RNA Replication Complexes. Viruses 2015; 7:4385-413. [PMID: 26287230 PMCID: PMC4576186 DOI: 10.3390/v7082825] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022] Open
Abstract
Positive-strand RNA (+RNA) viruses are an important group of human and animal pathogens that have significant global health and economic impacts. Notable members include West Nile virus, Dengue virus, Chikungunya, Severe acute respiratory syndrome (SARS) Coronavirus and enteroviruses of the Picornaviridae family.Unfortunately, prophylactic and therapeutic treatments against these pathogens are limited. +RNA viruses have limited coding capacity and thus rely extensively on host factors for successful infection and propagation. A common feature among these viruses is their ability to dramatically modify cellular membranes to serve as platforms for genome replication and assembly of new virions. These viral replication complexes (VRCs) serve two main functions: To increase replication efficiency by concentrating critical factors and to protect the viral genome from host anti-viral systems. This review summarizes current knowledge of critical host factors recruited to or demonstrated to be involved in the biogenesis and stabilization of +RNA virus VRCs.
Collapse
Affiliation(s)
- Colleen R Reid
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Adriana M Airo
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Tom C Hobman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
31
|
van Duijl-Richter MKS, Blijleven JS, van Oijen AM, Smit JM. Chikungunya virus fusion properties elucidated by single-particle and bulk approaches. J Gen Virol 2015; 96:2122-2132. [DOI: 10.1099/vir.0.000144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mareike K. S. van Duijl-Richter
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Jelle S. Blijleven
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M. van Oijen
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
32
|
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.
Collapse
|
33
|
Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion. mBio 2015; 6:e00801. [PMID: 26126854 PMCID: PMC4488941 DOI: 10.1128/mbio.00801-15] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and a highly fatal hantavirus cardiopulmonary syndrome (HCPS) in the New World. No vaccines or antiviral therapies are currently available to prevent or treat hantavirus disease, and gaps in our understanding of how hantaviruses enter cells challenge the search for therapeutics. We performed a haploid genetic screen in human cells to identify host factors required for entry by Andes virus, a highly virulent New World hantavirus. We found that multiple genes involved in cholesterol sensing, regulation, and biosynthesis, including key components of the sterol response element-binding protein (SREBP) pathway, are critical for Andes virus entry. Genetic or pharmacological disruption of the membrane-bound transcription factor peptidase/site-1 protease (MBTPS1/S1P), an SREBP control element, dramatically reduced infection by virulent hantaviruses of both the Old World and New World clades but not by rhabdoviruses or alphaviruses, indicating that this pathway is broadly, but selectively, required by hantaviruses. These results could be fully explained as arising from the modest depletion of cellular membrane cholesterol that accompanied S1P disruption. Mechanistic studies of cells and with protein-free liposomes suggested that high levels of cholesterol are specifically needed for hantavirus membrane fusion. Taken together, our results indicate that the profound dependence on target membrane cholesterol is a fundamental, and unusual, biophysical property of hantavirus glycoprotein-membrane interactions during entry. IMPORTANCE Although hantaviruses cause important human diseases worldwide, no specific antiviral treatments are available. One of the major obstacles to the development of new therapies is a lack of understanding of how hantaviruses hijack our own host factors to enter cells. Here, we identified multiple cellular genes that control the levels of cholesterol in cellular membranes to be important for hantavirus entry. Our findings suggest that high concentrations of cholesterol in cellular membranes are required at a specific step in the entry process-fusion between viral and cellular membranes-that allows escape of the hantavirus genome into the host cell cytoplasm to initiate infection. Our findings uncover a fundamental feature of the hantavirus infection mechanism and point to cholesterol-lowering drugs as a potential new treatment of hantaviral infections.
Collapse
|
34
|
Abstract
Viruses have evolved to exploit the vast complexity of cellular processes for their success within the host cell. The entry mechanisms of enveloped viruses (viruses with a surrounding outer lipid bilayer membrane) are usually classified as being either endocytotic or fusogenic. Different mechanisms have been proposed for Alphavirus entry and genome delivery. Indirect observations led to a general belief that enveloped viruses can infect cells either by protein-assisted fusion with the plasma membrane in a pH-independent manner or by endocytosis and fusion with the endocytic vacuole in a low-pH environment. The mechanism of Alphavirus penetration has been recently revisited using direct observation of the processes by electron microscopy under conditions of different temperatures and time progression. Under conditions nonpermissive for endocytosis or any vesicular transport, events occur which allow the entry of the virus genome into the cells. When drug inhibitors of cellular functions are used to prevent entry, only ionophores are found to significantly inhibit RNA delivery. Arboviruses are agents of significant human and animal disease; therefore, strategies to control infections are needed and include development of compounds which will block critical steps in the early infection events. It appears that current evidence points to an entry mechanism, in which alphaviruses infect cells by direct penetration of cell plasma membranes through a pore structure formed by virus and, possibly, host proteins.
Collapse
|
35
|
Abstract
Cholesterol and components of the cholesterol biosynthetic pathway have fundamental roles in all mammalian cells. Hydroxylated forms of cholesterol are now emerging as important regulators of immune function. This involves effects on the cholesterol biosynthetic pathway and cell membrane properties, which can have antiviral and anti-inflammatory influences. In addition, a dihydroxylated form of cholesterol functions as an immune cell guidance cue by engaging the G protein-coupled receptor EBI2, and it is required for mounting adaptive immune responses. In this Review, we summarize the current understanding of the closely related oxysterols 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, and the growing evidence that they have wide-ranging influences on innate and adaptive immunity.
Collapse
|
36
|
Noranate N, Takeda N, Chetanachan P, Sittisaman P, A-nuegoonpipat A, Anantapreecha S. Characterization of chikungunya virus-like particles. PLoS One 2014; 9:e108169. [PMID: 25265335 PMCID: PMC4180278 DOI: 10.1371/journal.pone.0108169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/19/2014] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is becoming a global concern due to the increasing number of outbreaks throughout the world and the absence of any CHIKV-specific vaccine or treatment. Virus-like particles (VLPs) are multistructured proteins that mimic the organization and conformation of native viruses but lack the viral genome. They are noninfectious and potentially safer vaccine candidates. Recent studies demonstrated that the yield of CHIKV VLPs varies depending on the strains, despite the 95% amino acid similarity of the strains. This might be due to the codon usage, since protein expression is differently controlled by different organisms. We optimized the region encoding CHIKV structural proteins, C-E3-E2-6k-E1, inserted it into a mammalian expression vector, and used the resulting construct to transfect 293 cells. We detected 50-kDa proteins corresponding to E1 and/or E2 in the cell lysate and the supernatant. Transmission electron microscopy revealed spherical particles with a 50- to 60-nm diameter in the supernatant that resembled the native CHIKV virions. The buoyant density of the VLPs was 1.23 g/mL, and the yield was 20 µg purified VLPs per 108 cells. The VLPs aggregated when mixed with convalescent sera from chikungunya patients, indicating that their antigenicity is similar to that of native CHIKV. Antibodies elicited with the VLPs were capable of detecting native CHIKV, demonstrating that the VLPs retain immunogenicity similar to that of the native virion. These results indicated that CHIKV VLPs are morphologically, antigenically, and immunologically similar to the native CHIKV, suggesting that they have potential for use in chikungunya vaccines.
Collapse
Affiliation(s)
- Nitchakarn Noranate
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- * E-mail:
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Prukswan Chetanachan
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Pathompong Sittisaman
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Atchareeya A-nuegoonpipat
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Surapee Anantapreecha
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
37
|
Wagner JM, Pajerowski JD, Daniels CL, McHugh PM, Flynn JA, Balliet JW, Casimiro DR, Subramanian S. Enhanced production of Chikungunya virus-like particles using a high-pH adapted spodoptera frugiperda insect cell line. PLoS One 2014; 9:e94401. [PMID: 24713807 PMCID: PMC3979839 DOI: 10.1371/journal.pone.0094401] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus-like particles (VLPs) have potential to be used as a prophylactic vaccine based on testing in multiple animal models and are currently being evaluated for human use in a Phase I clinical trial. The current method for producing these enveloped alphavirus VLPs by transient gene expression in mammalian cells presents challenges for scalable and robust industrial manufacturing, so the insect cell baculovirus expression vector system was evaluated as an alternative expression technology. Subsequent to recombinant baculovirus infection of Sf21 cells in standard culture media (pH 6.2–6.4), properly processed Chikungunya structural proteins were detected and assembled capsids were observed. However, an increase in culture pH to 6.6–6.8 was necessary to produce detectable concentrations of assembled VLPs. Since this elevated production pH exceeds the optimum for growth medium stability and Sf21 culture, medium modifications were made and a novel insect cell variant (SfBasic) was derived by exposure of Sf21 to elevated culture pH for a prolonged period of time. The high-pH adapted SfBasic insect cell line described herein is capable of maintaining normal cell growth into the typical mammalian cell culture pH range of 7.0–7.2 and produces 11-fold higher Chikungunya VLP yields relative to the parental Sf21 cell line. After scale-up into stirred tank bioreactors, SfBasic derived VLPs were chromatographically purified and shown to be similar in size and structure to a VLP standard derived from transient gene expression in HEK293 cells. Total serum anti-Chikungunya IgG and neutralizing titers from guinea pigs vaccinated with SfBasic derived VLPs or HEK293 derived VLPs were not significantly different with respect to production method, suggesting that this adapted insect cell line and production process could be useful for manufacturing Chikungunya VLPs for use as a vaccine. The adaptation of Sf21 to produce high levels of recombinant protein and VLPs in an elevated pH range may also have applications for other pH-sensitive protein or VLP targets.
Collapse
Affiliation(s)
- James M. Wagner
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - J. David Pajerowski
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Christopher L. Daniels
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Patrick M. McHugh
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Jessica A. Flynn
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - John W. Balliet
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Danilo R. Casimiro
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Shyamsundar Subramanian
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
This review is a partially personal account of the discovery of virus structure and its implication for virus function. Although I have endeavored to cover all aspects of structural virology and to acknowledge relevant individuals, I know that I have favored taking examples from my own experience in telling this story. I am anxious to apologize to all those who I might have unintentionally offended by omitting their work. The first knowledge of virus structure was a result of Stanley's studies of tobacco mosaic virus (TMV) and the subsequent X-ray fiber diffraction analysis by Bernal and Fankuchen in the 1930s. At about the same time it became apparent that crystals of small RNA plant and animal viruses could diffract X-rays, demonstrating that viruses must have distinct and unique structures. More advances were made in the 1950s with the realization by Watson and Crick that viruses might have icosahedral symmetry. With the improvement of experimental and computational techniques in the 1970s, it became possible to determine the three-dimensional, near-atomic resolution structures of some small icosahedral plant and animal RNA viruses. It was a great surprise that the protecting capsids of the first virus structures to be determined had the same architecture. The capsid proteins of these viruses all had a 'jelly-roll' fold and, furthermore, the organization of the capsid protein in the virus were similar, suggesting a common ancestral virus from which many of today's viruses have evolved. By this time a more detailed structure of TMV had also been established, but both the architecture and capsid protein fold were quite different to that of the icosahedral viruses. The small icosahedral RNA virus structures were also informative of how and where cellular receptors, anti-viral compounds, and neutralizing antibodies bound to these viruses. However, larger lipid membrane enveloped viruses did not form sufficiently ordered crystals to obtain good X-ray diffraction. Starting in the 1990s, these enveloped viruses were studied by combining cryo-electron microscopy of the whole virus with X-ray crystallography of their protein components. These structures gave information on virus assembly, virus neutralization by antibodies, and virus fusion with and entry into the host cell. The same techniques were also employed in the study of complex bacteriophages that were too large to crystallize. Nevertheless, there still remained many pleomorphic, highly pathogenic viruses that lacked the icosahedral symmetry and homogeneity that had made the earlier structural investigations possible. Currently some of these viruses are starting to be studied by combining X-ray crystallography with cryo-electron tomography.
Collapse
|
39
|
Petersen J, Drake MJ, Bruce EA, Riblett AM, Didigu CA, Wilen CB, Malani N, Male F, Lee FH, Bushman FD, Cherry S, Doms RW, Bates P, Briley K. The major cellular sterol regulatory pathway is required for Andes virus infection. PLoS Pathog 2014; 10:e1003911. [PMID: 24516383 PMCID: PMC3916400 DOI: 10.1371/journal.ppat.1003911] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV). Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P) of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection. As obligate, intracellular parasites viruses are dependent upon the host cell for numerous factors and processes. However, for many important viruses few of the required host factors have been identified. Hantaviruses are rodent-borne viruses that are associated with severe human disease. Transmission to humans occurs sporadically with a recent notable example in Yosemite National park. In the present study, we utilized two independent genetic strategies to discover cellular factors needed for replication of the highly pathogenic hantavirus Andes virus. We found that four genes, encoding components of a complex involved in regulation of cholesterol synthesis and uptake, were critical for Andes virus infection. Drugs that inhibit an enzyme in this complex or that reduce cellular cholesterol levels effectively blocked Andes virus infection, suggesting new ways for combating this pathogenic virus.
Collapse
Affiliation(s)
- Josiah Petersen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary Jane Drake
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily A. Bruce
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amber M. Riblett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chukwuka A. Didigu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Craig B. Wilen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nirav Malani
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frances Male
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fang-Hua Lee
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sara Cherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert W. Doms
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (PB); (KB)
| | - Kenneth Briley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (PB); (KB)
| |
Collapse
|
40
|
Rainey SM, Shah P, Kohl A, Dietrich I. Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. J Gen Virol 2013; 95:517-530. [PMID: 24343914 DOI: 10.1099/vir.0.057422-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a considerable threat to human and animal health, yet effective control measures have proven difficult to implement, and novel means of controlling their replication in arthropod vectors, such as mosquitoes, are urgently required. One of the most exciting approaches to emerge from research on arthropods is the use of the endosymbiotic intracellular bacterium Wolbachia to control arbovirus transmission from mosquito to vertebrate. These α-proteobacteria propagate through insects, in part through modulation of host reproduction, thus ensuring spread through species and maintenance in nature. Since it was discovered that Wolbachia endosymbiosis inhibits insect virus replication in Drosophila species, these bacteria have also been shown to inhibit arbovirus replication and spread in mosquitoes. Importantly, it is not clear how these antiviral effects are mediated. This review will summarize recent work and discuss determinants of antiviral effectiveness that may differ between individual Wolbachia/vector/arbovirus interactions. We will also discuss the application of this approach to field settings and the associated risks.
Collapse
Affiliation(s)
- Stephanie M Rainey
- MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Pranav Shah
- MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Alain Kohl
- MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Isabelle Dietrich
- MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
41
|
Cross-inhibition of chikungunya virus fusion and infection by alphavirus E1 domain III proteins. J Virol 2013; 87:7680-7. [PMID: 23637415 DOI: 10.1128/jvi.00814-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses are small enveloped RNA viruses that include important emerging human pathogens, such as chikungunya virus (CHIKV). These viruses infect cells via a low-pH-triggered membrane fusion reaction, making this step a potential target for antiviral therapies. The E1 fusion protein inserts into the target membrane, trimerizes, and refolds to a hairpin-like conformation in which the combination of E1 domain III (DIII) and the stem region (DIII-stem) pack against a core trimer composed of E1 domains I and II (DI/II). Addition of exogenous DIII proteins from Semliki Forest virus (SFV) has been shown to inhibit E1 hairpin formation and SFV fusion and infection. Here we produced and characterized DIII and DI/II proteins from CHIKV and SFV. Unlike SFV DIII, both core trimer binding and fusion inhibition by CHIKV DIII required the stem region. CHIKV DIII-stem and SFV DIII-stem showed efficient cross-inhibition of SFV, Sindbis virus, and CHIKV infections. We developed a fluorescence anisotropy-based assay for the binding of SFV DIII-stem to the core trimer and used it to demonstrate the relatively high affinity of this interaction (Kd [dissociation constant], ∼85 nM) and the importance of the stem region. Together, our results support the conserved nature of the key contacts of DIII-stem in the alphavirus E1 homotrimer and describe a sensitive and quantitative in vitro assay for this step in fusion protein refolding.
Collapse
|
42
|
Vancini R, Wang G, Ferreira D, Hernandez R, Brown DT. Alphavirus genome delivery occurs directly at the plasma membrane in a time- and temperature-dependent process. J Virol 2013; 87:4352-9. [PMID: 23388718 PMCID: PMC3624389 DOI: 10.1128/jvi.03412-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/19/2013] [Indexed: 12/14/2022] Open
Abstract
It is widely held that arboviruses such as the alphavirus Sindbis virus gain entry into cells by a process of receptor-mediated endocytosis followed by membrane fusion in the acid environment of the endosome. We have used an approach of direct observation of Sindbis virus entry into cells by electron microscopy and immunolabeling of virus proteins with antibodies conjugated to gold beads. We found that upon attaching to the cell surface, intact RNA-containing viruses became empty shells that could be identified only by antibody labeling. We found that the rate at which full particles were converted to empty particles increased with time and temperature. We found that this entry event takes place at temperatures that inhibit both endosome formation and membrane fusion. We conclude that entry of alphaviruses is by direct penetration of cell plasma membranes through a pore structure formed by virus and, possibly, host proteins.
Collapse
Affiliation(s)
- Ricardo Vancini
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Gongbo Wang
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Davis Ferreira
- Instituto de Microbiologia and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem (INCTBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Hernandez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Dennis T. Brown
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
43
|
Merkling SH, van Rij RP. Beyond RNAi: antiviral defense strategies in Drosophila and mosquito. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:159-170. [PMID: 22824741 DOI: 10.1016/j.jinsphys.2012.07.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 06/01/2023]
Abstract
Virus transmission and spread by arthropods is a major economic and public health concern. The ongoing dissemination of arthropod-borne viruses by blood-feeding insects is an important incentive to study antiviral immunity in these animals. RNA interference is a major mechanism for antiviral defense in insects, including the fruit fly Drosophila melanogaster and several vector mosquitoes. However, recent data suggest that the evolutionary conserved Toll, Imd and Jak-Stat signaling pathways also contribute to antiviral immunity. Moreover, symbionts, such as the intracellular bacterium Wolbachia and the gut microflora, influence the course of virus infection in insects. These results add an additional level of complexity to antiviral immunity, but also provide novel opportunities to control the spread of arboviruses. In this review, we provide an overview of the current knowledge and recent developments in antiviral immunity in Dipteran insects, with a focus on non-RNAi mediated inducible responses.
Collapse
Affiliation(s)
- Sarah H Merkling
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
44
|
Soni A, Pandey KM, Ray P, Jayaram B. Genomes to hits in silico - a country path today, a highway tomorrow: a case study of chikungunya. Curr Pharm Des 2013; 19:4687-700. [PMID: 23260020 PMCID: PMC3831887 DOI: 10.2174/13816128113199990379] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022]
Abstract
These are exciting times for bioinformaticians, computational biologists and drug designers with the genome and proteome sequences and related structural databases growing at an accelerated pace. The post-genomic era has triggered high expectations for a rapid and successful treatment of diseases. However, in this biological information rich and functional knowledge poor scenario, the challenges are indeed grand, no less than the assembly of the genome of the whole organism. These include functional annotation of genes, identification of druggable targets, prediction of three-dimensional structures of protein targets from their amino acid sequences, arriving at lead compounds for these targets followed by a transition from bench to bedside. We propose here a "Genome to Hits In Silico" strategy (called Dhanvantari) and illustrate it on Chikungunya virus (CHIKV). "Genome to hits" is a novel pathway incorporating a series of steps such as gene prediction, protein tertiary structure determination, active site identification, hit molecule generation, docking and scoring of hits to arrive at lead compounds. The current state of the art for each of the steps in the pathway is high-lighted and the feasibility of creating an automated genome to hits assembly line is discussed.
Collapse
Affiliation(s)
- Anjali Soni
- Department of Chemistry, Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.
| | | | | | | |
Collapse
|
45
|
pH-dependent entry of chikungunya virus into Aedes albopictus cells. INFECTION GENETICS AND EVOLUTION 2012; 12:1275-81. [DOI: 10.1016/j.meegid.2012.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 02/04/2023]
|
46
|
A specific domain of the Chikungunya virus E2 protein regulates particle formation in human cells: implications for alphavirus vaccine design. J Virol 2012; 86:8879-83. [PMID: 22647698 DOI: 10.1128/jvi.00370-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Virus-like particles (VLPs) can be generated from Chikungunya virus (CHIKV), but different strains yield variable quantities of particles. Here, we define the genetic basis for these differences and show that amino acid 234 in E2 substantially affects VLP production. This site is located within the acid-sensitive region (ASR) known to initiate a major conformational change in E1/E2. Selected other mutations in the ASR, or changes in pH, also increased VLP yield. These results demonstrate that the ASR of E2 plays an important role in regulating particle generation.
Collapse
|
47
|
Identification of novel host cell binding partners of Oas1b, the protein conferring resistance to flavivirus-induced disease in mice. J Virol 2012; 86:7953-63. [PMID: 22623793 DOI: 10.1128/jvi.00333-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Oas1b was previously identified as the product of the Flv(r) allele that confers flavivirus-specific resistance to virus-induced disease in mice by an uncharacterized, RNase L-independent mechanism. To gain insights about the mechanism by which Oas1b specifically reduces the efficiency of flavivirus replication, cellular protein interaction partners were identified and their involvement in the Oas1b-mediated flavivirus resistance mechanism was analyzed. Initial difficulties in getting the two-hybrid assay to work with full-length Oas1b led to the discovery that this Oas protein uniquely has a C-terminal transmembrane domain that targets it to the endoplasmic reticulum (ER). Two peptides matching to oxysterol binding protein-related protein 1L (ORP1L) and ATP binding cassette protein 3, subfamily F (ABCF3), were identified as Oas1b interaction partners in yeast two-hybrid assays, and both in vitro-transcribed/translated peptides and full-length proteins in mammalian cell lysates coimmunoprecipitated with Oas1b. Knockdown of a partner involved in Oas1b-mediated antiflavivirus activity would be expected to increase flavivirus replication but not that of other types of viruses. However, RNA interference (RNAi) knockdown of ORP1L decreased the replication of the flavivirus West Nile virus (WNV) as well as that of other types of RNA viruses. This virus-nonspecific effect may be due to the recently reported dysregulation of late endosome movement by ORP1L knockdown. Knockdown of ABCF3 protein levels increased the replication of WNV but not that of other types of RNA viruses, and this effect on WNV replication was observed only in Oas1b-expressing cells. The results suggest that Oas1b is part of a complex located in the ER and that ABCF3 is a component of the Flv(r)-mediated resistance mechanism.
Collapse
|
48
|
Kuo SC, Chen YJ, Wang YM, Tsui PY, Kuo MD, Wu TY, Lo SJ. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion. J Biomed Sci 2012; 19:44. [PMID: 22520648 PMCID: PMC3384457 DOI: 10.1186/1423-0127-19-44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/21/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV). E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored. METHODS A bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein) were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230) in membrane fusion activity. RESULTS Western blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only) was greater than that of cells bearing 26S-based constructs (expressing all structural proteins), the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds. Cells bearing the V178A mutation exhibited a slight decrease in cholesterol-dependence and a higher-pH threshold for fusion. CONCLUSIONS Cells expressing amino acid substitutions of conserved protein E1 residues of E1-G91 and E1-H230 lost most of the CHIKV E1-mediated membrane fusion activity. Cells expressing mutations of less-conserved amino acids, E1-V178A and E1-A226V, retained membrane fusion activity to levels similar to those expressing wild type E1, but their fusion properties of pH threshold and cholesterol dependence were slightly altered.
Collapse
Affiliation(s)
- Szu-Cheng Kuo
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
49
|
Walker T, Moreira LA. Can Wolbachia be used to control malaria? Mem Inst Oswaldo Cruz 2012; 106 Suppl 1:212-7. [PMID: 21881776 DOI: 10.1590/s0074-02762011000900026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/17/2011] [Indexed: 01/31/2023] Open
Abstract
Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites transmitted by the infectious bite of Anopheles mosquitoes. Vector control of malaria has predominantly focused on targeting the adult mosquito through insecticides and bed nets. However, current vector control methods are often not sustainable for long periods so alternative methods are needed. A novel biocontrol approach for mosquito-borne diseases has recently been proposed, it uses maternally inherited endosymbiotic Wolbachia bacteria transinfected into mosquitoes in order to interfere with pathogen transmission. Transinfected Wolbachia strains in Aedes aegypti mosquitoes, the primary vector of dengue fever, directly inhibit pathogen replication, including Plasmodium gallinaceum, and also affect mosquito reproduction to allow Wolbachia to spread through mosquito populations. In addition, transient Wolbachia infections in Anopheles gambiae significantly reduce Plasmodium levels. Here we review the prospects of using a Wolbachia-based approach to reduce human malaria transmission through transinfection of Anopheles mosquitoes.
Collapse
Affiliation(s)
- Thomas Walker
- School of Biological Sciences, The University of Queensland, Brisbane QLD, Australia
| | | |
Collapse
|
50
|
Cholesterol dependence of Newcastle Disease Virus entry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:753-61. [PMID: 22192779 PMCID: PMC7094422 DOI: 10.1016/j.bbamem.2011.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 01/13/2023]
Abstract
Lipid rafts are membrane microdomains enriched in cholesterol, sphingolipids, and glycolipids that have been implicated in many biological processes. Since cholesterol is known to play a key role in the entry of some other viruses, we investigated the role of cholesterol and lipid rafts in the host cell plasma membrane in Newcastle Disease Virus (NDV) entry. We used methyl-β-cyclodextrin (MβCD) to deplete cellular cholesterol and disrupt lipid rafts. Our results show that the removal of cellular cholesterol partially reduces viral binding, fusion and infectivity. MβCD had no effect on the expression of sialic acid containing molecule expression, the NDV receptors in the target cell. All the above-described effects were reversed by restoring cholesterol levels in the target cell membrane. The HN viral attachment protein partially localized to detergent-resistant membrane microdomains (DRMs) at 4°C and then shifted to detergent-soluble fractions at 37°C. These results indicate that cellular cholesterol may be required for optimal cell entry in NDV infection cycle.
Collapse
|