1
|
Itell HL, Guenthoer J, Humes D, Baumgarten NE, Overbaugh J. Host cell glycosylation selects for infection with CCR5- versus CXCR4-tropic HIV-1. Nat Microbiol 2024; 9:2985-2996. [PMID: 39363105 DOI: 10.1038/s41564-024-01806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 08/06/2024] [Indexed: 10/05/2024]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection involves a selection bottleneck that leads to transmission of one or a few variants. C-C motif chemokine receptor 5 (CCR5) or C-X-C motif chemokine receptor 4 (CXCR4) can act as coreceptors for HIV-1 viral entry. However, initial infection mostly occurs via CCR5, despite abundant expression of CXCR4 on target cells. The host factors that influence HIV-1 susceptibility and selection during transmission are unclear. Here we conduct CRISPR-Cas9 screens and identify SLC35A2 (a transporter of UDP-galactose expressed in target cells in blood and mucosa) as a potent and specific CXCR4-tropic restriction factor in primary target CD4+ T cells. SLC35A2 inactivation, which resulted in truncated glycans, not only increased CXCR4-tropic infection levels but also decreased those of CCR5-tropic strains consistently. Single-cycle infections demonstrated that the effect is cell-intrinsic. These data support a role for a host protein that influences glycan structure in regulating HIV-1 infection. Host cell glycosylation may, therefore, affect HIV-1 selection during transmission in vivo.
Collapse
Affiliation(s)
- Hannah L Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jamie Guenthoer
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Tr1X Inc, La Jolla, CA, USA
| | - Nell E Baumgarten
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
2
|
Zhao NQ, Pi R, Nguyen DN, Ranganath T, Seiler C, Holmes S, Marson A, Blish CA. NKp30 and NKG2D contribute to natural killer recognition of HIV-infected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600449. [PMID: 38979175 PMCID: PMC11230221 DOI: 10.1101/2024.06.24.600449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Natural killer (NK) cells respond rapidly in early HIV-1 infection. HIV-1 prevention and control strategies harnessing NK cells could be enabled by mechanistic understanding of how NK cells recognize HIV-infected T cells. Here, we profiled the phenotype of human primary NK cells responsive to autologous HIV-1-infected CD4 + T cells in vitro. We characterized the patterns of NK cell ligand expression on CD4 + T cells at baseline and after infection with a panel of transmitted/founder HIV-1 strains to identify key receptor-ligand pairings. CRISPR editing of CD4 + T cells to knockout the NKp30 ligand B7-H6, or the NKG2D ligands MICB or ULBP2 reduced NK cell responses to HIV-infected cells in some donors. In contrast, overexpression of NKp30 or NKG2D in NK cells enhanced their targeting of HIV-infected cells. Collectively, we identified receptor-ligand pairs including NKp30:B7-H6 and NKG2D:MICB/ULBP2 that contribute to NK cell recognition of HIV-infected cells.
Collapse
|
3
|
Ao Y, Grover JR, Gifford L, Han Y, Zhong G, Katte R, Li W, Bhattacharjee R, Zhang B, Sauve S, Qin W, Ghimire D, Haque MA, Arthos J, Moradi M, Mothes W, Lemke EA, Kwong PD, Melikyan GB, Lu M. Bioorthogonal click labeling of an amber-free HIV-1 provirus for in-virus single molecule imaging. Cell Chem Biol 2024; 31:487-501.e7. [PMID: 38232732 PMCID: PMC10960674 DOI: 10.1016/j.chembiol.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
Structural dynamics of human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein mediate cell entry and facilitate immune evasion. Single-molecule FRET using peptides for Env labeling revealed structural dynamics of Env, but peptide use risks potential effects on structural integrity/dynamics. While incorporating noncanonical amino acids (ncAAs) into Env by amber stop-codon suppression, followed by click chemistry, offers a minimally invasive approach, this has proved to be technically challenging for HIV-1. Here, we develope an intact amber-free HIV-1 system that overcomes hurdles of preexisting viral amber codons. We achieved dual-ncAA incorporation into Env on amber-free virions, enabling single-molecule Förster resonance energy transfer (smFRET) studies of click-labeled Env that validated the previous peptide-based labeling approaches by confirming the intrinsic propensity of Env to dynamically sample multiple conformational states. Amber-free click-labeled Env also enabled real-time tracking of single virion internalization and trafficking in cells. Our system thus permits in-virus bioorthogonal labeling of proteins, compatible with studies of virus entry, trafficking, and egress from cells.
Collapse
Affiliation(s)
- Yuanyun Ao
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Levi Gifford
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yang Han
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Guohua Zhong
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Revansiddha Katte
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rajanya Bhattacharjee
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; International PhD Program of the Institute of Molecular Biology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie Sauve
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wenyi Qin
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Dibya Ghimire
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Md Anzarul Haque
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Edward A Lemke
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| |
Collapse
|
4
|
Itell HL, Humes D, Baumgarten NE, Overbaugh J. Host cell glycosylation selects for infection with CCR5- versus CXCR4-tropic HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556399. [PMID: 37732222 PMCID: PMC10508750 DOI: 10.1101/2023.09.05.556399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
HIV-1 infection involves a selection bottleneck that leads to transmission of one or a few HIV variants, which nearly always use CCR5 as the coreceptor (R5 viruses) for viral entry as opposed to CXCR4 (X4 viruses). The host properties that drive this selection are not well understood and may hold keys to factors that govern HIV susceptibility. In this report, we identified SLC35A2, a transporter of UDP-galactose, as a candidate X4-specific restriction factor in CRISPR-knockout screens in primary target CD4+ T cells. SLC35A2 inactivation in CD4+ T cells, which resulted in truncation of glycans due to the absence of galactose, not only increased X4 infection levels, but also consistently decreased infection levels of R5 HIV strains. Single cycle infections demonstrated that the effect is host cell dependent. SLC35A2 is expressed in CD4+ T cells at different tissue sites, with high levels in the genital tract - the site of most HIV infections. These data support a role for a host cell protein that regulates glycan structure on HIV infection, with enhanced R5 infection but reduced X4 infection associated with SLC35A2-mediated glycosylation. Host cell glycosylation may therefore contribute to R5 selection and host susceptibility during HIV transmission.
Collapse
Affiliation(s)
- Hannah L. Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, 98109, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Present address: Tr1X Inc, La Jolla, CA, 92037, USA
| | - Nell E. Baumgarten
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
5
|
Kulsuptrakul J, Turcotte EA, Emerman M, Mitchell PS. A human-specific motif facilitates CARD8 inflammasome activation after HIV-1 infection. eLife 2023; 12:e84108. [PMID: 37417868 PMCID: PMC10359095 DOI: 10.7554/elife.84108] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Inflammasomes are cytosolic innate immune complexes that assemble upon detection of diverse pathogen-associated cues and play a critical role in host defense and inflammatory pathogenesis. Here, we find that the human inflammasome-forming sensor CARD8 senses HIV-1 infection via site-specific cleavage of the CARD8 N-terminus by the HIV protease (HIV-1PR). HIV-1PR cleavage of CARD8 induces pyroptotic cell death and the release of pro-inflammatory cytokines from infected cells, processes regulated by Toll-like receptor stimulation prior to viral infection. In acutely infected cells, CARD8 senses the activity of both de novo translated HIV-1PR and packaged HIV-1PR that is released from the incoming virion. Moreover, our evolutionary analyses reveal that the HIV-1PR cleavage site in human CARD8 arose after the divergence of chimpanzees and humans. Although chimpanzee CARD8 does not recognize proteases from HIV or simian immunodeficiency viruses from chimpanzees (SIVcpz), SIVcpz does cleave human CARD8, suggesting that SIVcpz was poised to activate the human CARD8 inflammasome prior to its cross-species transmission into humans. Our findings suggest a unique role for CARD8 inflammasome activation in response to lentiviral infection of humans.
Collapse
Affiliation(s)
- Jessie Kulsuptrakul
- Molecular and Cellular Biology Graduate Program, University of WashingtonSeattleUnited States
| | - Elizabeth A Turcotte
- Division of Immunology and Pathogenesis, University of California, BerkeleyBerkeleyUnited States
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Patrick S Mitchell
- Department of Microbiology, University of WashingtonSeattleUnited States
| |
Collapse
|
6
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. Cell Rep 2023; 42:112556. [PMID: 37227817 PMCID: PMC10592456 DOI: 10.1016/j.celrep.2023.112556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4+ T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4+ T cells by performing CRISPR-knockout screens with a custom library that specifically targets ISGs expressed in CD4+ T cells. Our investigation identifies previously undescribed HIV-restricting ISGs (HM13, IGFBP2, LAP3) and finds that two factors characterized in other HIV infection models (IFI16 and UBE2L6) mediate IFN restriction in T cells. Inactivation of these five ISGs in combination further diminishes IFN's protective effect against diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
A Virus-Packageable CRISPR System Identifies Host Dependency Factors Co-Opted by Multiple HIV-1 Strains. mBio 2023; 14:e0000923. [PMID: 36744886 PMCID: PMC9973025 DOI: 10.1128/mbio.00009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
At each stage of the HIV life cycle, host cellular proteins are hijacked by the virus to establish and enhance infection. We adapted the virus packageable HIV-CRISPR screening technology at a genome-wide scale to comprehensively identify host factors that affect HIV replication in a human T cell line. Using a smaller, targeted HIV Dependency Factor (HIVDEP) sublibrary, we then performed screens across HIV strains representing different clades and with different biological properties to define which T cell host factors are important across multiple HIV strains. Nearly 90% of the genes selected across various host pathways validated in subsequent assays as bona fide host dependency factors, including numerous proteins not previously reported to play roles in HIV biology, such as UBE2M, MBNL1, FBXW7, PELP1, SLC39A7, and others. Our ranked list of screen hits across diverse HIV-1 strains form a resource of HIV dependency factors for future investigation of host proteins involved in HIV biology. IMPORTANCE With a small genome of ~9.2 kb that encodes 14 major proteins, HIV must hijack host cellular machinery to successfully establish infection. These host proteins necessary for HIV replication are called "dependency factors." Whole-genome, and then targeted screens were done to try to comprehensively identify all dependency factors acting throughout the HIV replication cycle. Many host processes were identified and validated as critical for HIV replication across multiple HIV strains.
Collapse
|
8
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527545. [PMID: 36798236 PMCID: PMC9934674 DOI: 10.1101/2023.02.07.527545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4 + T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4 + T cells. We performed CRISPR-knockout screens using a custom library that specifically targets ISGs expressed in CD4 + T cells and validated top hits. Our investigation identified new HIV-restricting ISGs (HM13, IGFBP2, LAP3) and found that two previously studied factors (IFI16, UBE2L6) are IFN effectors in T cells. Inactivation of these five ISGs in combination further diminished IFN’s protective effect against six diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L. Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, 98109, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Present address: Tr1X Inc, La Jolla, CA, 92037, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
9
|
Abeynaike SA, Huynh TR, Mehmood A, Kim T, Frank K, Gao K, Zalfa C, Gandarilla A, Shultz L, Paust S. Human Hematopoietic Stem Cell Engrafted IL-15 Transgenic NSG Mice Support Robust NK Cell Responses and Sustained HIV-1 Infection. Viruses 2023; 15:365. [PMID: 36851579 PMCID: PMC9960100 DOI: 10.3390/v15020365] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mice reconstituted with human immune systems are instrumental in the investigation of HIV-1 pathogenesis and therapeutics. Natural killer (NK) cells have long been recognized as a key mediator of innate anti-HIV responses. However, established humanized mouse models do not support robust human NK cell development from engrafted human hematopoietic stem cells (HSCs). A major obstacle to human NK cell reconstitution is the lack of human interleukin-15 (IL-15) signaling, as murine IL-15 is a poor stimulator of the human IL-15 receptor. Here, we demonstrate that immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice expressing a transgene encoding human IL-15 (NSG-Tg(IL-15)) have physiological levels of human IL-15 and support long-term engraftment of human NK cells when transplanted with human umbilical-cord-blood-derived HSCs. These Hu-NSG-Tg(IL-15) mice demonstrate robust and long-term reconstitution with human immune cells, but do not develop graft-versus-host disease (GVHD), allowing for long-term studies of human NK cells. Finally, we show that these HSC engrafted mice can sustain HIV-1 infection, resulting in human NK cell responses in HIV-infected mice. We conclude that Hu-NSG-Tg(IL-15) mice are a robust novel model to study NK cell responses to HIV-1.
Collapse
Affiliation(s)
- Shawn A. Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tridu R. Huynh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
- Division of Internal Medicine, Scripps Clinic/Scripps Green Hospital, La Jolla, CA 92037, USA
| | - Abeera Mehmood
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Teha Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kefei Gao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Zalfa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Angel Gandarilla
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Rubio AA, Filsinger Interrante MV, Bell BN, Brown CL, Bruun TUJ, LaBranche CC, Montefiori DC, Kim PS. A Derivative of the D5 Monoclonal Antibody That Targets the gp41 N-Heptad Repeat of HIV-1 with Broad Tier-2-Neutralizing Activity. J Virol 2021; 95:e0235020. [PMID: 33980592 PMCID: PMC8274607 DOI: 10.1128/jvi.02350-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 infection is initiated by the viral glycoprotein Env, which, after interaction with cellular coreceptors, adopts a transient conformation known as the prehairpin intermediate (PHI). The N-heptad repeat (NHR) is a highly conserved region of gp41 exposed in the PHI; it is the target of the FDA-approved drug enfuvirtide and of neutralizing monoclonal antibodies (mAbs). However, to date, these mAbs have only been weakly effective against tier-1 HIV-1 strains, which are most sensitive to neutralizing antibodies. Here, we engineered and tested 11 IgG variants of D5, an anti-NHR mAb, by recombining previously described mutations in four of D5's six antibody complementarity-determining regions. One variant, D5_AR, demonstrated 6-fold enhancement in the 50% inhibitory dose (ID50) against lentivirus pseudotyped with HXB2 Env. D5_AR exhibited weak cross-clade neutralizing activity against a diverse set of tier-2 HIV-1 viruses, which are less sensitive to neutralizing antibodies than tier-1 viruses and are the target of current antibody-based vaccine efforts. In addition, the neutralization potency of D5_AR IgG was greatly enhanced in target cells expressing FcγRI, with ID50 values of <0.1 μg/ml; this immunoglobulin receptor is expressed on macrophages and dendritic cells, which are implicated in the early stages of HIV-1 infection of mucosal surfaces. D5 and D5_AR have equivalent neutralization potency in IgG, Fab, and single-chain variable-fragment (scFv) formats, indicating that neutralization is not impacted by steric hindrance. Taken together, these results provide support for vaccine strategies that target the PHI by eliciting antibodies against the gp41 NHR and support investigation of anti-NHR mAbs in nonhuman primate passive immunization studies. IMPORTANCE Despite advances in antiretroviral therapy, HIV remains a global epidemic and has claimed more than 32 million lives. Accordingly, developing an effective HIV vaccine remains an urgent public health need. The gp41 N-heptad repeat (NHR) of the HIV-1 prehairpin intermediate (PHI) is highly conserved (>90%) and is inhibited by the FDA-approved drug enfuvirtide, making it an attractive vaccine target. However, to date, anti-NHR antibodies have not been potent. Here, we engineered D5_AR, a more potent variant of the anti-NHR antibody D5, and established its ability to inhibit HIV-1 strains that are more difficult to neutralize and are more representative of circulating strains (tier-2 strains). The neutralizing activity of D5_AR was greatly potentiated in cells expressing FcγRI; FcγRI is expressed on cells that are implicated at the earliest stages of sexual HIV-1 transmission. Taken together, these results bolster efforts to target the gp41 NHR and the PHI for vaccine development.
Collapse
Affiliation(s)
- Adonis A. Rubio
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University School of Humanities & Sciences, Stanford, California, USA
| | - Maria V. Filsinger Interrante
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin N. Bell
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Clayton L. Brown
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Theodora U. J. Bruun
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter S. Kim
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
11
|
Li H, Wang S, Lee FH, Roark RS, Murphy AI, Smith J, Zhao C, Rando J, Chohan N, Ding Y, Kim E, Lindemuth E, Bar KJ, Pandrea I, Apetrei C, Keele BF, Lifson JD, Lewis MG, Denny TN, Haynes BF, Hahn BH, Shaw GM. New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission, Immunopathogenesis, Prevention and Cure. J Virol 2021; 95:JVI.00071-21. [PMID: 33658341 PMCID: PMC8139694 DOI: 10.1128/jvi.00071-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Previously, we showed that substitution of HIV-1 Env residue 375-Ser by bulky aromatic residues enhances binding to rhesus CD4 and enables primary HIV-1 Envs to support efficient replication as simian-human immunodeficiency virus (SHIV) chimeras in rhesus macaques (RMs). Here, we test this design strategy more broadly by constructing SHIVs containing ten primary Envs corresponding to HIV-1 subtypes A, B, C, AE and AG. All ten SHIVs bearing wildtype Env375 residues replicated efficiently in human CD4+ T cells, but only one replicated efficiently in primary rhesus cells. This was a subtype AE SHIV that naturally contained His at Env375. Replacement of wildtype Env375 residues by Trp, Tyr, Phe or His in the other nine SHIVs led to efficient replication in rhesus CD4+ T cells in vitro and in vivo Nine SHIVs containing optimized Env375 alleles were grown large-scale in primary rhesus CD4+ T cells to serve as challenge stocks in preclinical prevention trials. These virus stocks were genetically homogeneous, native-like in Env antigenicity and tier-2 neutralization sensitivity, and transmissible by rectal, vaginal, penile, oral or intravenous routes. To facilitate future SHIV constructions, we engineered a simplified second-generation design scheme and validated it in RMs. Overall, our findings demonstrate that SHIVs bearing primary Envs with bulky aromatic substitutions at Env375 consistently replicate in RMs, recapitulating many features of HIV-1 infection in humans. Such SHIVs are efficiently transmitted by mucosal routes common to HIV-1 infection and can be used to test vaccine efficacy in preclinical monkey trials.ImportanceSHIV infection of Indian rhesus macaques is an important animal model for studying HIV-1 transmission, prevention, immunopathogenesis and cure. Such research is timely, given recent progress with active and passive immunization and novel approaches to HIV-1 cure. Given the multifaceted roles of HIV-1 Env in cell tropism and virus entry, and as a target for neutralizing and non-neutralizing antibodies, Envs selected for SHIV construction are of paramount importance. Until recently, it has been impossible to strategically design SHIVs bearing clinically relevant Envs that replicate consistently in monkeys. This changed with the discovery that bulky aromatic substitutions at residue Env375 confer enhanced affinity to rhesus CD4. Here, we show that 10 new SHIVs bearing primary HIV-1 Envs with residue 375 substitutions replicated efficiently in RMs and could be transmitted efficiently across rectal, vaginal, penile and oral mucosa. These findings suggest an expanded role for SHIVs as a model of HIV-1 infection.
Collapse
Affiliation(s)
- Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fang-Hua Lee
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan S Roark
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alex I Murphy
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chengyan Zhao
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juliette Rando
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neha Chohan
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eunlim Kim
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Lindemuth
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine J Bar
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Identification of an Antiretroviral Small Molecule That Appears To Be a Host-Targeting Inhibitor of HIV-1 Assembly. J Virol 2021; 95:JVI.00883-20. [PMID: 33148797 PMCID: PMC7925099 DOI: 10.1128/jvi.00883-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
Given the projected increase in multidrug-resistant HIV-1, there is an urgent need for development of antiretrovirals that act on virus life cycle stages not targeted by drugs currently in use. Host-targeting compounds are of particular interest because they can offer a high barrier to resistance. Here, we report identification of two related small molecules that inhibit HIV-1 late events, a part of the HIV-1 life cycle for which potent and specific inhibitors are lacking. This chemotype was discovered using cell-free protein synthesis and assembly systems that recapitulate intracellular host-catalyzed viral capsid assembly pathways. These compounds inhibit replication of HIV-1 in human T cell lines and peripheral blood mononuclear cells, and are effective against a primary isolate. They reduce virus production, likely by inhibiting a posttranslational step in HIV-1 Gag assembly. Notably, the compound colocalizes with HIV-1 Gag in situ; however, unexpectedly, selection experiments failed to identify compound-specific resistance mutations in gag or pol, even though known resistance mutations developed upon parallel nelfinavir selection. Thus, we hypothesized that instead of binding to Gag directly, these compounds localize to assembly intermediates, the intracellular multiprotein complexes containing Gag and host factors that form during immature HIV-1 capsid assembly. Indeed, imaging of infected cells shows compound colocalized with two host enzymes found in assembly intermediates, ABCE1 and DDX6, but not two host proteins found in other complexes. While the exact target and mechanism of action of this chemotype remain to be determined, our findings suggest that these compounds represent first-in-class, host-targeting inhibitors of intracellular events in HIV-1 assembly.IMPORTANCE The success of antiretroviral treatment for HIV-1 is at risk of being undermined by the growing problem of drug resistance. Thus, there is a need to identify antiretrovirals that act on viral life cycle stages not targeted by drugs in use, such as the events of HIV-1 Gag assembly. To address this gap, we developed a compound screen that recapitulates the intracellular events of HIV-1 assembly, including virus-host interactions that promote assembly. This effort led to the identification of a new chemotype that inhibits HIV-1 replication at nanomolar concentrations, likely by acting on assembly. This compound colocalized with Gag and two host enzymes that facilitate capsid assembly. However, resistance selection did not result in compound-specific mutations in gag, suggesting that the chemotype does not directly target Gag. We hypothesize that this chemotype represents a first-in-class inhibitor of virus production that acts by targeting a virus-host complex important for HIV-1 Gag assembly.
Collapse
|
13
|
Zhao NQ, Vendrame E, Ferreira AM, Seiler C, Ranganath T, Alary M, Labbé AC, Guédou F, Poudrier J, Holmes S, Roger M, Blish CA. Natural killer cell phenotype is altered in HIV-exposed seronegative women. PLoS One 2020; 15:e0238347. [PMID: 32870938 PMCID: PMC7462289 DOI: 10.1371/journal.pone.0238347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Highly exposed seronegative (HESN) individuals present a unique setting to study mechanisms of protection against HIV acquisition. As natural killer (NK) cell activation and function have been implicated as a correlate of protection in HESN individuals, we sought to better understand the features of NK cells that may confer protection. We used mass cytometry to phenotypically profile NK cells from a cohort of Beninese sex workers and healthy controls. We found that NK cells from HESN women had increased expression of NKG2A, NKp30 and LILRB1, as well as the Fc receptor CD16, and decreased expression of DNAM-1, CD94, Siglec-7, and NKp44. Using functional assessments of NK cells from healthy donors against autologous HIV-infected CD4+ T cells, we observed that NKp30+ and Siglec-7+ cells had improved functional activity. Further, we found that NK cells from HESN women trended towards increased antibody-dependent cellular cytotoxicity (ADCC) activity; this activity correlated with increased CD16 expression. Overall, we identify features of NK cells in HESN women that may contribute to protection from HIV infection. Follow up studies with larger cohorts are warranted to confirm these findings.
Collapse
Affiliation(s)
- Nancy Q. Zhao
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
- Immunology Program, Stanford University, Stanford, CA, United States of America
| | - Elena Vendrame
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
| | - Anne-Maud Ferreira
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Christof Seiler
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Thanmayi Ranganath
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
| | - Michel Alary
- Centre de Recherche du CHU de Québec–Université Laval, Québec, Canada, Département de Médecine Sociale et Préventive, Université Laval, Québec, Canada, Institut National de Santé Publique du Québec, Québec, Canada
| | - Annie-Claude Labbé
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada, Service de maladies infectieuses et microbiologie, Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | | | - Johanne Poudrier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada, Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Michel Roger
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada, Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (CAB); (MR)
| | - Catherine A. Blish
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
- Immunology Program, Stanford University, Stanford, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
- * E-mail: (CAB); (MR)
| |
Collapse
|
14
|
Lu M, Ma X, Reichard N, Terry DS, Arthos J, Smith AB, Sodroski JG, Blanchard SC, Mothes W. Shedding-Resistant HIV-1 Envelope Glycoproteins Adopt Downstream Conformations That Remain Responsive to Conformation-Preferring Ligands. J Virol 2020; 94:e00597-20. [PMID: 32522853 PMCID: PMC7431789 DOI: 10.1128/jvi.00597-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer of gp120-gp41 heterodimers mediates virus entry into CD4-positive (CD4+) cells. Single-molecule fluorescence resonance energy transfer (smFRET) has revealed that native Env on the surface of viruses predominantly exists in a pretriggered conformation (state 1) that is preferentially recognized by many broadly neutralizing antibodies (bNAbs). Env is activated by binding receptor CD4, which drives transitions through a default intermediate conformation (state 2) into the three-CD4-bound open conformation (state 3). The application of smFRET to assess the conformational state of existing Env constructs and ligand complexes recently revealed that all current high-resolution structures correspond to downstream states 2 and 3. The structure of state 1, therefore, remains unknown. We sought to identify conditions whereby HIV-1 Env could be stabilized in the pretriggered state 1 for possible structural characterization. Shedding of gp120, known to severely complicate structural studies, can be prevented by using the uncleaved gp160JR-FL precursor with alterations in the protease cleavage site (R508S/R511S) or by introducing a disulfide bridge between gp120 and gp41 designated "SOS" (A501C/T605C). smFRET demonstrated that both shedding-preventing modifications shifted the conformational landscape of Env downstream toward states 2 and 3. However, both membrane-bound Env proteins on the surface of intact viruses remained conformationally dynamic, responsive to state-stabilizing ligands, and able to be stabilized in state 1 by specific ligands such as the Bristol-Myers Squibb (BMS) entry inhibitors. The here-described identification of state 1-stabilizing conditions may enable structural characterization of the state 1 conformation of HIV-1 Env.IMPORTANCE The HIV-1 envelope glycoprotein (Env) opens in response to receptor CD4 binding from a pretriggered (state 1) conformation through a necessary intermediate to the three-CD4-bound conformation. The application of smFRET to test the conformational state of existing Env constructs and ligand complexes used for high-resolution structures recently revealed that they correspond to the downstream conformations. The structure of the pretriggered Env conformation, preferentially recognized by broadly neutralizing antibodies, remains unknown. Here, we identify experimental conditions that stabilize membrane-bound and shedding-resistant virus Env trimers in state 1, potentially facilitating structural characterization of this unknown conformational state.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nick Reichard
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Enhancing natural killer cell function with gp41-targeting bispecific antibodies to combat HIV infection. AIDS 2020; 34:1313-1323. [PMID: 32287071 DOI: 10.1097/qad.0000000000002543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE(S) The aim of this study was to develop and evaluate the activity of bispecific antibodies (bsAbs) to enhance natural killer (NK) cell antibody-dependent cellular cytotoxicity (ADCC) against HIV-infected cells. DESIGN These bsAbs are based on patient-derived antibodies targeting the conserved gp41 stump of HIV Env, and also incorporate a high-affinity single chain variable fragment (scFv) targeting the activating receptor CD16 on NK cells. Overall, we expect the bsAbs to provide increased affinity and avidity over their corresponding mAbs, allowing for improved ADCC activity against Env-expressing target cells. METHODS bsAbs and their corresponding mAbs were expressed in 293T cells and purified. The binding of bsAbs and mAbs to their intended targets was determined using Bio-Layer Interferometry, as well as flow cytometry based binding assays on in-vitro infected cells. The ability of these bsAbs to improve NK cell activity against HIV-infected cells was tested using in-vitro co-culture assays, using flow cytometry and calcein release to analyse NK cell degranulation and target cell killing, respectively. RESULTS The bsAbs-bound gp41 with similar affinity to their corresponding mAbs had increased affinity for CD16. The bsAbs also bound to primary CD4 T cells infected in vitro with two different strains of HIV. In addition, the bsAbs induce increased NK cell degranulation and killing of autologous HIV-infected CD4 T cells. CONCLUSION On the basis of their in-vitro killing efficacy, bsAbs may provide a promising strategy to improve NK-mediated immune targeting of infected cells during HIV infection.
Collapse
|
16
|
Zhao NQ, Ferreira AM, Grant PM, Holmes S, Blish CA. Treated HIV Infection Alters Phenotype but Not HIV-Specific Function of Peripheral Blood Natural Killer Cells. Front Immunol 2020; 11:829. [PMID: 32477342 PMCID: PMC7235409 DOI: 10.3389/fimmu.2020.00829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are the predominant antiviral cells of the innate immune system, and may play an important role in acquisition and disease progression of HIV. While untreated HIV infection is associated with distinct alterations in the peripheral blood NK cell repertoire, less is known about how NK phenotype is altered in the setting of long-term viral suppression with antiretroviral therapy (ART), as well as how NK memory can impact functional responses. As such, we sought to identify changes in NK cell phenotype and function using high-dimensional mass cytometry to simultaneously analyze both surface and functional marker expression of peripheral blood NK cells in a cohort of ART-suppressed, HIV+ patients and HIV- healthy controls. We found that the NK cell repertoire following IL-2 treatment was altered in individuals with treated HIV infection compared to healthy controls, with increased expression of markers including NKG2C and CD2, and decreased expression of CD244 and NKp30. Using co-culture assays with autologous, in vitro HIV-infected CD4 T cells, we identified a subset of NK cells with enhanced responsiveness to HIV-1-infected cells, but no differences in the magnitude of anti-HIV NK cell responses between the HIV+ and HIV− groups. In addition, by profiling of NK cell receptors on responding cells, we found similar phenotypes of HIV-responsive NK cell subsets in both groups. Lastly, we identified clusters of NK cells that are altered in individuals with treated HIV infection compared to healthy controls, but found that these clusters are distinct from those that respond to HIV in vitro. As such, we conclude that while chronic, treated HIV infection induces a reshaping of the IL-2-stimulated peripheral blood NK cell repertoire, it does so in a way that does not make the repertoire more HIV-specific.
Collapse
Affiliation(s)
- Nancy Q Zhao
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Anne-Maud Ferreira
- Department of Statistics, Stanford University School of Medicine, Stanford, CA, United States
| | - Philip M Grant
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Susan Holmes
- Department of Statistics, Stanford University School of Medicine, Stanford, CA, United States
| | - Catherine A Blish
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
17
|
Pudney J, Wangu Z, Panther L, Fugelso D, Marathe JG, Sagar M, Politch JA, Anderson DJ. Condylomata Acuminata (Anogenital Warts) Contain Accumulations of HIV-1 Target Cells That May Provide Portals for HIV Transmission. J Infect Dis 2019; 219:275-283. [PMID: 30137482 DOI: 10.1093/infdis/jiy505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/16/2018] [Indexed: 11/13/2022] Open
Abstract
Background Condylomata acuminata (anogenital warts [AGWs]) are prevalent in human immunodeficiency virus (HIV)-infected individuals and sexually active populations at risk for HIV acquisition and have been associated with HIV transmission. We compared AGW specimens to control tissue specimens for abundance, types, and location of HIV target cells and for susceptibility to HIV infection in vitro, to provide biologic evidence that AGWs facilitate HIV transmission. Methods We used immunohistologic staining to identify HIV target cells in AGW and control specimens. We also inoculated HIV in vitro into AGW and control specimens from HIV-negative men and assessed infection by means of TZM-bl and p24 assays. Results CD1a+ dendritic cells, CD4+ T cells, and macrophages were significantly more abundant in the epidermis of AGW specimens than control specimens. These HIV target cells also often appeared in large focal accumulations in the dermis of AGW specimens. Two of 8 AGW specimens versus 0 of 8 control specimens showed robust infection with HIV in vitro. Conclusions Compared with normal skin, AGWs contain significantly higher concentrations of HIV target cells that may be susceptible to HIV infection. Condylomata may thus promote HIV transmission, especially in the setting of typical lesion vascularity and friability. Prevention or treatment of AGWs may decrease the sexual transmission of HIV.
Collapse
Affiliation(s)
- Jeffrey Pudney
- Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston
| | - Zoon Wangu
- Division of Pediatric Infectious Diseases and Immunology, UMass Memorial Children's Medical Center, Worcester, Massachusetts
| | - Lori Panther
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston
| | - Dana Fugelso
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston
| | - Jai G Marathe
- Department of Medicine, Boston University School of Medicine, Boston
| | - Manish Sagar
- Department of Medicine, Boston University School of Medicine, Boston
| | - Joseph A Politch
- Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston
| | - Deborah J Anderson
- Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston.,Department of Medicine, Boston University School of Medicine, Boston
| |
Collapse
|
18
|
van den Berg FT, Makoah NA, Ali SA, Scott TA, Mapengo RE, Mutsvunguma LZ, Mkhize NN, Lambson BE, Kgagudi PD, Crowther C, Abdool Karim SS, Balazs AB, Weinberg MS, Ely A, Arbuthnot PB, Morris L. AAV-Mediated Expression of Broadly Neutralizing and Vaccine-like Antibodies Targeting the HIV-1 Envelope V2 Region. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:100-112. [PMID: 31334303 PMCID: PMC6616373 DOI: 10.1016/j.omtm.2019.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
HIV-1 infection continues to be a global health challenge and a vaccine is urgently needed. Broadly neutralizing antibodies (bNAbs) are considered essential as they inhibit multiple HIV-1 strains, but they are difficult to elicit by conventional immunization. In contrast, non-neutralizing antibodies that correlated with reduced risk of infection in the RV144 HIV vaccine trial are relatively easy to induce, but responses are not durable. To overcome these obstacles, adeno-associated virus (AAV) vectors were used to provide long-term expression of antibodies targeting the V2 region of the HIV-1 envelope protein, including the potent CAP256-VRC26.25 bNAb, as well as non-neutralizing CAP228 antibodies that resemble those elicited by vaccination. AAVs mediated effective antibody expression in cell culture and immunocompetent mice. Mean concentrations of human immunoglobulin G (IgG) in mouse sera increased rapidly following a single AAV injection, reaching 8–60 μg/mL for CAP256 antibodies and 44–220 μg/mL for CAP228 antibodies over 24 weeks, but antibody concentrations varied for individual mice. Secreted antibodies collected from serum retained the expected binding and neutralizing activity. The vectors generated here are, therefore, suitable for the delivery of V2-targeting HIV antibodies, and they could be used in a vectored immunoprophylaxis (VIP) approach to sustain the level of antibody expression required to prevent HIV infection.
Collapse
Affiliation(s)
- Fiona T van den Berg
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,HIV Pathogenesis Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel A Makoah
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stuart A Ali
- HIV Pathogenesis Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tristan A Scott
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,HIV Pathogenesis Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rutendo E Mapengo
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Lorraine Z Mutsvunguma
- HIV Pathogenesis Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonhlanhla N Mkhize
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Bronwen E Lambson
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Prudence D Kgagudi
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Carol Crowther
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.,Department of Epidemiology, Columbia University, New York, NY, USA
| | | | - Marc S Weinberg
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,HIV Pathogenesis Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick B Arbuthnot
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
Warren CJ, Meyerson NR, Dirasantha O, Feldman ER, Wilkerson GK, Sawyer SL. Selective use of primate CD4 receptors by HIV-1. PLoS Biol 2019; 17:e3000304. [PMID: 31181085 PMCID: PMC6586362 DOI: 10.1371/journal.pbio.3000304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Individuals chronically infected with HIV-1 harbor complex viral populations within their bloodstreams. Recently, it has come to light that when these people infect others, the new infection is typically established by only one or a small number of virions from within this complex viral swarm. An important goal is to characterize the biological properties of HIV-1 virions that seed and exist early in new human infections because these are potentially the only viruses against which a prophylactic HIV-1 vaccine would need to elicit protection. This includes understanding how the Envelope (Env) protein of these virions interacts with the T-cell receptor CD4, which supports attachment and entry of HIV-1 into target cells. We examined early HIV-1 isolates for their ability to infect cells via the CD4 receptor of 15 different primate species. Primates were the original source of HIV-1 and now serve as valuable animal models for studying HIV-1. We find that most primary isolates of HIV-1 from the blood, including early isolates, are highly selective and enter cells through some primate CD4 receptor orthologs but not others. This phenotype is remarkably consistent, regardless of route of transmission, viral subtype, or time of isolation post infection. We show that the weak CD4 binding affinity of blood-derived HIV-1 isolates is what makes them sensitive to the small sequence differences in CD4 from one primate species to the next. To substantiate this, we engineered an early HIV-1 Env to have high, medium, or low binding affinity to CD4, and we show that it loses the ability to enter cells via the CD4 receptor of many primate species as the binding affinity gets weaker. Based on the phenotype of selective use of primate CD4, we find that weak CD4 binding appears to be a nearly universal property of HIV-1 circulating in the bloodstream. Therefore, weak binding to CD4 must be a selected and important property in the biology of HIV-1 in the body. We identify six primate species that encode CD4 receptors that fully support the entry of early HIV-1 isolates despite their low binding affinity for CD4. These findings will help inform long-standing efforts to model HIV-1 transmission and early disease in primates. The current animal model for HIV, the macaque, encodes a CD4 receptor that is non-permissive for HIV entry. This paper reveals that six primate species encode CD4 receptors compatible with HIV infection, potentially making them powerful tools for the study of HIV biology. Furthermore, weak CD4 binding is a nearly constant, and apparently selected, property of HIV circulating in the human bloodstream.
Collapse
Affiliation(s)
- Cody J. Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Nicholas R. Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Obaiah Dirasantha
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Emily R. Feldman
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Gregory K. Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
20
|
Lu M, Ma X, Castillo-Menendez LR, Gorman J, Alsahafi N, Ermel U, Terry DS, Chambers M, Peng D, Zhang B, Zhou T, Reichard N, Wang K, Grover JR, Carman BP, Gardner MR, Nikić-Spiegel I, Sugawara A, Arthos J, Lemke EA, Smith AB, Farzan M, Abrams C, Munro JB, McDermott AB, Finzi A, Kwong PD, Blanchard SC, Sodroski JG, Mothes W. Associating HIV-1 envelope glycoprotein structures with states on the virus observed by smFRET. Nature 2019; 568:415-419. [PMID: 30971821 PMCID: PMC6655592 DOI: 10.1038/s41586-019-1101-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/08/2019] [Indexed: 11/09/2022]
Abstract
The HIV-1 envelope glycoprotein (Env) trimer mediates cell entry and is
conformationally dynamic1–8. Imaging
by single-molecule fluorescence resonance energy transfer (smFRET) has revealed
that, on the surface of intact virions, mature pre-fusion Env transitions from a
pre-triggered conformation (state 1) through a default intermediate conformation
(state 2) to a conformation in which it is bound to three CD4 receptor molecules
(state 3)8–10. It is currently unclear how these
states relate to known structures. Breakthroughs in the structural
characterization of the HIV-1 Env trimer have previously been achieved by
generating soluble and proteolytically cleaved trimers of gp140 Env that are
stabilized by a disulfide bond, an isoleucine-to-proline substitution at residue
559 and a truncation at residue 664 (SOSIP.664 trimers)5,11–18.
Cryo-electron microscopy studies have been performed with C-terminally truncated
Env of the HIV-1JR-FL strain in complex with the antibody PGT15119. Both approaches have revealed similar
structures for Env. Although these structures have been presumed to represent
the pre-triggered state 1 of HIV-1 Env, this hypothesis has never directly been
tested. Here we use smFRET to compare the conformational states of Env trimers
used for structural studies with native Env on intact virus. We find that the
constructs upon which extant high-resolution structures are based predominantly
occupy downstream conformations that represent states 2 and 3. Therefore, the
structure of the pretriggered state-1 conformation of viral Env that has been
identified by smFRET and that is preferentially stabilized by many broadly
neutralizing antibodies—and thus of interest for the design of
immunogens—remains unknown.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Luis R Castillo-Menendez
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nirmin Alsahafi
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.,Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Utz Ermel
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dongjun Peng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nick Reichard
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Wang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Brennan P Carman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew R Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Ivana Nikić-Spiegel
- Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Akihiro Sugawara
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Edward A Lemke
- Departments of Biology and Chemistry, Pharmacy and Geosciences, Johannes Gutenberg University Mainz, Mainz, Germany.,Institute of Molecular Biology (IMB), Johannes Gutenberg University Mainz, Mainz, Germany.,Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| | - James B Munro
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrés Finzi
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.,Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Dingens AS, Arenz D, Weight H, Overbaugh J, Bloom JD. An Antigenic Atlas of HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes. Immunity 2019; 50:520-532.e3. [PMID: 30709739 PMCID: PMC6435357 DOI: 10.1016/j.immuni.2018.12.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/16/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022]
Abstract
Anti-HIV broadly neutralizing antibodies (bnAbs) have revealed vaccine targets on the virus's envelope (Env) protein and are themselves promising immunotherapies. The efficacy of bnAb-based therapies and vaccines depends in part on how readily the virus can escape neutralization. Although structural studies can define contacts between bnAbs and Env, only functional studies can define mutations that confer escape. Here, we mapped how all possible single amino acid mutations in Env affect neutralization of HIV by nine bnAbs targeting five epitopes. For most bnAbs, mutations at only a small fraction of structurally defined contact sites mediated escape, and most escape occurred at sites near, but not in direct contact with, the antibody. The Env mutations selected by two pooled bnAbs were similar to those expected from the combination of the bnAbs's independent action. Overall, our mutation-level antigenic atlas provides a comprehensive dataset for understanding viral immune escape and refining therapies and vaccines.
Collapse
Affiliation(s)
- Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular & Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Dana Arenz
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Haidyn Weight
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA.
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
OhAinle M, Helms L, Vermeire J, Roesch F, Humes D, Basom R, Delrow JJ, Overbaugh J, Emerman M. A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV. eLife 2018; 7:e39823. [PMID: 30520725 PMCID: PMC6286125 DOI: 10.7554/elife.39823] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
Interferon (IFN) inhibits HIV replication by inducing antiviral effectors. To comprehensively identify IFN-induced HIV restriction factors, we assembled a CRISPR sgRNA library of Interferon Stimulated Genes (ISGs) into a modified lentiviral vector that allows for packaging of sgRNA-encoding genomes in trans into budding HIV-1 particles. We observed that knockout of Zinc Antiviral Protein (ZAP) improved the performance of the screen due to ZAP-mediated inhibition of the vector. A small panel of IFN-induced HIV restriction factors, including MxB, IFITM1, Tetherin/BST2 and TRIM5alpha together explain the inhibitory effects of IFN on the CXCR4-tropic HIV-1 strain, HIV-1LAI, in THP-1 cells. A second screen with a CCR5-tropic primary strain, HIV-1Q23.BG505, described an overlapping, but non-identical, panel of restriction factors. Further, this screen also identifies HIV dependency factors. The ability of IFN-induced restriction factors to inhibit HIV strains to replicate in human cells suggests that these human restriction factors are incompletely antagonized. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Molly OhAinle
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Louisa Helms
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Jolien Vermeire
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Ferdinand Roesch
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Daryl Humes
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Ryan Basom
- Genomics and Bioinformatics Shared ResourceFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Jeffrey J Delrow
- Genomics and Bioinformatics Shared ResourceFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Julie Overbaugh
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| | - Michael Emerman
- Divisions of Human Biology and Basic SciencesFred Hutchinson Cancer Research CenterWashingtonUnited States
| |
Collapse
|
23
|
Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development. Cell Host Microbe 2018; 23:759-765.e6. [PMID: 29861171 PMCID: PMC6002614 DOI: 10.1016/j.chom.2018.04.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/10/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 broadly neutralizing antibodies (bnAbs) require high levels of activation-induced cytidine deaminase (AID)-catalyzed somatic mutations for optimal neutralization potency. Probable mutations occur at sites of frequent AID activity, while improbable mutations occur where AID activity is infrequent. One bottleneck for induction of bnAbs is the evolution of viral envelopes (Envs) that can select bnAb B cell receptors (BCR) with improbable mutations. Here we define the probability of bnAb mutations and demonstrate the functional significance of key improbable mutations in three bnAb B cell lineages. We show that bnAbs are enriched for improbable mutations, which implies that their elicitation will be critical for successful vaccine induction of potent bnAb B cell lineages. We discuss a mutation-guided vaccine strategy for identification of Envs that can select B cells with BCRs that have key improbable mutations required for bnAb development. HIV-1 broadly neutralizing antibodies are enriched with low-probability mutations Improbable mutations can be functionally critical for bnAb neutralization breadth Critical improbable mutations are high-value targets for selection with vaccines
Collapse
|
24
|
Haddox HK, Dingens AS, Hilton SK, Overbaugh J, Bloom JD. Mapping mutational effects along the evolutionary landscape of HIV envelope. eLife 2018; 7:34420. [PMID: 29590010 PMCID: PMC5910023 DOI: 10.7554/elife.34420] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
The immediate evolutionary space accessible to HIV is largely determined by how single amino acid mutations affect fitness. These mutational effects can shift as the virus evolves. However, the prevalence of such shifts in mutational effects remains unclear. Here, we quantify the effects on viral growth of all amino acid mutations to two HIV envelope (Env) proteins that differ at >100 residues. Most mutations similarly affect both Envs, but the amino acid preferences of a minority of sites have clearly shifted. These shifted sites usually prefer a specific amino acid in one Env, but tolerate many amino acids in the other. Surprisingly, shifts are only slightly enriched at sites that have substituted between the Envs—and many occur at residues that do not even contact substitutions. Therefore, long-range epistasis can unpredictably shift Env’s mutational tolerance during HIV evolution, although the amino acid preferences of most sites are conserved between moderately diverged viral strains. The virus that causes AIDS, or HIV, has a protein called Env on its surface, which is essential for the virus to infect cells. Env can also be recognized by the immune system, which then targets the virus for destruction or blocks it from infecting cells. Unfortunately, Env evolves very quickly, which means that HIV can evade our defenses. However, there are limits to how much this protein can change, since it still needs to perform its essential role in helping viruses enter cells. In the century since HIV first appeared in human populations, the virus has evolved considerably. There are now many HIV strains that infect people, and they bear Env proteins with substantially different sequences. However, it is not clear if these changes in sequence have resulted in Envs from distinct strains being able to tolerate different mutations. To examine this question, Haddox et al. compared how the Envs from two strains of HIV react to modifications in their sequences. They created all possible individual mutations in the proteins, and the resulting collections of mutated viruses were then tested for their ability to infect cells in the laboratory. Most mutations had similar effects in both Env proteins. This allowed Haddox et al. to identify portions of the protein that easily accommodate changes, and portions that must remain unchanged for viruses to remain infectious—at least in the laboratory. Some of these mutations are under different types of pressures when the virus faces the immune system, and those were identified using computational approaches. However, some mutations were tolerated differently by the two Env proteins. Therefore, viral strains differ in how their Env proteins can evolve. The parts of Env that showed differences in mutational tolerance between the strains were not necessarily the parts that differ in sequence. This shows that changes in sequence in one part of the protein can modify how other portions evolve. It remains to be determined whether changes in tolerance to mutations translate into differences in how the virus can escape immunity. This is an important question given that the rapid evolution of Env is a major obstacle to creating a vaccine for HIV.
Collapse
Affiliation(s)
- Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology PhD program, University of Washington, Seattle, United States
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology PhD program, University of Washington, Seattle, United States
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
25
|
Nahabedian J, Sharma A, Kaczmarek ME, Wilkerson GK, Sawyer SL, Overbaugh J. Owl monkey CCR5 reveals synergism between CD4 and CCR5 in HIV-1 entry. Virology 2017; 512:180-186. [PMID: 28972927 DOI: 10.1016/j.virol.2017.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023]
Abstract
Studying HIV-1 replication in the presence of functionally related proteins from different species has helped define host determinants of HIV-1 infection. Humans and owl monkeys, but not macaques, encode a CD4 receptor that permits entry of transmissible HIV-1 variants due to a single residue difference. However, little is known about whether divergent CCR5 receptor proteins act as determinants of host-range. Here we show that both owl monkey (Aotus vociferans) CD4 and CCR5 receptors are functional for the entry of transmitted HIV-1 when paired with human versions of the other receptor. By contrast, the owl monkey CD4/CCR5 pair is generally a suboptimal receptor combination, although there is virus-specific variation in infection with owl monkey receptors. Introduction of the human residues 15Y and 16T within a sulfation motif into owl monkey CCR5 resulted in a gain of function. These findings suggest there is cross-talk between CD4 and CCR5 involving the sulfation motif.
Collapse
Affiliation(s)
- John Nahabedian
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Pathobiology, University of Washington, Seattle, WA, United States
| | - Amit Sharma
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Maryska E Kaczmarek
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Greg K Wilkerson
- Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
| | - Sara L Sawyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States.
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Pathobiology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
26
|
Dingens AS, Haddox HK, Overbaugh J, Bloom JD. Comprehensive Mapping of HIV-1 Escape from a Broadly Neutralizing Antibody. Cell Host Microbe 2017; 21:777-787.e4. [PMID: 28579254 DOI: 10.1016/j.chom.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 11/24/2022]
Abstract
Precisely defining how viral mutations affect HIV's sensitivity to antibodies is vital to develop and evaluate vaccines and antibody immunotherapeutics. Despite great effort, a full map of escape mutants has not been delineated for an anti-HIV antibody. We describe a massively parallel experimental approach to quantify how all single amino acid mutations to HIV Envelope (Env) affect neutralizing antibody sensitivity in the context of replication-competent virus. We apply this approach to PGT151, a broadly neutralizing antibody recognizing a combination of Env residues and glycans. We confirm sites previously defined by structural and functional studies and reveal additional sites of escape, such as positively charged mutations in the antibody-Env interface. Evaluating the effect of each amino acid at each site lends insight into biochemical mechanisms of escape throughout the epitope, highlighting roles for charge-charge repulsions. Thus, comprehensively mapping HIV antibody escape gives a quantitative, mutation-level view of Env evasion of neutralization.
Collapse
Affiliation(s)
- Adam S Dingens
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Human Biology and Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA
| | - Hugh K Haddox
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Jesse D Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
27
|
Boyd DF, Sharma A, Humes D, Cheng-Mayer C, Overbaugh J. Adapting SHIVs In Vivo Selects for Envelope-Mediated Interferon-α Resistance. PLoS Pathog 2016; 12:e1005727. [PMID: 27399306 PMCID: PMC4939950 DOI: 10.1371/journal.ppat.1005727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/05/2016] [Indexed: 02/07/2023] Open
Abstract
Lentiviruses are able to establish persistent infection in their respective hosts despite a potent type-I interferon (IFN-I) response following transmission. A number of IFN-I-induced host factors that are able to inhibit lentiviral replication in vitro have been identified, and these studies suggest a role for IFN-induced factors as barriers to cross-species transmission. However, the ability of these factors to inhibit viral replication in vivo has not been well characterized, nor have the viral determinants that contribute to evasion or antagonism of the host IFN-I response. In this study, we hypothesized that the host IFN-I response serves as a strong selective pressure in the context of SIV/HIV chimeric virus (SHIV) infection of macaques and sought to identify the viral determinants that contribute to IFN-I resistance. We assessed the ability of SHIVs encoding HIV-1 sequences adapted by serial passage in macaques versus SHIVs encoding HIV sequences isolated directly from infected individuals to replicate in the presence of IFNα in macaque lymphocytes. We demonstrate that passage in macaques selects for IFNα resistant viruses that have higher replication kinetics and increased envelope content. SHIVs that encode HIV-1 sequences derived directly from infected humans were sensitive to IFNα -induced inhibition whereas SHIVs obtained after passage in macaques were not. This evolutionary process was directly observed in viruses that were serially passaged during the first few months of infection-a time when the IFNα response is high. Differences in IFNα sensitivity mapped to HIV-1 envelope and were associated with increased envelope levels despite similar mRNA expression, suggesting a post-transcriptional mechanism. These studies highlight critical differences in IFNα sensitivity between HIV-1 sequences in infected people and those used in SHIV models.
Collapse
Affiliation(s)
- David F. Boyd
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Pathobiology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Amit Sharma
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
28
|
Hughes P, Deng W, Olson SC, Coombs RW, Chung MH, Frenkel LM. Short Communication: Analysis of Minor Populations of Human Immunodeficiency Virus by Primer Identification and Insertion-Deletion and Carry Forward Correction Pipelines. AIDS Res Hum Retroviruses 2016; 32:296-302. [PMID: 26537573 DOI: 10.1089/aid.2015.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accurate analysis of minor populations of drug-resistant HIV requires analysis of a sufficient number of viral templates. We assessed the effect of experimental conditions on the analysis of HIV pol 454 pyrosequences generated from plasma using (1) the "Insertion-deletion (indel) and Carry Forward Correction" (ICC) pipeline, which clusters sequence reads using a nonsubstitution approach and can correct for indels and carry forward errors, and (2) the "Primer Identification (ID)" method, which facilitates construction of a consensus sequence to correct for sequencing errors and allelic skewing. The Primer ID and ICC methods produced similar estimates of viral diversity, but differed in the number of sequence variants generated. Sequence preparation for ICC was comparably simple, but was limited by an inability to assess the number of templates analyzed and allelic skewing. The more costly Primer ID method corrected for allelic skewing and provided the number of viral templates analyzed, which revealed that amplifiable HIV templates varied across specimens and did not correlate with clinical viral load. This latter observation highlights the value of the Primer ID method, which by determining the number of templates amplified, enables more accurate assessment of minority species in the virus population, which may be relevant to prescribing effective antiretroviral therapy.
Collapse
Affiliation(s)
- Paul Hughes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Scott C. Olson
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Robert W. Coombs
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Michael H. Chung
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Murphy MK, Yue L, Pan R, Boliar S, Sethi A, Tian J, Pfafferot K, Karita E, Allen SA, Cormier E, Goepfert PA, Borrow P, Robinson JE, Gnanakaran S, Hunter E, Kong XP, Derdeyn CA. Viral escape from neutralizing antibodies in early subtype A HIV-1 infection drives an increase in autologous neutralization breadth. PLoS Pathog 2013; 9:e1003173. [PMID: 23468623 PMCID: PMC3585129 DOI: 10.1371/journal.ppat.1003173] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/19/2012] [Indexed: 01/07/2023] Open
Abstract
Antibodies that neutralize (nAbs) genetically diverse HIV-1 strains have been recovered from a subset of HIV-1 infected subjects during chronic infection. Exact mechanisms that expand the otherwise narrow neutralization capacity observed during early infection are, however, currently undefined. Here we characterized the earliest nAb responses in a subtype A HIV-1 infected Rwandan seroconverter who later developed moderate cross-clade nAb breadth, using (i) envelope (Env) glycoproteins from the transmitted/founder virus and twenty longitudinal nAb escape variants, (ii) longitudinal autologous plasma, and (iii) autologous monoclonal antibodies (mAbs). Initially, nAbs targeted a single region of gp120, which flanked the V3 domain and involved the alpha2 helix. A single amino acid change at one of three positions in this region conferred early escape. One immunoglobulin heavy chain and two light chains recovered from autologous B cells comprised two mAbs, 19.3H-L1 and 19.3H-L3, which neutralized the founder Env along with one or three of the early escape variants carrying these mutations, respectively. Neither mAb neutralized later nAb escape or heterologous Envs. Crystal structures of the antigen-binding fragments (Fabs) revealed flat epitope contact surfaces, where minimal light chain mutation in 19.3H-L3 allowed for additional antigenic interactions. Resistance to mAb neutralization arose in later Envs through alteration of two glycans spatially adjacent to the initial escape signatures. The cross-neutralizing nAbs that ultimately developed failed to target any of the defined V3-proximal changes generated during the first year of infection in this subject. Our data demonstrate that this subject's first recognized nAb epitope elicited strain-specific mAbs, which incrementally acquired autologous breadth, and directed later B cell responses to target distinct portions of Env. This immune re-focusing could have triggered the evolution of cross-clade antibodies and suggests that exposure to a specific sequence of immune escape variants might promote broad humoral responses during HIV-1 infection.
Collapse
Affiliation(s)
- Megan K. Murphy
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Saikat Boliar
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Anurag Sethi
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jianhui Tian
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Katja Pfafferot
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Susan A. Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- Departments of Epidemiology and Global Health, Emory University, Atlanta, Georgia, United States of America
| | - Emmanuel Cormier
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Paul A. Goepfert
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Cynthia A. Derdeyn
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Low-frequency nevirapine resistance at multiple sites may predict treatment failure in infants on nevirapine-based treatment. J Acquir Immune Defic Syndr 2012; 60:225-33. [PMID: 22395670 DOI: 10.1097/qai.0b013e3182515730] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Resistance commonly arises in infants exposed to single-dose nevirapine (sdNVP) for prevention of mother to child transmission. Although K103N and Y181C are common following sdNVP, multiple other mutations also confer NVP resistance. It remains unclear whether specific NVP resistance mutations or combinations of mutations predict virologic failure in infants when present at low frequencies before NVP-based treatment. METHODS Twenty sdNVP-exposed infants who were subsequently treated with NVP-based highly active antiretroviral therapy were examined. Pretreatment plasma samples were tested for the presence of NVP resistance mutations by allele-specific polymerase chain reaction for K103N and Y181C and ultradeep pyrosequencing (UDPS) for all primary NVP mutations. Viral levels were determined every 3 months for up to 24 months on NVP-highly active antiretroviral therapy. Cox proportional hazard models were used to determine correlates of viral failure. RESULTS The NVP resistance mutations K103N or Y181C were detected in pretreatment plasma samples in 6 infants by allele-specific polymerase chain reaction. NVP resistance at these or other sites was detectable by UDPS in 10 of 20 infants tested. Virologic failure occurred in 50% of infants with any NVP resistance mutations detected, whereas only 20% of infants without resistance experienced viral failure, but the difference was not significant (P = 0.19). An increase in the number of NVP resistance mutations detectable by UDPS in an infant was significantly associated with an increased risk of virologic failure [HR = 1.79 (95% confidence interval: 1.07 to 2.99), P = 0.027]. CONCLUSIONS Low frequencies of multiple NVP resistance mutations, in addition to K103N and Y181C, present in infants before NVP-based treatment may predict treatment outcome.
Collapse
|
31
|
Silibinin inhibits HIV-1 infection by reducing cellular activation and proliferation. PLoS One 2012; 7:e41832. [PMID: 22848626 PMCID: PMC3404953 DOI: 10.1371/journal.pone.0041832] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/25/2012] [Indexed: 12/17/2022] Open
Abstract
Purified silymarin-derived natural products from the milk thistle plant (Silybum marianum) block hepatitis C virus (HCV) infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL), a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects.
Collapse
|
32
|
Hu X, Hong K, Zhao C, Zheng Y, Ma L, Ruan Y, Gao H, Greene K, Sarzotti-Kelsoe M, Montefiori DC, Shao Y. Profiles of neutralizing antibody response in chronically human immunodeficiency virus type 1 clade B'-infected former plasma donors from China naive to antiretroviral therapy. J Gen Virol 2012; 93:2267-2278. [PMID: 22791603 DOI: 10.1099/vir.0.043802-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Broadly neutralizing antibodies (NAbs) such as those generated in chronic human immunodeficiency virus type 1 (HIV-1) infection are considered a key component for an effective HIV-1 vaccine. Here, we measured NAb responses using a panel of 25 Env-pseudotyped viruses, including clade B, C, A, CRF07_BC and CRF01_AE strains, against plasma samples from 103 subjects in a former plasma donor cohort in central China, who were infected with HIV-1 clade B' for at least 10 years and naïve to antiretroviral therapy at the time of sampling. We found that 64 % of samples (n = 66) neutralized at least half of the viruses tested and 2 % (n = 2) neutralized all of the viruses, while 5 % (n = 5) neutralized none of the viruses tested. Strikingly, 29 % of plasma samples (n = 30) neutralized >80 % of the viral strains tested, indicating the presence of broadly reactive NAbs in these patients. When the magnitude (geometric mean ID(50) titres, GMTs) or breadth of neutralization was assessed for correlation with CD4 count or plasma viral load, the only significant positive correlations were observed between viral load and neutralization magnitude (r = 0.2189, P = 0.0263) and between viral load and neutralization breadth (r = 0.1970, P = 0.0461). A moderate difference between progressors and long-term non-progressors was observed in both the breadth (P = 0.0316) and the potency (P = 0.0300). A significant difference was found in the GMTs between intra-clade and inter-clade strains (P<0.001). Heat-map analysis based on k-means clustering of plasma determined a statistically stable cluster of plasma with cross-reactive and potent neutralizing reactivity. These samples could provide physical biomaterials for further virological and serological studies from which useful insights into rational HIV-1 vaccine development and therapeutic design might be derived.
Collapse
Affiliation(s)
- Xintao Hu
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Kunxue Hong
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Chunhong Zhao
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yang Zheng
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Liying Ma
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yuhua Ruan
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Hongmei Gao
- Department of Experimental Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Kelli Greene
- Department of Experimental Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Marcella Sarzotti-Kelsoe
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Experimental Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David C Montefiori
- Department of Experimental Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| |
Collapse
|
33
|
Lim ES, Wu LI, Malik HS, Emerman M. The function and evolution of the restriction factor Viperin in primates was not driven by lentiviruses. Retrovirology 2012; 9:55. [PMID: 22734835 PMCID: PMC3414838 DOI: 10.1186/1742-4690-9-55] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/26/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Viperin, also known as RSAD2, is an interferon-inducible protein that potently restricts a broad range of different viruses such as influenza, hepatitis C virus, human cytomegalovirus and West Nile virus. Viperin is thought to affect virus budding by modification of the lipid environment within the cell. Since HIV-1 and other retroviruses depend on lipid domains of the host cell for budding and infectivity, we investigated the possibility that Viperin also restricts human immunodeficiency virus and other retroviruses. RESULTS Like other host restriction factors that have a broad antiviral range, we find that viperin has also been evolving under positive selection in primates. The pattern of positive selection is indicative of Viperin's escape from multiple viral antagonists over the course of primate evolution. Furthermore, we find that Viperin is interferon-induced in HIV primary target cells. We show that exogenous expression of Viperin restricts the LAI strain of HIV-1 at the stage of virus release from the cell. Nonetheless, the effect of Viperin restriction is highly strain-specific and does not affect most HIV-1 strains or other retroviruses tested. Moreover, knockdown of endogenous Viperin in a lymphocytic cell line did not significantly affect the spreading infection of HIV-1. CONCLUSION Despite positive selection having acted on Viperin throughout primate evolution, our findings indicate that Viperin is not a major restriction factor against HIV-1 and other retroviruses. Therefore, other viral lineages are likely responsible for the evolutionary signatures of positive selection in viperin among primates.
Collapse
Affiliation(s)
- Efrem S Lim
- Department of Microbiology, Fred Hutchinson Cancer Research Center,University of Washington, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|
34
|
Mabuka J, Nduati R, Odem-Davis K, Peterson D, Overbaugh J. HIV-specific antibodies capable of ADCC are common in breastmilk and are associated with reduced risk of transmission in women with high viral loads. PLoS Pathog 2012; 8:e1002739. [PMID: 22719248 PMCID: PMC3375288 DOI: 10.1371/journal.ppat.1002739] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/23/2012] [Indexed: 01/25/2023] Open
Abstract
There are limited data describing the functional characteristics of HIV-1 specific antibodies in breast milk (BM) and their role in breastfeeding transmission. The ability of BM antibodies to bind HIV-1 envelope, neutralize heterologous and autologous viruses and direct antibody-dependent cell cytotoxicity (ADCC) were analyzed in BM and plasma obtained soon after delivery from 10 non-transmitting and 9 transmitting women with high systemic viral loads and plasma neutralizing antibodies (NAbs). Because subtype A is the dominant subtype in this cohort, a subtype A envelope variant that was sensitive to plasma NAbs was used to assess the different antibody activities. We found that NAbs against the subtype A heterologous virus and/or the woman's autologous viruses were rare in IgG and IgA purified from breast milk supernatant (BMS)--only 4 of 19 women had any detectable NAb activity against either virus. Detected NAbs were of low potency (median IC50 value of 10 versus 647 for the corresponding plasma) and were not associated with infant infection (p = 0.58). The low NAb activity in BMS versus plasma was reflected in binding antibody levels: HIV-1 envelope specific IgG titers were 2.2 log(10) lower (compared to 0.59 log(10) lower for IgA) in BMS versus plasma. In contrast, antibodies capable of ADCC were common and could be detected in the BMS from all 19 women. BMS envelope-specific IgG titers were associated with both detection of IgG NAbs (p = 0.0001) and BMS ADCC activity (p = 0.014). Importantly, BMS ADCC capacity was inversely associated with infant infection risk (p = 0.039). Our findings indicate that BMS has low levels of envelope specific IgG and IgA with limited neutralizing activity. However, this small study of women with high plasma viral loads suggests that breastmilk ADCC activity is a correlate of transmission that may impact infant infection risk.
Collapse
Affiliation(s)
- Jennifer Mabuka
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Program of Pathobiology, Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Ruth Nduati
- Department of Pediatrics, University of Nairobi, Nairobi, Kenya
| | - Katherine Odem-Davis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Dylan Peterson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
35
|
The neutralization sensitivity of viruses representing human immunodeficiency virus type 1 variants of diverse subtypes from early in infection is dependent on producer cell, as well as characteristics of the specific antibody and envelope variant. Virology 2012; 427:25-33. [PMID: 22369748 DOI: 10.1016/j.virol.2012.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/22/2011] [Accepted: 02/03/2012] [Indexed: 12/27/2022]
Abstract
Neutralization properties of human immunodeficiency virus (HIV-1) are often defined using pseudoviruses grown in transformed cells, which are not biologically relevant HIV-1 producer cells. Little information exists on how these viruses compare to viruses produced in primary lymphocytes, particularly for globally relevant HIV-1 strains. Therefore, replication-competent chimeras encoding envelope variants from the dominant HIV-1 subtypes (A, C, and D) obtained early after infection were generated and the neutralization properties explored. Pseudoviruses generated in 293T cells were the most sensitive to antibody neutralization. Replicating viruses generated in primary lymphocytes were most resistant to neutralization by plasma antibodies and most monoclonal antibodies (b12, 4E10, 2F5, VRC01). These differences were not associated with differences in envelope content. Surprisingly, the virus source did not impact neutralization sensitivity of most viruses to PG9. These findings suggest that producer cell type has a major effect on neutralization sensitivity, but in an antibody dependent manner.
Collapse
|
36
|
Lim ES, Fregoso OI, McCoy CO, Matsen FA, Malik HS, Emerman M. The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx. Cell Host Microbe 2012; 11:194-204. [PMID: 22284954 DOI: 10.1016/j.chom.2012.01.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/05/2011] [Accepted: 12/15/2011] [Indexed: 11/26/2022]
Abstract
The human SAMHD1 protein potently restricts lentiviral infection in dendritic cells and monocyte/macrophages but is antagonized by the primate lentiviral protein Vpx, which targets SAMHD1 for degradation. However, only two of eight primate lentivirus lineages encode Vpx, whereas its paralog, Vpr, is conserved across all extant primate lentiviruses. We find that not only multiple Vpx but also some Vpr proteins are able to degrade SAMHD1, and such antagonism led to dramatic positive selection of SAMHD1 in the primate subfamily Cercopithecinae. Residues that have evolved under positive selection precisely determine sensitivity to Vpx/Vpr degradation and alter binding specificity. By overlaying these functional analyses on a phylogenetic framework of Vpr and Vpx evolution, we can decipher the chronology of acquisition of SAMHD1-degrading abilities in lentiviruses. We conclude that vpr neofunctionalized to degrade SAMHD1 even prior to the birth of a separate vpx gene, thereby initiating an evolutionary arms race with SAMHD1.
Collapse
Affiliation(s)
- Efrem S Lim
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lovelace E, Xu H, Blish CA, Strong R, Overbaugh J. The role of amino acid changes in the human immunodeficiency virus type 1 transmembrane domain in antibody binding and neutralization. Virology 2011; 421:235-44. [PMID: 22029936 DOI: 10.1016/j.virol.2011.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
The detailed interactions between antibodies and the HIV-1 envelope protein that lead to neutralization are not well defined. Here, we show that several conservative substitutions in the envelope gp41 led to a ~100 fold increase in neutralization sensitivity to monoclonal antibodies (MAbs) that target gp41: 4E10 and 2F5. Substitution at position 675 alone did not impact neutralization susceptibility to MAbs that recognize more distal sites in gp120 (b12, VRC01, PG9). However, changes at position 675 in conjunction with Thr to Ala at position 569 increased the neutralization sensitivity to all gp41 and gp120 MAbs and plasma, in some cases by more than 1000-fold. Interestingly, the T569A change had a dramatic effect on b12 binding, but no effect on neutralization sensitivity. This finding suggests that antibody neutralization may occur through a multi-step pathway that includes distinct changes in envelope conformation that may affect binding but not neutralization susceptibility.
Collapse
Affiliation(s)
- Erica Lovelace
- Divisions of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
38
|
Tang H, Robinson JE, Gnanakaran S, Li M, Rosenberg ES, Perez LG, Haynes BF, Liao HX, LaBranche CC, Korber BT, Montefiori DC. epitopes immediately below the base of the V3 loop of gp120 as targets for the initial autologous neutralizing antibody response in two HIV-1 subtype B-infected individuals. J Virol 2011; 85:9286-99. [PMID: 21734041 PMCID: PMC3165744 DOI: 10.1128/jvi.02286-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 06/15/2011] [Indexed: 01/01/2023] Open
Abstract
Epitopes that drive the initial autologous neutralizing antibody response in HIV-1-infected individuals could provide insights for vaccine design. Although highly strain specific, these epitopes are immunogenic, vulnerable to antibody attack on infectious virus, and could be involved in the ontogeny of broadly neutralizing antibody responses. To delineate such epitopes, we used site-directed mutagenesis, autologous plasma samples, and autologous monoclonal antibodies to map the amino acid changes that led to escape from the initial autologous neutralizing antibody response in two HIV-1 subtype B-infected individuals. Additional mapping of the epitopes was accomplished by using alanine scanning mutagenesis. Escape in the two individuals occurred by different pathways, but the responses in both cases appeared to be directed against the same region of gp120. In total, three amino acid positions were identified that were independently associated with autologous neutralization. Positions 295 and 332 are located immediately before and after the N- and C-terminal cysteines of the V3 loop, respectively, the latter of which affected an N-linked glycan that was critical to the neutralization epitope. Position 415 affected an N-linked glycan at position 413 in the C terminus of V4 that might mask epitopes near the base of V3. All three sites lie in close proximity on a four-stranded antiparallel sheet on the outer domain of gp120. We conclude that a region just below the base of the V3 loop, near the coreceptor binding domain of gp120, can be a target for autologous neutralization.
Collapse
Affiliation(s)
| | - James E. Robinson
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | | | - Eric S. Rosenberg
- Pathology Service and Infectious Disease Division, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | | | - Barton F. Haynes
- Medicine, Duke University Medical Center, Durham, North Carolina
| | - Hua-Xin Liao
- Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Bette T. Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | | |
Collapse
|
39
|
Agrawal N, Leaman DP, Rowcliffe E, Kinkead H, Nohria R, Akagi J, Bauer K, Du SX, Whalen RG, Burton DR, Zwick MB. Functional stability of unliganded envelope glycoprotein spikes among isolates of human immunodeficiency virus type 1 (HIV-1). PLoS One 2011; 6:e21339. [PMID: 21738637 PMCID: PMC3124497 DOI: 10.1371/journal.pone.0021339] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/26/2011] [Indexed: 01/20/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T90 values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49°C (n = 34). For select Envs (n = 10), the half-lives of infectivity decay at 37°C were also determined and these correlated significantly with the T90 (p = 0.029), though two ‘outliers’ were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1ADA was found to be labile to heat, 37°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1JR-CSF. Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER) of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines.
Collapse
Affiliation(s)
- Nitish Agrawal
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniel P. Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eric Rowcliffe
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Heather Kinkead
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raman Nohria
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Junya Akagi
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Katherine Bauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sean X. Du
- AltraVax, Inc., Sunnyvale, California, United States of America
| | | | - Dennis R. Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, Massachusetts, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Adaptation of subtype a human immunodeficiency virus type 1 envelope to pig-tailed macaque cells. J Virol 2011; 85:4409-20. [PMID: 21325401 DOI: 10.1128/jvi.02244-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relevance of simian/human immunodeficiency virus (SHIV) infection of macaques to HIV-1 infection in humans depends on how closely SHIVs mimic HIV-1 transmission, pathogenesis, and diversity. Circulating HIV-1 strains are predominantly subtypes C and A and overwhelmingly require CCR5 for entry, yet most SHIVs incorporate CXCR4-using subtype B envelopes (Envs). While pathogenic subtype C-based SHIVs have been constructed, the subtype A-based SHIVs (SHIV-As) constructed to date have been unable to replicate in macaque cells. To understand the barriers to SHIV-A replication in macaque cells, HIVA(Q23)/SIV(vif) was constructed by engineering a CCR5-tropic subtype A provirus to express SIV vif, which counters the macaque APOBEC3G restriction. HIVA(Q23)/SIV(vif) replicated poorly in pig-tailed macaque (Ptm) lymphocytes, but viruses were adapted to Ptm lymphocytes. Two independent mutations in gp120, G312V (V3 loop) and A204E (C2 region), were identified that increased peak virus levels by >100-fold. Introduction of G312V and A204E to multiple subtype A Envs and substitution of G312 and A204 with other residues increased entry into Ptm cells by 10- to 100-fold. G312V and A204E Env variants continued to require CCR5 for entry but were up to 50- and 200-fold more sensitive to neutralization by IgG1b12 and soluble CD4 and had a 5- to 50-fold increase in their ability to utilize Ptm CD4 compared to their wild-type counterparts. These findings identify the inefficient use of Ptm CD4 as an unappreciated restriction to subtype A HIV-1 replication in Ptm cells and reveal amino acid changes to gp120 that can overcome this barrier.
Collapse
|
41
|
Ancient adaptive evolution of tetherin shaped the functions of Vpu and Nef in human immunodeficiency virus and primate lentiviruses. J Virol 2010; 84:7124-34. [PMID: 20444900 DOI: 10.1128/jvi.00468-10] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tetherin/BST-2 is a host-encoded protein that restricts a wide diversity of viruses at the stage of virion release. However, viruses have evolved antagonists of Tetherin, including the Vpu and Nef proteins of primate lentiviruses. Like other host genes subject to viral antagonism, primate Tetherin genes have evolved under positive selection. We show here that viral antagonists acting at three independent sites of selection have driven the evolution of Tetherin, with the strongest selective pressure on the cytoplasmic tail domain. Human Tetherin is unique among the Tetherins of simian primates in that it has a 5-amino-acid deletion that results in the loss of the residue under the strongest positive selection. We show that this residue at amino acid 17 is the site of the functional interaction of Tetherin with Nef, since single amino acid substitutions at this single position can determine the susceptibility of Tetherin to Nef antagonism. While the simian immunodeficiency viruses SIVcpz and SIVgor are able to antagonize their hosts' Tetherin with Nef, human immunodeficiency virus type 1 (HIV-1) Vpu has evolved to counteract Tetherin in humans. We mapped the adaptations in the N-terminal transmembrane domain of Vpu that allow it to counteract human Tetherin. Our combined evolutionary and functional studies have allowed us to reconstruct the host-pathogen interactions that have shaped Tetherin and its lentivirus-encoded antagonists.
Collapse
|
42
|
Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies. J Virol 2009; 84:1439-52. [PMID: 19939925 DOI: 10.1128/jvi.02108-09] [Citation(s) in RCA: 536] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The restricted neutralization breadth of vaccine-elicited antibodies is a major limitation of current human immunodeficiency virus-1 (HIV-1) candidate vaccines. In order to permit the efficient identification of vaccines with enhanced capacity for eliciting cross-reactive neutralizing antibodies (NAbs) and to assess the overall breadth and potency of vaccine-elicited NAb reactivity, we assembled a panel of 109 molecularly cloned HIV-1 Env pseudoviruses representing a broad range of genetic and geographic diversity. Viral isolates from all major circulating genetic subtypes were included, as were viruses derived shortly after transmission and during the early and chronic stages of infection. We assembled a panel of genetically diverse HIV-1-positive (HIV-1(+)) plasma pools to assess the neutralization sensitivities of the entire virus panel. When the viruses were rank ordered according to the average sensitivity to neutralization by the HIV-1(+) plasmas, a continuum of average sensitivity was observed. Clustering analysis of the patterns of sensitivity defined four subgroups of viruses: those having very high (tier 1A), above-average (tier 1B), moderate (tier 2), or low (tier 3) sensitivity to antibody-mediated neutralization. We also investigated potential associations between characteristics of the viral isolates (clade, stage of infection, and source of virus) and sensitivity to NAb. In particular, higher levels of NAb activity were observed when the virus and plasma pool were matched in clade. These data provide the first systematic assessment of the overall neutralization sensitivities of a genetically and geographically diverse panel of circulating HIV-1 strains. These reference viruses can facilitate the systematic characterization of NAb responses elicited by candidate vaccine immunogens.
Collapse
|
43
|
Blish CA, Jalalian-Lechak Z, Rainwater S, Nguyen MA, Dogan OC, Overbaugh J. Cross-subtype neutralization sensitivity despite monoclonal antibody resistance among early subtype A, C, and D envelope variants of human immunodeficiency virus type 1. J Virol 2009; 83:7783-8. [PMID: 19474105 PMCID: PMC2708608 DOI: 10.1128/jvi.00673-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/18/2009] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) variants that are transmitted to newly infected individuals are the primary targets of interventions, such as vaccines and microbicides, aimed at preventing new infections. Newly acquired subtype A, B, and C variants have been the focus of neutralization studies, although many of these viruses, particularly of subtypes A and B, represent viruses circulating more than a decade ago. In order to better represent the global diversity of transmitted HIV-1 variants, an additional 31 sexually transmitted Kenyan HIV-1 env genes, representing several recent infections with subtype A, as well as subtypes A/D, C, and D, were cloned, and their neutralization profiles were characterized. Most env variants were resistant to neutralization by the monoclonal antibodies (MAbs) b12, 4E10, 2F5, and 2G12, suggesting that targeting the epitopes of these MAbs may not be effective against variants that are spreading in areas of endemicity. However, significant cross-subtype neutralization by plasma was observed, indicating that there may be other epitopes, not yet defined by the limited available MAbs, which could be recognized more broadly.
Collapse
Affiliation(s)
- Catherine A Blish
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
44
|
Piantadosi A, Humes D, Chohan B, McClelland RS, Overbaugh J. Analysis of the percentage of human immunodeficiency virus type 1 sequences that are hypermutated and markers of disease progression in a longitudinal cohort, including one individual with a partially defective Vif. J Virol 2009; 83:7805-14. [PMID: 19494014 PMCID: PMC2715790 DOI: 10.1128/jvi.00280-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 05/21/2009] [Indexed: 11/20/2022] Open
Abstract
Hypermutation, the introduction of excessive G-to-A substitutions by host proteins in the APOBEC family, can impair replication of the human immunodeficiency virus (HIV). Because hypermutation represents a potential antiviral strategy, it is important to determine whether greater hypermutation is associated with slower disease progression in natural infection. We examined the level of HIV-1 hypermutation among 28 antiretroviral-naive Kenyan women at two times during infection. By examining single-copy gag sequences from proviral DNA, hypermutation was detected in 16 of 28 individuals. Among individuals with any hypermutation, a median of 15% of gag sequences were hypermutated (range, 5 to 43%). However, there was no association between the level of gag hypermutation and the viral load or CD4 count. Thus, we observed no overall relationship between hypermutation and markers of disease progression among individuals with low to moderate levels of hypermutation. In addition, one individual sustained a typical viral load despite having a high level of hypermutation. This individual had 43% of gag sequences hypermutated and harbored a partially defective Vif, which was found to permit hypermutation in a peripheral blood mononuclear cell culture. Overall, our results suggest that a potential antiviral therapy based on hypermutation may need to achieve a substantially higher level of hypermutation than is naturally seen in most individuals to impair virus replication and subsequent disease progression.
Collapse
|
45
|
Human immunodeficiency virus type 1 V1-to-V5 envelope variants from the chronic phase of infection use CCR5 and fuse more efficiently than those from early after infection. J Virol 2009; 83:9694-708. [PMID: 19625411 DOI: 10.1128/jvi.00925-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein modifications over the course of infection have been associated with coreceptor switching and antibody neutralization resistance, but the effect of the changes on replication and host cell receptor usage remains unclear. To examine this question, unique early- and chronic-stage infection envelope V1-to V5 (V1-V5) segments from eight HIV-1 subtype A-infected subjects were incorporated into an isogenic background to construct replication-competent recombinant viruses. In all subjects, viruses with chronic-infection V1-V5 segments showed greater replication capacity than those with early-infection V1-V5 domains in cell lines with high levels of both the CD4 and the CCR5 receptors. Viruses with chronic-infection V1-V5s demonstrated a significantly increased ability to replicate in cells with low CCR5 receptor levels and greater resistance to CCR5 receptor and fusion inhibitors compared to those with early-infection V1-V5 segments. These properties were associated with sequence changes in the envelope V1-V3 segments. Viruses with the envelope segments from the two infection time points showed no significant difference in their ability to infect cells with low CD4 receptor densities, in their sensitivity to soluble CD4, or in their replication capacity in monocyte-derived macrophages. Our results suggest that envelope changes, primarily in the V1-V3 domains, increase both the ability to use the CCR5 receptor and fusion kinetics. Thus, envelope modifications over time within a host potentially enhance replication capacity.
Collapse
|
46
|
The infectious molecular clone and pseudotyped virus models of human immunodeficiency virus type 1 exhibit significant differences in virion composition with only moderate differences in infectivity and inhibition sensitivity. J Virol 2009; 83:9002-7. [PMID: 19535443 DOI: 10.1128/jvi.00423-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two frequently employed methods for generating well-characterized, genetically defined infectious human immunodeficiency virus type 1 in vitro include the use of infectious molecular clones (IMCs) and pseudoviruses (PVs) competent for single-round infection. We compared six matched pairs of IMCs and PVs. The relative amounts of Env incorporated and efficiency of cleavage differed substantially between the two systems. Altering the ratio of proviral genome and env expression plasmids can produce pseudovirions that are structurally more similar to the matched IMCs. Differences in Env incorporation and cleavage translated into moderate differences in assays infectivity and sensitivity to neutralizing antibodies and entry inhibitors.
Collapse
|
47
|
Ceballos A, Andreani G, Ripamonti C, Dilernia D, Mendez R, Rabinovich RD, Cárdenas PC, Zala C, Cahn P, Scarlatti G, Peralta LM. Lack of viral selection in human immunodeficiency virus type 1 mother-to-child transmission with primary infection during late pregnancy and/or breastfeeding. J Gen Virol 2009; 89:2773-2782. [PMID: 18931075 DOI: 10.1099/vir.0.83697-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) as described for women with an established infection is, in most cases, associated with the transmission of few maternal variants. This study analysed virus variability in four cases of maternal primary infection occurring during pregnancy and/or breastfeeding. Estimated time of seroconversion was at 4 months of pregnancy for one woman (early seroconversion) and during the last months of pregnancy and/or breastfeeding for the remaining three (late seroconversion). The C2V3 envelope region was analysed in samples of mother-child pairs by molecular cloning and sequencing. Comparisons of nucleotide and amino acid sequences as well as phylogenetic analysis were performed. The results showed low variability in the virus population of both mother and child. Maximum-likelihood analysis showed that, in the early pregnancy seroconversion case, a minor viral variant with further evolution in the child was transmitted, which could indicate a selection event in MTCT or a stochastic event, whereas in the late seroconversion cases, the mother's and child's sequences were intermingled, which is compatible with the transmission of multiple viral variants from the mother's major population. These results could be explained by the less pronounced selective pressure exerted by the immune system in the early stages of the mother's infection, which could play a role in MTCT of HIV-1.
Collapse
Affiliation(s)
- Ana Ceballos
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Guadalupe Andreani
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Chiara Ripamonti
- Viral Evolution and Transmission Unit, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| | - Dario Dilernia
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Ramiro Mendez
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Roberto D Rabinovich
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | | | - Carlos Zala
- Hospital Juan Fernández, Buenos Aires, Argentina
| | - Pedro Cahn
- Hospital Juan Fernández, Buenos Aires, Argentina
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| | - Liliana Martínez Peralta
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| |
Collapse
|
48
|
Seaman MS, Leblanc DF, Grandpre LE, Bartman MT, Montefiori DC, Letvin NL, Mascola JR. Standardized assessment of NAb responses elicited in rhesus monkeys immunized with single- or multi-clade HIV-1 envelope immunogens. Virology 2007; 367:175-86. [PMID: 17599382 PMCID: PMC2075526 DOI: 10.1016/j.virol.2007.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 04/30/2007] [Accepted: 05/21/2007] [Indexed: 11/26/2022]
Abstract
The genetic diversity of HIV-1 envelope glycoproteins (Env) remains a major obstacle to the development of an antibody-based AIDS vaccine. The present studies examine the breadth and magnitude of neutralizing antibody (NAb) responses in rhesus monkeys after immunization with DNA prime-recombinant adenovirus (rAd) boost vaccines encoding either single or multiple genetically distant Env immunogens, and subsequently challenged with a pathogenic simian-human immunodeficiency virus (SHIV-89.6P). Using a standardized multi-tier panel of reference Env pseudoviruses for NAb assessment, we show that monkeys immunized with a mixture of Env immunogens (clades A, B, and C) exhibited a greater breadth of NAb activity against neutralization-sensitive Tier 1 viruses following both vaccination and challenge compared to monkeys immunized with a single Env immunogen (clade B or C). However, all groups of Env-vaccinated monkeys demonstrated only limited neutralizing activity against Tier 2 pseudoviruses, which are more characteristic of the neutralization sensitivity of circulating HIV-1. Notably, the development of a post-challenge NAb response against SHIV-89.6P was similar in monkeys receiving either clade B, clade C, or clade A+B+C Env immunogens, suggesting cross-clade priming of NAb responses. In addition, vaccines encoding Env immunogens heterologous to SHIV-89.6P primed for a rapid anamnestic NAb response following infection compared to vaccines lacking an Env component. These results show that DNA/rAd immunization with multiple diverse Env immunogens is a viable approach for enhancing the breadth of NAb responses against HIV-1, and suggest that Env immunogens can prime for anamnestic NAb responses against a heterologous challenge virus.
Collapse
Affiliation(s)
- Michael S Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, 330 Brookline Ave/RE-204, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Blish CA, Nedellec R, Mandaliya K, Mosier DE, Overbaugh J. HIV-1 subtype A envelope variants from early in infection have variable sensitivity to neutralization and to inhibitors of viral entry. AIDS 2007; 21:693-702. [PMID: 17413690 DOI: 10.1097/qad.0b013e32805e8727] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND An effective HIV-1 vaccine or microbicide must block the transmitted virus variants that initially establish a new infection; consequently, it is critical that such viruses be isolated and characterized. OBJECTIVE To evaluate HIV-1 envelope variants from early in infection from individuals infected heterosexually with subtype A HIV-1 for their sensitivity to antibody-mediated neutralization and to inhibitors of viral entry. METHODS Full-length subtype A HIV-1 envelope clones from 28-75 days postinfection were used to generate pseudoviruses for infection studies. The susceptibility of these pseudoviruses to neutralization by autologous and heterologous plasma and by monoclonal antibodies was examined. The sensitivity of these pseudoviruses to PSC-RANTES and TAK-779, inhibitors of CCR5, and to soluble CD4 (sCD4) was also evaluated. RESULTS Pseudoviruses with subtype A HIV-1 envelopes from early in infection demonstrated a broad range of neutralization sensitivities to both autologous and heterologous plasma. However, neutralization by the monoclonal antibodies b12, 2G12, 4E10 and 2F5 was generally poor; notably, none of the 14 early virus variants were neutralized by 2G12 and only one was neutralized by b12. Viruses bearing these early CCR5-using envelopes were generally sensitive to the CCR5 inhibitors PSC-RANTES and TAK-779, but they demonstrated more variable sensitivity to sCD4. CONCLUSIONS These subtype A HIV-1 variants, representing the viruses that must be blocked by antibody-based prevention strategies, vary in their susceptibility to neutralization. A subset of these HIV-1 variants from early in infection will be useful for screening candidate vaccines and microbicides.
Collapse
Affiliation(s)
- Catherine A Blish
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
50
|
Rong R, Gnanakaran S, Decker JM, Bibollet-Ruche F, Taylor J, Sfakianos JN, Mokili JL, Muldoon M, Mulenga J, Allen S, Hahn BH, Shaw GM, Blackwell JL, Korber BT, Hunter E, Derdeyn CA. Unique mutational patterns in the envelope alpha 2 amphipathic helix and acquisition of length in gp120 hypervariable domains are associated with resistance to autologous neutralization of subtype C human immunodeficiency virus type 1. J Virol 2007; 81:5658-68. [PMID: 17360739 PMCID: PMC1900276 DOI: 10.1128/jvi.00257-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autologous neutralizing antibodies (NAb) against human immunodeficiency virus type 1 generate viral escape variants; however, the mechanisms of escape are not clearly defined. In a previous study, we determined the susceptibilities of 48 donor and 25 recipient envelope (Env) glycoproteins from five subtype C heterosexual transmission pairs to NAb in donor plasma by using a virus pseudotyping assay, thereby providing an ideal setting to probe the determinants of susceptibility to neutralization. In the present study, acquisition of length in the Env gp120 hypervariable domains was shown to correlate with resistance to NAb in donor plasma (P = 0.01; Kendall's tau test) but not in heterologous plasma. Sequence divergence in the gp120 V1-to-V4 region also correlated with resistance to donor (P = 0.0002) and heterologous (P = 0.001) NAb. A mutual information analysis suggested possible associations of nine amino acid positions in V1 to V4 with NAb resistance to the donor's antibodies, and five of these were located within an 18-residue amphipathic helix (alpha2) located on the gp120 outer domain. High nonsynonymous-to-synonymous substitution (dN/dS) ratios, indicative of positive selection, were also found at these five positions in subtype C sequences in the database. Nevertheless, exchange of the entire alpha2 helix between resistant donor Envs and sensitive recipient Envs did not alter the NAb phenotype. The combined mutual information and dN/dS analyses suggest that unique mutational patterns in alpha2 and insertions in the V1-to-V4 region are associated with NAb resistance during subtype C infection but that the selected positions within the alpha2 helix must be linked to still other changes in Env to confer antibody escape. These findings suggest that subtype C viruses utilize mutations in the alpha2 helix for efficient viral replication and immune avoidance.
Collapse
Affiliation(s)
- Rong Rong
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|