1
|
Leikas AJ, Ylä-Herttuala S, Hartikainen JEK. Adenoviral Gene Therapy Vectors in Clinical Use-Basic Aspects with a Special Reference to Replication-Competent Adenovirus Formation and Its Impact on Clinical Safety. Int J Mol Sci 2023; 24:16519. [PMID: 38003709 PMCID: PMC10671366 DOI: 10.3390/ijms242216519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Adenoviral vectors are commonly used in clinical gene therapy. Apart from oncolytic adenoviruses, vector replication is highly undesired as it may pose a safety risk for the treated patient. Thus, careful monitoring for the formation of replication-competent adenoviruses (RCA) during vector manufacturing is required. To render adenoviruses replication deficient, their genomic E1 region is deleted. However, it has been known for a long time that during their propagation, some viruses will regain their replication capability by recombination in production cells, most commonly HEK293. Recently developed RCA assays have revealed that many clinical batches contain more RCA than previously assumed and allowed by regulatory authorities. The clinical significance of the higher RCA content has yet to be thoroughly evaluated. In this review, we summarize the biology of adenovirus vectors, their manufacturing methods, and the origins of RCA formed during HEK293-based vector production. Lastly, we share our experience using minimally RCA-positive serotype 5 adenoviral vectors based on observations from our clinical cardiovascular gene therapy studies.
Collapse
Affiliation(s)
- Aleksi J. Leikas
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Juha E. K. Hartikainen
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
2
|
Petro-Turnquist E, Pekarek M, Jeanjaquet N, Wooledge C, Steffen D, Vu H, Weaver EA. Adenoviral-vectored epigraph vaccine elicits robust, durable, and protective immunity against H3 influenza A virus in swine. Front Immunol 2023; 14:1143451. [PMID: 37256131 PMCID: PMC10225514 DOI: 10.3389/fimmu.2023.1143451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Current methods of vaccination against swine Influenza A Virus (IAV-S) in pigs are infrequently updated, induce strain-specific responses, and have a limited duration of protection. Here, we characterize the onset and duration of adaptive immune responses after vaccination with an adenoviral-vectored Epigraph vaccine. In this longitudinal study we observed robust and durable antibody responses that remained above protective titers six months after vaccination. We further identified stable levels of antigen-specific T cell responses that remained detectable in the absence of antigen stimulation. Antibody isotyping revealed robust class switching from IgM to IgG induced by Epigraph vaccination, while the commercial comparator vaccine failed to induce strong antibody class switching. Swine were challenged six months after initial vaccination, and Epigraph-vaccinated animals demonstrated significant protection from microscopic lesion development in the trachea and lungs, reduced duration of viral shedding, lower presence of infectious virus and viral antigens in the lungs, and significant recall of antigen-specific T cell responses following challenge. The results obtained from this study are useful in determining the kinetics of adaptive immune responses after vaccination with adjuvanted whole inactivated virus vaccines compared to adenoviral vectored vaccines and contribute to the continued efforts of creating a universal IAV-S vaccine.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew Pekarek
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nicholas Jeanjaquet
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Cedric Wooledge
- Office of Research and Development, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - David Steffen
- Nebraska Veterinary Diagnostic Center, Lincoln, NE, United States
| | - Hiep Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric A. Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Bhatti JS, Khullar N, Mishra J, Kaur S, Sehrawat A, Sharma E, Bhatti GK, Selman A, Reddy PH. Stem cells in the treatment of Alzheimer's disease - Promises and pitfalls. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166712. [PMID: 37030521 DOI: 10.1016/j.bbadis.2023.166712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Alzheimer's disease (AD) is the most widespread form of neurodegenerative disorder that causes memory loss and multiple cognitive issues. The underlying mechanisms of AD include the build-up of amyloid-β and phosphorylated tau, synaptic damage, elevated levels of microglia and astrocytes, abnormal microRNAs, mitochondrial dysfunction, hormonal imbalance, and age-related neuronal loss. However, the etiology of AD is complex and involves a multitude of environmental and genetic factors. Currently, available AD medications only alleviate symptoms and do not provide a permanent cure. Therefore, there is a need for therapies that can prevent or reverse cognitive decline, brain tissue loss, and neural instability. Stem cell therapy is a promising treatment for AD because stem cells possess the unique ability to differentiate into any type of cell and maintain their self-renewal. This article provides an overview of the pathophysiology of AD and existing pharmacological treatments. This review article focuses on the role of various types of stem cells in neuroregeneration, the potential challenges, and the future of stem cell-based therapies for AD, including nano delivery and gaps in stem cell technology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Eva Sharma
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
4
|
Potential health risks of mRNA-based vaccine therapy: A hypothesis. Med Hypotheses 2023; 171:111015. [PMID: 36718314 PMCID: PMC9876036 DOI: 10.1016/j.mehy.2023.111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/08/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Therapeutic applications of synthetic mRNA were proposed more than 30 years ago, and are currently the basis of one of the vaccine platforms used at a massive scale as part of the public health strategy to get COVID-19 under control. To date, there are no published studies on the biodistribution, cellular uptake, endosomal escape, translation rates, functional half-life and inactivation kinetics of synthetic mRNA, rates and duration of vaccine-induced antigen expression in different cell types. Furthermore, despite the assumption that there is no possibility of genomic integration of therapeutic synthetic mRNA, only one recent study has examined interactions between vaccine mRNA and the genome of transfected cells, and reported that an endogenous retrotransposon, LINE-1 is unsilenced following mRNA entry to the cell, leading to reverse transcription of full length vaccine mRNA sequences, and nuclear entry. This finding should be a major safety concern, given the possibility of synthetic mRNA-driven epigenetic and genomic modifications arising. We propose that in susceptible individuals, cytosolic clearance of nucleotide modified synthetic (nms-mRNAs) is impeded. Sustained presence of nms-mRNA in the cytoplasm deregulates and activates endogenous transposable elements (TEs), causing some of the mRNA copies to be reverse transcribed. The cytosolic accumulation of the nms-mRNA and the reverse transcribed cDNA molecules activates RNA and DNA sensory pathways. Their concurrent activation initiates a synchronized innate response against non-self nucleic acids, prompting type-I interferon and pro-inflammatory cytokine production which, if unregulated, leads to autoinflammatory and autoimmune conditions, while activated TEs increase the risk of insertional mutagenesis of the reverse transcribed molecules, which can disrupt coding regions, enhance the risk of mutations in tumour suppressor genes, and lead to sustained DNA damage. Susceptible individuals would then expectedly have an increased risk of DNA damage, chronic autoinflammation, autoimmunity and cancer. In light of the current mass administration of nms-mRNA vaccines, it is essential and urgent to fully understand the intracellular cascades initiated by cellular uptake of synthetic mRNA and the consequences of these molecular events.
Collapse
|
5
|
Folegatti PM, Jenkin D, Morris S, Gilbert S, Kim D, Robertson JS, Smith ER, Martin E, Gurwith M, Chen RT. Vaccines based on the replication-deficient simian adenoviral vector ChAdOx1: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2022; 40:5248-5262. [PMID: 35715352 PMCID: PMC9194875 DOI: 10.1016/j.vaccine.2022.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Replication-deficient adenoviral vectors have been under investigation as a platform technology for vaccine development for several years and have recently been successfully deployed as an effective COVID-19 counter measure. A replication-deficient adenoviral vector based on the simian adenovirus type Y25 and named ChAdOx1 has been evaluated in several clinical trials since 2012. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript reviews key features of the ChAdOx1-vectored vaccines. The simian adenovirus Y25 was chosen as a strategy to circumvent pre-existing immunity to common human adenovirus serotypes which could impair immune responses induced by adenoviral vectored vaccines. Deletion of the E1 gene renders the ChAdOx1 vector replication incompetent and further genetic engineering of the E3 and E4 genes allows for increased insertional capability and optimizes vaccine manufacturing processes. ChAdOx1 vectored vaccines can be manufactured in E1 complementing cell lines at scale and are thermostable. The first ChAdOx1 vectored vaccines approved for human use, against SARS-CoV-2, received emergency use authorization in the UK on 30th December 2020, and is now approved in more than 180 countries. Safety data were compiled from phase I-III clinical trials of ChAdOx1 vectored vaccines expressing different antigens (influenza, tuberculosis, malaria, meningococcal B, prostate cancer, MERS-CoV, Chikungunya, Zika and SARS-CoV-2), conducted by the University of Oxford, as well as post marketing surveillance data for the COVID-19 Oxford-AstraZeneca vaccine. Overall, ChAdOx1 vectored vaccines have been well tolerated. Very rarely, thrombosis with thrombocytopenia syndrome (TTS), capillary leak syndrome (CLS), immune thrombocytopenia (ITP), and Guillain-Barre syndrome (GBS) have been reported following mass administration of the COVID-19 Oxford-AstraZeneca vaccine. The benefits of this COVID-19 vaccination have outweighed the risks of serious adverse events in most settings, especially with mitigation of risks when possible. Extensive immunogenicity clinical evaluation of ChAdOx1 vectored vaccines reveal strong, durable humoral and cellular immune responses to date; studies to refine the COVID-19 protection (e.g., via homologous/heterologous booster, fractional dose) are also underway. New prophylactic and therapeutic vaccines based on the ChAdOx1 vector are currently undergoing pre-clinical and clinical assessment, including vaccines against viral hemorrhagic fevers, Nipah virus, HIV, Hepatitis B, amongst others.
Collapse
Affiliation(s)
| | | | | | | | - Denny Kim
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - James S. Robertson
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R. Smith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA,Corresponding author
| | - Emalee Martin
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Marc Gurwith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T. Chen
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | | |
Collapse
|
6
|
Shoushtari M, Roohvand F, Salehi-Vaziri M, Arashkia A, Bakhshi H, Azadmanesh K. Adenovirus vector-based vaccines as forefront approaches in fighting the battle against flaviviruses. Hum Vaccin Immunother 2022; 18:2079323. [PMID: 35714271 PMCID: PMC9481145 DOI: 10.1080/21645515.2022.2079323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Flaviviruses are arthropod-borne viruses (arboviruses) that have been recently considered among the significant public health problems in defined geographical regions. In this line, there have been vaccines approved for some flaviviruses including dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and tick-borne encephalitis virus (TBEV), although the efficiency of such vaccines thought to be questionable. Surprisingly, there are no effective vaccine for many other hazardous flaviviruses, including West Nile and Zika viruses. Furthermore, in spite of approved vaccines for some flaviviruses, for example DENV, alternative prophylactic vaccines seem to be still needed for the protection of a broader population, and it originates from the unsatisfying safety, and the efficacy of vaccines that have been introduced. Thus, adenovirus vector-based vaccine candidates are suggested to be effective, safe, and reliable. Interestingly, recent widespread use of adenovirus vector-based vaccines for the COVID-19 pandemic have highlighted the importance and feasibility of their widespread application. In this review, the applicability of adenovirus vector-based vaccines, as promising approaches to harness the diseases caused by Flaviviruses, is discussed.
Collapse
Affiliation(s)
| | - Farzin Roohvand
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Bakhshi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Abstract
Prenatal gene therapy could provide a cure for many monogenic diseases. Prenatal gene therapy has multiple potential advantages over postnatal therapy, including treating before the onset of disease, the ability to induce tolerance and cross the blood-brain barrier. In this chapter, we will describe in utero gene therapy and its rationale, clinical trials of postnatal gene therapy, preclinical studies of in utero gene therapy, and potential risks to the mother and fetus.
Collapse
Affiliation(s)
- Marisa E Schwab
- Center for Maternal-Fetal Precision Medicine
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Tippi C MacKenzie
- Center for Maternal-Fetal Precision Medicine
- Department of Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
8
|
Genetic Modification of Mesenchymal Stem Cells for Neurological Disease Therapy: What Effects Does it Have on Phenotype/Cell Behavior, Determining Their Effectiveness? Mol Diagn Ther 2021; 24:683-702. [PMID: 32926348 DOI: 10.1007/s40291-020-00491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells are a promising tool in regenerative medicine, and their functions can be enhanced through genetic modification. Recent advances in genetic engineering provide several methods that enable gene delivery to mesenchymal stem cells. However, it remains to be decided whether genetic modification of mesenchymal stem cells by vectors carrying reporter or therapeutic genes leads to adverse effects on morphology, phenotypic profiles, and viability of transplanted cells. In this regard, we focus on the description of genetic modification methods of mesenchymal stem cells, their effectiveness, and the impact on phenotype/cell behavior/proliferation and the differentiation ability of these cells in vitro and in vivo. Furthermore, we compare the main effects of genetically modified mesenchymal stem cells with native mesenchymal stem cells when applied in the therapy of neurological diseases.
Collapse
|
9
|
Characterization of integration frequency and insertion sites of adenovirus DNA into mouse liver genomic DNA following intravenous injection. Gene Ther 2021; 29:322-332. [PMID: 34404916 DOI: 10.1038/s41434-021-00278-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 11/08/2022]
Abstract
While generally referred to as "non-integrating" vectors, adenovirus vectors have the potential to integrate into host DNA via random, illegitimate (nonhomologous) recombination. The present study provides a quantitative assessment of the potential integration frequency of adenovirus 5 (Ad5)-based vectors following intravenous injection in mice, a common route of administration in gene therapy applications particularly for transgene expression in liver. We examined the uptake level and persistence in liver of first generation (FG) and helper-dependent (HD) Ad5 vectors containing the mouse leptin transgene. As expected, the persistence of the HD vector was markedly higher than that of the FG vector. For both vectors, the majority of the vector DNA remained extrachromosomal and predominantly in the form of episomal monomers. However, using a quantitative gel-purification-based integration assay, a portion of the detectable vector was found to be associated with high molecular weight (HMW) genomic DNA, indicating potential integration with a frequency of up to ~44 and 7000 integration events per μg cellular genomic DNA (or ~0.0003 and 0.05 integrations per cell, respectively) for the FG and HD Ad5 vectors, respectively, following intravenous injection of 1 × 1011 virus particles. To confirm integration occurred (versus residual episomal vector DNA co-purifying with genomic DNA), we characterized nine independent integration events using Repeat-Anchored Integration Capture (RAIC) PCR. Sequencing of the insertion sites suggests that both of the vectors integrate randomly, but within short segments of homology between the vector breakpoint and the insertion site. Eight of the nine integrations were in intergenic DNA and one was within an intron. These findings represent the first quantitative assessment and characterization of Ad5 vector integration following intravenous administration in vivo in wild-type mice.
Collapse
|
10
|
Baldo A, Leunda A, Willemarck N, Pauwels K. Environmental Risk Assessment of Recombinant Viral Vector Vaccines against SARS-Cov-2. Vaccines (Basel) 2021; 9:453. [PMID: 34063733 PMCID: PMC8147846 DOI: 10.3390/vaccines9050453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Over the past months, considerable efforts have been put into developing effective and safe drugs and vaccines against SARS-CoV-2. Various platforms are being used for the development of COVID-19 vaccine candidates: recombinant viral vectors, protein-based vaccines, nucleic acid-based vaccines, and inactivated/attenuated virus. Recombinant viral vector vaccine candidates represent a significant part of those vaccine candidates in clinical development, with two already authorised for use in the European Union and one currently under rolling review by the European Medicines Agency (EMA). Since recombinant viral vector vaccine candidates are considered as genetically modified organisms (GMOs), their regulatory oversight includes besides an assessment of their quality, safety and efficacy, also an environmental risk assessment (ERA). The present article highlights the main characteristics of recombinant viral vector vaccine (candidates) against SARS-CoV-2 in the pipeline and discusses their features from an environmental risk point of view.
Collapse
Affiliation(s)
- Aline Baldo
- Sciensano, Service Biosafety and Biotechnology, Rue Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium; (A.L.); (N.W.); (K.P.)
| | | | | | | |
Collapse
|
11
|
Arévalo-Soliz LM, Hardee CL, Fogg JM, Corman NR, Noorbakhsh C, Zechiedrich L. Improving therapeutic potential of non-viral minimized DNA vectors. CELL & GENE THERAPY INSIGHTS 2020; 6:1489-1505. [PMID: 33953961 PMCID: PMC8095377 DOI: 10.18609/cgti.2020.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tragic deaths of three patients in a recent AAV-based X-linked myotubular myopathy clinical trial highlight once again the pressing need for safe and reliable gene delivery vectors. Non-viral minimized DNA vectors offer one possible way to meet this need. Recent pre-clinical results with minimized DNA vectors have yielded promising outcomes in cancer therapy, stem cell therapy, stem cell reprograming, and other uses. Broad clinical use of these vectors, however, remains to be realized. Further advances in vector design and production are ongoing. An intriguing and promising potential development results from manipulation of the specific shape of non-viral minimized DNA vectors. By improving cellular uptake and biodistribution specificity, this approach could impact gene therapy, DNA nanotechnology, and personalized medicine.
Collapse
Affiliation(s)
- Lirio M Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cinnamon L Hardee
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan R Corman
- Rural Medical Education Program, University of Illinois College of Medicine, Rockford, IL 61107, USA
| | - Cameron Noorbakhsh
- Weiss School of Natural Sciences, Rice University, Houston, TX 77005, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Abstract
Messenger RNA (mRNA) has immense potential for developing a wide range of therapies, including immunotherapy and protein replacement. As mRNA presents no risk of integration into the host genome and does not require nuclear entry for transfection, which allows protein production even in nondividing cells, mRNA-based approaches can be envisioned as safe and practical therapeutic strategies. Nevertheless, mRNA presents unfavorable characteristics, such as large size, immunogenicity, limited cellular uptake, and sensitivity to enzymatic degradation, which hinder its use as a therapeutic agent. While mRNA stability and immunogenicity have been ameliorated by direct modifications on the mRNA structure, further improvements in mRNA delivery are still needed for promoting its activity in biological settings. In this regard, nanomedicine has shown the ability for spatiotemporally controlling the function of a myriad of bioactive agents in vivo. Direct engineering of nanomedicine structures for loading, protecting, and releasing mRNA and navigating in biological environments can then be applied for promoting mRNA translation toward the development of effective treatments. Here, we review recent approaches aimed at enhancing mRNA function and its delivery through nanomedicines, with particular emphasis on their applications and eventual clinical translation.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki 210-0821, Japan
| | - Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans 45071 Cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans 45071 Cedex 02, France.,Faculty of Sciences and Techniques, University of Orléans, Orléans 45071 Cedex 02, France
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki 210-0821, Japan
| |
Collapse
|
13
|
Moscoso CG, Steer CJ. The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes (Basel) 2020; 11:genes11080915. [PMID: 32785089 PMCID: PMC7463482 DOI: 10.3390/genes11080915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Monogenic metabolic disorders of hepatic origin number in the hundreds, and for many, liver transplantation remains the only cure. Liver-targeted gene therapy is an attractive treatment modality for many of these conditions, and there have been significant advances at both the preclinical and clinical stages. Viral vectors, including retroviruses, lentiviruses, adenovirus-based vectors, adeno-associated viruses and simian virus 40, have differing safety, efficacy and immunogenic profiles, and several of these have been used in clinical trials with variable success. In this review, we profile viral vectors and non-viral vectors, together with various payloads, including emerging therapies based on RNA, that are entering clinical trials. Genome editing technologies are explored, from earlier to more recent novel approaches that are more efficient, specific and safe in reaching their target sites. The various curative approaches for the multitude of monogenic hepatic metabolic disorders currently at the clinical development stage portend a favorable outlook for this class of genetic disorders.
Collapse
Affiliation(s)
- Carlos G. Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Correspondence: (C.G.M.); (C.J.S.); Tel.: +1-612-625-8999 (C.G.M. & C.J.S.); Fax: +1-612-625-5620 (C.G.M. & C.J.S.)
| | - Clifford J. Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Correspondence: (C.G.M.); (C.J.S.); Tel.: +1-612-625-8999 (C.G.M. & C.J.S.); Fax: +1-612-625-5620 (C.G.M. & C.J.S.)
| |
Collapse
|
14
|
Reprogramming and transdifferentiation - two key processes for regenerative medicine. Eur J Pharmacol 2020; 882:173202. [PMID: 32562801 DOI: 10.1016/j.ejphar.2020.173202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Regenerative medicine based on transplants obtained from donors or foetal and new-born mesenchymal stem cells, encounter important obstacles such as limited availability of organs, ethical issues and immune rejection. The growing demand for therapeutic methods for patients being treated after serious accidents, severe organ dysfunction and an increasing number of cancer surgeries, exceeds the possibilities of the therapies that are currently available. Reprogramming and transdifferentiation provide powerful bioengineering tools. Both procedures are based on the somatic differentiated cells, which are easily and unlimitedly available, like for example: fibroblasts. During the reprogramming procedure mature cells are converted into pluripotent cells - which are capable to differentiate into almost any kind of desired cells. Transdifferentiation directly converts differentiated cells of one type into another differentiated cells type. Both procedures allow to obtained patient's dedicated cells for therapeutic purpose in regenerative medicine. In combination with biomaterials, it is possible to obtain even whole anatomical structures. Those patient's dedicated structures may serve for them upon serious accidents with massive tissue damage but also upon cancer surgeries as a replacement of damaged organ. Detailed information about reprogramming and transdifferentiation procedures as well as the current state of the art are presented in our review.
Collapse
|
15
|
Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, Thummer RP. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2018; 686:146-159. [PMID: 30472380 DOI: 10.1016/j.gene.2018.11.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Over a decade ago, a landmark study that reported derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming fibroblasts has transformed stem cell research attracting the interest of the scientific community worldwide. These cells circumvent the ethical and immunological concerns associated with embryonic stem cells, and the limited self-renewal ability and restricted differentiation potential linked to adult stem cells. iPSCs hold great potential for understanding basic human biology, in vitro disease modeling, high-throughput drug testing and discovery, and personalized regenerative medicine. The conventional reprogramming methods involving retro- and lenti-viral vectors to deliver reprogramming factors in somatic cells to generate iPSCs nullify the clinical applicability of these cells. Although these gene delivery systems are efficient and robust, they carry an enormous risk of permanent genetic modifications and are potentially tumorigenic. To evade these safety concerns and derive iPSCs for human therapy, tremendous technological advancements have resulted in the development of non-integrating viral- and non-viral approaches. These gene delivery techniques curtail or eliminate the risk of any genomic alteration and enhance the prospects of iPSCs from bench-to-bedside. The present review provides a comprehensive overview of non-integrating viral (adenoviral vectors, adeno-associated viral vectors, and Sendai virus vectors) and DNA-based, non-viral (plasmid transfection, minicircle vectors, transposon vectors, episomal vectors, and liposomal magnetofection) approaches that have the potential to generate transgene-free iPSCs. The understanding of these techniques could pave the way for the use of iPSCs for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Bitan Saha
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
16
|
Matsui A, Uchida S, Hayashi A, Kataoka K, Itaka K. Prolonged engraftment of transplanted hepatocytes in the liver by transient pro-survival factor supplementation using ex vivo mRNA transfection. J Control Release 2018; 285:1-11. [PMID: 29966689 DOI: 10.1016/j.jconrel.2018.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
Cell transplantation therapy needs engraftment efficiency improvement of transplanted cells to the host tissues. Ex vivo transfection of a pro-survival gene to transplanted cells is a possible solution; however prolonged expression and/or genomic integration of the gene can be cancer promoting. To supply pro-survival protein only when it is needed, we used mRNA transfection, which exhibits transient protein expression profiles without the risk of genomic integration. Ex vivo transfection of mRNA encoding Bcl-2, a pro-survival factor, led to enhanced hepatocyte engraftment in both of normal and diseased mouse liver, effectively supporting liver function in a model of chronic hepatitis. The transplanted hepatocytes maintained their viability and function in the liver for at least one month, though Bcl-2 expression from mRNA was sustained for just a few days. Mechanism analyses suggest that Bcl-2 inhibits Kupffer cell-mediated hepatocyte clearance, which occurs within 2 days after transplantation. Within 2 days, hepatocytes migrated to the liver parenchyma, presumably a suitable place for the hepatocytes to survive without Bcl-2 expression. Thus, the duration of Bcl-2 expression from mRNA was sufficient to achieve prolonged engraftment. Ex vivo mRNA transfection allows supply of pro-survival factors to transplanted cells with minimal safety concerns accompanying prolonged expression, providing an effective platform to improve engraftment efficiency in cell transplantation therapy.
Collapse
Affiliation(s)
- Akitsugu Matsui
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.
| | - Akimasa Hayashi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
17
|
Mooney R, Majid AA, Mota D, He A, Aramburo S, Flores L, Covello-Batalla J, Machado D, Gonzaga J, Aboody KS. Bcl-2 Overexpression Improves Survival and Efficacy of Neural Stem Cell-Mediated Enzyme Prodrug Therapy. Stem Cells Int 2018; 2018:7047496. [PMID: 30026762 PMCID: PMC6031202 DOI: 10.1155/2018/7047496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 01/04/2023] Open
Abstract
Tumor-tropic neural stem cells (NSCs) can be engineered to localize gene therapies to invasive brain tumors. However, like other stem cell-based therapies, survival of therapeutic NSCs after transplantation is currently suboptimal. One approach to prolonging cell survival is to transiently overexpress an antiapoptotic protein within the cells prior to transplantation. Here, we investigate the utility and safety of this approach using a clinically tested, v-myc immortalized, human NSC line engineered to contain the suicide gene, cytosine deaminase (CD-NSCs). We demonstrate that both adenoviral- and minicircle-driven expression of the antiapoptotic protein Bcl-2 can partially rescue CD-NSCs from transplant-associated insults. We further demonstrate that the improved CD-NSC survival afforded by transient Bcl-2 overexpression results in decreased tumor burden in an orthotopic xenograft glioma mouse model following administrations of intracerebral CD-NSCs and systemic prodrug. Importantly, no evidence of CD-NSC transformation was observed upon transient overexpression of Bcl-2. This research highlights a critical need to develop clinically relevant strategies to improve survival of therapeutic stem cell posttransplantation. We demonstrate for the first time in this disease setting that improving CD-NSC survival using Bcl-2 overexpression can significantly improve therapeutic outcomes.
Collapse
Affiliation(s)
- Rachael Mooney
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Asma Abdul Majid
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Daniel Mota
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Adam He
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Soraya Aramburo
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Linda Flores
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jennifer Covello-Batalla
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Diana Machado
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Joanna Gonzaga
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Karen S. Aboody
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
18
|
Swindle S. Biosafety in Handling Gene Transfer Vectors. ACTA ACUST UNITED AC 2018; 96:12.1.1-12.1.17. [DOI: 10.1002/cphg.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Scott Swindle
- Occupational Medicine and Research Safety, The University of Alabama at Birmingham Birmingham Alabama
| |
Collapse
|
19
|
Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D. And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Front Neurosci 2017; 11:663. [PMID: 29311765 PMCID: PMC5732983 DOI: 10.3389/fnins.2017.00663] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Deep Brain Stimulation (DBS) has evolved into a well-accepted add-on treatment for patients with severe Parkinsons disease as well as for other chronic neurological conditions. The focal action of electrical stimulation can yield better responses and it exposes the patient to fewer side effects compared to pharmaceuticals distributed throughout the body toward the brain. On the other hand, the current practice of DBS is hampered by the relatively coarse level of neuromodulation achieved. Optogenetics, in contrast, offers the perspective of much more selective actions on the various physiological structures, provided that the stimulated cells are rendered sensitive to the action of light. Optogenetics has experienced tremendous progress since its first in vivo applications about 10 years ago. Recent advancements of viral vector technology for gene transfer substantially reduce vector-associated cytotoxicity and immune responses. This brings about the possibility to transfer this technology into the clinic as a possible alternative to DBS and neuromodulation. New paths could be opened toward a rich panel of clinical applications. Some technical issues still limit the long term use in humans but realistic perspectives quickly emerge. Despite a rapid accumulation of observations about patho-physiological mechanisms, it is still mostly serendipity and empiric adjustments that dictate clinical practice while more efficient logically designed interventions remain rather exceptional. Interestingly, it is also very much the neuro technology developed around optogenetics that offers the most promising tools to fill in the existing knowledge gaps about brain function in health and disease. The present review examines Parkinson's disease and refractory epilepsy as use cases for possible optogenetic stimulation therapies.
Collapse
Affiliation(s)
- Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent University, Ghent, Belgium
| | | | - Katrien Mols
- Neuroscience Research Flanders, Leuven, Belgium.,Life Science and Imaging, Imec, Leuven, Belgium
| | | | - Dimiter Prodanov
- Neuroscience Research Flanders, Leuven, Belgium.,Environment, Health and Safety, Imec, Leuven, Belgium
| |
Collapse
|
20
|
Vaccines against Botulism. Toxins (Basel) 2017; 9:toxins9090268. [PMID: 28869493 PMCID: PMC5618201 DOI: 10.3390/toxins9090268] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin.
Collapse
|
21
|
Hindriksen S, Bramer AJ, Truong MA, Vromans MJM, Post JB, Verlaan-Klink I, Snippert HJ, Lens SMA, Hadders MA. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells. PLoS One 2017. [PMID: 28640891 PMCID: PMC5480884 DOI: 10.1371/journal.pone.0179514] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC). We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Arne J. Bramer
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - My Anh Truong
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Martijn J. M. Vromans
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Jasmin B. Post
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Ingrid Verlaan-Klink
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Hugo J. Snippert
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Susanne M. A. Lens
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
- * E-mail: (SMAL); (MAH)
| | - Michael A. Hadders
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
- * E-mail: (SMAL); (MAH)
| |
Collapse
|
22
|
Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1359-1369. [PMID: 28460880 DOI: 10.1016/j.bbamcr.2017.04.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/24/2022]
Abstract
Reprogramming, or generation of induced pluripotent stem (iPS) cells (functionally similar to embryonic stem cells or ES cells) by the use of transcription factors (typically: Oct3/4, Sox2, c-Myc, Klf4) called "Yamanaka factors" (OSKM), has revolutionized regenerative medicine. However, factors used to induce stemness are also overexpressed in cancer. Both, ES cells and iPS cells cause teratoma formation when injected to tissues. This raises a safety concern for therapies based on iPS derivates. Transdifferentiation (lineage reprogramming, or -conversion), is a process in which one mature, specialized cell type changes into another without entering a pluripotent state. This process involves an ectopic expression of transcription factors and/or other stimuli. Unlike in the case of reprogramming, tissues obtained by this method do not carry the risk of subsequent teratomagenesis.
Collapse
|
23
|
Khan S, Oosterhuis K, Wunderlich K, Bunnik EM, Bhaggoe M, Boedhoe S, Karia S, Steenbergen RDM, Bosch L, Serroyen J, Janssen S, Schuitemaker H, Vellinga J, Scheper G, Zahn R, Custers J. Development of a replication-deficient adenoviral vector-based vaccine candidate for the interception of HPV16- and HPV18-induced infections and disease. Int J Cancer 2017; 141:393-404. [PMID: 28263390 DOI: 10.1002/ijc.30679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 01/02/2023]
Abstract
High-risk Human papilloma virus (HPV) types are the causative agents of cervical cancer and several other anogenital malignancies. The viral proteins expressed in the (pre)malignant cells are considered ideal targets for immunological intervention. Many approaches have been evaluated for this purpose, mostly aiming at the induction of HPV16 E7- and/or E6-specific cellular immunogenicity. As clinical success has so far been limited, novel approaches are required. We describe the development and pre-clinical testing of a vaccine candidate consisting of replication-deficient adenovirus type 26 and 35 based vectors for the interception of HPV16- and HPV18-related disease. We developed HPV16- and HPV18-specific antigens consisting of fusion proteins of E2, E6 and E7. The vaccine will be suitable for every disease stage, from incident and persistent infections where E2 is predominantly expressed up to late stages where E6 and E7 expression are upregulated. Importantly E6 and E7 are present as reordered fragments to abrogate the transforming activity of these two proteins. Loss of transforming activity was demonstrated in different in vitro models. Robust T-cell immunogenicity was induced upon immunization of mice with the vaccine candidate. Finally, the developed vaccine vectors showed considerable therapeutic efficacy in the TC-1 mouse model. The absence of transforming activity of the antigens and the favorable immunogenicity profile of the adenovirus based vectors along with the fact that these vectors can be readily produced on a large scale makes this approach attractive for clinical evaluation.
Collapse
Affiliation(s)
- Selina Khan
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Koen Oosterhuis
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | | | - Evelien M Bunnik
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Melissa Bhaggoe
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Satish Boedhoe
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Santusha Karia
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | | | - Leontien Bosch
- Department of Pathology, VU University Medical Center Amsterdam, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Sarah Janssen
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | | | - Jort Vellinga
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Gert Scheper
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Jerome Custers
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| |
Collapse
|
24
|
Liu GD, Zhou SF, Ding XC, Fang CL, Mi SY, Gao XC, Han Q. Soluble expression of recomb inant cMyc, Klf4, Oct4, and Sox2 proteins in bacteria and transduction into living cells. Int J Ophthalmol 2017; 10:560-566. [PMID: 28503428 DOI: 10.18240/ijo.2017.04.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 12/08/2016] [Indexed: 01/07/2023] Open
Abstract
AIM To develop a new method to produce recombinant reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, in soluble format with low cost for the generation of induced pluripotent stem cells (iPSCs). METHODS A short polypeptide sequence derived from the HIV trans-activator of transcription protein (TAT) and the nucleus localization signal (NLS) polypeptide were fused to the N terminus of the reprogramming proteins and they were constructed into pCold-SUMO vector which can extremely improve the solubility of recombinant proteins. Then these vector plasmids were transformed into E. coli BL21 (DE3) Chaperone competent cells for amplification. The solubility of these recombinant proteins was determined by SDS-PAGE and Coomassie brilliant blue staining. The recombinant proteins were purified by Ni-NTA resin and identified by Western blot. The transduction of these proteins into HEK 293T cells were evaluated by immunofluorescence staining. RESULTS These four reprogramming proteins could be produced in soluble format in pCold-SUMO expression vector system with the assistance of chaperone proteins in bacteria. The proteins were purified successfully with a purity of over 70% with a relative high transduction rate into 293 cells. CONCLUSION The results in the present study indicate the four important reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, can be produced in soluble format in bacteria with low cost. Our new method thus might be expected to greatly contribute to the future study of iPSCs.
Collapse
Affiliation(s)
- Guo-Dan Liu
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Shi-Feng Zhou
- Department of Emergency, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xu-Chen Ding
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chun-Lai Fang
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Shu-Yong Mi
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xiang-Chun Gao
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qing Han
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
25
|
Wegscheid ML, Anastasaki C, Gutmann DH. Human stem cell modeling in neurofibromatosis type 1 (NF1). Exp Neurol 2017; 299:270-280. [PMID: 28392281 DOI: 10.1016/j.expneurol.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Abstract
The future of precision medicine is heavily reliant on the use of human tissues to identify the key determinants that account for differences between individuals with the same disorder. This need is exemplified by the neurofibromatosis type 1 (NF1) neurogenetic condition. As such, individuals with NF1 are born with a germline mutation in the NF1 gene, but may develop numerous distinct neurological problems, ranging from autism and attention deficit to brain and peripheral nerve sheath tumors. Coupled with accurate preclinical mouse models, the availability of NF1 patient-derived induced pluripotent stem cells (iPSCs) provides new opportunities to define the critical factors that underlie NF1-associated nervous system disease pathogenesis and progression. In this review, we discuss the generation and potential applications of iPSC technology to the study of NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
26
|
Cellular Reprogramming Using Protein and Cell-Penetrating Peptides. Int J Mol Sci 2017; 18:ijms18030552. [PMID: 28273812 PMCID: PMC5372568 DOI: 10.3390/ijms18030552] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recently, stem cells have been suggested as invaluable tools for cell therapy because of their self-renewal and multilineage differentiation potential. Thus, scientists have developed a variety of methods to generate pluripotent stem cells, from nuclear transfer technology to direct reprogramming using defined factors, or induced pluripotent stem cells (iPSCs). Considering the ethical issues and efficiency, iPSCs are thought to be one of the most promising stem cells for cell therapy. Induced pluripotent stem cells can be generated by transduction with a virus, plasmid, RNA, or protein. Herein, we provide an overview of the current technology for iPSC generation and describe protein-based transduction technology in detail.
Collapse
|
27
|
Gong H, Liu M, Klomp J, Merrill BJ, Rehman J, Malik AB. Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells. Sci Rep 2017; 7:42127. [PMID: 28198371 PMCID: PMC5309830 DOI: 10.1038/srep42127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Human endothelial cells (ECs) are widely used to study mechanisms of angiogenesis, inflammation, and endothelial permeability. Targeted gene disruption induced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated Protein 9 (Cas9) nuclease gene editing is potentially an important tool for definitively establishing the functional roles of individual genes in ECs. We showed that co-delivery of adenovirus encoding EGFP-tagged Cas9 and lentivirus encoding a single guide RNA (sgRNA) in primary human lung microvascular ECs (HLMVECs) disrupted the expression of the Tie2 gene and protein. Tie2 disruption increased basal endothelial permeability and prevented permeability recovery following injury induced by the inflammatory stimulus thrombin. Thus, gene deletion via viral co-delivery of CRISPR-Cas9 in primary human ECs provides a novel platform to investigate signaling mechanisms of normal and perturbed EC function without the need for clonal expansion.
Collapse
Affiliation(s)
- Haixia Gong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Menglin Liu
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jeff Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Bradley J. Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Genome Editing Core, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B. Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
28
|
A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e337. [PMID: 27434682 PMCID: PMC5330939 DOI: 10.1038/mtna.2016.44] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/08/2016] [Indexed: 02/04/2023]
Abstract
For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.
Collapse
|
29
|
Sen CK. Expanding horizons of cellular plasticity in regenerative medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2592-5. [PMID: 26435411 DOI: 10.1016/j.ajpath.2015.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
This Guest Editorial introduces the Regenerative Medicine Theme Issue, which provides critical insight into the unfolding frontier of regenerative medicine.
Collapse
Affiliation(s)
- Chandan K Sen
- Center for Regenerative Medicine & Cell-Based Therapies and the Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
30
|
Smith RP, Riordan JD, Feddersen CR, Dupuy AJ. A Hybrid Adenoviral Vector System Achieves Efficient Long-Term Gene Expression in the Liver via piggyBac Transposition. Hum Gene Ther 2016; 26:377-85. [PMID: 25808258 DOI: 10.1089/hum.2014.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Much research has gone into the development of hybrid gene delivery systems that combine the broad tropism and efficient transduction of adenoviral vectors with the ability to achieve stable expression of cargo genes. In addition to gene therapy applications, such a system has considerable advantages for studies of gene function in vivo, permitting fine-tuned genetic manipulation with higher throughput than can be achieved using standard transgenic and DNA targeting techniques. Existing strategies are limited, however, by low integration efficiencies, small cargo capacity, and/or a dependence on target cell division. The utility of this approach could be enhanced by a system that provides all of the following: (1) efficient delivery, (2) stable expression in a high percentage of target cells (whether mitotic or not), (3) large cargo capacity, (4) flexibility to use with a wide range of additional experimental conditions, and (5) simple experimental technique. Here we report the initial characterization of a hybrid system that meets these criteria by utilizing piggyBac (PB) transposition to achieve genomic integration from adenoviral vectors. We demonstrate stable expression of an adenovirus (Ad)-PB-delivered reporter gene in ∼20-40% of hepatocytes following standard tail vein injection. Its high efficiency and flexibility relative to existing hybrid adenoviral gene delivery approaches indicate a considerable potential utility of the Ad-PB system for therapeutic gene delivery and in vivo studies of gene function.
Collapse
Affiliation(s)
- Ryan P Smith
- Department of Anatomy and Cell Biology, Roy J. & Lucille A. Carver College of Medicine, University of Iowa , Iowa City, IA 52242
| | - Jesse D Riordan
- Department of Anatomy and Cell Biology, Roy J. & Lucille A. Carver College of Medicine, University of Iowa , Iowa City, IA 52242
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. & Lucille A. Carver College of Medicine, University of Iowa , Iowa City, IA 52242
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. & Lucille A. Carver College of Medicine, University of Iowa , Iowa City, IA 52242
| |
Collapse
|
31
|
Sato M, Ohtsuka M, Watanabe S, Gurumurthy CB. Nucleic acids delivery methods for genome editing in zygotes and embryos: the old, the new, and the old-new. Biol Direct 2016; 11:16. [PMID: 27037013 PMCID: PMC4815204 DOI: 10.1186/s13062-016-0115-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
In the recent years, sequence-specific nucleases such as ZFNs, TALENs, and CRISPR/Cas9 have revolutionzed the fields of animal genome editing and transgenesis. However, these new techniques require microinjection to deliver nucleic acids into embryos to generate gene-modified animals. Microinjection is a delicate procedure that requires sophisticated equipment and highly trained and experienced technicians. Though over a dozen alternate approaches for nucleic acid delivery into embryos were attempted during the pre-CRISPR era, none of them became routinely used as microinjection. The addition of CRISPR/Cas9 to the genome editing toolbox has propelled the search for novel delivery approaches that can obviate the need for microinjection. Indeed, some groups have recently developed electroporation-based methods that have the potential to radically change animal transgenesis. This review provides an overview of the old and new delivery methods, and discusses various strategies that were attempted during the last three decades. In addition, several of the methods are re-evaluated with respect to their suitability to deliver genome editing components, particularly CRISPR/Cas9, to embryos.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544 Japan
| | - Masato Ohtsuka
- Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Kanagawa, 259 1193 Japan
| | - Satoshi Watanabe
- Animal Genome Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Ibaraki, 305-8602 Japan
| | - Channabasavaiah B. Gurumurthy
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
32
|
Techniques of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derivation. Arch Immunol Ther Exp (Warsz) 2016; 64:349-70. [PMID: 26939778 PMCID: PMC5021740 DOI: 10.1007/s00005-016-0385-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Developing procedures for the derivation of human pluripotent stem cells (PSCs) gave rise to novel pathways into regenerative medicine research. For many years, stem cells have attracted attention as a potentially unlimited cell source for cellular therapy in neurodegenerative disorders, cardiovascular diseases, and spinal cord injuries, for example. In these studies, adult stem cells were insufficient; therefore, many attempts were made to obtain PSCs by other means. This review discusses key issues concerning the techniques of pluripotent cell acquisition. Technical and ethical issues hindered the medical use of somatic cell nuclear transfer and embryonic stem cells. Therefore, induced PSCs (iPSCs) emerged as a powerful technique with great potential for clinical applications, patient-specific disease modelling and pharmaceutical studies. The replacement of viral vectors or the administration of analogous proteins or chemical compounds during cell reprogramming are modifications designed to reduce tumorigenesis risk and to augment the procedure efficiency. Intensified analysis of new PSC lines revealed other barriers to overcome, such as epigenetic memory, disparity between human and mouse pluripotency, and variable response to differentiation of some iPSC lines. Thus, multidimensional verification must be conducted to fulfil strict clinical-grade requirements. Nevertheless, the first clinical trials in patients with spinal cord injury and macular dystrophy were recently carried out with differentiated iPSCs, encouraging alternative strategies for potential autologous cellular therapies.
Collapse
|
33
|
Pluripotent stem cells and livestock genetic engineering. Transgenic Res 2016; 25:289-306. [PMID: 26894405 DOI: 10.1007/s11248-016-9929-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023]
Abstract
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.
Collapse
|
34
|
Cellular Engineering and Disease Modeling with Gene-Editing Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1. Gene Ther 2015; 23:129-34. [PMID: 26609667 PMCID: PMC4746739 DOI: 10.1038/gt.2015.107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 12/15/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate which ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Towards this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared to saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with Ethylene Glycol (EG), a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy.
Collapse
|
36
|
Liu GS, Wang JH, Lee JH, Tsai PJ, Tsai HE, Sheu SJ, Lin HC, Dusting GJ, Tai MH, Bee YS. Gene Delivery by Subconjunctival Injection of Adenovirus in Rats: A Study of Local Distribution, Transgene Duration and Safety. PLoS One 2015; 10:e0143956. [PMID: 26642208 PMCID: PMC4671571 DOI: 10.1371/journal.pone.0143956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022] Open
Abstract
Subconjunctival injection is a minimally invasive route for gene delivery to ocular tissues, but has traditionally been limited to use in the cornea. The accurate ocular distribution of virus has not, however, been previously investigated. Adenovirus is an attractive gene vector as it can deliver large genes and allow for short-term gene expression, but how safe it is when delivered via subconjunctival injection remains to be established. We have characterized the bio-distribution and safety of subconjunctivally administered adenovirus in Brown Norway rats. The bio-distribution and transgene duration of adenovirus carrying luciferase gene (Ad-Luci) at various time intervals were evaluated via bioluminescence imaging after subconjunctival injection. Adenovirus carrying a reporter gene, β-galactosidase (Ad-LacZ) or hrGFP (Ad-hrGFP) was administered subconjunctivally and the viral distribution in various ocular tissues was assessed by histological analysis and quantitative PCR (qPCR). Hepatic damage was assessed by biochemical and immunohistological analysis with TUNEL stain. Systemic immunogenicity was assessed by measuring serum level of TNF-α via ELISA, 2 hours and 14 days after administration of adenovirus. Retinal function was examined by electroretinography. Subconjunctival injection of Ad-Luci induced luciferase expression in the injected eyes within 24 hours, for at least 64 days. Histological analysis showed adenovirus distributed across anterior and posterior ocular tissues. qPCR demonstrated different amounts of adenovirus in different ocular tissues, with the highest amounts closest to the injection site Unlike the intravenous route, subconjunctivally delivered adenovirus did not elicit any detectable hepatic injury or systemic immunogenicity. Retinal function was unaffected by adenovirus irrespective of administration route. In conclusion, an adenoviral vector administered subconjunctivally can infiltrate into different ocular tissues and lead to short-term ocular transgene expression, without causing hepatic injury and immune activation. Therefore, subconjunctivally administered adenovirus may be a promising gene delivery approach for managing anterior and posterior segment eye diseases requiring short-term therapy.
Collapse
Affiliation(s)
- Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Jia Hui Lee
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Pei-Jhen Tsai
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Han-En Tsai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiu-Chen Lin
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Gregory J. Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases. Sci Rep 2015; 5:15810. [PMID: 26507781 PMCID: PMC4623474 DOI: 10.1038/srep15810] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023] Open
Abstract
Gene therapy is a promising approach for treating diseases that are closely associated with excessive apoptosis, because the gene can effectively and sustainably introduce anti-apoptotic factors into cells. However, DNA delivery poses the risk of random genomic integration, leading to overexpression of the delivered gene and cancer development. Messenger RNA (mRNA) can evade integration events in target cells. We examined the use of mRNA-based therapeutics for introducing anti-apoptotic factors by using a mouse model of fulminant hepatitis. For introducing mRNA into the liver, a synthesised polymer-based carrier of polyplex nanomicelles was used for hydrodynamic intravenous injection. Using GFP as a reporter, we demonstrate that mRNA delivery induced efficient protein expression in almost 100% of liver cells, while plasmid DNA (pDNA) delivery provided a smaller percentage of GFP-positive cells. Analyses using Cy5-labelled mRNA and pDNA revealed that efficient expression by mRNA was attributed to a simple intracellular mechanism, without the need for nuclear entry. Consistent with this observation, Bcl-2 mRNA was more effective on reducing apoptosis in the liver of mice with fulminant hepatitis than Bcl-2 pDNA. Therefore, mRNA-based therapeutics combined with an effective delivery system such as polyplex nanomicelles is a promising treatment for intractable diseases associated with excessive apoptosis.
Collapse
|
38
|
Li J, Yang D, Wang W, Piao S, Zhou J, Saiyin W, Zheng C, Sun H, Li Y. Inhibition of autophagy by 3-MA enhances IL-24-induced apoptosis in human oral squamous cell carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:97. [PMID: 26361755 PMCID: PMC4567787 DOI: 10.1186/s13046-015-0211-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022]
Abstract
Background Interleukin-24(IL-24), also referred to as melanoma differentiation-associated gene-7(mda-7), is a unique member of the IL-10 gene family, which displays nearly ubiquitous cancer-specific toxicity. The most notable feature of IL-24 is selectively induced growth suppression and apoptosis in various cancer cells, with no harmful effects toward normal cells. Autophagy is a self-protective mechanism in many kinds of tumor cells that respond to anticancer treatment. It is reported that autophagy inhibition could enhance the effects of many kinds of anticancer treatments, including gene therapy. However, whether IL-24 is effective to treat oral squamous cell carcinomas (OSCC) and if autophagy inhibition could improve the anticancer effect of IL-24 towards OSCC is has not been detected. Methods MTT assays were carried out to determine the cell proliferation; Transfection was used to gene transfer; Western Blot was performed to detect the protein level of LC3II, P62, Beclin 1, Cleaved caspase-3, β-Tubulin and β-actin; Apoptosis rates and cell cycle alteration were analyzed using flow cytometry; Autophagy induction was confirmed by MDC staining, GFP-LC3 staining and transmission electron microscopy. Amount of IL-24 in the culture medium was quantified by ELISA. Apoptosis in vivo was analyzed by TUNEL assay. HE staining was used to observe the morphology of the samples. Results In the present study, we proved that IL-24 have a novel anticancer effect towards KB cells and that autophagy inhibition could improve the anticancer effect of IL-24. IL-24 treated cells showed autophagy characteristics and autophagy inhibition by 3-methyladenine (3-MA) significantly enhanced IL-24-induced apoptosis. Similar results were obtained in the KB cells xenograft tumor model. Conclusions These results suggest that the combination of autophagy inhibitors and IL-24 based on the AdLTR2EF1α-mediated gene transfer could be a promising way to cure OSCC.
Collapse
Affiliation(s)
- Jichen Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150001, People's Republic of China.
| | - Dezhao Yang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Harbin Medical University, 141 Yiman Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Wei Wang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Harbin Medical University, 141 Yiman Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Songlin Piao
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Harbin Medical University, 141 Yiman Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Jianyu Zhou
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Harbin Medical University, 141 Yiman Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Wuliji Saiyin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Harbin Medical University, 141 Yiman Street, Nangang District, Harbin, 150001, People's Republic of China.
| | - Changyu Zheng
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Hongchen Sun
- Department of Oral Pathology, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, People's Republic of China.
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150001, People's Republic of China.
| |
Collapse
|
39
|
Qin Y, Gao WQ. Concise Review: Patient-Derived Stem Cell Research for Monogenic Disorders. Stem Cells 2015; 34:44-54. [DOI: 10.1002/stem.2112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/05/2015] [Accepted: 06/20/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Yiren Qin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine; hanghai Jiao Tong University; Shanghai People's Republic of China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine; hanghai Jiao Tong University; Shanghai People's Republic of China
- School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University; Shanghai People's Republic of China
- Collaborative Innovation Center of Systems Biomedicine; Shanghai Jiao Tong University; Shanghai People's Republic of China
| |
Collapse
|
40
|
Sen CK, Ghatak S. miRNA control of tissue repair and regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2629-40. [PMID: 26056933 DOI: 10.1016/j.ajpath.2015.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022]
Abstract
Tissue repair and regeneration rely on the function of miRNA, molecular silencers that enact post-transcriptional gene silencing of coding genes. Disruption of miRNA homeostasis is developmentally lethal, indicating that fetal tissue development is tightly controlled by miRNAs. Multiple critical facets of adult tissue repair are subject to control by miRNAs, as well. Sources of cell pool for tissue repair and regeneration are diverse and provided by processes including cellular dedifferentiation, transdifferentiation, and reprogramming. Each of these processes is regulated by miRNAs. Furthermore, induced pluripotency may be achieved by miRNA-based strategies independent of transcription factor manipulation. The observation that miRNA does not integrate into the genome makes miRNA-based therapeutic strategies translationally valuable. Tools to manipulate cellular and tissue miRNA levels include mimics and inhibitors that may be specifically targeted to cells of interest at the injury site. Here, we discuss the extraordinary importance of miRNAs in tissue repair and regeneration based on emergent reports and rapid advances in miRNA-based therapeutics.
Collapse
Affiliation(s)
- Chandan K Sen
- Center for Regenerative Medicine and Cell-Based Therapies and the Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Subhadip Ghatak
- Center for Regenerative Medicine and Cell-Based Therapies and the Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
41
|
Zhang P, Du E, Ma J, Wang W, Zhang L, Tikoo SK, Yang Z. A novel and simple method for rapid generation of recombinant porcine adenoviral vectors for transgene expression. PLoS One 2015; 10:e0127958. [PMID: 26011074 PMCID: PMC4444375 DOI: 10.1371/journal.pone.0127958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/22/2015] [Indexed: 01/02/2023] Open
Abstract
Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620 ± 49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes.
Collapse
Affiliation(s)
- Peng Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Enqi Du
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Jing Ma
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Wenbin Wang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Lu Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Suresh K. Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (ZY); (SKT)
| | - Zengqi Yang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
- * E-mail: (ZY); (SKT)
| |
Collapse
|
42
|
McFall ER, Murray LM, Lunde JA, Jasmin BJ, Kothary R, Parks RJ. A reduction in the human adenovirus virion size through use of a shortened fibre protein does not enhance muscle transduction following systemic or localised delivery in mice. Virology 2014; 468-470:444-453. [PMID: 25243333 DOI: 10.1016/j.virol.2014.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023]
Abstract
We have investigated whether reducing the overall size of adenovirus (Ad), through use of a vector containing a shortened fibre, leads to enhanced distribution and dissemination of the vector. Intravenous or intraperitoneal injection of Ad5SlacZ (12 nm fibre versus the normal Ad5 37 nm fibre) or Ad5SpKlacZ (shortened fibre with polylysine motif in the H-I loop of fibre knob domain) led to similar levels of lacZ expression compared to Ad5LlacZ (native Ad5 fibre) in the liver of treated animals, but did not enhance extravasation into the tibialis anterior muscle. Direct injection of the short-fibre vectors into the tibialis anterior muscle did not result in enhanced spread of the vector through muscle tissue, and led to only sporadic transgene expression in the spinal cord, suggesting that modifying the fibre length or redirecting viral infection to a more common cell surface receptor does not enhance motor neuron uptake or retrograde transport.
Collapse
Affiliation(s)
- Emily R McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lyndsay M Murray
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - John A Lunde
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
43
|
Romli F, Alitheen NB, Hamid M, Ismail R, Abd Rahman NMAN. Current techniques in reprogramming cell potency. J Cell Biochem 2014; 114:1230-7. [PMID: 23239017 DOI: 10.1002/jcb.24477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/05/2012] [Indexed: 11/11/2022]
Abstract
The first successful attempt to reprogram somatic cell into embryonic-like stem cell was achieved on 2006. Since then, it had sparked a race against time to bring this wonderful invention from bench to bedside but it is not easily achieved due to severe problems in term of epigenetic and genomic. With each problem arise, new technique and protocol will be constructed to try to overcome it. This review addresses the various techniques made available to create iPSC with problems hogging down the technique.
Collapse
Affiliation(s)
- Firdaus Romli
- Faculty of Biotechnology and Biomolecular Sciences, Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
44
|
Hu K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev 2014; 23:1285-300. [PMID: 24524728 PMCID: PMC4046204 DOI: 10.1089/scd.2013.0620] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/12/2014] [Indexed: 12/26/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) via the ectopic expression of reprogramming factors is a simple, advanced, yet often perplexing technology due to low efficiency, slow kinetics, and the use of numerous distinct systems for factor delivery. Scientists have used almost all available approaches for the delivery of reprogramming factors. Even the well-established retroviral vectors confuse some scientists due to different tropisms in use. The canonical virus-based reprogramming poses many problems, including insertional mutagenesis, residual expression and re-activation of reprogramming factors, uncontrolled silencing of transgenes, apoptosis, cell senescence, and strong immunogenicity. To eliminate or alleviate these problems, scientists have tried various other approaches for factor delivery and transgene removal. These include transient transfection, nonintegrating viral vectors, Cre-loxP excision of transgenes, excisable transposon, protein transduction, RNA transfection, microRNA transfection, RNA virion, RNA replicon, nonintegrating replicating episomal plasmids, minicircles, polycistron, and preintegration of inducible reprogramming factors. These alternative approaches have their own limitations. Even iPSCs generated with RNA approaches should be screened for possible transgene insertions mediated by active endogenous retroviruses in the human genome. Even experienced researchers may encounter difficulty in selecting and using these different technologies. This survey presents overviews of iPSC technologies with the intention to provide a quick yet comprehensive reference for both new and experienced reprogrammers.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Insitute, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
45
|
Hu K. Vectorology and factor delivery in induced pluripotent stem cell reprogramming. Stem Cells Dev 2014; 23:1301-15. [PMID: 24625220 PMCID: PMC4046209 DOI: 10.1089/scd.2013.0621] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/13/2014] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10-30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
46
|
Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF. Innate immunity to adenovirus. Hum Gene Ther 2014; 25:265-84. [PMID: 24512150 DOI: 10.1089/hum.2014.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate-adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features.
Collapse
Affiliation(s)
- Rodinde Hendrickx
- 1 Institute of Molecular Life Sciences, University of Zurich , CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Generation of familial amyloidotic polyneuropathy-specific induced pluripotent stem cells. Stem Cell Res 2014; 12:574-83. [DOI: 10.1016/j.scr.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 12/13/2013] [Accepted: 01/15/2014] [Indexed: 01/02/2023] Open
|
48
|
Zheng C, Baum BJ. Integration of the hybrid adenoretroviral vector AdLTR-luc involves both MoMLV elements flanking the transgene. Int J Med Sci 2014; 11:803-9. [PMID: 24936143 PMCID: PMC4057490 DOI: 10.7150/ijms.9084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/26/2014] [Indexed: 11/07/2022] Open
Abstract
Vector delivery is still a bottleneck for gene therapy. To overcome some disadvantages of adenoviral and retroviral vectors, we developed a hybrid vector. This hybrid vector, AdLTR-luc, was created by adding two elements from Moloney murine leukemia virus (MoMLV) flanking the luciferase cDNA into an E1/E3-deleted, replication deficient serotype 5 adenovirus vector (Zheng et al., Nature Biotechnol, 2000), and demonstrated that the MoMLV element upstream of the luciferase cDNA was broken during the integration event. The purpose of the current study was to determine if the MoMLV element downstream of the luciferase cDNA was also broken when integration occurred. We used the same A5 cell clones (#10 and 11) from the earlier the paper along with restriction endonuclease digestions, plus Southern hybridization, and PCR. Southern hybridization indicated that the luciferase cDNA was intact in the cloned cells. Results from Xho I and Sal I digestions showed that integration occurred in cloned cells. Southern hybridizations after Nco I digestion suggested that there was a break in both MoMLV elements, upstream and downstream of the luciferase cDNA. After DNA digestion with Not I, hybridization analyses indicated that the MoMLV upstream element was broken during integration. Digestion of genomic DNA with either Xba I/Kpn I, Bam HI/Sac I, or Bam HI/Nco I demonstrated that the MoMLV downstream element was also broken during integration. A PCR assay was unable to amplify the junctional region between the downstream MoMLV element and the adenoviral E2B gene, consistent with a break in that element. Although AdLTR-luc integration is atypical (Zheng et al., Nature Biotechnol, 2000), the present results suggest that both MoMLV elements have important roles in this event.
Collapse
Affiliation(s)
- Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-1190, USA
| | - Bruce J Baum
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-1190, USA
| |
Collapse
|
49
|
Human induced pluripotent stem cells from basic research to potential clinical applications in cancer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:430290. [PMID: 24288679 PMCID: PMC3830845 DOI: 10.1155/2013/430290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/15/2013] [Indexed: 12/29/2022]
Abstract
The human induced pluripotent stem cells (hiPSCs) are derived from a direct reprogramming of human somatic cells to a pluripotent stage through ectopic expression of specific transcription factors. These cells have two important properties, which are the self-renewal capacity and the ability to differentiate into any cell type of the human body. So, the discovery of hiPSCs opens new opportunities in biomedical sciences, since these cells may be useful for understanding the mechanisms of diseases in the production of new diseases models, in drug development/drug toxicity tests, gene therapies, and cell replacement therapies. However, the hiPSCs technology has limitations including the potential for the development of genetic and epigenetic abnormalities leading to tumorigenicity. Nowadays, basic research in the hiPSCs field has made progress in the application of new strategies with the aim to enable an efficient production of high-quality of hiPSCs for safety and efficacy, necessary to the future application for clinical practice. In this review, we show the recent advances in hiPSCs' basic research and some potential clinical applications focusing on cancer. We also present the importance of the use of statistical methods to evaluate the possible validation for the hiPSCs for future therapeutic use toward personalized cell therapies.
Collapse
|
50
|
Zhang W, Muck-Hausl M, Wang J, Sun C, Gebbing M, Miskey C, Ivics Z, Izsvak Z, Ehrhardt A. Integration profile and safety of an adenovirus hybrid-vector utilizing hyperactive sleeping beauty transposase for somatic integration. PLoS One 2013; 8:e75344. [PMID: 24124483 PMCID: PMC3790794 DOI: 10.1371/journal.pone.0075344] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/11/2013] [Indexed: 12/18/2022] Open
Abstract
We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB) transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR) and linear amplification-mediated PCR (LAM-PCR). Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models.
Collapse
Affiliation(s)
- Wenli Zhang
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- Northwest Agriculture and Forestry University, Yangling, China
| | - Martin Muck-Hausl
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jichang Wang
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Chuanbo Sun
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Csaba Miskey
- Paul-Ehrlich-Institute, Division of Medical Biotechnology, Langen, Germany
| | - Zoltan Ivics
- Paul-Ehrlich-Institute, Division of Medical Biotechnology, Langen, Germany
| | | | - Anja Ehrhardt
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute for Virology and Microbiology, Center for Biomedical Education and Research, Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany
- * E-mail:
| |
Collapse
|