1
|
Úsuga-Monroy C, Díaz FJ, González-Herrera LG, Echeverry-Zuluaga JJ, López-Herrera A. Phylogenetic analysis of the partial sequences of the env and tax BLV genes reveals the presence of genotypes 1 and 3 in dairy herds of Antioquia, Colombia. Virusdisease 2023; 34:483-497. [PMID: 38046065 PMCID: PMC10686916 DOI: 10.1007/s13337-023-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 12/05/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that primarily infects dairy cows. Although few studies have also used the tax gene, phylogenetic studies of BLV use mostly the env gene. The aim of this work was to establish the circulating genotypes of BLV in specialized dairy cattle from Antioquia, Colombia. Twenty blood samples from Holstein Friesian cows were collected, and their DNA was isolated. A PCR was performed for a partial region of the env and tax genes. A phylogenetic analysis was carried out using the maximum likelihood and Bayesian methods for both genes. Nineteen sequences were identified as genotype 1 by env and tax genes. Only one sequence was clustered with genotype 3 and had the highest proportion of different nucleotide sites compared to other strains. Four amino acid substitutions in the 134 amino acid residue fragment of the Env protein were identified in the Colombian sequences, and three new amino acid substitutions were reported in the 296 amino acid residue fragment of the Tax protein. R43K (Z finger), A185T (Activation domain), and L105F changes were identified in the genotype 3 sample. This genotype has been reported in the United States, Japan, Korea, and Mexico, but so far, not in Colombia. The country has a high rate of imported live animals, semen, and embryos, especially from the United States. Although it is necessary to evaluate samples from other regions of the country, the current results indicate the presence of two BLV genotypes in specialized dairy herds.
Collapse
Affiliation(s)
- Cristina Úsuga-Monroy
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - F. J. Díaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Luis Gabriel González-Herrera
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - José Julián Echeverry-Zuluaga
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - Albeiro López-Herrera
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| |
Collapse
|
2
|
Montero Machuca N, Tórtora Pérez JL, González Méndez AS, García-Camacho AL, Marín Flamand E, Ramírez Álvarez H. Genetic analysis of the pX region of bovine leukemia virus genotype 1 in Holstein Friesian cattle with different stages of infection. Arch Virol 2022; 167:45-56. [PMID: 34651240 DOI: 10.1007/s00705-021-05252-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/01/2021] [Indexed: 02/05/2023]
Abstract
The pX genetic region of bovine leukemia virus (BLV) includes four genes with overlapping reading frames that code for the Tax, Rex, R3, and G4 proteins. These proteins are involved in the regulation of transcriptional and post-transcriptional viral expression, as well as having oncogenic potential. Our goal was to investigate the pathogenicity of the pX region of BLV genotype 1 in terms of lymphocytosis, lymphomas, and proviral DNA load. We screened 724 serological samples from mixed-age Holstein Friesian cattle from six states in Mexico. Peripheral blood leukocytes (PBLs) were isolated from whole blood with anticoagulant, and genomic DNA was extracted from the PBLs using a commercial kit. Then, a set of primers that hybridize in conserved regions of the BLV pX region were used, which allowed for PCR standardization to detect proviral DNA in infected cells. Positive amplicons were sequenced using the Sanger method, resulting in 1156-nucleotide-long final sequences that included the four pX region genes. The experimental group consisted of 30 animals. Twelve of these had lymphocytosis, six had lymphoma, and 12 were apparently healthy cattle without any signs of lymphocytosis or lymphoma. The presence of lymphoma was detected in six bovine tumor tissues using histopathology, and the presence of BLV was detected by in situ hybridization. Phylogenetic analysis demonstrated that the 30 sequences were associated with genotype 1, and the genetic distance between the sequences ranged from 0.2% to 2.09%. We identified two sequences in the G4 gene: one with a three-nucleotide deletion resulting in the loss of a leucine (AGU_7488L, in a cow with lymphocytosis), and one with a nine-nucleotide deletion resulting in the loss of leucine, proline, and leucine (AGU_18A, in a cow without lymphocytosis). Analysis of the PX region indicated that positive selection had occurred in the G4, rex, and R3 genes, and we found no difference in proviral DNA load between the studied groups. We were unable to establish an association between variations in the pX region and the development of lymphocytosis, lymphoma, asymptomatic status, or proviral DNA load in BLV-infected cattle.
Collapse
Affiliation(s)
- Neli Montero Machuca
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, FES-Cuautitlán, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, 54714, Cuautitlan Izcalli, Estado de México, México
| | - Jorge Luis Tórtora Pérez
- Department of Biological Sciences, Faculty of Higher Education, Cuautitlan, National Autonomous University of Mexico, Cuautitlán Izcalli, México
| | - Ana Silvia González Méndez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, FES-Cuautitlán, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, 54714, Cuautitlan Izcalli, Estado de México, México
| | - Angélica Lucia García-Camacho
- Department of Biological Sciences, Faculty of Higher Education, Cuautitlan, National Autonomous University of Mexico, Cuautitlán Izcalli, México
| | - Ernesto Marín Flamand
- Department of Biological Sciences, Faculty of Higher Education, Cuautitlan, National Autonomous University of Mexico, Cuautitlán Izcalli, México
| | - Hugo Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, FES-Cuautitlán, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, 54714, Cuautitlan Izcalli, Estado de México, México.
| |
Collapse
|
3
|
Montero Machuca N, Tórtora Pérez JL, González Méndez AS, García-Camacho AL, Marín Flamand E, Ramírez Álvarez H. Genetic analysis of the pX region of bovine leukemia virus genotype 1 in Holstein Friesian cattle with different stages of infection. Arch Virol 2021. [DOI: https://doi.org/10.1007/s00705-021-05252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Pavliscak LA, Nirmala J, Singh VK, Sporer KRB, Taxis TM, Kumar P, Goyal SM, Mor SK, Schroeder DC, Wells SJ, Droscha CJ. Tracing Viral Transmission and Evolution of Bovine Leukemia Virus through Long Read Oxford Nanopore Sequencing of the Proviral Genome. Pathogens 2021; 10:1191. [PMID: 34578223 PMCID: PMC8470207 DOI: 10.3390/pathogens10091191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Bovine leukemia virus (BLV) causes Enzootic Bovine Leukosis (EBL), a persistent life-long disease resulting in immune dysfunction and shortened lifespan in infected cattle, severely impacting the profitability of the US dairy industry. Our group has found that 94% of dairy farms in the United States are infected with BLV with an average in-herd prevalence of 46%. This is partly due to the lack of clinical presentation during the early stages of primary infection and the elusive nature of BLV transmission. This study sought to validate a near-complete genomic sequencing approach for reliability and accuracy before determining its efficacy in characterizing the sequence identity of BLV proviral genomes collected from a pilot study made up of 14 animals from one commercial dairy herd. These BLV-infected animals were comprised of seven adult dam/daughter pairs that tested positive by ELISA and qPCR. The results demonstrate sequence identity or divergence of the BLV genome from the same samples tested in two independent laboratories, suggesting both vertical and horizontal transmission in this dairy herd. This study supports the use of Oxford Nanopore sequencing for the identification of viral SNPs that can be used for retrospective genetic contact tracing of BLV transmission.
Collapse
Affiliation(s)
| | - Jayaveeramuthu Nirmala
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Vikash K. Singh
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
| | | | - Tasia M. Taxis
- Department of Large Animal Clinical Science, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Pawan Kumar
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Sagar M. Goyal
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
| | - Sunil Kumar Mor
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | - Scott J. Wells
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Casey J. Droscha
- CentralStar Cooperative, Lansing, MI 48910, USA; (L.A.P.); (K.R.B.S.)
- Department of Large Animal Clinical Science, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
5
|
Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46999-47023. [PMID: 34272669 PMCID: PMC8284698 DOI: 10.1007/s11356-021-14941-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 04/12/2023]
Abstract
In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricultural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures, viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts. Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered, and the precautions in dealing with bovines and bovine-based materials.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
6
|
Pluta A, Willems L, Douville RN, Kuźmak J. Effects of Naturally Occurring Mutations in Bovine Leukemia Virus 5'-LTR and Tax Gene on Viral Transcriptional Activity. Pathogens 2020; 9:pathogens9100836. [PMID: 33066207 PMCID: PMC7656303 DOI: 10.3390/pathogens9100836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/28/2023] Open
Abstract
Bovine leukemia virus (BLV) is a deltaretrovirus infecting bovine B cells and causing enzootic bovine leucosis (EBL). The long terminal repeat (LTR) plays an indispensable role in viral gene expression. The BLV Tax protein acts as the main transactivator of LTR-driven transcription of BLV viral genes. The aim of this study was to analyze mutations in the BLV LTR region and tax gene to determine their association with transcriptional activity. LTRs were obtained from one hundred and six BLV isolates and analyzed for their genetic variability. Fifteen variants were selected and characterized based on mutations in LTR regulatory elements, and further used for in vitro transcription assays. Reporter vectors containing the luciferase gene under the control of each variant BLV promoter sequence, in addition to variant Tax expression vectors, were constructed. Both types of plasmids were used for cotransfection of HeLa cells and the level of luciferase activity was measured as a proxy of transcriptional activity. Marked differences in LTR promoter activity and Tax transactivation activity were observed amongst BLV variants. These results demonstrate that mutations in both the BLV LTR and tax gene can affect the promoter activity, which may have important consequences on proviral load, viral fitness, and transmissibility in BLV-infected cattle.
Collapse
Affiliation(s)
- Aneta Pluta
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland;
- Correspondence:
| | - Luc Willems
- Molecular and Cellular Epigenetics (Interdisciplinary Cluster for Applied Genoproteomics, GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000 Liege, Belgium;
| | - Renée N. Douville
- Department of Biology, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada;
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland;
| |
Collapse
|
7
|
Regulation of Expression and Latency in BLV and HTLV. Viruses 2020; 12:v12101079. [PMID: 32992917 PMCID: PMC7601775 DOI: 10.3390/v12101079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotrophic virus type 1 (HTLV-1) and Bovine leukemia virus (BLV) belong to the Deltaretrovirus genus. HTLV-1 is the etiologic agent of the highly aggressive and currently incurable cancer adult T-cell leukemia (ATL) and a neurological disease HTLV-1-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). BLV causes neoplastic proliferation of B cells in cattle: enzootic bovine leucosis (EBL). Despite the severity of these conditions, infection by HTLV-1 and BLV appear in most cases clinically asymptomatic. These viruses can undergo latency in their hosts. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infection, as well as for pathogenesis in vivo. In this review, we will present the mechanisms that control proviral activation and retroviral latency in deltaretroviruses, in comparison with other exogenous retroviruses. The 5′ long terminal repeats (5′-LTRs) play a main role in controlling viral gene expression. While the regulation of transcription initiation is a major mechanism of silencing, we discuss topics that include (i) the epigenetic control of the provirus, (ii) the cis-elements present in the LTR, (iii) enhancers with cell-type specific regulatory functions, (iv) the role of virally-encoded transactivator proteins, (v) the role of repressors in transcription and silencing, (vi) the effect of hormonal signaling, (vii) implications of LTR variability on transcription and latency, and (viii) the regulatory role of non-coding RNAs. Finally, we discuss how a better understanding of these mechanisms may allow for the development of more effective treatments against Deltaretroviruses.
Collapse
|
8
|
Bai L, Takeshima SN, Sato M, Davis WC, Wada S, Kohara J, Aida Y. Mapping of CD4 + T-cell epitopes in bovine leukemia virus from five cattle with differential susceptibilities to bovine leukemia virus disease progression. Virol J 2019; 16:157. [PMID: 31842930 PMCID: PMC6916044 DOI: 10.1186/s12985-019-1259-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia virus, is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly prolonged course involving persistent lymphocytosis and B-cell lymphoma. The bovine major histocompatibility complex class II region plays a key role in the subclinical progression of BLV infection. In this study, we aimed to evaluate the roles of CD4+ T-cell epitopes in disease progression in cattle. METHODS We examined five Japanese Black cattle, including three disease-susceptible animals, one disease-resistant animal, and one normal animal, classified according to genotyping of bovine leukocyte antigen (BoLA)-DRB3 and BoLA-DQA1 alleles using polymerase chain reaction sequence-based typing methods. All cattle were inoculated with BLV-infected blood collected from BLV experimentally infected cattle and then subjected to CD4+ T-cell epitope mapping by cell proliferation assays. RESULTS Five Japanese Black cattle were successfully infected with BLV, and CD4+ T-cell epitope mapping was then conducted. Disease-resistant and normal cattle showed low and moderate proviral loads and harbored six or five types of CD4+ T-cell epitopes, respectively. In contrast, the one of three disease-susceptible cattle with the highest proviral load did not harbor CD4+ T-cell epitopes, and two of three other cattle with high proviral loads each had only one epitope. Thus, the CD4+ T-cell epitope repertoire was less frequent in disease-susceptible cattle than in other cattle. CONCLUSION Although only a few cattle were included in this study, our results showed that CD4+ T-cell epitopes may be associated with BoLA-DRB3-DQA1 haplotypes, which conferred differential susceptibilities to BLV proviral loads. These CD4+ T-cell epitopes could be useful for the design of anti-BLV vaccines targeting disease-susceptible Japanese Black cattle. Further studies of CD4+ T-cell epitopes in other breeds and using larger numbers of cattle with differential susceptibilities are required to confirm these findings.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Faculty of Human Life, Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama, 352-0017, Japan.
| | - Masaaki Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - William C Davis
- Monoclonal antibody center, Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Kohara
- Animal Research Center, Hokkaido Research Organization, 5-39-1 Shintoku, Hokkaido, 081-0038, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
9
|
Transcriptional activation of long terminal repeat of bovine leukemia virus by bovine heat shock factor 1. Virus Res 2019; 269:197641. [PMID: 31228509 DOI: 10.1016/j.virusres.2019.197641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022]
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis (EBL). The BLV genome encodes Tax protein, a transcriptional activator of viral gene expression that binds to the BLV long terminal repeat (LTR). Heat shock factor 1 (HSF1) is a known regulator of the heat shock response proteins, including heat shock proteins. In the present study, the BLV LTR was investigated for interaction of heat shock element (HSE) with HSF1 and the viral Tax protein. It could be confirmed that a functional HSE is well conserved in different BLV strains. The LTR transcriptional activity, as measured by luciferase reporter assay, was upregulated by bovine HSF1 - without Tax expression - in feline CC81 cells. The HSF1 activated LTR transcription by binding to the HSE. LTR-activation was lost upon HSE removal from the LTR and upon expression of a mutant HSF1 lacking the DNA-binding domain. We conclude that BLV LTR is activated to a basal level by host transcriptional factor HSF1, but without Tax protein involvement.
Collapse
|
10
|
Sato H, Watanuki S, Bai L, Borjigin L, Ishizaki H, Matsumoto Y, Hachiya Y, Sentsui H, Aida Y. A sensitive luminescence syncytium induction assay (LuSIA) based on a reporter plasmid containing a mutation in the glucocorticoid response element in the long terminal repeat U3 region of bovine leukemia virus. Virol J 2019; 16:66. [PMID: 31109347 PMCID: PMC6528319 DOI: 10.1186/s12985-019-1172-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) causes enzootic bovine leukosis, the most common neoplastic disease of cattle. Previously, we reported the luminescence syncytium induction assay (LuSIA), an assay for BLV infectivity based on CC81-BLU3G cells, which form syncytia expressing enhanced green fluorescent protein (EGFP) when co-cultured with BLV-infected cells. To develop a more sensitive LuSIA, we here focused on the glucocorticoid response element (GRE) within the U3 region of the BLV long terminal repeat (LTR). METHODS We changed five nucleotide sites of the GRE in a pBLU3-EGFP reporter plasmid containing the BLV-LTR U3 region promoter by site-directed mutagenesis and we then constructed a new reporter plasmid (pBLU3GREM-EGFP) in which the EGFP reporter gene was expressed under control of the GRE-mutated LTR-U3 promoter. We also established a new CC81-derived reporter cell line harboring the GRE-mutated LTR-U3 promoter (CC81-GREMG). To evaluate the sensibility, the utility and the specificity of the LuSIA using CC81-GREMG, we co-cultured CC81-GREMG cells with BLV-persistently infected cells, free-viruses, white blood cells (WBCs) from BLV-infected cows, and bovine immunodeficiency-like virus (BIV)- and bovine foamy virus (BFV)-infected cells. RESULTS We successfully constructed a new reporter plasmid harboring a mutation in the GRE and established a new reporter cell line, CC81-GREMG; this line was stably transfected with pBLU3GREM-EGFP in which the EGFP gene is expressed under control of the GRE-mutated LTR-U3 promoter and enabled direct visualization of BLV infectivity. The new LuSIA protocol using CC81-GREMG cells measures cell-to-cell infectivity and cell-free infectivity of BLV more sensitively than previous protocol using CC81-BLU3G. Furthermore, it did not respond to BIV and BFV infections, indicating that the LuSIA based on CC81-GREMG is specific for BLV infectivity. Moreover, we confirmed the utility of a new LuSIA based on CC81-GREMG cells using white blood cells (WBCs) from BLV-infected cows. Finally, the assay was useful for assessing the activity of neutralizing antibodies in plasma collected from BLV-infected cows. CONCLUSION The new LuSIA protocol is quantitative and more sensitive than the previous assay based on CC81-BLU3G cells and should facilitate development of several new BLV assays.
Collapse
Affiliation(s)
- Hirotaka Sato
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan.,Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan
| | - Sonoko Watanuki
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan.,Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Lanlan Bai
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan.,Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan
| | - Liushiqi Borjigin
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan
| | - Hiroshi Ishizaki
- Grazing Animal Unit, Division of Grassland Farming, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuma Hachiya
- Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hiroshi Sentsui
- Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yoko Aida
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan. .,Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan. .,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
11
|
Development of a luminescence syncytium induction assay (LuSIA) for easily detecting and quantitatively measuring bovine leukemia virus infection. Arch Virol 2018; 163:1519-1530. [PMID: 29455325 DOI: 10.1007/s00705-018-3744-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/02/2018] [Indexed: 01/11/2023]
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis and is closely related to the human T cell leukemia virus. Since BLV infection mostly occurs via cell-to-cell transmission, BLV infectivity is generally measured by culturing BLV-infected cells with reporter cells that form syncytia upon BLV infection. However, this method is time-consuming and requires skill. To visualize the infectivity of BLV, we developed a new assay called the luminescence syncytium induction assay (LuSIA) that is based on a new reporter cell line designated CC81-BLU3G. CC81-BLU3G is stably transfected with pBLU3-EGFP, which contains the BLV long terminal repeat U3 region linked to the enhanced-green fluorescence protein (EGFP) gene. CC81-BLU3G expresses the EGFP in response to BLV Tax expression specifically, and forms fluorescing syncytia when transfected with an infectious BLV plasmid or when cultured with BLV-infected cells. Compared to the conventional assay, LuSIA was more specific and detected cattle samples with low proviral loads. The fluorescing syncytia was easily detected by eye and automated scanning and LuSIA counts correlated strongly with the proviral load of infected cattle (R2 = 0.8942).
Collapse
|
12
|
Polat M, Takeshima SN, Aida Y. Epidemiology and genetic diversity of bovine leukemia virus. Virol J 2017; 14:209. [PMID: 29096657 PMCID: PMC5669023 DOI: 10.1186/s12985-017-0876-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 11/10/2022] Open
Abstract
Bovine leukemia virus (BLV), an oncogenic member of the Deltaretrovirus genus, is closely related to human T-cell leukemia virus (HTLV-I and II). BLV infects cattle worldwide and causes important economic losses. In this review, we provide a summary of available information about commonly used diagnostic approaches for the detection of BLV infection, including both serological and viral genome-based methods. We also outline genotyping methods used for the phylogenetic analysis of BLV, including PCR restriction length polymorphism and modern DNA sequencing-based methods. In addition, detailed epidemiological information on the prevalence of BLV in cattle worldwide is presented. Finally, we summarize the various BLV genotypes identified by the phylogenetic analyses of the whole genome and env gp51 sequences of BLV strains in different countries and discuss the distribution of BLV genotypes worldwide.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| |
Collapse
|
13
|
Polat M, Takeshima SN, Hosomichi K, Kim J, Miyasaka T, Yamada K, Arainga M, Murakami T, Matsumoto Y, de la Barra Diaz V, Panei CJ, González ET, Kanemaki M, Onuma M, Giovambattista G, Aida Y. A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology 2016; 13:4. [PMID: 26754835 PMCID: PMC4709907 DOI: 10.1186/s12977-016-0239-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is a member of retroviridae family, together with human T cell leukemia virus types 1 and 2 (HTLV-1 and -2) belonging to the genes deltaretrovirus, and infects cattle worldwide. Previous studies have classified the env sequences of BLV provirus from different geographic locations into eight genetic groups. To investigate the genetic variability of BLV in South America, we performed phylogenetic analyses of whole genome and partial env gp51 sequences of BLV strains isolated from Peru, Paraguay and Bolivia, for which no the molecular characteristics of BLV have previously been published, and discovered a novel BLV genotype, genotype-9, in Bolivia. RESULTS In Peru and Paraguay, 42.3 % (139/328) and over 50 % (76/139) of samples, respectively, were BLV positive. In Bolivia, the BLV infection rate was up to 30 % (156/507) at the individual level. In Argentina, 325/420 samples were BLV positive, with a BLV prevalence of 77.4 % at the individual level and up to 90.9 % at herd level. By contrast, relatively few BLV positive samples were detected in Chile, with a maximum of 29.1 % BLV infection at the individual level. We performed phylogenetic analyses using two different approaches, maximum likelihood (ML) tree and Bayesian inference, using 35 distinct partial env gp51 sequences from BLV strains isolated from Peru, Paraguay, and Bolivia, and 74 known BLV strains, representing eight different BLV genotypes from various geographical locations worldwide. The results indicated that Peruvian and Paraguayan BLV strains were grouped into genotypes-1, -2, and -6, while those from Bolivia were clustered into genotypes-1, -2, and -6, and a new genotype, genotype-9. Interestingly, these results were confirmed using ML phylogenetic analysis of whole genome sequences obtained by next generation sequencing of 25 BLV strains, assigned to four different genotypes (genotypes-1, -2, -6, and -9) from Peru, Paraguay, and Bolivia. Comparative analyses of complete genome sequences clearly showed some specific substitutions, in both structural and non-structural BLV genes, distinguishing the novel genotype-9 from known genotypes. CONCLUSIONS Our results demonstrate widespread BLV infection in South American cattle and the existence of a new BLV genotype-9 in Bolivia. We conclude that at least seven BLV genotypes (genotypes-1, -2, -4, -5, -6, -7, and -9) are circulating in South America.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8640, Japan.
| | - Jiyun Kim
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Taku Miyasaka
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Kazunori Yamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Mariluz Arainga
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yuki Matsumoto
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | | - Carlos Javier Panei
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina. .,IGEVET, CCT La Plata-CONICET, Facultad de Ciencias Veterinarias, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina.
| | - Ester Teresa González
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina.
| | - Misao Kanemaki
- Institute for Animal Science, Shitara-cho, Aichi, 441-2433, Japan.
| | - Misao Onuma
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Guillermo Giovambattista
- IGEVET, CCT La Plata-CONICET, Facultad de Ciencias Veterinarias, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina.
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
14
|
Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol 2013; 4:328. [PMID: 24265629 PMCID: PMC3820957 DOI: 10.3389/fmicb.2013.00328] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/17/2013] [Indexed: 11/27/2022] Open
Abstract
Bovine leukemia virus (BLV) and human T-cell leukemia virus type 1 (HTLV-1) make up a unique retrovirus family. Both viruses induce chronic lymphoproliferative diseases with BLV affecting the B-cell lineage and HTLV-1 affecting the T-cell lineage. The pathologies of BLV- and HTLV-induced infections are notably similar, with an absence of chronic viraemia and a long latency period. These viruses encode at least two regulatory proteins, namely, Tax and Rex, in the pX region located between the env gene and the 3′ long terminal repeat. The Tax protein is a key contributor to the oncogenic potential of the virus, and is also the key protein involved in viral replication. However, BLV infection is not sufficient for leukemogenesis, and additional events such as gene mutations must take place. In this review, we first summarize the similarities between the two viruses in terms of genomic organization, virology, and pathology. We then describe the current knowledge of the BLV model, which may also be relevant for the understanding of leukemogenesis caused by HTLV-1. In addition, we address our improved understanding of Tax functions through the newly identified BLV Tax mutants, which have a substitution between amino acids 240 and 265.
Collapse
Affiliation(s)
- Yoko Aida
- Viral Infectious Diseases Unit, RIKEN Wako, Saitama, Japan
| | | | | | | |
Collapse
|
15
|
Inoue E, Matsumura K, Soma N, Hirasawa S, Wakimoto M, Arakaki Y, Yoshida T, Osawa Y, Okazaki K. L233P mutation of the Tax protein strongly correlated with leukemogenicity of bovine leukemia virus. Vet Microbiol 2013; 167:364-71. [PMID: 24139177 DOI: 10.1016/j.vetmic.2013.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
The bovine leukemia virus (BLV) Tax protein is believed to play a crucial role in leukemogenesis by the virus. BLV usually causes asymptomatic infections in cattle, but only one-third develop persistent lymphocytosis that rarely progress after a long incubation period to lymphoid tumors, namely enzootic bovine leucosis (EBL). In the present study, we demonstrated that the BLV tax genes could be divided into two alleles and developed multiplex PCR detecting an L233P mutation of the Tax protein. Then, in order to define the relationship between the Tax protein and leukemogenicity, we examined 360 tumor samples randomly collected from dairy or breeding cattle in Japan, of which Tax proteins were categorized, for age at the time of diagnosis of EBL. The ages of 288 animals (80.0%) associated with L233-Tax and those of 70 animals (19.4%) with P233-Tax individually followed log-normal distributions. Only the two earliest cases (0.6%) with L233-Tax disobeyed the log-normal distribution. These findings suggest that the animals affected by EBL were infected with the virus at a particular point in life, probably less than a few months after birth. Median age of those with P233-Tax was 22 months older than that with L233-Tax and geometric means exhibited a significant difference (P<0.01). It is also quite unlikely that viruses carrying the particular Tax protein infect older cattle. Here, we conclude that BLV could be divided into two categories on the basis of amino acid at position 233 of the Tax protein, which strongly correlated with leukemogenicity.
Collapse
Affiliation(s)
- Emi Inoue
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moratorio G, Fischer S, Bianchi S, Tomé L, Rama G, Obal G, Carrión F, Pritsch O, Cristina J. A detailed molecular analysis of complete bovine leukemia virus genomes isolated from B-cell lymphosarcomas. Vet Res 2013; 44:19. [PMID: 23506507 PMCID: PMC3618307 DOI: 10.1186/1297-9716-44-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/30/2013] [Indexed: 01/08/2023] Open
Abstract
It is widely accepted that the majority of cancers result from multiple cellular events leading to malignancy after a prolonged period of clinical latency, and that the immune system plays a critical role in the control of cancer progression. Bovine leukemia virus (BLV) is an oncogenic member of the Retroviridae family. Complete genomic sequences of BLV strains isolated from peripheral blood mononuclear cells (PBMC) from cattle have been previously reported. However, a detailed characterization of the complete genome of BLV strains directly isolated from bovine tumors is much needed in order to contribute to the understanding of the mechanisms of leukemogenesis induced by BLV in cattle. In this study, we performed a molecular characterization of BLV complete genomes from bovine B-cell lymphosarcoma isolates. A nucleotide substitution was found in the glucocorticoid response element (GRE) site of the 5' long terminal repeat (5'LTR) of the BLV isolates. All amino acid substitutions in Tax previously found to be related to stimulate high transcriptional activity of 5'LTR were not found in these studies. Amino acid substitutions were found in the nucleocapsid, gp51 and G4 proteins. Premature stop-codons in R3 were observed. Few mutations or amino acid substitutions may be needed to allow BLV provirus to achieve silencing. Substitutions that favor suppression of viral expression in malignant B cells might be a strategy to circumvent effective immune attack.
Collapse
Affiliation(s)
- Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Panei CJ, Serena MS, Metz GE, Bravi ME, González ET, Echeverría MG. Analysis of the pX region of bovine leukemia virus in different clinical stages of Enzootic Bovine Leukemia in Argentine Holstein cattle. Virus Res 2013; 171:97-102. [DOI: 10.1016/j.virusres.2012.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 11/15/2022]
|
18
|
Jimba M, Takeshima SN, Murakami H, Kohara J, Kobayashi N, Matsuhashi T, Ohmori T, Nunoya T, Aida Y. BLV-CoCoMo-qPCR: a useful tool for evaluating bovine leukemia virus infection status. BMC Vet Res 2012; 8:167. [PMID: 22995575 PMCID: PMC3489618 DOI: 10.1186/1746-6148-8-167] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 09/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide, imposing a severe economic impact on the dairy cattle industry. Recently, we developed a new quantitative real-time polymerase chain reaction (PCR) method using Coordination of Common Motifs (CoCoMo) primers to measure the proviral load of known and novel BLV variants in BLV-infected animals. Indeed, the assay was highly effective in detecting BLV in cattle from a range of international locations. This assay enabled us to demonstrate that proviral load correlates not only with BLV infection capacity as assessed by syncytium formation, but also with BLV disease progression. In this study, we compared the sensitivity of our BLV-CoCoMo-qPCR method for detecting BLV proviruses with the sensitivities of two real-time PCR systems, and also determined the differences of proviral load with serotests. RESULTS BLV-CoCoMo-qPCR was found to be highly sensitive when compared with the real-time PCR-based TaqMan MGB assay developed by Lew et al. and the commercial TaKaRa cycleave PCR system. The BLV copy number determined by BLV-CoCoMo-qPCR was only partially correlated with the positive rate for anti-BLV antibody as determined by the enzyme-linked immunosorbent assay, passive hemagglutination reaction, or agar gel immunodiffusion. This result indicates that, although serotests are widely used for the diagnosis of BLV infection, it is difficult to detect BLV infection with confidence by using serological tests alone. Two cattle were experimentally infected with BLV. The kinetics of the provirus did not precisely correlate with the change in anti-BLV antibody production. Moreover, both reactions were different in cattle that carried different bovine leukocyte antigen (BoLA)-DRB3 genotypes. CONCLUSIONS Our results suggest that the quantitative measurement of proviral load by BLV-CoCoMo-qPCR is useful tool for evaluating the progression of BLV-induced disease. BLV-CoCoMo-qPCR allows us to monitor the spread of BLV infection in different viewpoint compared with classical serotest.
Collapse
Affiliation(s)
- Mayuko Jimba
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hajj HE, Nasr R, Kfoury Y, Dassouki Z, Nasser R, Kchour G, Hermine O, de Thé H, Bazarbachi A. Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol 2012; 3:333. [PMID: 23049525 PMCID: PMC3448133 DOI: 10.3389/fmicb.2012.00333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/28/2012] [Indexed: 12/22/2022] Open
Abstract
Retroviruses are associated with a wide variety of diseases, including immunological, neurological disorders, and different forms of cancer. Among retroviruses, Oncovirinae regroup according to their genetic structure and sequence, several related viruses such as human T-cell lymphotropic viruses types 1 and 2 (HTLV-1 and HTLV-2), simian T cell lymphotropic viruses types 1 and 2 (STLV-1 and STLV-2), and bovine leukemia virus (BLV). As in many diseases, animal models provide a useful tool for the studies of pathogenesis, treatment, and prevention. In the current review, an overview on different animal models used in the study of these viruses will be provided. A specific attention will be given to the HTLV-1 virus which is the causative agent of adult T-cell leukemia/lymphoma (ATL) but also of a number of inflammatory diseases regrouping the HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), infective dermatitis and some lung inflammatory diseases. Among these models, rabbits, monkeys but also rats provide an excellent in vivo tool for early HTLV-1 viral infection and transmission as well as the induced host immune response against the virus. But ideally, mice remain the most efficient method of studying human afflictions. Genetically altered mice including both transgenic and knockout mice, offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated leukemia. The development of different strains of immunodeficient mice strains (SCID, NOD, and NOG SCID mice) provide a useful and rapid tool of humanized and xenografted mice models, to test new drugs and targeted therapy against HTLV-1-associated leukemia, to identify leukemia stem cells candidates but also to study the innate immunity mediated by the virus. All together, these animal models have revolutionized the biology of retroviruses, their manipulation of host genes and more importantly the potential ways to either prevent their infection or to treat their associated diseases.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Arainga M, Murakami H, Aida Y. Visualizing spatiotemporal dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 Tax and insights into gene expression changes using microarray-based gene expression analysis. BMC Genomics 2012; 13:275. [PMID: 22726420 PMCID: PMC3537563 DOI: 10.1186/1471-2164-13-275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/07/2012] [Indexed: 12/31/2022] Open
Abstract
Background Human T cell leukemia virus type 1 (HTLV-1) Tax is a potent activator of viral and cellular gene expression that interacts with a number of cellular proteins. Many reports show that Tax is capable of regulating cell cycle progression and apoptosis both positively and negatively. However, it still remains to understand why the Tax oncoprotein induces cell cycle arrest and apoptosis, or whether Tax-induced apoptosis is dependent upon its ability to induce G1 arrest. The present study used time-lapse imaging to explore the spatiotemporal patterns of cell cycle dynamics in Tax-expressing HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator, Fucci2. A large-scale host cell gene profiling approach was also used to identify the genes involved in Tax-mediated cell signaling events related to cellular proliferation and apoptosis. Results Tax-expressing apoptotic cells showed a rounded morphology and detached from the culture dish after cell cycle arrest at the G1 phase. Thus, it appears that Tax induces apoptosis through pathways identical to those involved in G1 arrest. To elucidate the mechanism(s) by which Tax induces cell cycle arrest and apoptosis, regulation of host cellular genes by Tax was analyzed using a microarray containing approximately 18,400 human mRNA transcripts. Seventeen genes related to cell cycle regulation were identified as being up or downregulated > 2.0-fold in Tax-expressing cells. Several genes, including SMAD3, JUN, GADD45B, DUSP1 and IL8, were involved in cellular proliferation, responses to cellular stress and DNA damage, or inflammation and immune responses. Additionally, 23 pro- and anti-apoptotic genes were deregulated by Tax, including TNFAIP3, TNFRS9, BIRC3 and IL6. Furthermore, the kinetics of IL8, SMAD3, CDKN1A, GADD45A, GADD45B and IL6 expression were altered following the induction of Tax, and correlated closely with the morphological changes observed by time-lapse imaging. Conclusions Taken together, the results of this study permit a greater understanding of the biological events affected by HTLV-1 Tax, particularly the regulation of cellular proliferation and apoptosis. Importantly, this study is the first to demonstrate the dynamics of morphological changes during Tax-induced apoptosis after cell cycle arrest at the G1 phase.
Collapse
Affiliation(s)
- Mariluz Arainga
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
21
|
Arainga M, Takeda E, Aida Y. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics 2012; 13:121. [PMID: 22455445 PMCID: PMC3441221 DOI: 10.1186/1471-2164-13-121] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/16/2012] [Indexed: 12/21/2022] Open
Abstract
Background Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G) or reduced (TaxS240P) transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting, respectively, after transfecting Tax proteins into bovine cells and human HeLa cells. Conclusion A comparative analysis of wild-type and mutant Tax proteins indicates that Tax protein exerts a significant impact on cellular functions as diverse as transcription, signal transduction, cell growth, stress response and immune response. Importantly, our study is the first report that shows the extent to which BLV Tax regulates the innate immune response.
Collapse
Affiliation(s)
- Mariluz Arainga
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
22
|
Jimba M, Takeshima SN, Matoba K, Endoh D, Aida Y. BLV-CoCoMo-qPCR: Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm. Retrovirology 2010; 7:91. [PMID: 21044304 PMCID: PMC2988707 DOI: 10.1186/1742-4690-7-91] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 11/02/2010] [Indexed: 01/02/2023] Open
Abstract
Background Bovine leukemia virus (BLV) is closely related to human T-cell leukemia virus (HTLV) and is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly extended course that often involves persistent lymphocytosis and culminates in B-cell lymphomas. BLV provirus remains integrated in cellular genomes, even in the absence of detectable BLV antibodies. Therefore, to understand the mechanism of BLV-induced leukemogenesis and carry out the selection of BLV-infected animals, a detailed evaluation of changes in proviral load throughout the course of disease in BLV-infected cattle is required. The aim of this study was to develop a new quantitative real-time polymerase chain reaction (PCR) method using Coordination of Common Motifs (CoCoMo) primers to measure the proviral load of known and novel BLV variants in clinical animals. Results Degenerate primers were designed from 52 individual BLV long terminal repeat (LTR) sequences identified from 356 BLV sequences in GenBank using the CoCoMo algorithm, which has been developed specifically for the detection of multiple virus species. Among 72 primer sets from 49 candidate primers, the most specific primer set was selected for detection of BLV LTR by melting curve analysis after real-time PCR amplification. An internal BLV TaqMan probe was used to enhance the specificity and sensitivity of the assay, and a parallel amplification of a single-copy host gene (the bovine leukocyte antigen DRA gene) was used to normalize genomic DNA. The assay is highly specific, sensitive, quantitative and reproducible, and was able to detect BLV in a number of samples that were negative using the previously developed nested PCR assay. The assay was also highly effective in detecting BLV in cattle from a range of international locations. Finally, this assay enabled us to demonstrate that proviral load correlates not only with BLV infection capacity as assessed by syncytium formation, but also with BLV disease progression. Conclusions Using our newly developed BLV-CoCoMo-qPCR assay, we were able to detect a wide range of mutated BLV viruses. CoCoMo algorithm may be a useful tool to design degenerate primers for quantification of proviral load for other retroviruses including HTLV and human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Mayuko Jimba
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
23
|
Komiyama C, Suzuki K, Miura Y, Sentsui H. Development of loop-mediated isothermal amplification method for diagnosis of bovine leukemia virus infection. J Virol Methods 2009; 157:175-9. [DOI: 10.1016/j.jviromet.2008.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 11/26/2022]
|
24
|
Tajima S, Takasaki T, Kurane I. Characterization of Asn130-to-Ala mutant of dengue type 1 virus NS1 protein. Virus Genes 2008; 36:323-9. [PMID: 18288598 DOI: 10.1007/s11262-008-0211-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/28/2008] [Indexed: 11/26/2022]
Abstract
The nonstructural protein 1 (NS1) of flavivirus has two N-glycosylation sites that are thought to be important for viral replication. Effects of NS1 glycosylation site mutations on viral replication have been reported in several flaviviruses, but the results have differed. In this report, we examined the role of glycosylation site of NS1 on the replication of dengue type 1 virus (DENV-1). DENV-1 production was not detectable when full-length DENV-1 RNA, which has an N-glycosylation site Asn130-to-Ala (Asn130Ala) mutation in NS1, was transfected into mammalian and mosquito cells. However, replication and secretion of recombinant DENV-1 with the NS1 Asn130Ala mutation were recovered by exogenously expressed wild-type DENV-1 NS1. A growth kinetics experiment showed that propagation of wild-type DENV-1 was prevented by NS1 Asn130Ala mutant expression in trans. Our results suggest that Asn130 of the DENV-1 NS1 is important for viral replication in both mammalian and mosquito cells.
Collapse
Affiliation(s)
- Shigeru Tajima
- Laboratory of Vector Borne Viruses, Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | | | | |
Collapse
|
25
|
Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, Balon H, Bouzar AB, Defoiche J, Burny A, Reichert M, Kettmann R, Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 2007; 4:18. [PMID: 17362524 PMCID: PMC1839114 DOI: 10.1186/1742-4690-4-18] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/16/2007] [Indexed: 12/15/2022] Open
Abstract
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arnaud Florins
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Mathieu Boxus
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Catherine Burteau
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Annamaria Nigro
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Fabian Vandermeers
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Hervé Balon
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Amel-Baya Bouzar
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Julien Defoiche
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arsène Burny
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | - Richard Kettmann
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Luc Willems
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
- Luc Willems, National fund for Scientific Research, Molecular and Cellular Biology laboratory, 13 avenue Maréchal Juin, 5030 Gembloux, Belgium
| |
Collapse
|
26
|
Zhao X, McGirr KM, Buehring GC. Potential evolutionary influences on overlapping reading frames in the bovine leukemia virus pXBL region. Genomics 2007; 89:502-11. [PMID: 17239558 DOI: 10.1016/j.ygeno.2006.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/27/2006] [Accepted: 12/14/2006] [Indexed: 01/25/2023]
Abstract
Bovine leukemia virus contains a pXBL region encoding the 3' parts of four regulatory proteins (Tax, Rex, G4, R3) in overlapping reading frames. Here we report the pXBL polymorphisms of 30 isolates from four countries. Rates of overall and synonymous substitutions were consistently lower, and nucleotide/amino acid composition bias and codon bias higher, in more-overlapped than in less-overlapped regions. Ratios of nonsynonymous/synonymous substitutions were lowest in the tax gene and its subregions. The 5' parts of the four genes showed selection patterns corresponding to their genomic context outside of the pXBL region. Longer G4 variants due to a natural stop codon mutation had additional triple overlap with reduced sequence variability. These data support the concept that a higher level of overlapping in coding regions correlates with greater evolutionary constraint. Tax, the most conserved among the four regulatory proteins, showed purifying selection consistent with its importance in the viral life cycle.
Collapse
Affiliation(s)
- Xiangrong Zhao
- Graduate Program in Endocrinology, University of California at Berkeley, 3060 Valley Life Science Building, Berkeley, CA 94720-3140, USA.
| | | | | |
Collapse
|
27
|
McGirr KM, Buehuring GC. Tax & rex: overlapping genes of the Deltaretrovirus group. Virus Genes 2006; 32:229-39. [PMID: 16732475 DOI: 10.1007/s11262-005-6907-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 08/22/2005] [Indexed: 10/24/2022]
Abstract
Bovine leukemia virus and human T-cell leukemia viruses I and II, members of the Deltaretrovirus group, have two regulatory genes, tax and rex, that are coded in overlapping reading frames. We found that sequence variations in the rex gene of each virus result in amino acid differences significantly more often than variations in the tax gene. For all three viruses the highest ratio of non-synonymous to synonymous changes was found in the rex gene. In the overlapping regions of tax and rex, the second codon position of Rex corresponds to the third codon position of Tax. Nucleotide C was present in all genes of the three viruses at the highest frequency and this bias was most pronounced in the rex gene. More specifically we found that the C bias and nucleotide variation is greatest at the second codon position of Rex and the third codon position of Tax in the area of tax/rex overlap. Changes in the second codon position of Rex always resulted in amino acid change whereas changes in the third codon position of Tax resulted in amino acid changes less than a third of the time. Analysis of the amino acid frequencies in both proteins shows that there is a disproportionately large percentage of the amino acids alanine, proline, serine and threonine (the four amino acids whose second codon position is C) in Rex. These findings led us to hypothesize that the Rex protein can withstand more amino acid changes than can the Tax protein suggesting that the Tax protein experiences higher evolutionary constraints and is the more conserved of the two proteins.
Collapse
Affiliation(s)
- Kathleen Margaret McGirr
- School of Public Health, Division of Infectious Diseases, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
28
|
Okada K, Nakae N, Kuramochi K, Yin SA, Ikeda M, Takami S, Hirata TI, Goryo M, Numakunai S, Takeshima SN, Takahashi M, Tajima S, Konnai S, Onuma M, Aida Y. Bovine leukemia virus high tax molecular clone experimentally induces leukemia/lymphoma in sheep. J Vet Med Sci 2006; 67:1231-5. [PMID: 16397381 DOI: 10.1292/jvms.67.1231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sheep were inoculated with high tax coded pBLV-IF (H group, Nos.1-5) of bovine leukemia virus (BLV), wild tax coded pBLV-IF (W group, Nos. 6-11), or control plasmid (C group, Nos. 12-14). During the observation period (4 to 46 months), 5 of 5 cases in H group and 3 of 6 cases (Nos. 6, 7, 9) in W group became positive for gp 51. Only 1 case in H group became leukemic, and one case each of H and W groups developed lymphoma. In No. 3, lesions were found in multiple organs including the lymph nodes, gastrointestinal tract following abomasum, and heart. In No. 6, lesions of lymphoma were found only in the jejunum and heart. Morphologically, small to middle-sized lymphocytic neoplastic (NP) cells were found in both cases, but lymphoblastic NP cells were found only in No. 3. By immunohistochemical examination, the phenotypes of NP cells were determined as CD1-, CD4-, CD5- -, CD8alpha-, sIgM+, lambda light chain+, B-B4+, MHC class II+ in both case. The results of this study indicate that inoculation of pBLV-IF can induce lymphocytic and lymphoblastic leukemia/lymphoma in sheep. Additionally, it is suggested that the expression rate of tax gene is not associated with the development of leukemia/lymphoma in sheep experimentally inoculated with pBLV-IF.
Collapse
Affiliation(s)
- Kosuke Okada
- Department of Veterinary Pathology, Faculty of Agriculture, Iwate University, Iwate, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tajima S, Aida Y. Induction of expression of bovine leukemia virus (BLV) in blood taken from BLV-infected cows without removal of plasma. Microbes Infect 2005; 7:1211-6. [PMID: 16002314 DOI: 10.1016/j.micinf.2005.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/06/2005] [Accepted: 04/07/2005] [Indexed: 11/16/2022]
Abstract
The expression of bovine leukemia virus (BLV) is blocked at the transcriptional level during the so-called latency period. However, when peripheral blood mononuclear cells and B lymphocytes are isolated from BLV-infected animals and incubated in the presence of activating reagents, such as phorbol ester, the expression of BLV is markedly enhanced. Such "reactivation" is thought to play a crucial role in the spread of BLV from infected to uninfected cattle. In the present study, we found that the expression of BLV in samples of whole blood from BLV-infected cattle was activated immediately upon incubation at 37 degrees C and that such activation did not require the addition of any exogenous factors except for anticoagulants or the removal of blood cells from plasma. The expression of BLV was repressed by an inhibitor of protein kinase C (PKC), namely, H-7, and by a membrane-permeable chelator of Ca2+ ions, BAPTA/AM. We also found that several isotypes of PKC were translocated immediately from the cytoplasm to the membrane fraction upon incubation of whole blood at 37 degrees C. Our data suggest that the actual collection of blood and pathways that involve PKC and Ca2+ might play important roles in the reactivation of expression of BLV in blood from infected cattle.
Collapse
Affiliation(s)
- Shigeru Tajima
- Retrovirus Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
30
|
McGirr KM, Buehring GC. tax and rex Sequences of bovine leukaemia virus from globally diverse isolates: rex amino acid sequence more variable than tax. ACTA ACUST UNITED AC 2005; 52:8-16. [PMID: 15702995 DOI: 10.1111/j.1439-0450.2004.00815.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine leukaemia virus (BLV) is an important agricultural problem with high costs to the dairy industry. Here, we examine the variation of the tax and rex genes of BLV. The tax and rex genes share 420 bases and have overlapping reading frames. The tax gene encodes a protein that functions as a transactivator of the BLV promoter, is required for viral replication, acts on cellular promoters, and is responsible for oncogenesis. The rex facilitates the export of viral mRNAs from the nucleus and regulates transcription. We have sequenced five new isolates of the tax/rex gene. We examined the five new and three previously published tax/rex DNA and predicted amino acid sequences of BLV isolates from cattle in representative regions worldwide. The highest variation among nucleic acid sequences for tax and rex was 7% and 5%, respectively; among predicted amino acid sequences for Tax and Rex, 9% and 11%, respectively. Significantly more nucleotide changes resulted in predicted amino acid changes in the rex gene than in the tax gene (P < or = 0.0006). This variability is higher than previously reported for any region of the viral genome. This research may also have implications for the development of Tax-based vaccines.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cattle
- Consensus Sequence
- Enzootic Bovine Leukosis/virology
- Gene Expression Regulation, Viral
- Gene Products, rex/chemistry
- Gene Products, rex/genetics
- Gene Products, tax/chemistry
- Gene Products, tax/genetics
- Genes, Viral
- Genes, pX
- Leukemia Virus, Bovine/chemistry
- Leukemia Virus, Bovine/genetics
- Molecular Sequence Data
- Polymerase Chain Reaction/veterinary
- Sequence Homology, Nucleic Acid
- Virus Replication
Collapse
Affiliation(s)
- K M McGirr
- School of Public Health, Division of Infectious Diseases, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
31
|
Takahashi M, Tajima S, Takeshima SN, Konnai S, Yin SA, Okada K, Davis WC, Aida Y. Ex vivo survival of peripheral blood mononuclear cells in sheep induced by bovine leukemia virus (BLV) mainly occurs in CD5- B cells that express BLV. Microbes Infect 2005; 6:584-95. [PMID: 15158193 DOI: 10.1016/j.micinf.2004.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leukosis (EBL). In a previous report, we found that in a sheep model, only CD5(-) B cells proliferated clonally, while CD5(+) B cells rapidly decreased when the disease progressed to the lymphoma stage. We demonstrate here that, although both CD5(+) and CD5(-) B cells, but not CD4(+) T, CD8(+) T and gammadeltaTCR(+)T cells, are protected from spontaneous ex vivo apoptosis in sheep infected with wild-type and a mutant BLV that encodes a mutant Tax D247G protein with elevated trans-activation activity, only CD5(-) B cells become the main target for ex vivo survival when the disease proceeds to the persistent lymphocytotic stage, which showed an increased expansion of the CD5(-) B cells. In addition, we identified, by four-color flow cytometric analysis, that in CD5(-) B cells, the apoptotic rates of cells that expressed wild-type and mutant BLV were greatly decreased compared with those of BLV-negative cells. There was only a slight reduction in the apoptotic rates in BLV-positive cells from CD5(+) B cells. In addition, supernatants from peripheral blood mononuclear cell (PBMC) cultures from wild-type- and mutant BLV-infected sheep mainly protected CD5(-) B cells from spontaneous apoptosis. Our results suggest that, although BLV can protect both CD5(+) and CD5(-) B cells from ex vivo apoptosis, the mechanisms accounting for the ex vivo survival between these two B-cell subsets differ. Therefore, it appears that the phenotypic changes in cells that express CD5 at the lymphoma stage could result from a difference in susceptibility to apoptosis in CD5(+) and CD5(-) B cells in BLV-infected sheep.
Collapse
MESH Headings
- Animals
- Apoptosis
- B-Lymphocyte Subsets/physiology
- B-Lymphocyte Subsets/virology
- CD4 Antigens/analysis
- CD5 Antigens/analysis
- CD8 Antigens/analysis
- Cattle
- Cells, Cultured
- Deltaretrovirus Infections/physiopathology
- Deltaretrovirus Infections/virology
- Disease Progression
- Enzootic Bovine Leukosis/virology
- Flow Cytometry
- Genes, pX
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/physiology
- Leukocytes, Mononuclear/physiology
- Leukocytes, Mononuclear/virology
- Mutation, Missense
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Sheep
Collapse
Affiliation(s)
- Masahiko Takahashi
- Retrovirus Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Takahashi M, Tajima S, Okada K, Davis WC, Aida Y. Involvement of bovine leukemia virus in induction and inhibition of apoptosis. Microbes Infect 2004; 7:19-28. [PMID: 15716078 DOI: 10.1016/j.micinf.2004.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/17/2004] [Accepted: 09/21/2004] [Indexed: 11/18/2022]
Abstract
In a previous study, we identified an interesting mutant form of the Tax protein of bovine leukemia virus (BLV), designated D247G, that has an enhanced capacity to transactivate the long terminal repeat (LTR) of BLV and the cellular proto-oncogene c-fos when compared with wild-type Tax (wt-Tax). We demonstrate here that an infectious strain of BLV containing the mutant D247G form of Tax also differs in its capacity to modulate cell survival both positively and negatively. When peripheral blood mononuclear cells (PBMCs) infected with wild-type or mutant BLV are cultured ex vivo with staurosporine, an agent known to induce a mitochondrial caspase cascade pathway regulating apoptosis, the rate of apoptosis is reduced to a greater extent in cells infected with mutant BLV than wild-type BLV, consistent with previous observations in cultures without staurosporine. The increase in survival was associated with an increase in expression of mRNA of bcl-xl but not bcl-2 and bax ex vivo. In contrast, when a tissue culture-adapted cell line, 293T, was transiently transfected with either wild-type or mutant BLV, apoptosis was induced. The increase in the rate of apoptosis was higher in cells transfected with mutant BLV. The same difference was noted in cells transiently transfected with wild-type and mutant D247G Tax, suggesting that the observed positive and negative modulation of cell survival is attributed to the functional characteristics of mutant D247G Tax.
Collapse
|
33
|
Usui T, Konnai S, Tajima S, Watarai S, Aida Y, Ohashi K, Onuma M. Protective effects of vaccination with bovine leukemia virus (BLV) Tax DNA against BLV infection in sheep. J Vet Med Sci 2004; 65:1201-5. [PMID: 14665749 DOI: 10.1292/jvms.65.1201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A DNA vaccination trial was performed on sheep to determine whether vaccination with bovine leukemia virus (BLV) transactivator Tax DNA is effective against BLV infection. Immunization was carried out with cationic liposomes containing the Tax-expressing plasmid DNA and subsequently all sheep were challenged with BLV. BLV titers in peripheral blood mononuclear cell (PBMC) determined by syncytium formation assay and BLV provirus load detected by genomic PCR analysis showed higher levels of virus titers in control sheep than those in Tax-vaccinated sheep. Higher levels of IFN-gamma mRNA expression have been demonstrated in vaccinated sheep after the challenge. These results suggested that Th1 type immune response induced by Tax DNA vaccine inhibited BLV propagation in vaccinated sheep at the early phase of infection.
Collapse
Affiliation(s)
- Tatsufumi Usui
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- N. F. Starodub
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine
| | - V. M. Starodub
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine
| |
Collapse
|
35
|
Tajima S, Tsukamoto M, Aida Y. Latency of viral expression in vivo is not related to CpG methylation in the U3 region and part of the R region of the long terminal repeat of bovine leukemia virus. J Virol 2003; 77:4423-30. [PMID: 12634400 PMCID: PMC150652 DOI: 10.1128/jvi.77.7.4423-4430.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine leukemia virus (BLV) is silent in most cells detectable in vivo, and the repression of its expression allows BLV to evade the host's immune response. In this study, we examined whether CpG methylation of DNA might be involved in the regulation of the expression of BLV in vivo. To investigate the effects of CpG methylation on the activity of the long terminal repeat (LTR) of BLV, we measured the transactivation activity of this region after treatment with the CpG methyltransferase SssI by using a luciferase reporter system. The activity of methylated LTR was significantly lower than that of nonmethylated LTR. Therefore, we examined the extent of CpG methylation of the U3 region and part of the R region of the LTR in BLV-infected cattle and in experimentally BLV-infected sheep at various clinical stages by the bisulfite genomic sequencing method. We detected no or minimal CpG methylation at all stages examined in cattle and sheep, and our results indicate that CpG methylation probably does not participate in the silencing of BLV in vivo.
Collapse
Affiliation(s)
- Shigeru Tajima
- Retrovirus Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
36
|
Tajima S, Takahashi M, Takeshima SN, Konnai S, Yin SA, Watarai S, Tanaka Y, Onuma M, Okada K, Aida Y. A mutant form of the tax protein of bovine leukemia virus (BLV), with enhanced transactivation activity, increases expression and propagation of BLV in vitro but not in vivo. J Virol 2003; 77:1894-903. [PMID: 12525624 PMCID: PMC140974 DOI: 10.1128/jvi.77.3.1894-1903.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study, we identified an interesting mutant form of the Tax protein of bovine leukemia virus (BLV), designated D247G. This mutant protein strongly transactivated the long terminal repeat of BLV and was also able to transactivate the cellular proto-oncogene c-fos. This finding suggested that BLV that encode the mutant protein might propagate and induce lymphoma more efficiently than wild-type BLV. To characterize the effects of the strong transactivation activity of the mutant Tax protein, we constructed an infectious molecular clone of BLV that encoded D247G and examined the replication and propagation of the virus in vitro and in vivo. Cultured cells were transfected with the wild-type and mutant BLV, and then levels of viral proteins and particles and the propagation of viruses were compared. As expected, in vitro, mutant BLV produced more viral proteins and particles and was transmitted very effectively. We injected the wild-type and mutant BLV into sheep, which are easily infected with BLV, and monitored the proportion of BLV-positive cells in the blood and the expression of BLV RNA for 28 weeks. By contrast to the results of our analyses in vitro, we found no significant difference in the viral load or the expression of viral RNA between sheep inoculated with wild-type or mutant BLV. Our observations indicate that the mutant D247G Tax protein does not enhance the expansion of BLV and that there might be a dominant mechanism for regulation of the expression of BLV in vivo.
Collapse
Affiliation(s)
- Shigeru Tajima
- Retrovirus Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tajima S, Aida Y. Mutant tax protein from bovine leukemia virus with enhanced ability to activate the expression of c-fos. J Virol 2002; 76:2557-62. [PMID: 11836435 PMCID: PMC135937 DOI: 10.1128/jvi.76.5.2557-2562.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leukosis. We previously identified several mutants of the BLV Tax protein with an ability to transactivate transcription via the BLV enhancer that is significantly greater than that of the wild-type Tax protein. Moreover, the mutant proteins also activated other viral enhancers, such as the enhancer of human T-cell leukemia virus type 1, which cannot be activated by wild-type BLV Tax. In this study, we demonstrated that the mutant proteins but not wild-type protein activate the upstream sequence of the human c-fos gene, which contains two major cis-acting elements, the CArG box and cyclic AMP-responsive element (CRE) motif. The mutant protein also strongly increased levels of endogenous c-fos mRNA in both human and bovine cell lines. On the other hand, the wild-type Tax protein has no activity to activate the expression of human c-fos, indicating that wild-type BLV Tax might discriminate between human and bovine c-fos promoter sequences. Deletion and point-mutational analysis of the cis-acting elements revealed that both the CArG box and the CRE motif were indispensable for the activation of c-fos by the mutant BLV Tax protein. Our results suggest that the mutant BLV Tax proteins might not only have the ability to enhance the production of virus particles but might also have increased ability to induce leukemia.
Collapse
Affiliation(s)
- Shigeru Tajima
- Retrovirus Research Unit, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
| | | |
Collapse
|
38
|
Merezak C, Pierreux C, Adam E, Lemaigre F, Rousseau GG, Calomme C, Van Lint C, Christophe D, Kerkhofs P, Burny A, Kettmann R, Willems L. Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo: implications for viral latency. J Virol 2001; 75:6977-88. [PMID: 11435578 PMCID: PMC114426 DOI: 10.1128/jvi.75.15.6977-6988.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repression of viral expression is a major strategy developed by retroviruses to escape from the host immune response. The absence of viral proteins (or derived peptides) at the surface of an infected cell does not permit the establishment of an efficient immune attack. Such a strategy appears to have been adopted by animal oncoviruses such as bovine leukemia virus (BLV) and human T-cell leukemia virus (HTLV). In BLV-infected animals, only a small fraction of the infected lymphocytes (between 1 in 5,000 and 1 in 50,000) express large amounts of viral proteins; the vast majority of the proviruses are repressed at the transcriptional level. Induction of BLV transcription involves the interaction of the virus-encoded Tax protein with the CREB/ATF factors; the resulting complex is able to interact with three 21-bp Tax-responsive elements (TxRE) located in the 5' long terminal repeat (5' LTR). These TxRE contain cyclic AMP-responsive elements (CRE), but, remarkably, the "TGACGTCA" consensus is never strictly conserved in any viral strain (e.g.,AGACGTCA, TGACGGCA, TGACCTCA). To assess the role of these suboptimal CREs, we introduced a perfect consensus sequence within the TxRE and showed by gel retardation assays that the binding efficiency of the CREB/ATF proteins was increased. However, trans-activation of a luciferase-based reporter by Tax was not affected in transient transfection assays. Still, in the absence of Tax, the basal promoter activity of the mutated LTR was increased as much as 20-fold. In contrast, mutation of other regulatory elements within the LTR (the E box, NF-kappa B, and glucocorticoid- or interferon-responsive sites [GRE or IRF]) did not induce a similar alteration of the basal transcription levels. To evaluate the biological relevance of these observations made in vitro, the mutations were introduced into an infectious BLV molecular clone. After injection into sheep, it appeared that all the recombinants were infectious in vivo and did not revert into a wild-type virus. All of them, except one, propagated at wild-type levels, indicating that viral spread was not affected by the mutation. The sole exception was the CRE mutant; proviral loads were drastically reduced in sheep infected with this type of virus. We conclude that a series of sites (NF-kappa B, IRF, GRE, and the E box) are not required for efficient viral spread in the sheep model, although mutation of some of these motifs might induce a minor phenotype during transient transfection assays in vitro. Remarkably, a provirus (pBLV-Delta 21-bp) harboring only two TxRE was infectious and propagated at wild-type levels. And, most importantly, reconstitution of a consensus CRE, within the 21-bp enhancers increases binding of CREB/ATF proteins but abrogates basal repression of LTR-directed transcription in vitro. Suboptimal CREs are, however, essential for efficient viral spread within infected sheep, although these sites are dispensable for infectivity. These results suggest an evolutionary selection of suboptimal CREs that repress viral expression with escape from the host immune response. These observations, which were obtained in an animal model for HTLV-1, are of interest for oncovirus-induced pathogenesis in humans.
Collapse
Affiliation(s)
- C Merezak
- Molecular and Cellular Biology, Faculty of Agronomy, Gembloux, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|