1
|
Ullah A, Waqas M, Aziz S, Rahman SU, Khan S, Khalid A, Abdalla AN, Uddin J, Halim SA, Khan A, Al-Harrasi A. Bioinformatics and immunoinformatics approach to develop potent multi-peptide vaccine for coxsackievirus B3 capable of eliciting cellular and humoral immune response. Int J Biol Macromol 2023; 239:124320. [PMID: 37004935 DOI: 10.1016/j.ijbiomac.2023.124320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Coxsackievirus B3 (CVB3) is a viral pathogen of various human disorders with no effective preventative interventions. Herein, we aimed to design a chimeric vaccine construct for CVB3 using reverse vaccinology and immunoinformatics approaches by screening the whole viral polyprotein sequence. Firstly, screening and mapping of viral polyprotein to predict 21 immunodominant epitopes (B-cell, CD8+ and CD4+ T-cell epitopes), fused with an adjuvant (Resuscitation-promoting factor), appropriate linkers, HIV-TAT peptide, Pan DR epitope, and 6His-tag to assemble a multi-epitope vaccine construct. The chimeric construct is predicted as probable antigen, non-allergen, stable, possess encouraging physicochemical features, and indicates a broader population coverage (98 %). The tertiary structure of the constructed vaccine was predicted and refined, and its interaction with the Toll-like receptor 4 (TLR4) was investigated through molecular docking and dynamics simulation. Computational cloning of the construct was carried out in pET28a (+) plasmid to guarantee the higher expression of the vaccine protein. Lastly, in silico immune simulation foreseen that humoral and cellular immune responses would be elicited in response to the administration of such a potent chimeric construct. Thus, the design constructed could vaccinate against CVB3 infection and various CVB serotypes. However, further in vitro/in vivo research must assess its safety and effectiveness.
Collapse
|
2
|
Mone K, Lasrado N, Sur M, Reddy J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines (Basel) 2023; 11:vaccines11020274. [PMID: 36851152 PMCID: PMC9961666 DOI: 10.3390/vaccines11020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease associations have been reported for most serotypes, and multiple serotypes can cause similar diseases. For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis, whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D). Yet, no vaccines against these viruses are currently available. In this review, we have analyzed the attributes of experimentally tested vaccines and discussed their merits and demerits or limitations, as well as their impact in preventing infections, most importantly myocarditis and T1D.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-(402)-472-8541
| |
Collapse
|
3
|
Benkoova B, Pospisilova M, Kramna L, Kissova R, Berakova K, Klement C, Cinek O, Bopegamage S. Coxsackievirus B4 sewage-isolate induces pancreatitis after oral infection of mice. FEMS Microbiol Lett 2021; 368:6326620. [PMID: 34297106 PMCID: PMC8346287 DOI: 10.1093/femsle/fnab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Numerous serotypes which belong to the genus Enterovirus (EV) show variability in their virulence and clinical manifestations. They are also known to undergo changes caused by mutations and recombination during their circulation in the environment and the population. Various EV serotypes are prevalent in groundwater, wastewater and surface waters. Our previous studies showed that oral infection induces pancreatitis depending on specific conditions, such as gravidity, in an outbred murine model. Our aim in the present study was to further explore the pancreatic histopathology in an outbred mouse model following oral infection with clinical isolates from a patient who had aseptic meningitis and an isolate from a treated-sewage sample recovered from the residential area of the patient. The isolates were identified as coxsackievirus B4 (CVB4) in tissue culture. The CVB4 sewage-isolate induced pancreatitis after oral infection. In contrast, pancreatitis was absent following infection with the clinical isolates. Comparison of polyprotein sequences showed that the treated-sewage strains differed from the patient's isolates by 9 and 11 amino acids. We conclude that the isolates of clinical and environmental origin differed in their pathogenic properties and showed genetic variation.
Collapse
Affiliation(s)
- Brigita Benkoova
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovak Republic
| | - Michaela Pospisilova
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovak Republic
| | - Lenka Kramna
- 2nd Faculty of Medicine, Department of Pediatrics, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Renata Kissova
- Department of Medical Microbiology, Regional Authority of Public Health Banska Bystrica, Cesta k nemocnici 25, Banska Bystrica, Slovak Republic
| | - Katarina Berakova
- Martinske biopticke centrum s.r.o., V. Spanyola 47A street, 010 01 Zilina, Slovak Republic
| | - Cyril Klement
- Department of Medical Microbiology, Regional Authority of Public Health Banska Bystrica, Cesta k nemocnici 25, Banska Bystrica, Slovak Republic.,Faculty of Public Health, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovak Republic
| | - Ondrej Cinek
- 2nd Faculty of Medicine, Department of Pediatrics, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Shubhada Bopegamage
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovak Republic
| |
Collapse
|
4
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
5
|
Slow Infection due to Lowering the Amount of Intact versus Empty Particles Is a Characteristic Feature of Coxsackievirus B5 Dictated by the Structural Proteins. J Virol 2019; 93:JVI.01130-19. [PMID: 31375587 DOI: 10.1128/jvi.01130-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Enterovirus B species typically cause a rapid cytolytic infection leading to efficient release of progeny viruses. However, they are also capable of persistent infections in tissues, which are suggested to contribute to severe chronic states such as myocardial inflammation and type 1 diabetes. In order to understand the factors contributing to differential infection strategies, we constructed a chimera by combining the capsid proteins from fast-cytolysis-causing echovirus 1 (EV1) with nonstructural proteins from coxsackievirus B5 (CVB5), which shows persistent infection in RD cells. The results showed that the chimera behaved similarly to parental EV1, leading to efficient cytolysis in both permissive A549 and semipermissive RD cells. In contrast to EV1 and the chimera, CVB5 replicated slowly in permissive cells and showed persistent infection in semipermissive cells. However, there was no difference in the efficiency of uptake of CVB5 in A549 or RD cells in comparison to the chimera or EV1. CVB5 batches constantly contained significant amounts of empty capsids, also in comparison to CVB5's close relative CVB3. During successive passaging of batches containing only intact CVB5, increasing amounts of empty and decreasing amounts of infective capsids were produced. Our results demonstrate that the increase in the amount of empty particles and the lowering of the amount of infective particles are dictated by the CVB5 structural proteins, leading to slowing down of the infection between passages. Furthermore, the key factor for persistent infection is the small amount of infective particles produced, not the high number of empty particles that accumulate.IMPORTANCE Enteroviruses cause several severe diseases, with lytic infections that lead to rapid cell death but also persistent infections that are more silent and lead to chronic states of infection. Our study compared a cytolytic echovirus 1 infection to persistent coxsackievirus B5 infection by making a chimera with the structural proteins of echovirus 1 and the nonstructural proteins of coxsackievirus B5. Coxsackievirus B5 infection was found to lead to the production of a high number of empty viruses (empty capsids) that do not contain genetic material and are unable to continue the infection. Coinciding with the high number of empty capsids, the amount of infective virions decreased. This characteristic property was not observed in the constructed chimera virus, suggesting that structural proteins are in charge of these phenomena. These results shed light on the mechanisms that may cause persistent infections. Understanding events leading to efficient or inefficient infections is essential in understanding virus-caused pathologies.
Collapse
|
6
|
Zhai X, Wu S, Lin L, Wang T, Zhong X, Chen Y, Xu W, Tong L, Wang Y, Zhao W, Zhong Z. Stress Granule Formation is One of the Early Antiviral Mechanisms for Host Cells Against Coxsackievirus B Infection. Virol Sin 2018; 33:314-322. [PMID: 29959686 DOI: 10.1007/s12250-018-0040-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
Stress granules (SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved in the coxsackievirus B (CVB) infection process, but the role of SGs in CVB infection has not been fully explored. In this study, we found that CVB type 3 (CVB3) could induce SG formation in the early phase of infection. Results showed that levels of CVB3 RNA and protein were significantly inhibited during the early stage of CVB3 infection by the elevated formation of SGs, while viral RNA and protein synthesis were significantly promoted when SG formation was blocked. Our findings suggest that SG formation is one of the early antiviral mechanisms for host cells against CVB infection.
Collapse
Affiliation(s)
- Xia Zhai
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Shuo Wu
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Weizhen Xu
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
7
|
Qi X, Xiong S. Intein-mediated backbone cyclization of VP1 protein enhanced protection of CVB3-induced viral myocarditis. Sci Rep 2017; 7:41485. [PMID: 28148910 PMCID: PMC5288654 DOI: 10.1038/srep41485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/21/2016] [Indexed: 01/27/2023] Open
Abstract
CVB3 is a common human pathogen to be highly lethal to newborns and causes viral myocarditis and pancreatitis in adults. However, there is no vaccine available for clinical use. CVB3 capsid protein VP1 is an immunodominant structural protein, containing several B- and T-cell epitopes. However, immunization of mice with VP1 protein is ineffective. Cyclization of peptide is commonly used to improve their in vivo stability and biological activity. Here, we designed and synthesizd cyclic VP1 protein by using engineered split Rma DnaB intein and the cyclization efficiency was 100% in E. coli. As a result, the cyclic VP1 was significantly more stable against irreversible aggregation upon heating and against carboxypeptidase in vitro and the degradation rate was more slowly in vivo. Compared with linear VP1, immunization mice with circular VP1 significantly increased CVB3-specific serum IgG level and augmented CVB3-specific cellular immune responses, consequently afforded better protection against CVB3-induced viral myocarditis. The cyclic VP1 may be a novel candidate protein vaccine for preventing CVB3 infection and similar approaches could be employed to a variety of protein vaccines to enhance their protection effect.
Collapse
Affiliation(s)
- Xingmei Qi
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Bell MP, Pavelko KD. Enhancing the Tumor Selectivity of a Picornavirus Virotherapy Promotes Tumor Regression and the Accumulation of Infiltrating CD8+ T Cells. Mol Cancer Ther 2016; 15:523-30. [PMID: 26823492 DOI: 10.1158/1535-7163.mct-15-0459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/29/2015] [Indexed: 01/09/2023]
Abstract
Picornaviruses have emerged as promising cancer therapies due to their ability to drive cytotoxic cellular immune responses and for promoting oncolysis. These properties include preferential replication in tumor cells, the induction of strong innate and adaptive immune responses, and the ease with which their genomes can be manipulated. We have developed Theiler's murine encephalomyelitis virus (TMEV) as an immunotherapy vector that promotes strong adaptive immune responses to tumor antigens embedded within its genome. To further explore its usefulness as cancer therapy, we investigated whether direct intratumoral delivery of TMEV could promote tumor regression. We generated several picornavirus hybrids using substrains of TMEV that have unique immunopathologic characteristics, despite their extensive sequence homology. These hybrids exhibit a unique propensity to infect and replicate in melanoma. We have identified GD7-KS1, a virus that is particularly effective at replicating and infecting B16 melanoma in vitro and provides benefit as an oncolytic therapy in vivo after intratumoral injection. In addition, this virus promotes the mobilization and accumulation of CD8(+) T cells within treated tumors. Altogether, these findings demonstrate that picornavirus substrains can be used to rationally design virus hybrids that promote antitumor responses and add to the known strategies identified by us and others to further enhance the therapeutic potential of vectors used to treat cancer.
Collapse
Affiliation(s)
- Michael P Bell
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
9
|
Muslin C, Joffret ML, Pelletier I, Blondel B, Delpeyroux F. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5' Untranslated Region. PLoS Pathog 2015; 11:e1005266. [PMID: 26562151 PMCID: PMC4643034 DOI: 10.1371/journal.ppat.1005266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species’ C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5’ untranslated region (5’ UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5’ UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5’ UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5’ UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5’ UTR. By contrast to the recombination of the cVDPV with the 5’ UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5’ UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages. Recombination shapes viral genomes, including those of the pathogenic circulating vaccine-derived polioviruses (cVDPVs), responsible for poliomyelitis outbreaks. The genomes of cVDPVs consist of sequences from vaccine poliovirus (PV) and other enteroviruses (EVs). We investigated the plasticity of cVDPV genomes and the effects of recombination in the 5’ untranslated region (5’ UTR), which is involved in replication, translation and virulence. We rescued a 5’ UTR-defective recombinant cVDPV genome by cotransfecting cells with 5’ UTR RNAs from human EV species EV-A to -D. Hundreds of recombinants were isolated, revealing striking plasticity in this region, with homologous and nonhomologous recombination sites mostly clustered in three hotspots. Recombination with EV-A and -B affected replication and virulence, whereas recombination with EV-C and -D was either neutral or improved viral fitness. This study illustrates how RNA viruses can acquire mosaic genomes through intra- or inter-species recombination, favoring the emergence of new recombinant strains.
Collapse
Affiliation(s)
- Claire Muslin
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Isabelle Pelletier
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Massilamany C, Gangaplara A, Basavalingappa RH, Rajasekaran RA, Vu H, Riethoven JJ, Steffen D, Pattnaik AK, Reddy J. Mutations in the 5' NTR and the Non-Structural Protein 3A of the Coxsackievirus B3 Selectively Attenuate Myocarditogenicity. PLoS One 2015; 10:e0131052. [PMID: 26098885 PMCID: PMC4476614 DOI: 10.1371/journal.pone.0131052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022] Open
Abstract
The 5’ non-translated region (NTR) is an important molecular determinant that controls replication and virulence of coxsackievirus B (CVB)3. Previous studies have reported many nucleotide (nt) sequence differences in the Nancy strain of the virus, including changes in the 5’ NTR with varying degrees of disease severity. In our studies of CVB3-induced myocarditis, we sought to generate an infectious clone of the virus for routine in vivo experimentation. By determining the viral nt sequence, we identified three new nt substitutions in the clone that differed from the parental virus strain: C97U in the 5’ NTR; a silent mutation, A4327G, in non-structural protein 2C; and C5088U (resulting in P1449L amino acid change) in non-structural protein 3A of the virus leading us to evaluate the role of these changes in the virulence properties of the virus. We noted that the disease-inducing ability of the infectious clone-derived virus in three mouse strains was restricted to pancreatitis alone, and the incidence and severity of myocarditis were significantly reduced. We then reversed the mutations by creating three new clones, representing 1) U97C; 2) G4327A and U5088C; and 3) their combination together in the third clone. The viral titers obtained from all the clones were comparable, but the virions derived from the third clone induced myocarditis comparable to that induced by wild type virus; however, the pancreatitis-inducing ability remained unaltered, suggesting that the mutations described above selectively influence myocarditogenicity. Because the accumulation of mutations during passages is a continuous process in RNA viruses, it is possible that CVB3 viruses containing such altered nts may evolve naturally, thus favoring their survival in the environment.
Collapse
Affiliation(s)
- Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rakesh H. Basavalingappa
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rajkumar A. Rajasekaran
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Hiep Vu
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jean-Jack Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
11
|
Drescher KM, von Herrath M, Tracy S. Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev Med Virol 2014; 25:19-32. [PMID: 25430610 DOI: 10.1002/rmv.1815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022]
Abstract
Enteroviruses and humans have long co-existed. Although recognized in ancient times, poliomyelitis and type 1 diabetes (T1D) were exceptionally rare and not epidemic, due in large part to poor sanitation and personal hygiene which resulted in repeated exposure to fecal-oral transmitted viruses and other infectious agents and viruses and the generation of a broad protective immunity. As a function of a growing acceptance of the benefits of hygienic practices and microbiologically clean(er) water supplies, the likelihood of exposure to diverse infectious agents and viruses declined. The effort to vaccinate against poliomyelitis demonstrated that enteroviral diseases are preventable by vaccination and led to understanding how to successfully attenuate enteroviruses. Type 1 diabetes onset has been convincingly linked to infection by numerous enteroviruses including the group B coxsackieviruses (CVB), while studies of CVB infections in NOD mice have demonstrated not only a clear link between disease onset but an ability to reduce the incidence of T1D as well: CVB infections can suppress naturally occurring autoimmune T1D. We propose here that if we can harness and develop the capacity to use attenuated enteroviral strains to induce regulatory T cell populations in the host through vaccination, then a vaccine could be considered that should function to protect against both autoimmune as well as virus-triggered T1D. Such a vaccine would not only specifically protect from certain enterovirus types but more importantly, also reset the organism's regulatory rheostat making the further development of pathogenic autoimmunity less likely.
Collapse
Affiliation(s)
- Kristen M Drescher
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | | | | |
Collapse
|
12
|
Wu S, Lin L, Zhao W, Li X, Wang Y, Si X, Wang T, Wu H, Zhai X, Zhong X, Gao S, Tong L, Xu Z, Zhong Z. AUF1 is recruited to the stress granules induced by coxsackievirus B3. Virus Res 2014; 192:52-61. [PMID: 25148713 DOI: 10.1016/j.virusres.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
Stress granules (SGs) are cytoplasmic granules that are formed in cells when stress occurs. In this study, we found that SGs formed in cells infected with coxsackievirus B3 (CVB3), evidenced with the co-localization of some accepted SG markers in the viral infection-induced granules. We further discovered that adenosine-uridine (AU)-rich element RNA binding factor 1 (AUF1), which can bind to mRNAs and regulate their translation, was recruited to the SGs in response to high dose of CVB3 by detecting the co-localization of AUF1 with SG markers. Similar results were also observed in the enterovirus 71 (EV71)-infected cells. Finally, we demonstrated that AUF1 was also recruited to arsenite-induced SGs, suggesting that the recruitment of AUF1 to SG is not a specific response to viral infection. In summary, our data indicate that both CVB3 and EV71 infections can induce SG formation, and AUF1 is a novel SG component upon the viral infections. Our findings may shed light on understanding the picornavirus-host interaction.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Heng Wu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xia Zhai
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Shuoyang Gao
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Zhikai Xu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
13
|
Wu F, Fan X, Yue Y, Xiong S, Dong C. A vesicular stomatitis virus-based mucosal vaccine promotes dendritic cell maturation and elicits preferable immune response against coxsackievirus B3 induced viral myocarditis. Vaccine 2014; 32:3917-26. [PMID: 24874923 PMCID: PMC7115516 DOI: 10.1016/j.vaccine.2014.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 12/14/2022]
Abstract
Recombinant vesicular stomatitis virus (VSV) is widely used as a vaccine platform. However, the capacity of VSV-based vaccines to induce mucosal immunity has not been fully investigated. In the present study, a recombinant VSV expressing coxsackievirus B3 (CVB3) major immunogen VP1 has been generated and the immune protection elicited by VSV-VP1 was evaluated. We demonstrated that intranasal delivery of VSV-VP1 can induce a potent antigen-specific mucosal immune response as well as a systemic immune response, particularly the induction of polyfunctional T cells. Importantly, mice immunized with VSV-VP1 were better protected against CVB3-induced viral myocarditis than those receiving a chitosan-formulated DNA vaccine. Increased dendritic cell (DC) maturation in the mesenteric lymph node (MLN) was observed in the mice vaccinated with VSV-VP1, which could be a potential mechanism for the protective immune response. These findings support VSV as a viral delivery vector that can induce robust mucosal immunity that should be considered for further vaccine development.
Collapse
Affiliation(s)
- Fei Wu
- Soochow University, Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Science, Suzhou 215123, China
| | - Xingjuan Fan
- Soochow University, Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Science, Suzhou 215123, China
| | - Yan Yue
- Soochow University, Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Science, Suzhou 215123, China
| | - Sidong Xiong
- Soochow University, Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Science, Suzhou 215123, China.
| | - Chunsheng Dong
- Soochow University, Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Science, Suzhou 215123, China.
| |
Collapse
|
14
|
Henke A, Jarasch N, Wutzler P. Coxsackievirus B3 vaccines: use as an expression vector for prevention of myocarditis. Expert Rev Vaccines 2014; 7:1557-67. [DOI: 10.1586/14760584.7.10.1557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Inoculation of the attenuated Coxsackievirus B3 Sabin3-like strain induces a protection against virulent CVB3 Nancy and CVB4 E2 strains in Swiss mice by both oral and intraperitoneal routes. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Mucosal immunization with high-mobility group box 1 in chitosan enhances DNA vaccine-induced protection against coxsackievirus B3-induced myocarditis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1743-51. [PMID: 24027262 DOI: 10.1128/cvi.00466-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coxsackievirus B3 (CVB3), a small single-stranded RNA virus, belongs to the Picornaviridae family. Its infection is the most common cause of myocarditis, with no vaccine available. Gastrointestinal mucosa is the major entry port for CVB3; therefore, the induction of local immunity in mucosal tissues may help control initial viral infections and alleviate subsequent myocardial injury. Here we evaluated the ability of high-mobility group box 1 (HMGB1) encapsulated in chitosan particles to enhance the mucosal immune responses induced by the CVB3-specific mucosal DNA vaccine chitosan-pVP1. Mice were intranasally coimmunized with 4 doses of chitosan-pHMGB1 and chitosan-pVP1 plasmids, at 2-week intervals, and were challenged with CVB3 4 weeks after the last immunization. Compared with chitosan-pVP1 immunization alone, coimmunization with chitosan-pHMGB1 significantly (P < 0.05) enhanced CVB3-specific fecal secretory IgA levels and promoted mucosal T cell immune responses. In accordance, reduced severity of myocarditis was observed in coimmunized mice, as evidenced by significantly (P < 0.05) reduced viral loads, decreased myocardial injury, and increased survival rates. Flow cytometric analysis indicated that HMGB1 enhanced dendritic cell (DC) recruitment to mesenteric lymph nodes and promoted DC maturation, which might partly account for its mucosal adjuvant effect. This strategy may represent a promising approach to candidate vaccines against CVB3-induced myocarditis.
Collapse
|
17
|
Fitzgerald KD, Chase AJ, Cathcart AL, Tran GP, Semler BL. Viral proteinase requirements for the nucleocytoplasmic relocalization of cellular splicing factor SRp20 during picornavirus infections. J Virol 2013; 87:2390-400. [PMID: 23255796 PMCID: PMC3571363 DOI: 10.1128/jvi.02396-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/11/2012] [Indexed: 02/05/2023] Open
Abstract
Infection of mammalian cells by picornaviruses results in the nucleocytoplasmic redistribution of certain host cell proteins. These viruses interfere with import-export pathways, allowing for the cytoplasmic accumulation of nuclear proteins that are then available to function in viral processes. We recently described the cytoplasmic relocalization of cellular splicing factor SRp20 during poliovirus infection. SRp20 is an important internal ribosome entry site (IRES) trans-acting factor (ITAF) for poliovirus IRES-mediated translation; however, it is not known whether other picornaviruses utilize SRp20 as an ITAF and direct its cytoplasmic relocalization. Also, the mechanism by which poliovirus directs the accumulation of SRp20 in the cytoplasm of the infected cell is currently unknown. Work described in this report demonstrated that infection by another picornavirus (coxsackievirus B3) causes SRp20 to relocalize from the nucleus to the cytoplasm of HeLa cells, similar to poliovirus infection; however, SRp20 is relocalized to a somewhat lesser extent in the cytoplasm of HeLa cells during infection by yet another picornavirus (human rhinovirus 16). We show that expression of poliovirus 2A proteinase is sufficient to cause the nucleocytoplasmic redistribution of SRp20. Following expression of poliovirus 2A proteinase in HeLa cells, we detect cleavage of specific nuclear pore proteins known to be cleaved during poliovirus infection. We also find that expression of human rhinovirus 16 2A proteinase alone can cause efficient cytoplasmic relocalization of SRp20, despite the lower levels of SRp20 relocalization observed during rhinovirus infection compared to poliovirus. Taken together, these results further define the mechanism of SRp20 cellular redistribution during picornavirus infections, and they provide additional insight into some of the differences observed between human rhinovirus and other enterovirus infections.
Collapse
Affiliation(s)
- Kerry D Fitzgerald
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|
18
|
Buskiewicz IA, Koenig A, Huber SA, Budd RC. Caspase-8 and FLIP regulate RIG-I/MDA5-induced innate immune host responses to picornaviruses. Future Virol 2012; 7:1221-1236. [PMID: 23503762 DOI: 10.2217/fvl.12.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Picornaviruses are small, nonenveloped, positive-stranded RNA viruses, which cause a wide range of animal and human diseases, based on their distinct tissue and cell type tropisms. Myocarditis, poliomyelitis, hepatitis and the common cold are the most significant human illnesses caused by picornaviruses. The host response to picornaviruses is complex, and the damage to tissues occurs not only from direct viral replication within infected cells. Picornaviruses exhibit an exceptional ability to evade the early innate immune response, resulting in chronic infection and autoimmunity. This review discusses the detailed aspects of the early innate host response to picornaviruses infection mediated by RIG-I-like helicases, their adaptor, mitochondrial ant iviral signaling protein, innate immune-induced apoptosis, and the role of caspase-8 and its regulatory paralog, FLIP, in these processes.
Collapse
Affiliation(s)
- Iwona A Buskiewicz
- Department of Pathology, Vermont Center for Immunology & Infectious Diseases, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
19
|
Vaccination with coxsackievirus B3 virus-like particles elicits humoral immune response and protects mice against myocarditis. Vaccine 2012; 30:2301-8. [DOI: 10.1016/j.vaccine.2012.01.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/20/2022]
|
20
|
Altered interactions between stem-loop IV within the 5' noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: effects on IRES-mediated translation and viral infectivity. Virology 2009; 389:45-58. [PMID: 19446305 DOI: 10.1016/j.virol.2009.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 01/30/2009] [Accepted: 03/05/2009] [Indexed: 11/24/2022]
Abstract
Coxsackievirus B3 (CVB3) is a causative agent of viral myocarditis, meningitis, pancreatitis, and encephalitis. Much of what is known about the coxsackievirus intracellular replication cycle is based on the information already known from a well-studied and closely related virus, poliovirus. Like that of poliovirus, the 5' noncoding region (5' NCR) of CVB3 genomic RNA contains secondary structures that function in both viral RNA replication and cap-independent translation initiation. For poliovirus IRES-mediated translation, the interaction of the cellular protein PCBP2 with a major secondary structure element (stem-loop IV) is required for gene expression. Previously, the complete secondary structure of the coxsackievirus 5' NCR was determined by chemical structure probing and overall, many of the RNA secondary structures bear significant similarity to those of poliovirus; however, the functions of the coxsackievirus IRES stem-loop structures have not been determined. Here we report that a CVB3 RNA secondary structure, stem-loop IV, folds similarly to poliovirus stem-loop IV and like its enterovirus counterpart, coxsackievirus stem-loop IV interacts with PCBP2. We used RNase foot-printing to identify RNA sequences protected following PCBP2 binding to coxsackievirus stem-loop IV. When nucleotide substitutions were separately engineered at two sites in coxsackievirus stem-loop IV to reduce PCBP2 binding, inhibition of IRES-mediated translation was observed. Both of these nucleotide substitutions were engineered into full-length CVB3 RNA and upon transfection into HeLa cells, the specific infectivities of both constructs were reduced and the recovered viruses displayed small-plaque phenotypes and slower growth kinetics compared to wild type virus.
Collapse
|
21
|
ZHANG YE, LI XINHONG, JIANG HONG, HUANG CHANGXING, WANG PINGZHONG, MOU DANLEI, SUN LI, XU ZHE, WEI XIN, BAI XUEFAN. Expression of L protein of Hantaan virus 84FLi strain and its application for recovery of minigenomes. APMIS 2008; 116:1089-96. [DOI: 10.1111/j.1600-0463.2008.01011.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Chapman NM, Kim KS, Drescher KM, Oka K, Tracy S. 5' terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart. Virology 2008; 375:480-91. [PMID: 18378272 DOI: 10.1016/j.virol.2008.02.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/19/2007] [Accepted: 02/21/2008] [Indexed: 01/17/2023]
Abstract
Enteroviruses can induce human myocarditis, which can be modeled in mice inoculated with group B coxsackieviruses (CVB) and in which CVB evolve to produce defective, terminally deleted genomes. The 5' non-translated region (NTR) was enzymatically amplified from heart tissue of a fatal case of enterovirus-associated myocarditis in Japan in 2002. While no intact 5' viral genomic termini were detected, 5' terminal deletions ranged in size from 22 to 36 nucleotides. Sequence of the 5' third of this viral genome is of a modern strain, closely related to CVB2 strains isolated in Japan in 2002. A CVB3 chimera containing the 5' NTR with a 22 nt deletion produced progeny virus upon transfection of HeLa cells. When the 5' 22 nucleotide deletion was repaired, the virus induced myocarditis in mice and replicated like wild type virus in murine heart cells. This is the first report of these naturally-occurring defective enteroviral genomes in human myocarditis.
Collapse
Affiliation(s)
- Nora M Chapman
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| | | | | | | | | |
Collapse
|
23
|
M'hadheb-Gharbi MB, El Hiar R, Paulous S, Jaïdane H, Aouni M, Kean KM, Gharbi J. Role of GNRA Motif Mutations within Stem-Loop V of Internal Ribosome Entry Segment in Coxsackievirus B3 Molecular Attenuation. J Mol Microbiol Biotechnol 2008; 14:147-56. [PMID: 17693702 DOI: 10.1159/000107369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The lengthy 5' nontranslated region of coxsackievirus B3 (CVB3) forms a highly ordered secondary structure containing an internal ribosome entry segment (IRES), which plays an important role in controlling viral translation and pathogenesis. The stem-loop V (SL-V) of this IRES contains a large lateral bulge loop which encompasses two conserved GNRA motifs. In this study, we analyzed the effects of point mutations within the GNRA motifs of the CVB3 IRES. We characterized in vitro virus production and translation efficiency and we tested in vivo virulence of two CVB3 mutants produced by site-directed mutagenesis. The GNAA1 and GNAA2 RNAs displayed decreased translation initiation efficiency when translated in rabbit reticulocyte lysates. This translation defect was correlated with reduced yields of infectious virus particles in HeLa cells in comparison with the wild type. When inoculated orally into Swiss mice, both mutant viruses were avirulent and caused neither inflammation nor necrosis in hearts. These results highlight the important role of the GNRA motifs within the SL-V of the IRES of CVB3, in directing translation initiation.
Collapse
Affiliation(s)
- Manel Ben M'hadheb-Gharbi
- Unité de Pathogenèse et Virulence Virales, Laboratoire des Maladies Dominantes Transmissibles (MDT-01), Faculté de Pharmacie de Monastir, Monastir, Tunisia
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
Replication of poliovirus RNA is accomplished by the error-prone viral RNA-dependent RNA polymerase and hence is accompanied by numerous mutations. In addition, genetic errors may be introduced by nonreplicative mechanisms. Resulting variability is manifested by point mutations and genomic rearrangements (e.g., deletions, insertions and recombination). After description of basic mechanisms underlying this variability, the review focuses on regularities of poliovirus evolution (mutation fixation) in tissue cultures, human organisms and populations.
Collapse
Affiliation(s)
- V I Agol
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, 142782, Russia.
| |
Collapse
|
26
|
Cheung PKM, Yuan J, Zhang HM, Chau D, Yanagawa B, Suarez A, McManus B, Yang D. Specific interactions of mouse organ proteins with the 5'untranslated region of coxsackievirus B3: potential determinants of viral tissue tropism. J Med Virol 2005; 77:414-24. [PMID: 16173012 DOI: 10.1002/jmv.20470] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coxsackievirus B3 (CVB3) infects multiple organs of humans and causes different diseases such as myocarditis, pancreatitis, and meningitis. However, the mechanisms of organ-specific tropism are poorly understood. Coxsackievirus and adenovirus receptor (CAR) have been known to be important determinants for tissue tropism. However, current data on CAR mRNA expression in certain organs of mouse did not correlate well with the susceptibility of the respective tissues, suggesting that intracellular proteins may also play important roles in the regulation of viral infectivity through interaction with viral RNA. To search for such proteins and their interacting sites, we performed in situ hybridization to detect viral RNA in the organs of 4-week- and 10-week-old CVB3-infected mice and then correlated the data to patterns of host protein-viral RNA interactions. We found that heart and pancreas are the most heavily infected organs while the kidney remains highly resistant to the virus. The brain exhibited localized foci of viral replication, while the heart and liver showed random distribution of CVB3 RNA. The exocrine pancreas is highly susceptible to CVB3 infection but the endocrine cell type is resistant. In contrast to infections in other organs, mouse heart appears more resistant to CVB3 infection with increasing age. This resistance to infection in the kidney and older heart correlates well with the interaction of a 28 kDa mouse protein with the antisense sequence of nucleotides 210-529 of CVB3 5UTR. In addition, more intensified protein interactions were found within the nucleotides 530-630, a region that contains the internal ribosome entry site, which supports the previous findings that this segment plays critical roles in regulation of viral replication.
Collapse
Affiliation(s)
- Paul Kim-Ming Cheung
- Department of Pathology and Laboratory Medicine, University of British Columbia, The James Hogg iCapture Centre, St. Paul's Hospital, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim KS, Tracy S, Tapprich W, Bailey J, Lee CK, Kim K, Barry WH, Chapman NM. 5'-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 2005; 79:7024-41. [PMID: 15890942 PMCID: PMC1112132 DOI: 10.1128/jvi.79.11.7024-7041.2005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult human enteroviral heart disease is often associated with the detection of enteroviral RNA in cardiac muscle tissue in the absence of infectious virus. Passage of coxsackievirus B3 (CVB3) in adult murine cardiomyocytes produced CVB3 that was noncytolytic in HeLa cells. Detectable but noncytopathic CVB3 was also isolated from hearts of mice inoculated with CVB3. Sequence analysis revealed five classes of CVB3 genomes with 5' termini containing 7, 12, 17, 30, and 49 nucleotide deletions. Structural changes (assayed by chemical modification) in cloned, terminally deleted 5'-nontranslated regions were confined to the cloverleaf domain and localized within the region of the deletion, leaving key functional elements of the RNA intact. Transfection of CVB3 cDNA clones with the 5'-terminal deletions into HeLa cells generated noncytolytic virus (CVB3/TD) which was neutralized by anti-CVB3 serum. Encapsidated negative-strand viral RNA was detected using CsCl-purified CVB3/TD virions, although no negative-strand virion RNA was detected in similarly treated parental CVB3 virions. The viral protein VPg was detected on CVB3/TD virion RNA molecules which terminate in 5' CG or 5' AG. Detection of viral RNA in mouse hearts from 1 week to over 5 months postinoculation with CVB3/TD demonstrated that CVB3/TD virus strains replicate and persist in vivo. These studies describe a naturally occurring genomic alteration to an enteroviral genome associated with long-term viral persistence.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Cytopathogenic Effect, Viral
- DNA, Viral/genetics
- Enterovirus B, Human/genetics
- Enterovirus B, Human/pathogenicity
- Enterovirus B, Human/physiology
- Enterovirus Infections/virology
- Genome, Viral
- HeLa Cells
- Humans
- Male
- Mice
- Mice, Inbred A
- Molecular Sequence Data
- Myocarditis/virology
- Myocytes, Cardiac/virology
- Nucleic Acid Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Virus Assembly
- Virus Replication
Collapse
Affiliation(s)
- K-S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Walpita P, Flick R. Reverse genetics of negative-stranded RNA viruses: a global perspective. FEMS Microbiol Lett 2005; 244:9-18. [PMID: 15727815 DOI: 10.1016/j.femsle.2005.01.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 01/25/2005] [Accepted: 01/25/2005] [Indexed: 11/18/2022] Open
Abstract
The advent of reverse genetics technology has revolutionized the field of RNA viruses. It is now possible to manipulate even negative-stranded RNA viruses at will, and evaluate the effects of these changes on the biology and pathogenesis of these viruses. The fundamental insights gleaned from the reverse genetics-based studies over the last several years have provided a new momentum for the development of designed therapies for the control and prevention of these viral pathogens. The recombinant viruses have been exploited also as vectors for devising targeted therapies for non-viral diseases such as malignancies, and in gene therapy for inherited disorders. This review provides a brief summary of the stumbling blocks and the successes in the development of the technology for the negative-stranded RNA viruses. The many and varied applications of the recombinant vectors are also outlined.
Collapse
Affiliation(s)
- Pramila Walpita
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | | |
Collapse
|
29
|
Hunziker IP, Harkins S, Feuer R, Cornell CT, Whitton JL. Generation and analysis of an RNA vaccine that protects against coxsackievirus B3 challenge. Virology 2005; 330:196-208. [PMID: 15527846 DOI: 10.1016/j.virol.2004.09.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/26/2004] [Indexed: 01/25/2023]
Abstract
Coxsackievirus B3 (CVB3) is an important human pathogen that causes substantial morbidity and mortality but, to date, no vaccine is available. We have generated an RNA-based vaccine against CVB3 and have evaluated it in the murine model of infection. The vaccine was designed to allow production of the viral polyprotein, which should be cleaved to generate most of the viral proteins in their mature form; but infectious virus should not be produced. In vitro translation studies indicated that the mutant polyprotein was efficiently translated and was processed as expected. The mutant RNA was not amplified in transfected cells, and infectious particles were not produced. Furthermore, the candidate RNA vaccine appeared safe in vivo, causing no detectable pathology following injection. Finally, despite failing to induce detectable neutralizing antibodies, the candidate RNA vaccine conferred substantial protection against virus challenge, either with an attenuated recombinant CVB3, or with the highly pathogenic wt virus.
Collapse
Affiliation(s)
- Isabelle P Hunziker
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
30
|
Kim JY, Jeon ES, Lim BK, Kim SM, Chung SK, Kim JM, Park SI, Jo I, Nam JH. Immunogenicity of a DNA vaccine for coxsackievirus B3 in mice: protective effects of capsid proteins against viral challenge. Vaccine 2005; 23:1672-9. [PMID: 15705471 DOI: 10.1016/j.vaccine.2004.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 07/10/2004] [Accepted: 10/01/2004] [Indexed: 11/24/2022]
Abstract
Coxsackievirus (CVB) 3 induces viral myocarditis and ultimately dilated cardiomyopathy (DCM). However, there is no vaccine in clinical use. We constructed recombinant CVB3 plasmids using a highly effective mammalian expression vector and evaluated their immunogenicity in vivo on the basis of survival rate. Four recombinant plasmids were constructed, which encode CVB3 capsid proteins (VP1 or VP3) or VP1 partial proteins (VP1-1 or VP1-2), and used to immunize BALB/c mice by electroporation. Although VP1, VP3, VP1-1, and VP1-2 induced specific antibodies against the corresponding proteins in mice, neutralizing antibodies were not present in the sera. These recombinant plasmids, except VP1-1 (12.5%), dramatically increased the survival rate in mice at 46 days after challenge (42.9-75.0%, p<0.05). VP3 (75.0%) protected mice against viral infection and the middle regions of VP1 (VP1-2, 50.5%) conferred a protective effect like that conferred by VP1 (42.9%), suggesting that the epitopes in VP3 as well as in the middle of VP1 protect against CVB3 infection in vivo. In conclusion, some recombinant CVB3 plasmids used in this study reduced the destruction of myocytes and improved the survival rates in mice immunized and challenged compared with the control. Thus, pCA-VP3 as well as pCA-VP1 are good candidates for a CVB3 DNA vaccine.
Collapse
Affiliation(s)
- Joo-Young Kim
- Division of Cardiovascular Research, Department of Biomedical Science, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee CK, Kono K, Haas E, Kim KS, Drescher KM, Chapman NM, Tracy S. Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate. J Gen Virol 2005; 86:197-210. [PMID: 15604447 DOI: 10.1099/vir.0.80424-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group B coxsackieviruses (CVB) cause numerous diseases, including myocarditis, pancreatitis, aseptic meningitis and possibly type 1 diabetes. To date, infectious cDNA copies of CVB type 3 (CVB3) genomes have all been derived from pathogenic virus strains. An infectious cDNA copy of the well-characterized, non-pathogenic CVB3 strain GA genome was cloned in order to facilitate mapping of the CVB genes that influence expression of a virulence phenotype. Comparison of the sequence of the parental CVB3/GA population, derived by direct RT-PCR-mediated sequence analysis, to that of the infectious CVB3/GA progeny genome demonstrated that an authentic copy was cloned; numerous differences were observed in coding and non-coding sequences relative to other CVB3 strains. Progeny CVB3/GA replicated similarly to the parental strain in three different cell cultures and was avirulent when inoculated into mice, causing neither pancreatitis nor myocarditis. Inoculation of mice with CVB3/GA protected mice completely against myocarditis and pancreatitis induced by cardiovirulent CVB3 challenge. The secondary structure predicted for the CVB3/GA domain II, a region within the 5′ non-translated region that is implicated as a key site affecting the expression of a cardiovirulent phenotype, differs from those predicted for cardiovirulent and pancreovirulent CVB3 strains. This is the first report characterizing a cloned CVB3 genome from an avirulent strain.
Collapse
Affiliation(s)
- C-K Lee
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - K Kono
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - E Haas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - K-S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Drescher
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - N M Chapman
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - S Tracy
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
32
|
Drescher KM, Kono K, Bopegamage S, Carson SD, Tracy S. Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 2004; 329:381-94. [PMID: 15518817 DOI: 10.1016/j.virol.2004.06.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 04/17/2004] [Accepted: 06/03/2004] [Indexed: 11/29/2022]
Abstract
Group B coxsackieviruses (CVB) are believed to trigger some cases of human type 1 diabetes (T1D), although the mechanism by which this may occur has not been shown. We demonstrated previously that inoculation of young nonobese diabetic (NOD) mice with any of several different CVB strains reduced T1D incidence. We also observed no evidence of CVB replication within islets of young NOD mice, suggesting no role for CVB in T1D induction in the NOD mouse model. The failure to observe CVB replication within islets of young NOD mice has been proposed to be due to interferon expression by insulin-producing beta cells or lack of expression of the CVB receptor CAR. We found that CAR protein is detectable within islets of young and older NOD mice and that a CVB3 strain, which expresses murine IL-4, can replicate in islets. Mice inoculated with the IL-4 expressing CVB3 chimeric strain were better protected from T1D onset than were mock-infected control mice despite intraislet viral replication. Having demonstrated that CVB can replicate in healthy islets of young NOD mice when the intraislet environment is suitably altered, we asked whether islets in old prediabetic mice were resistant to CVB infection. Unlike young mice in which insulitis is not yet apparent, older NOD mice demonstrate severe insulitis in all islets. Inoculating older prediabetic mice with different pathogenic CVB strains caused accelerated T1D onset relative to control mice, a phenomenon that was preceded by detection of virus within islets. Together, the results suggest a model for resolving conflicting data regarding the role of CVB in human T1D etiology.
Collapse
MESH Headings
- Age Factors
- Animals
- Cell Line, Tumor
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Coxsackievirus Infections/complications
- Coxsackievirus Infections/virology
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Enterovirus B, Human/genetics
- Enterovirus B, Human/metabolism
- Female
- Humans
- Interferons/biosynthesis
- Interleukin-4/biosynthesis
- Interleukin-4/genetics
- Interleukin-4/therapeutic use
- Islets of Langerhans/metabolism
- Islets of Langerhans/virology
- Mice
- Mice, Inbred NOD
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- Transfection
- Virulence
Collapse
Affiliation(s)
- Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA
| | | | | | | | | |
Collapse
|
33
|
Toniolo A, Falcone V, Bernasconi C, Basolo F, Speziale P, Onodera T. DNA immunization of mice against the VP1 capsid protein of coxsackievirus B4. Scand J Immunol 2002; 56:448-55. [PMID: 12410794 DOI: 10.1046/j.1365-3083.2002.01145.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protective activity of a DNA plasmid encoding the immunodominant capsid protein VP1 of coxsackievirus B4 (CBV-4) was studied in BALB/c mice. The plasmid pCI-B4-1-c - which gave the highest expression level of VP1 in cultured monkey and human cells - was chosen for immunization. Two injections of pCI-B4-1-c (1 month apart) into the regenerating mouse muscle tissue induced a specific antibody response to CBV-4, as shown by immunoenzyme and neutralization assays. Upon challenge with live CBV-4, the mortality rate of mice vaccinated with the recombinant plasmid was significantly reduced (21% versus >58%) as compared with that of mice that had been either nontreated or injected with a control plasmid devoid of the insert. The VP1-based vaccine, however, did not provide complete protection as - after virus challenge - moderate viraemia occurred together with modest plasma elevations of pathogenesis-related enzymes (amylase and creatine kinase). Yet, immunofluorescence of the small intestine and heart did confirm the protective effect of the VP1-encoding vaccine. In order to obtain a more complete protection against CBV-4, it may be beneficial to immunize mice with combinations of separate DNA plasmids encoding not only VP1 but also the VP2 and VP3 capsid proteins.
Collapse
Affiliation(s)
- A Toniolo
- Department of Clinical and Biological Sciences, University of Insubria, Varese Department of Oncology, University of Pisa, Pisa Department of Biochemistry, University of Pavia, Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Harvala H, Kalimo H, Dahllund L, Santti J, Hughes P, Hyypiä T, Stanway G. Mapping of tissue tropism determinants in coxsackievirus genomes. J Gen Virol 2002; 83:1697-1706. [PMID: 12075089 DOI: 10.1099/0022-1317-83-7-1697] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic regions responsible for the different tissue tropisms of coxsackievirus A9 (CAV9) and coxsackievirus B3 (CBV3) in newborn mice were investigated using recombinant viruses. Infectious cDNA clones of CAV9, a virus known to infect striated muscle, and CBV3, affecting the central nervous system, pancreas, liver, brown fat and striated muscle, were used to generate chimeric viruses. In situ hybridization analysis of different tissues from mice infected with the recombinant viruses, constructed by exchanging the 5' non-coding region (5'NCR), structural and non-structural genes, demonstrated that the pancreo- and liver tropism map predominantly to CBV3 sequences within the capsid genes, evidently due to receptor recognition. Although the major neurotropism determinant in the CBV3 genome was in the capsid region, viruses containing the CAV9 capsid were also able to initiate infection in the central nervous system provided they contained the CBV3 5'NCR. The presence of the 5'NCR of CAV9 clearly enhanced muscle tissue tropism.
Collapse
Affiliation(s)
- Heli Harvala
- Department of Virology and MediCity Research Laboratory, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland1
| | - Hannu Kalimo
- Department of Pathology, University of Turku and Turku University Hospital, FIN-20520 Turku, Finland2
| | - Leif Dahllund
- Department of Virology and MediCity Research Laboratory, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland1
| | - Juhana Santti
- Department of Virology and MediCity Research Laboratory, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland1
| | - Pamela Hughes
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK3
| | - Timo Hyypiä
- Department of Virology, Haartman Institute, PO Box 21, FIN-00014 Helsinki, Finland4
- Department of Virology and MediCity Research Laboratory, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland1
| | - Glyn Stanway
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK3
| |
Collapse
|
35
|
Frishman WH, O'Brien M, Naseer N, Anandasabapathy S. Innovative drug treatments for viral and autoimmune myocarditis. HEART DISEASE (HAGERSTOWN, MD.) 2002; 4:171-83. [PMID: 12028603 DOI: 10.1097/00132580-200205000-00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myocarditis is a common cause of cardiomyopathy and is thought to account for 25% of all cases in humans. Unfortunately, the disease is difficult to detect clinically before a myopathic process ensues. Management of myocarditis-induced heart failure includes the standard regimen of diuretics, digoxin, angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, and beta-adrenergic blockers. The management of myocarditis itself is dependent on the etiology of the illness. Treatments that are currently under investigation include immunosuppressants, nonsteroidal antiinflammatory agents, immunoglobulins, immunomodulation, antiadrenergics, calcium-channel blockers, angiotensin-converting enzyme inhibitors, nitric oxide inhibitors (e.g., aminoguanidine), and antivirals. Despite advances in treatment, more work needs to be done in the early detection of myocarditis. Additionally, better means need to be established for distinguishing between viral and noninfectious autoimmune forms of the disease, so that appropriate treatment can be instituted.
Collapse
Affiliation(s)
- William H Frishman
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
36
|
Abstract
The six serotypes of the group B coxsackieviruses (CVB) are common human enteroviruses linked etiologically to inflammatory cardiomyopathies. This has been demonstrated by molecular detection of enteroviral RNA in human heart tissue, serologic associations with disease, and virus isolation from cases of fulminant myocarditis. The murine model of CVB-associated myocarditis has demonstrated that CVB can be attenuated through mutations at different genomic sites. Human CVB3 isolates demonstrate varying degrees of cardiovirulence in the murine model; one site of virulence determination has been mapped to domain II of the 5' non-translated region. The interplay of CVB replication and the immune response to that replication in the heart is a complex interaction determining the extent to which the virus replication is limited and the degree to which a pathogenic inflammation of cardiac muscle occurs. Studies of CVB3-induced myocarditis in murine strains lacking subsets of the immune system or genes regulating the immune response have demonstrated a pivotal role of the T cell response to the generation of myocarditis. While CVB are associated with 20-25% of cases of myocarditis or cardiomyopathy, the severity of the disease and the existence of attenuated strains shown to generate protective immunity in animal models indicates that vaccination against the CVBs would be valuable.
Collapse
Affiliation(s)
- K S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | |
Collapse
|
37
|
Bradrick SS, Lieben EA, Carden BM, Romero JR. A predicted secondary structural domain within the internal ribosome entry site of echovirus 12 mediates a cell-type-specific block to viral replication. J Virol 2001; 75:6472-81. [PMID: 11413314 PMCID: PMC114370 DOI: 10.1128/jvi.75.14.6472-6481.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2000] [Accepted: 04/13/2001] [Indexed: 01/16/2023] Open
Abstract
The enterovirus 5' nontranslated region (NTR) contains an internal ribosome entry site (IRES), which facilitates translation initiation of the viral open reading frame in a 5' (m(7)GpppN) cap-independent manner, and cis-acting signals for positive-strand RNA replication. For several enteroviruses, the 5' NTR has been shown to determine the virulence phenotype. We have constructed a chimera consisting of the putative IRES element from the Travis strain of echovirus 12 (ECV12), a wild-type, relatively nonvirulent human enterovirus, exchanged with the homologous region of a full-length infectious clone of coxsackievirus B3 (CBV3). The resulting chimera, known as ECV12(5'NTR)CBV3, replicates similarly to CBV3 in human and simian cell lines yet, unlike CBV3, is completely restricted for growth on two primary murine cell lines at 37 degrees C. By utilizing a reverse-genetics approach, the growth restriction phenotype was localized to the predicted stem-loop II within the IRES of ECV12. In addition, a revertant of ECV12(5'NTR)CBV3 was isolated which possessed three transition mutations and had restored capability for replication in the utilized murine cell lines. Assays for cardiovirulence indicated that the ECV12 IRES is responsible for a noncardiovirulent phenotype in a murine model for acute myocarditis. The results indicate that the 5' NTRs of ECV12 and CBV3 exhibit variable intracellular requirements for function and serve as secondary determinants of tissue or species tropism.
Collapse
Affiliation(s)
- S S Bradrick
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Picornaviruses are small animal viruses with positive-strand genomic RNA, which is translated using cap-independent internal translation initiation. The key role in this is played by ciselements of the 5"-untranslated region (5"-UTR) and, in particular, by the internal ribosome entry site (IRES). The function of translational ciselements requires both canonical translation initiation factors (eIFs) and additional IRES trans-acting factors (ITAFs). All known ITAFs are cell RNA-binding proteins which play a variety of functions in noninfected cells. Specific features of translational ciselements substantially affect the phenotype and, in particular, tissue tropism and pathogenic properties of picornaviruses. It is clear that, in some cases, the molecular mechanism involved is a change in interactions between viral ciselements and ITAFs. The properties and tissue distribution of ITAFs may determine the biological properties of other viruses that also use the IRES-dependent translation initiation. Since this mechanism is also involved in translation of several cell mRNAs, ITAF may contribute to the regulation of the most important aspects of the living activity in noninfected cells.
Collapse
Affiliation(s)
- V. I. Agol
- Chumakov Institute of Poliomyelitis and Virus Encephalites, Russian Academy of Medical Sciences, and, Moscow State University, Moscow, Russia
| |
Collapse
|
39
|
Affiliation(s)
- A M Feldman
- Cardiovascular Institute, University of Pittsburgh School of Medicine, USA.
| | | |
Collapse
|
40
|
Höfling K, Tracy S, Chapman N, Kim KS, Smith Leser J. Expression of an antigenic adenovirus epitope in a group B coxsackievirus. J Virol 2000; 74:4570-8. [PMID: 10775593 PMCID: PMC111977 DOI: 10.1128/jvi.74.10.4570-4578.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B coxsackieviruses (CVB) cause human myocarditis, while human adenovirus type 2 (Ad2) is implicated as an agent of this disease. The L1 loop of the Ad2 hexon protein has been demonstrated to be antigenic in rabbits. To evaluate the feasibility of a multivalent vaccine strain against the CVB and Ad2, we cloned the sequence encoding the Ad2 hexon L1 loop, flanked by dissimilar sequences encoding the protease 2A (2Apro) recognition sites, into the genome of an attenuated strain of CVB type 3 (CVB3/0) at the junction of 2Apro and the capsid protein 1D. Progeny virus (CVB3-PL2-Ad2L1) was obtained following transfection of the construct into HeLa cells. Replication of CVB3-PL2-Ad2L1 in diverse cell cultures demonstrated that the yield of the chimeric virus was between 0.5 to 2 log units less than the parental strain. Western blot analyses of the CVB3 capsid protein 1D in CVB3-PL2-Ad2L1-infected HeLa cells demonstrated production of the expected capsid protein. Viral proteins were detected earlier and in approximately fourfold greater amounts in CVB3-PL2-Ad2L1-infected HeLa cells than in CVB3/0-infected cells. Cleavage of the CVB3-PL2-Ad2L1 polyprotein by 2Apro was slowed, accompanied by an accumulation of the fusion 1D-L1 loop protein. Reverse transcription-PCR sequence analysis of CVB3-PL2-Ad2L1 RNA demonstrated that the Ad2 hexon polypeptide coding sequence was maintained in the chimeric viral genome through at least 10 passages in HeLa cells. Mice inoculated with CVB3-PL2-Ad2L1 demonstrated a brief viremia with no replication detectable in the heart but prolonged replication of virus in the pancreas in the absence of pathologic changes in either organ. CVB3-PL2-Ad2L1 induced binding and neutralizing anti-Ad2 antibodies, in addition to antibodies against CVB3 in mice. CVB3-PL2-Ad2L1 was used to challenge mice previously inoculated with CVB3/0 and with preexisting anti-CVB3 neutralizing-antibody titers; anti-Ad2 neutralizing and binding antibodies were induced in these mice at higher levels than in mice without anti-CVB3 immunity. The data demonstrate that a CVB vector can stably express an antigenic polypeptide of Ad2 from within the CVB open reading frame that results in the induction of protective immune responses against both viruses.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Base Sequence
- Blotting, Western
- Capsid/chemistry
- Capsid/genetics
- Capsid/immunology
- Capsid/metabolism
- Capsid Proteins
- Cells, Cultured
- Enterovirus B, Human/genetics
- Enterovirus B, Human/immunology
- Enterovirus B, Human/metabolism
- Epitopes/genetics
- Epitopes/metabolism
- Genetic Vectors
- Genome, Viral
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Neutralization Tests
- Rabbits
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- K Höfling
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, USA
| | | | | | | | | |
Collapse
|