1
|
Duchemin NJ, Loonawat R, Yeakle K, Rosenkranz A, Bouchard MJ. Hypoxia-inducible factor affects hepatitis B virus transcripts and genome levels as well as the expression and subcellular location of the hepatitis B virus core protein. Virology 2023; 586:76-90. [PMID: 37490813 DOI: 10.1016/j.virol.2023.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
Globally, a chronic-hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC). The transcription factor hypoxia-inducible factor 1 (HIF1) is often elevated in HCC, including HBV-associated HCC. Previous studies have suggested that the expression of the HIF1 subunit, HIF1α, is elevated in HBV-infected hepatocytes; however, whether HIF1 activity affects the HBV lifecycle has not been fully explored. We used a liver-derived cell line and ex vivo cultured primary hepatocytes as models to determine how HIF1 affects the HBV lifecycle. We observed that HIF1 elevates HBV RNA transcript levels, core protein levels, core protein localization to the cytoplasm, and HBV genome replication. Attenuating the transcription activity of HIF1 blocked HIF1-mediated effects on the HBV lifecycle. Our studies show that HIF1 regulates various stages of the HBV lifecycle in hepatocytes and could be a therapeutic target for blocking HBV replication and the development of HBV-associated diseases.
Collapse
Affiliation(s)
- Nicholas J Duchemin
- Molecular and Cellular Biology and Genetic Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Ronak Loonawat
- Microbiology and Immunology Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Kyle Yeakle
- Molecular and Cellular Biology and Genetic Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Andrea Rosenkranz
- Molecular and Cellular Biology and Genetic Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
2
|
Celik-Turgut G, Olmez N, Koc T, Ozgun-Acar O, Semiz A, Dodurga Y, Lale Satiroglu-Tufan N, Sen A. Role of AHR, NF-kB and CYP1A1 crosstalk with the X protein of Hepatitis B virus in hepatocellular carcinoma cells. Gene 2023; 853:147099. [PMID: 36476661 DOI: 10.1016/j.gene.2022.147099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In this study, it was aimed to elucidate the interaction between aryl hydrocarbon receptor (AHR), nuclear factor-kappa B (NF-kB), and cytochrome P4501A1 (CYP1A1) with hepatitis B virus X protein (HBX) in a human liver cancer cell line (HepG2) transfected with HBX. First, AHR, NF-kB, and CYP1A1 genes were cloned into the appropriate region of the CheckMate mammalian two-hybrid recipient plasmids using a flexi vector system. Renilla and firefly luciferases were quantified using the dual-luciferase reporter assay system to measure the interactions. Secondly, transient transfections of CYP1A1 and NF-kB (RelA) were performed into HBX-positive and HBX-negative HepG2 cells. The mRNA expression of CYP1A1 and NF-kB genes were confirmed with RT-PCR, and cell viability was measured by WST-1. Further verification was assessed by measuring the activity and protein level of CYP1A1. Additionally, CYP1A1/HBX protein-protein interactions were performed with co-immunoprecipitation, which demonstrated no interaction. These results have clearly shown that the NF-kB and AHR genes interact with HBX without involving CYP1A1 and HBX protein-protein interactions. The present study confirms that AHR and NF-kB interaction plays a role in the HBV mechanism mediated via HBX and coordinating the carcinogenic or inflammatory responses; still, the CYP1A1 gene has no effect on this interaction.
Collapse
Affiliation(s)
- Gurbet Celik-Turgut
- Department of Organic Agriculture Management, Pamukkale University, Denizli, Turkey
| | - Nazmiye Olmez
- Departments of Biology, Pamukkale University, Denizli, Turkey
| | - Tugba Koc
- Departments of Biology, Pamukkale University, Denizli, Turkey
| | - Ozden Ozgun-Acar
- Seed Breeding & Genetics Application Research Center, Pamukkale University, Denizli, Turkey
| | - Asli Semiz
- Departments of Biomedical Engineering, Pamukkale University, Denizli, Turkey
| | - Yavuz Dodurga
- Departments of Medical Biology, Pamukkale University, Denizli, Turkey
| | | | - Alaattin Sen
- Departments of Biology, Pamukkale University, Denizli, Turkey; Departments of Molecular Biology and Genetics, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
3
|
Park ES, Dezhbord M, Lee AR, Park BB, Kim KH. Dysregulation of Liver Regeneration by Hepatitis B Virus Infection: Impact on Development of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14153566. [PMID: 35892823 PMCID: PMC9329784 DOI: 10.3390/cancers14153566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The liver is unique in its ability to regenerate in response to damage. The complex process of liver regeneration consists of multiple interactive pathways. About 2 billion people worldwide have been infected with hepatitis B virus (HBV), and HBV causes 686,000 deaths each year due to its complications. Long-term infection with HBV, which causes chronic inflammation, leads to serious liver-related diseases, including cirrhosis and hepatocellular carcinoma. HBV infection has been reported to interfere with the critical mechanisms required for liver regeneration. In this review, the studies on liver tissue characteristics and liver regeneration mechanisms are summarized. Moreover, the inhibitory mechanisms of HBV infection in liver regeneration are investigated. Finally, the association between interrupted liver regeneration and hepatocarcinogenesis, which are both triggered by HBV infection, is outlined. Understanding the fundamental and complex liver regeneration process is expected to provide significant therapeutic advantages for HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Bo Bae Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
4
|
Chang S, Wang LHC, Chen BS. Investigating Core Signaling Pathways of Hepatitis B Virus Pathogenesis for Biomarkers Identification and Drug Discovery via Systems Biology and Deep Learning Method. Biomedicines 2020; 8:biomedicines8090320. [PMID: 32878239 PMCID: PMC7555687 DOI: 10.3390/biomedicines8090320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B Virus (HBV) infection is a major cause of morbidity and mortality worldwide. However, poor understanding of its pathogenesis often gives rise to intractable immune escape and prognosis recurrence. Thus, a valid systematic approach based on big data mining and genome-wide RNA-seq data is imperative to further investigate the pathogenetic mechanism and identify biomarkers for drug design. In this study, systems biology method was applied to trim false positives from the host/pathogen genetic and epigenetic interaction network (HPI-GEN) under HBV infection by two-side RNA-seq data. Then, via the principal network projection (PNP) approach and the annotation of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, significant biomarkers related to cellular dysfunctions were identified from the core cross-talk signaling pathways as drug targets. Further, based on the pre-trained deep learning-based drug-target interaction (DTI) model and the validated pharmacological properties from databases, i.e., drug regulation ability, toxicity, and sensitivity, a combination of promising multi-target drugs was designed as a multiple-molecule drug to create more possibility for the treatment of HBV infection. Therefore, with the proposed systems medicine discovery and repositioning procedure, we not only shed light on the etiologic mechanism during HBV infection but also efficiently provided a potential drug combination for therapeutic treatment of Hepatitis B.
Collapse
Affiliation(s)
- Shen Chang
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Correspondence:
| |
Collapse
|
5
|
Hepatitis B virus suppresses the secretion of insulin-like growth factor binding protein 1 to facilitate anti-apoptotic IGF-1 effects in HepG2 cells. Exp Cell Res 2018; 370:399-408. [PMID: 29981339 DOI: 10.1016/j.yexcr.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) infection is a major global health burden as chronic hepatitis B (CHB) is associated with the development of liver diseases including hepatocellular carcinoma (HCC). To gain insight into the mechanisms causing HBV-related HCC, we investigated the effects of HBV replication on global host cell gene expression using human HepG2 liver cells. By microarray analysis, we identified 54 differentially expressed genes in HBV-replicating HepG2 cells. One of the differentially-expressed genes was insulin-like growth factor binding protein 1 (IGFBP1) which was downregulated in HBV-replicating cells. Consistent with the gene expression data, IGFBP1 was suppressed at both the cellular and secreted protein levels in the presence of HBV replication. Transient transfection experiments with an inducible plasmid encoding the HBV X protein (HBx) revealed that HBx alone was sufficient to modulate IGFBP1 expression. Small interference RNA (siRNA)-mediated loss of function studies revealed that knockdown of IGFBP1 reduced apoptosis induced by either thapsigargin (TG) or staurosporine (STS). Treatment of cells with recombinant insulin-like growth factor 1 (IGF-1) decreased both TG- or STS-induced apoptosis. Interestingly, addition of recombinant IGFBP1 reversed the anti-apoptotic effect of IGF-1 on TG-induced, but not STS-induced, apoptosis. In conclusion, our results suggest an anti-apoptotic autocrine function of HBV-mediated downregulation of IGFBP1 in HepG2 cells. Such an effect may contribute to the development of HBV-mediated HCC by increasing pro-survival and anti-apoptotic IGF-1 effects.
Collapse
|
6
|
Siburian MD, Suriapranata IM, Wanandi SI. Pre-S2 Start Codon Mutation of Hepatitis B Virus Subgenotype B3 Effects on NF-κB Expression and Activation in Huh7 Cell Lines. Viral Immunol 2018; 31:362-370. [PMID: 29652648 DOI: 10.1089/vim.2017.0158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A cross-sectional study on hepatitis B patients in Indonesia showed association of pre-S2 start codon mutation (M120 V) with cirrhosis and hepatocellular carcinoma (HCC), which was dissimilar from studies from other populations where pre-S2 deletion mutation was more prevalent. Different mutation patterns were attributed to different hepatitis B virus (HBV) subgenotypes in each population study. HBV surface proteins are reported to induce the activation of NF-κB, a transcriptional factor known to play an important role in the development of liver disease. This study aimed to see the effects of HBs variants in HBV subgenotype B3 on the expression and activation of NF-κB as one of the mechanisms in inducing advanced liver disease. HBV subgenotypes B3, each carrying wild-type (wt) HBs, M120 V, and pre-S2 deletion mutation were isolated from three HCC patients. HBs genes were amplified and cloned into pcDNA3.1 and were transfected using Lipofectamine into a Huh7 cell line. NF-κB activation was measured through IκB-α expression, which is regulated by NF-κB. RNA expressions for HBs, IκB-α, and NF-κB subunit (p50) were evaluated using real-time PCR. M120 V mutant had a significantly higher mRNA level compared with wt and pre-S2 deletion mutant; however, there were no significant differences in HBs protein expressions. The transcription level of p50 was higher in M120 V mutation compared with HBs wild-type and pre-S2 deletion mutant. NF-κB activation was higher in HBs wild-type compared with the two mutant variants. Pre-S2 mutations had no effect on the increment of NF-κB activation. However, M120 V mutation may utilize a different pathway in liver disease progression that involves high expression of NF-κB subunit, p50.
Collapse
Affiliation(s)
- Marlinang Diarta Siburian
- 1 Mochtar Riady Institute for Nanotechnology , Banten, Indonesia
- 2 Graduate School of Biomedical Science, Faculty of Medicine, University of Indonesia , Jakarta, Indonesia
| | | | - Septelia Inawati Wanandi
- 2 Graduate School of Biomedical Science, Faculty of Medicine, University of Indonesia , Jakarta, Indonesia
| |
Collapse
|
7
|
Role of HBx in hepatitis B virus persistence and its therapeutic implications. Curr Opin Virol 2018; 30:32-38. [PMID: 29454995 DOI: 10.1016/j.coviro.2018.01.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B virus infection is a significant risk factor for cirrhosis and hepatocellular carcinoma. The HBx protein is required for virus replication, but the lack of robust infection models has hindered our understanding of HBx functions that could be targeted for antiviral purposes. We briefly review three properties of HBx: its binding to DDB1 and its regulation of cell survival and metabolism, to illustrate how a single viral protein can have multiple effects in a cell. We propose that different functions of HBx are needed, depending on the changing hepatocyte environment encountered during a chronic virus infection, and that these functions might serve as novel therapeutic targets for inhibiting hepatitis B virus replication and the development of associated diseases.
Collapse
|
8
|
Interference of Apoptosis by Hepatitis B Virus. Viruses 2017; 9:v9080230. [PMID: 28820498 PMCID: PMC5580487 DOI: 10.3390/v9080230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) causes liver diseases that have been a consistent problem for human health, leading to more than one million deaths every year worldwide. A large proportion of hepatocellular carcinoma (HCC) cases across the world are closely associated with chronic HBV infection. Apoptosis is a programmed cell death and is frequently altered in cancer development. HBV infection interferes with the apoptosis signaling to promote HCC progression and viral proliferation. The HBV-mediated alteration of apoptosis is achieved via interference with cellular signaling pathways and regulation of epigenetics. HBV X protein (HBX) plays a major role in the interference of apoptosis. There are conflicting reports on the HBV interference of apoptosis with the majority showing inhibition of and the rest reporting induction of apoptosis. In this review, we described recent studies on the mechanisms of the HBV interference with the apoptosis signaling during the virus infection and provided perspective.
Collapse
|
9
|
Wang Z, Wu Z, Huang P. The function of miRNAs in hepatocarcinogenesis induced by hepatitis B virus X protein. Oncol Rep 2017. [DOI: 10.3892/or.2017.5716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Lin J, Gu C, Shen Z, Liu Y, Wang W, Tao S, Cui X, Liu J, Xie Y. Hepatocyte nuclear factor 1α downregulates HBV gene expression and replication by activating the NF-κB signaling pathway. PLoS One 2017; 12:e0174017. [PMID: 28319127 PMCID: PMC5358864 DOI: 10.1371/journal.pone.0174017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
The role of hepatocyte nuclear factor 1α (HNF1α) in the regulation of gene expression and replication of hepatitis B virus (HBV) is not fully understood. Previous reports have documented the induction of the expression of viral large surface protein (LHBs) by HNF1α through activating viral Sp1 promoter. Large amount of LHBs can block the secretion of hepatitis B surface antigen (HBsAg). Here we found that HNF1α overexpression inhibited HBV gene expression and replication in Huh7 cells, resulting in marked decreases in HBsAg, hepatitis B e antigen (HBeAg) and virion productions. In contrast, knockdown of endogenous HNF1α expression enhanced viral gene expression and replication. This HNF1α-mediated inhibition did not depend on LHBs. Instead, HNF1α promoted the expression of NF-κB p65 and slowed p65 protein degradation, leading to nuclear accumulation of p65 and activation of the NF-κB signaling, which in turn inhibited HBV gene expression and replication. The inhibitor of the NF-κB signaling, IκBα-SR, could abrogate this HNF1α-mediated inhibition. While the dimerization domain of HNF1α was dispensable for the induction of LHBs expression, all the domains of HNF1α was required for the inhibition of HBV gene expression. Our findings identify a novel role of HNF1α in the regulation of HBV gene expression and replication.
Collapse
Affiliation(s)
- Junyu Lin
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanfeng Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuai Tao
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxian Cui
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (YHX); (JL)
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (YHX); (JL)
| |
Collapse
|
11
|
Chao CCK. Inhibition of apoptosis by oncogenic hepatitis B virus X protein: Implications for the treatment of hepatocellular carcinoma. World J Hepatol 2016; 8:1061-1066. [PMID: 27660672 PMCID: PMC5026997 DOI: 10.4254/wjh.v8.i25.1061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). In addition, hepatoma upregulated protein (HURP) is a cellular oncogene that is upregulated in a majority of HCC cases. We highlight here recent findings demonstrating a link between HBx, HURP and anti-apoptosis effects observed in cisplatin-treated HCC cells. We observed that Hep3B cells overexpressing HBx display increased HURP mRNA and protein levels, and show resistance to cisplatin-induced apoptosis. Knockdown of HURP in HBx-expressing cells reverses this effect, and sensitizes cells to cisplatin. The anti-apoptotic effect of HBx requires activation of the p38/MAPK pathway as well as expression of SATB1, survivin and HURP. Furthermore, silencing of HURP using short-hairpin RNA promotes accumulation of p53 and reduces cell proliferation in SK-Hep-1 cells (p53+/–), whereas these effects are not observed in p53-mutant Mahlavu cells. Similarly, HURP silencing does not affect the proliferation of H1299 lung carcinoma cells or Hep3B HCC cells which lack p53. Silencing of HURP sensitizes SK-Hep-1 cells to cisplatin. While HURP overexpression promotes p53 ubiquitination and degradation by the proteasome, HURP silencing reverses these effects. Inoculation of SK-Hep-1 cancer cells in which HURP has been silenced produces smaller tumors than control in nude mice. Besides, gankyrin, a positive regulator of the E3 ubiquitin ligase MDM2, is upregulated following HURP expression, and silencing of gankyrin reduces HURP-mediated downregulation of p53. In addition, we observed a positive correlation between HURP and gankyrin protein levels in HCC patients (r2 = 0.778; n = 9). These findings suggest a role for the viral protein HBx and the host protein HURP in preventing p53-mediated apoptosis during cancer progression and establishment of chemoresistance.
Collapse
|
12
|
Lamontagne RJ, Bagga S, Bouchard MJ. Hepatitis B virus molecular biology and pathogenesis. HEPATOMA RESEARCH 2016; 2:163-186. [PMID: 28042609 PMCID: PMC5198785 DOI: 10.20517/2394-5079.2016.05] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- R. Jason Lamontagne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sumedha Bagga
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
13
|
Oh IS, Park SH. Immune-mediated Liver Injury in Hepatitis B Virus Infection. Immune Netw 2015; 15:191-8. [PMID: 26330805 PMCID: PMC4553257 DOI: 10.4110/in.2015.15.4.191] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/26/2015] [Accepted: 08/02/2015] [Indexed: 12/29/2022] Open
Abstract
Hepatitis B virus (HBV) is responsible for approximately 350 million chronic infections worldwide and is a leading cause of broad-spectrum liver diseases such as hepatitis, cirrhosis and liver cancer. Although it has been well established that adaptive immunity plays a critical role in viral clearance, the pathogenetic mechanisms that cause liver damage during acute and chronic HBV infection remain largely known. This review describes our current knowledge of the immune-mediated pathogenesis of HBV infection and the role of immune cells in the liver injury during hepatitis B.
Collapse
Affiliation(s)
- In Soo Oh
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea. ; Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
14
|
Abstract
Gene mutation's role in initiating carcinogenesis has been controversial, but it is consensually accepted that both carcinogenesis and cancer metastasis are gene-regulated processes. MTA1, a metastasis-associated protein, has been extensively researched, especially regarding its role in cancer metastasis. In this review, I try to elucidate MTA1's role in both carcinogenesis and metastasis from a different angle. I propose that MTA1 is a stress response protein that is upregulated in various stress-related situations such as heat shock, hypoxia, and ironic radiation. Cancer cells are mostly living in a stressful environment of hypoxia, lack of nutrition, and immune reaction attacks. To cope with all these stresses, MTA1 expression is upregulated, plays a role of master regulator of gene expression, and helps cancer cells to survive and migrate out of their original dwelling.
Collapse
Affiliation(s)
- Rui-An Wang
- State Key Lab for Cancer Biology, Department of Pathology, Xijing Hospital, Xi'an, China,
| |
Collapse
|
15
|
Chang KC, Chang Y, Wang LHC, Tsai HW, Huang W, Su IJ. Pathogenesis of virus-associated human cancers: Epstein–Barr virus and hepatitis B virus as two examples. J Formos Med Assoc 2014; 113:581-90. [PMID: 24095032 DOI: 10.1016/j.jfma.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 08/02/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
|
16
|
Park ES, Park YK, Shin CY, Park SH, Ahn SH, Kim DH, Lim KH, Kwon SY, Kim KP, Yang SI, Seong BL, Kim KH. Hepatitis B virus inhibits liver regeneration via epigenetic regulation of urokinase-type plasminogen activator. Hepatology 2013; 58:762-76. [PMID: 23483589 DOI: 10.1002/hep.26379] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Liver regeneration after liver damage caused by toxins and pathogens is critical for liver homeostasis. Retardation of liver proliferation was reported in hepatitis B virus (HBV) X protein (HBx)-transgenic mice. However, the underlying mechanism of the HBx-mediated disturbance of liver regeneration is unknown. We investigated the molecular mechanism of the inhibition of liver regeneration using liver cell lines and a mouse model. The mouse model of acute HBV infection was established by hydrodynamic injection of viral DNA. Liver regeneration after partial hepatectomy was significantly inhibited in the HBV DNA-treated mice. Mechanism studies have revealed that the expression of urokinase-type plasminogen activator (uPA), which regulates the activation of hepatocyte growth factor (HGF), was significantly decreased in the liver tissues of HBV or HBx-expressing mice. The down-regulation of uPA was further confirmed using liver cell lines transiently or stably transfected with HBx and the HBV genome. HBx suppressed uPA expression through the epigenetic regulation of the uPA promoter in mouse liver tissues and human liver cell lines. Expression of HBx strongly induced hypermethylation of the uPA promoter by recruiting DNA methyltransferase (DNMT) 3A2. CONCLUSION Taken together, these results suggest that infection of HBV impairs liver regeneration through the epigenetic dysregulation of liver regeneration signals by HBx.
Collapse
Affiliation(s)
- Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lu HZ, Zhou JH. Hepatitis B virus X protein up-regulates tumor necrosis factor-α expression in cultured mesangial cells via ERKs and NF-κB pathways. Asian Pac J Trop Biomed 2013; 3:217-22. [PMID: 23620841 PMCID: PMC3631753 DOI: 10.1016/s2221-1691(13)60053-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/27/2013] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To investigate the effects of hepatitis B virus (HBV) X protein (HBx) on the expression of tumor necrosis factor-α (TNF-α) in glomerular mesangial cells (GMCs) and the underlying intracellular signal pathways. METHODS The plasmid pCI-neo-X that carries the X gene of hepatitis B virus was transfected into cultured GMCs. HBx expression in the transfected GMCs was assessed by Western-blot. TNF-α protein and mRNA were assessed by ELISA and semi-quantitative RT-PCR, respectively. Three kinase inhibitors-U0126, an inhibitor of extracellular signal-regulated kinases (ERKs); lactacystin, an inhibitor of nuclear factor-κB (NF-κB); and SB203580, a selective inhibitor of p38 MAP kinase (p38 MAPK) were used to determine which intracellular signal pathways may underlie the action of HBx on TNF-α expression in transfected GMCs. RESULTS A significant increase in HBx expression in pCI-neo-X transfected GMCs was detected at 36 h and 48 h, which was not affected by any of those kinase inhibitors mentioned above. A similar increase in the expression of both TNF-α protein and mRNA was also observed at 36 h and 48 h, which was significantly decreased in the presence of U0126 or lactacytin, but not SB203580. CONCLUSIONS HBx upregulates TNF-α expression in cultured GMCs, possibly through ERKs and NF-κB pathway, but not p38 MAPK pathway.
Collapse
Affiliation(s)
- Hong-Zhu Lu
- Deptartment of Pediatrics, Clinical Medical College, Yangtze University, Jingzhou 434000, China
| | - Jian-Hua Zhou
- Deptartment of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Rawat S, Clippinger AJ, Bouchard MJ. Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 2012; 4:2945-72. [PMID: 23202511 PMCID: PMC3509679 DOI: 10.3390/v4112945] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 12/18/2022] Open
Abstract
Worldwide, an estimated 350 million people are chronically infected with the Hepatitis B Virus (HBV); chronic infection with HBV is associated with the development of severe liver diseases including hepatitis and cirrhosis. Individuals who are chronically infected with HBV also have a significantly higher risk of developing hepatocellular carcinoma (HCC) than uninfected individuals. The HBV X protein (HBx) is a key regulatory HBV protein that is important for HBV replication, and likely plays a cofactor role in the development of HCC in chronically HBV-infected individuals. Although some of the functions of HBx that may contribute to the development of HCC have been characterized, many HBx activities, and their putative roles during the development of HBV-associated HCC, remain incompletely understood. HBx is a multifunctional protein that localizes to the cytoplasm, nucleus, and mitochondria of HBV‑infected hepatocytes. HBx regulates numerous cellular signal transduction pathways and transcription factors as well as cell cycle progression and apoptosis. In this review, we will summarize reports in which the impact of HBx expression on cellular apoptotic pathways has been analyzed. Although various effects of HBx on apoptotic pathways have been observed in different model systems, studies of HBx activities in biologically relevant hepatocyte systems have begun to clarify apoptotic effects of HBx and suggest mechanisms that could link HBx modulation of apoptotic pathways to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- Siddhartha Rawat
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Amy J. Clippinger
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA;
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
19
|
Guo L, Yang X, Duan T. Altered microRNA expression profile in maternal and fetal liver of HBV transgenic mouse model. J Matern Fetal Neonatal Med 2012; 25:2071-7. [DOI: 10.3109/14767058.2012.678431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Zhang J, Chen WN. Inhibition of HBV-induced angiogenesis by ibuprofen: Role of HBx. Interv Med Appl Sci 2012. [DOI: 10.1556/imas.4.2012.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractChronic hepatitis B virus (HBV) carriers may develop hepatocellular carcinoma (HCC) by a wide range of mechanisms including angiogenesis. We show that HBV replication induces the expression of angiogenic proteins interleukin 6 (IL6) and cyclooxygenase-2 (Cox2). Interestingly, ibuprofen (a Cox2 inhibitor) is found to attenuate the levels of IL6 and Cox 2 which are induced by HBV replication.The mechanism of attenuation of angiogenic proteins by ibuprofen was further investigated. Our results show that HBx is involved in the increase of the expression of Cox2 through the NFκB pathway. However, the expression of Cox2 is decreased when the HBx-expressing cells are incubated with ibuprofen. The contrasting effect of HBx on Cox2 is found to be determined by differential dimer formation among the members of the NFκB family of proteins, including NFκB, RelA, and C-rel. Specifically, HBx alone results in dimer formation between NFκB and RelA, while the combined presence of HBx and ibuprofen leads to the formation of NFκB and C-rel. Additional information on the interaction network involving HBx, ibuprofen, and NFκB pathways is revealed by two-dimensional liquid chromatography-tandem mass spectrometry proteomics analysis. Taken together, our findings provide new insights on the angiogenesis induced by HBV replication.
Collapse
Affiliation(s)
- Jianhua Zhang
- 1 School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Ning Chen
- 1 School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
- 2 School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyag Drive, Singapore, 637459, Singapore
| |
Collapse
|
21
|
Feng H, Zhang J, Tan JYL, Sadrolodabaee L, Chen WN. Proteomics-related biomarkers for HBV-associated hepatocellular carcinoma: current status and future prospects. Future Virol 2012. [DOI: 10.2217/fvl.11.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HBV infection is the major cause of the development of hepatocellular carcinoma (HCC). HCC is one of the most common malignancies in the world. The morbidity rate associated with HCC is mainly linked to late diagnosis. Thus, it is very important to discover prognostic factors that can act as biomarkers for preventing HCC development, and those that can act as therapeutic targets. Proteomics analysis has been applied to identify biomarkers from clinical HCC samples. In addition, the cell-based HBV replication and viral protein overexpression system, which provides a model of the cell at an early stage of viral infection, was also used to identify biomarkers. The proteins identified at this stage may be relevant to HBV-associated HCC prognosis. In this review, we discuss the current status of proteomics analysis in the discovery of cellular proteins and prognostic HCC biomarkers, with a special focus on cell metastasis and angiogenesis.
Collapse
Affiliation(s)
- Huixing Feng
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Jianhua Zhang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Jane YL Tan
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Laleh Sadrolodabaee
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Wei Ning Chen
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
22
|
MetastamiRs: non-coding MicroRNAs driving cancer invasion and metastasis. Int J Mol Sci 2012; 13:1347-1379. [PMID: 22408395 PMCID: PMC3291964 DOI: 10.3390/ijms13021347] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of ~22 nucleotides that function as negative regulators of gene expression by either inhibiting translation or inducing deadenylation-dependent degradation of target transcripts. Notably, deregulation of miRNAs expression is associated with the initiation and progression of human cancers where they act as oncogenes or tumor suppressors contributing to tumorigenesis. Abnormal miRNA expression may provide potential diagnostic and prognostic tumor biomarkers and new therapeutic targets in cancer. Recently, several miRNAs have been shown to initiate invasion and metastasis by targeting multiple proteins that are major players in these cellular events, thus they have been denominated as metastamiRs. Here, we present a review of the current knowledge of miRNAs in cancer with a special focus on metastamiRs. In addition we discuss their potential use as novel specific markers for cancer progression.
Collapse
|
23
|
Shin HJ, Park YH, Kim SU, Moon HB, Park DS, Han YH, Lee CH, Lee DS, Song IS, Lee DH, Kim M, Kim NS, Kim DG, Kim JM, Kim SK, Kim YN, Kim SS, Choi CS, Kim YB, Yu DY. Hepatitis B virus X protein regulates hepatic glucose homeostasis via activation of inducible nitric oxide synthase. J Biol Chem 2011; 286:29872-81. [PMID: 21690090 PMCID: PMC3191028 DOI: 10.1074/jbc.m111.259978] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/13/2011] [Indexed: 12/25/2022] Open
Abstract
Dysregulation of liver functions leads to insulin resistance causing type 2 diabetes mellitus and is often found in chronic liver diseases. However, the mechanisms of hepatic dysfunction leading to hepatic metabolic disorder are still poorly understood in chronic liver diseases. The current work investigated the role of hepatitis B virus X protein (HBx) in regulating glucose metabolism. We studied HBx-overexpressing (HBxTg) mice and HBxTg mice lacking inducible nitric oxide synthase (iNOS). Here we show that gene expressions of the key gluconeogenic enzymes were significantly increased in HepG2 cells expressing HBx (HepG2-HBx) and in non-tumor liver tissues of hepatitis B virus patients with high levels of HBx expression. In the liver of HBxTg mice, the expressions of gluconeogenic genes were also elevated, leading to hyperglycemia by increasing hepatic glucose production. However, this effect was insufficient to cause systemic insulin resistance. Importantly, the actions of HBx on hepatic glucose metabolism are thought to be mediated via iNOS signaling, as evidenced by the fact that deficiency of iNOS restored HBx-induced hyperglycemia by suppressing the gene expression of gluconeogenic enzymes. Treatment of HepG2-HBx cells with nitric oxide (NO) caused a significant increase in the expression of gluconeogenic genes, but JNK1 inhibition was completely normalized. Furthermore, hyperactivation of JNK1 in the liver of HBxTg mice was also suppressed in the absence of iNOS, indicating the critical role for JNK in the mutual regulation of HBx- and iNOS-mediated glucose metabolism. These findings establish a novel mechanism of HBx-driven hepatic metabolic disorder that is modulated by iNOS-mediated activation of JNK.
Collapse
Affiliation(s)
- Hye-Jun Shin
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
- the College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Young-Ho Park
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
- the Department of Functional Genomics, University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Sun-Uk Kim
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Hyung-Bae Moon
- the Department of Pathology and Institute of Medical Science, Wonkwang University College of Medicine, Iksan 570-749, Republic of Korea
| | - Do Sim Park
- the Department of Pathology and Institute of Medical Science, Wonkwang University College of Medicine, Iksan 570-749, Republic of Korea
| | - Ying-Hao Han
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Chul-Ho Lee
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Dong-Seok Lee
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
- the College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - In-Sung Song
- the Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Dae Ho Lee
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Minhye Kim
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Nam-Soon Kim
- the Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Dae-Ghon Kim
- the Department of Internal Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561-756, Republic of Korea
| | - Jin-Man Kim
- the College of Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea, and
| | - Sang-Keun Kim
- the College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Yo Na Kim
- the Lee Gil Ya Cancer and Diabetes Institute and
| | - Su Sung Kim
- the Lee Gil Ya Cancer and Diabetes Institute and
| | - Cheol Soo Choi
- the Lee Gil Ya Cancer and Diabetes Institute and
- Division of Endocrinology Gil Medical Center, Gachon University of Medicine and Science, Incheon 406-840, Republic of Korea
| | - Young-Bum Kim
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Dae-Yeul Yu
- From the Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
- the Department of Functional Genomics, University of Science and Technology, Daejeon 305-333, Republic of Korea
| |
Collapse
|
24
|
Bouchard MJ, Navas-Martin S. Hepatitis B and C virus hepatocarcinogenesis: lessons learned and future challenges. Cancer Lett 2011; 305:123-43. [PMID: 21168955 PMCID: PMC3071446 DOI: 10.1016/j.canlet.2010.11.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/15/2010] [Accepted: 11/25/2010] [Indexed: 12/15/2022]
Abstract
Worldwide, hepatocellular carcinoma (HCC) is one of the most common cancers. It is thought that 80% of hepatocellular carcinomas are linked to chronic infections with the hepatitis B (HBV) or hepatitis C (HCV) viruses. Chronic HBV and HCV infections can alter hepatocyte physiology in similar ways and may utilize similar mechanisms to influence the development of HCC. There has been significant progress towards understanding the molecular biology of HBV and HCV and identifying the cellular signal transduction pathways that are altered by HBV and HCV infections. Although the precise molecular mechanisms that link HBV and HCV infections to the development of HCC are not entirely understood, there is considerable evidence that both inflammatory responses to infections with these viruses, and associated destruction and regeneration of hepatocytes, as well as activities of HBV- or HCV-encoded proteins, contribute to hepatocyte transformation. In this review, we summarize progress in defining mechanisms that may link HBV and HCV infections to the development of HCC, discuss the challenges of directly defining the processes that underlie HBV- and HCV-associated HCC, and describe areas that remain to be explored.
Collapse
Affiliation(s)
- Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
25
|
Xie HY, Cheng J, Xing CY, Wang JJ, Su R, Wei XY, Zhou L, Zheng SS. Evaluation of hepatitis B viral replication and proteomic analysis of HepG2.2.15 cell line after knockdown of HBx. Hepatobiliary Pancreat Dis Int 2011; 10:295-302. [PMID: 21669574 DOI: 10.1016/s1499-3872(11)60049-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) is one of the major pathogens of human liver disease. Studies have shown that HBV X protein (HBx) plays an important role in promoting viral gene expression and replication. In this study we performed a global proteomic profiling to identify the downstream functional proteins of HBx, thereby detecting the mechanisms of action of HBx on virion replication. METHODS HBx in the HepG2.2.15 cell line was knocked down by the transfection of small interfering RNA (siRNA). The replication level of HBV was evaluated by microparticle enzyme immunoassay analysis of HBsAg and HBeAg in the culture supernatant, and real-time quantitative PCR analysis of HBV DNA. Two-dimensional electrophoresis combined with MALDI-TOF/TOF was performed to analyze the changes in protein expression profile after treatment with HBx siRNA. RESULTS Knockdown of HBx disturbed HBV replication in vitro. HBx target siRNA significantly inhibited the expression of HBsAg, HBeAg and the replication of HBV DNA. Twelve significantly changed proteins (7 upregulated and 5 downregulated) were successfully identified by MALDI-TOF/TOF using proteomics differential expression analysis after the knockdown of HBx. Among these identified proteins, HSP70 was validated by Western blotting. CONCLUSION The results of the study indicated the positive effect of HBx on HBV replication, and a group of downstream target proteins of HBx may be responsible for this effect.
Collapse
Affiliation(s)
- Hai-Yang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, and Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zemel R, Issachar A, Tur-Kaspa R. The role of oncogenic viruses in the pathogenesis of hepatocellular carcinoma. Clin Liver Dis 2011; 15:261-79, vii-x. [PMID: 21689612 DOI: 10.1016/j.cld.2011.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HBV and HCV have major roles in hepatocarcinogenesis. More than 500 million people are infected with hepatitis viruses and, therefore, HCC is highly prevalent, especially in those countries endemic for HBV and HCV. Viral and host factors contribute to the development of HCC. The main viral factors include the circulating load of HBV DNA or HCV RNA and specific genotypes. Various mechanisms are involved in the host-viral interactions that lead to HCC development, among which are genetic instability, self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasiveness. Prevention of HBV by vaccination, as well as antiviral therapy against HBV and for HCV seem able to inhibit the development of HCC.
Collapse
Affiliation(s)
- Romy Zemel
- Department of Medicine D and the Liver Institute, Rabin Medical Center, Beilinson Hospital, Molecular Hepatology Research Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, 39 Jabotinsky Street, Petah-Tikva 49100, Israel
| | | | | |
Collapse
|
27
|
DLEC1 Expression Is Modulated by Epigenetic Modifications in Hepatocelluar Carcinoma Cells: Role of HBx Genotypes. Cancers (Basel) 2010; 2:1689-704. [PMID: 24281182 PMCID: PMC3837332 DOI: 10.3390/cancers2031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/23/2010] [Accepted: 09/08/2010] [Indexed: 11/16/2022] Open
Abstract
Deleted in Lung and Esophageal Cancer 1 (DLEC1) is a functional tumor suppressor gene (TSG). It has been found to be silenced in a variety of human cancers including hepatocellular carcinoma (HCC). The silencing of DLEC1 can be modulated by epigenetic modifications, such as DNA hypermethylation and histone hypoacetylation. In the case of HCC, hepatitis B virus X protein (HBx) has been implicated in methylation of target promoters resulting in the down-regulation of tumor suppressor genes, which in turn contributes to the development of HCC. In the present study, we first established a cell system in which epigenetic modifications can be modulated using inhibitors of either DNA methylation or histone deacetylation. The cell system was used to reveal that the expression of DLEC1 was upregulated by HBx in a genotype-dependent manner. In particular, HBx genotype A was found to decrease DNA methylation of the DLEC1 promoter. Our results have provided new insights on the impact of HBx in HCC development by epigenetic modifications.
Collapse
|
28
|
Apoptosis of hepatitis B virus-infected hepatocytes prevents release of infectious virus. J Virol 2010; 84:11994-2001. [PMID: 20719950 DOI: 10.1128/jvi.00653-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis of infected cells is critically involved in antiviral defense. Apoptosis, however, may also support the release and spread of viruses. Although the elimination of infected hepatocytes is required to combat hepatitis B virus (HBV) infection, it is still unknown which consequences hepatocyte apoptosis has for the virus and whether or not it is advantageous to the virus. To study this, we designed a cell culture model consisting of both HBV-producing cell lines and primary human hepatocytes serving as an infection model. We showed that the release of mature, enveloped virions was 80% to 90% reduced 24 h after the induction of apoptosis in HBV-replicating hepatoma cells or HBV-infected hepatocytes. Importantly, HBV particles released from apoptotic hepatocytes were immature and nonenveloped and proved not to be infectious. We found an inverse correlation between the strength of an apoptotic stimulus and the infectivity of the virus particles released: the more potent the apoptotic stimulus, the higher the ratio of nonenveloped capsids to virions and the lower their infectivity. Furthermore, we demonstrated that HBV replication and, particularly, the expression of the HBx protein transcribed from the viral genome during replication do not sensitize cells to apoptosis. Our data clearly reject the hypothesis that the apoptosis of infected hepatocytes facilitates the propagation of HBV. Rather, these data indicate that HBV needs to prevent the apoptosis of its host hepatocyte to ensure the release of infectious progeny and, thus, virus spread in the liver.
Collapse
|
29
|
Kim KH. [Pro-apoptotic function of hepatitis B virus X protein]. THE KOREAN JOURNAL OF HEPATOLOGY 2010; 16:112-22. [PMID: 20606495 DOI: 10.3350/kjhep.2010.16.2.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection of hepatitis B virus (HBV) is a main cause of liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). Among the HBV-encoded proteins, the HBV X protein (HBx) has been suspected to be strongly involved in HBV-associated liver pathogenesis. HBx, a virally encoded multifunctional regulator, has been shown to induce apoptosis, anti-apoptosis, proliferation, and transformation of cells depending on the cell lines, model systems used, assay protocols, and research groups. Among the several activities of HBx, the pro-apoptotic function of HBx will be discussed in this review. Given that the disruption of apoptosis pathway by HBx contributes to the liver pathogenesis, a better understanding of the molecular interference in the cellular pro-apoptotic networks by HBx will provide useful clues for the intervention in HBV-mediated liver diseases.
Collapse
Affiliation(s)
- Kyun-Hwan Kim
- Department of Pharmacology, School of Medicine and Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University, Seoul, Korea.
| |
Collapse
|
30
|
Kuo TC, Chao CCK. Hepatitis B virus X protein prevents apoptosis of hepatocellular carcinoma cells by upregulating SATB1 and HURP expression. Biochem Pharmacol 2010; 80:1093-102. [PMID: 20541537 DOI: 10.1016/j.bcp.2010.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 05/28/2010] [Accepted: 06/03/2010] [Indexed: 02/06/2023]
Abstract
Protein X from hepatitis B virus (HBV) appears to play a critical role in the development of hepatocellular carcinoma (HCC). The hepatoma upregulated protein (HURP) is also upregulated in a majority of HCC cases, therefore suggesting that HURP represents an oncogene. In this study, we describe a link between the viral protein HBx, HURP, and the establishment of cisplatin chemoresistance in HCC cells. Hep3B cells which express HBx displayed increased levels of HURP mRNA and protein, and showed resistance to cisplatin-induced apoptosis. Knockdown of HURP in HBx-expressing cells reversed this effect and sensitized Hep3B cells to cisplatin. Interestingly, SATB1, a global gene regulator which is often overexpressed in malignant breast cancer, was also induced following expression of HBx. The anti-apoptotic effect of HBx was shown to require activation of the p38/MAPK pathway in Hep3B cells. In addition, the expression of survivin, an anti-apoptotic protein, was also upregulated by HBx in an HURP-dependent manner. Taken together, these results indicate that HBx activates the expression of HURP via the p38/MAPK pathway and the SATB1 protein, culminating with the accumulation of the anti-apoptotic protein survivin. Our findings illustrate the role of the viral protein HBx in preventing apoptosis during cancer progression and establishment of chemoresistance.
Collapse
Affiliation(s)
- Tzu-Ching Kuo
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, Chang Gung University, Gueishan, Taoyuan 333, Taiwan, ROC
| | | |
Collapse
|
31
|
HBx-Induced Hepatic Steatosis and Apoptosis Are Regulated by TNFR1- and NF-κB-Dependent Pathways. J Mol Biol 2010; 397:917-31. [DOI: 10.1016/j.jmb.2010.02.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/05/2010] [Accepted: 02/09/2010] [Indexed: 12/15/2022]
|
32
|
A mutant of HBx (HBxDelta127) promotes hepatoma cell growth via sterol regulatory element binding protein 1c involving 5-lipoxygenase. Acta Pharmacol Sin 2010; 31:367-74. [PMID: 20173757 DOI: 10.1038/aps.2010.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Previously, we identified a natural mutant of hepatitis B virus X gene (HBx) with a deletion from 382 to 401 base pairs (termed HBxDelta127), which could potently enhance growth of hepatoma cells. In this study, we further investigated the mechanism of increased hepatoma cell growth that was mediated by HBxDelta127. METHODS We examined the effect of HBxDelta127 on the transcription factor sterol regulatory element-binding protein 1c (SREBP-1c) and fatty acid synthase (FAS) in a model of HepG2-XDelta127 (or H7402-XDelta127) cells, which was stably transfected with HBxDelta127 gene in a human hepatoma HepG2 (or H7402) cell line. RESULTS Relative to wild type HBx, HBxDelta127 was able to potently activate SREBP-1c at the levels of promoter activity, mRNA and protein by a luciferase reporter gene assay, RT-PCR and Western blot analysis. Then, using the treatment with MK886, a specific 5-lipoxygenases (5-LOX) inhibitor, (or 5-LOX siRNA) we identified that 5-LOX was responsible for the upregulation of SREBP-1c by luciferase reporter gene assay, RT-PCR and Western blot analysis. Because FAS was a target gene of SREBP-1c, we further showed that HBxDelta127 was able to strongly activate the promoter activity of FAS and upregulated the mRNA expression level of FAS as well, by luciferase reporter gene assay and RT-PCR. In function, flow cytometry analysis revealed that FAS contributed to the growth of hepatoma cells that was mediated by HBxDelta127, using cerulenin (a FAS inhibitor). CONCLUSION HBxDelta127 promotes hepatoma cell growth through activating SREBP-1c involving 5-LOX.
Collapse
|
33
|
Li W, Miao X, Qi Z, Zeng W, Liang J, Liang Z. Hepatitis B virus X protein upregulates HSP90alpha expression via activation of c-Myc in human hepatocarcinoma cell line, HepG2. Virol J 2010; 7:45. [PMID: 20170530 PMCID: PMC2841080 DOI: 10.1186/1743-422x-7-45] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/20/2010] [Indexed: 02/06/2023] Open
Abstract
Background The Hepatitis B Virus X protein (HBx) plays a major role in hepatocellular carcinoma (HCC) development, however, its contribution to tumor invasion and metastasis has not been established so far. Heat shock protein 90 alpha (HSP90alpha) isoform is an ATP-dependent molecular chaperone that maintains the active conformation of client oncoproteins in cancer cells, which is abundantly expressed in HCC, especially in hepatitis B virus (HBV)-related tumors, might be involved in tumor progression. Methods The levels of HSP90alpha, extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated ERK1/2 (p-ERK1/2) and c-Myc in HBx-transfected HepG2 cells were determined by western blots analysis. The endogenous ERKs activity was demonstrated by ELISA assay. The regulation of c-Myc-mediated HSP90 alpha promoter transactivation by HBx was evaluated through electrophoretic mobility shift analysis (EMSA). The c-Myc-mediated HSP90alpha transcription was analysed by promoter assay. The HBx-expressing cells were transfected with specific small interference RNA (siRNA) against c-Myc. The in vitro invasion potentials of cells were evaluated by Transwell cell invasion assay. Results HBx induces HSP90alpha expression at the transcription level. The induction effect of HBx was inhibited after treatment with c-Myc inhibitor, 10058-F4. In addition, the luciferase activity of the HSP90alpha promoter analysis revealed that the HBx is directly involved in the c-Myc-mediated transcriptional activation of HSP90alpha. Furthermore, HBx induces c-Myc expression by activation of Ras/Raf/ERK1/2 cascades, which in turn results in activation of the c-Myc-mediated HSP90alpha promoter and subsequently up-regulation of the HSP90alpha expression. Overexpression of HSP90alpha in HBx-transfected cells enhances tumor cells invasion. siRNA-mediated c-Myc knockdown in HBx-transfected cells significantly suppressed HSP90alpha expression and cells invasion in vitro. Conclusion These results demonstrate the ability of HBx to promote tumor cells invasion by a mechanism involving the up-regulation of HSP90alpha and provide new insights into the mechanism of action of HBx and its involvement in tumor metastasis and recurrence of HCC.
Collapse
Affiliation(s)
- Weihua Li
- Department of Infectious disease, the First affiliated Hospital of Guangzhou Medical College, Guangzhou 510102, Guangdong province, PR China.
| | | | | | | | | | | |
Collapse
|
34
|
Levrero M, Belloni L. HBV Signaling. SIGNALING PATHWAYS IN LIVER DISEASES 2010:465-481. [DOI: 10.1007/978-3-642-00150-5_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
|
36
|
Bui-Nguyen TM, Pakala SB, Sirigiri DR, Martin E, Murad F, Kumar R. Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein HBx requires MTA1 coregulator. J Biol Chem 2009; 285:6980-6. [PMID: 20022949 DOI: 10.1074/jbc.m109.065987] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide has been implicated in the pathogenesis of inflammatory disorders, including hepatitis B virus-associated hepatocellular carcinoma. Transactivator protein HBx, a major regulator of cellular responses of hepatitis B virus, is known to induce the expression of MTA1 (metastasis-associated protein 1) coregulator via NF-kappaB signaling in hepatic cells. However, the underlying mechanism of HBx regulation of the inducible nitric-oxide synthase (iNOS) pathway remains unknown. Here we provide evidence that MTA1 is a positive regulator of iNOS transcription and plays a mechanistic role in HBx stimulation of iNOS expression and activity. We found that the HBx-MTA1 complex is recruited onto the human iNOS promoter in an NF-kappaB-dependent manner. Pharmacological inhibition of the NF-kappaB signaling prevented the ability of HBx to stimulate the transcription, the expression, and the activity of iNOS; nevertheless, these effects could be substantially rescued by MTA1 dysregulation. We further discovered that HBx-mediated stimulation of MTA1 is paralleled by the suppression of miR-661, a member of the small noncoding RNAs, recently shown to target MTA1. We observed that miR-661 controls of MTA1 expression contributed to the expression and activity of iNOS in HBx-expressing HepG2 cells. Accordingly, depletion of MTA1 by either miR-661 or siRNA in HBx-expressing cells severely impaired the ability of HBx to modulate the endogenous levels of iNOS and nitrite production. Together, these findings reveal an inherent role of MTA1 in HBx regulation of iNOS expression and consequently its function in the liver cancer cells.
Collapse
Affiliation(s)
- Tri M Bui-Nguyen
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Consequences of human herpes simplex virus (HSV) infection include the induction of apoptosis and the concomitant synthesis of proteins which act to block this process from killing the infected cell. Recent data has clarified our current understanding of the mechanisms of induction and prevention of apoptosis by HSV. These findings emphasize the fact that modulation of apoptosis by HSV during infection is a multicomponent phenomenon. We review recent evidence showing how this important human pathogen modulates the fundamental cell death process.
Collapse
Affiliation(s)
- Margot L Goodkin
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
38
|
Guo XR, Cheng B, Zheng YC, Wang Y, Wang F, Xia XM, Li PY. Significance of HBx gene up-regulated expression of DNA repair enzyme hMTH1 in the HepG2 cells. Shijie Huaren Xiaohua Zazhi 2009; 17:1660-1664. [DOI: 10.11569/wcjd.v17.i16.1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of oxidative DNA damage repair enzyme hMTH1 in the HBx-induced hepatocellular carcinoma.
METHODS: 8-OHdG levels were determined using HPLC/ECD in the HepG2/HBx and in HepG2 and HepG2/pcDNA3.1 of the control cells. Using the β-actin as the interior control, real-time quantitative polymerase chain reaction (qPCR) was employed to examine the expression of DNA repair enzyme hMTH1 of hydrolyze 8-OHdG.
RESULTS: The 8-OHdG level was significantly higher in the HepG2/HBx than in HepG2 and HepG2/pcDNA3.1 (36.5 ± 6.25 vs 8.52 ± 1.65, 9.12 ± 2.69 fmol 8-OHdG/mg DNA, both P < 0.05), and the expression of DNA repair enzyme hMTH1 mRNA was significantly higher than the control cells (1.213 ± 0.100 vs 0.087 ± 0.026, 0.112 ± 0.052 hMTH1/β-actin mRNA×100, both P < 0.05).
CONCLUSION: HBx gene may increase the level of oxidative DNA-adduct 8-OHdG by promoting the oxidative stress in HepG2 cells, thus reactivity increases the expression of DNA repair enzyme hMTH1.
Collapse
|
39
|
Cheng B, Guo X, Zheng Y, Wang Y, Liu C, Li P. The effects of HBx gene on the expression of DNA repair enzymes hOGG1 and hMYHalpha mRNA in HepG2 cells. ACTA ACUST UNITED AC 2009; 29:187-92. [PMID: 19399402 DOI: 10.1007/s11596-009-0210-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Indexed: 12/26/2022]
Abstract
To observe the alteration in the expression of DNA repair enzymes hOGG1 and hMYHalpha and the change in 8-OHdG levels in the HBx gene-transfected cells HepG2/HBx and to explore the mechanisms of the HBV-associated hepatocellular carcinoma, the gene-transfected cells HepG2/HBx which stably expressed HBx was established, and the effect of HBx on the cell cycle and proliferation of HepG2 was examined. By using the beta-actin as the interior control, real-time polymerase chain reaction (Real-time qPCR) was employed to quantitatively detect the expression of DNA repair enzymes hOGG1 and hMYHalpha in the HepG2/HBx, the control cells HepG2 and HepG2 transfected with pcDNA3.1 vector (HepG2/pDNA3.1). The 8-OHdG levels were determined by HPLC/ECD in the established gene-transfected cells HepG2/HBx and the control cells HepG2 and HepG2/pcDNA3.1. Our results showed that the expression of DNA repair enzyme hMYHalpha in the HepG2/HBx (0.021+/-0.007) was significantly lower than that of HepG2 (0.099+/-0.041) (P<0.05) and HepG2/pDNA3.1 (0.121+/-0.005) (P<0.05). However, the no significant differences existed in the expression of DNA repair enzyme hOGG1 among the three cell strains (P>0.05). The 8-OHdG level in the HepG2/HBx was significantly higher than that in HepG2 and HepG2/pcDNA3.1 (P<0.05). It is concluded that HBx gene may inhibit the expression of DNA repair enzyme hMYHalpha mRNA to impair the ability to repair the intracellular DNA oxidative damage, to increase the oxidative DNA-adduct 8-OHdG and to affect the nucleotide excision repair function, thus participate in the occurrence and development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | | | | | | | |
Collapse
|
40
|
Hepatitis B virus X protein modulates apoptosis in primary rat hepatocytes by regulating both NF-kappaB and the mitochondrial permeability transition pore. J Virol 2009; 83:4718-31. [PMID: 19279112 DOI: 10.1128/jvi.02590-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hepatitis B virus (HBV) X protein (HBx) is a multifunctional protein that regulates numerous cellular signal transduction pathways, including those that modulate apoptosis. However, different HBx-dependent effects on apoptosis have been reported; these differences are likely the consequence of the exact conditions and cell types used in a study. Many of the previously reported studies that analyzed HBx regulation of apoptosis were conducted in immortalized or transformed cells, and the alterations that have transformed or immortalized these cells likely impact apoptotic pathways. We examined the effects of HBx on apoptotic pathways in cultured primary rat hepatocytes, a biologically relevant system that mimics normal hepatocytes in the liver. We analyzed the effects of HBx on apoptosis both when HBx was expressed in the absence of other HBV proteins and in the context of HBV replication. HBx stimulation of NF-kappaB inhibited the activation of apoptotic pathways in cultured primary rat hepatocytes. However, when HBx-induced activation of NF-kappaB was blocked, HBx stimulated apoptosis; blocking the activity of the mitochondrial permeability transition pore inhibited HBx activation of apoptosis. These results suggest that HBx can be either proapoptotic or antiapoptotic in hepatocytes, depending on the status of NF-kappaB, and confirm previous studies that link some HBx activities to modulation of the mitochondrial permeability transition pore. Overall, our studies define apoptotic pathways that are regulated by HBx in cultured primary hepatocytes and provide potential mechanisms for the development of HBV-associated liver cancer.
Collapse
|
41
|
|
42
|
Guo XR, Cheng B, Zheng YC, Lin ST, Li PY. Effects of down-regulation of p21 by HBx gene on HepG2 cell proliferation and apoptosis. Shijie Huaren Xiaohua Zazhi 2008; 16:2080-2085. [DOI: 10.11569/wcjd.v16.i19.2080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish gene-transfected cell strain HepG2/HBx and study the effect of HBx on cell cycle, proliferation and apoptosis of HepG2 cells as well as the potential regulative role of p21.
METHODS: HBx was transfected into HepG2 cells and G418 selection was used to obtain the positive clones of HepG2/HBx cells. Then HBx mRNA expression and protein expression were detected using RT-PCR and western blot analysis respectively. MTT assay and flow cytometry were adopted to measure the proliferation, cell cycle and apoptosis of HepG2/HBx, HepG2 and HepG2/pcDNA3.1 (HepG2 cells transfected with pcDNA3.1) cells. Semi-quantified RT-PCR was used to evaluate the expression of p21 and p53 in three groups.
RESULTS: The expression of mRNA and protein of HBx in HepG2/HBx cells was confirmed by RT-PCR and western blot respectively. The proliferation of HepG2/HBx cells was accelerated. The proportion of HepG2/HBx cells decreased significantly in G0/G1 phase (43.34% ± 3.11% vs 57.69 ± 4.28%, P < 0.01), but increased remarkably in S phase (28.69% ± 1.17% vs 22.41% ± 1.99%, P < 0.05) and the apoptosis rate of HepG2/HBx cells was at a significantly lower level (1.19% ± 0.06% vs 5.43% ± 0.42%, P < 0.001). Compared with HepG2 and HepG2/pcDNA3.1 cells, the expression of p21 mRNA in HepG2/HBx was down-regulated (0.16 ± 0.05 vs 0.78 ± 0.15, P < 0.001), while there was no significant difference in the expression of p53 gene.
CONCLUSION: The HBx gene down-regulates the expression of p21 mRNA, which may play an important role in accelerating cell cycle, improving growth and inhibiting apoptosis of HepG2 cells.
Collapse
|
43
|
Wei L, Kwang J, Wang J, Shi L, Yang B, Li Y, Liu J. Porcine circovirus type 2 induces the activation of nuclear factor kappa B by IkappaBalpha degradation. Virology 2008; 378:177-84. [PMID: 18561971 DOI: 10.1016/j.virol.2008.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 05/14/2008] [Indexed: 11/28/2022]
Abstract
The transcription factor NF-kappaB is commonly activated upon virus infection and a key player in the induction and regulation of the host immune response. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), which is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome, can activate NF-kappaB in PCV2-infected PK15 cells. In PCV2-infected cells, NF-kappaB was activated concomitantly with viral replication, which was characterized by increased DNA binding activity, translocation of NF-kappaB p65 from the cytoplasm to the nucleus, as well as degradation and phosphorylation of IkappaBalpha protein. We further demonstrated PCV2-induced activation of NF-kappaB and colocalization of p65 nuclear translocation with virus replication in cultured cells. Treatment of cells with CAPE, a selective inhibitor of NF-kappaB activation, reduced virus protein expression and progeny production followed by decreasing PCV2-induced apoptotic caspase activity, indicating the involvement of this transcription factor in induction of cell death. Taken together, these data suggest that NF-kappaB activation is important for PCV2 replication and contributes to virus-mediated changes in host cells. The results presented here provide a basis for understanding molecular mechanism of PCV2 infection.
Collapse
Affiliation(s)
- Li Wei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry Sciences, No.9 Shuguang Garden Central Road, Haidian District, Beijing 100097, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Kuo CY, Wang JC, Wu CC, Hsu SL, Hwang GY. Effects of hepatitis B virus X protein (HBx) on cell-growth inhibition in a CCL13-HBx stable cell line. Intervirology 2008; 51:26-32. [PMID: 18309246 DOI: 10.1159/000118793] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/03/2008] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The known function of hepatitis B virus X protein (HBx) is to determine the fate of cells by modulating various signaling pathways. In our previous study, we demonstrated that HBx inhibits tumor formation in nude mice injected with CCL13-HBx stable cell lines; however, the mechanism underlying this inhibition is unclear. METHODS To investigate the possible mechanisms underlying HBx involvement in CCL13-HBx cells, gene profiles were initially analyzed by DNA microarray technology and subsequently confirmed by performing semiquantitative RT-PCR and Western blotting. Furthermore, the phenomenon of cell death via apoptosis was detected via DNA fragmentation, TUNEL staining, caspase-3 activity assay, and propidium iodide (PI) staining. RESULTS The results indicated that HBx induction downregulated Wnt-3 and beta-catenin that are involved in cell proliferation. Moreover, HBx induction repressed cell growth and downregulated the expressions of cyclin D1, CDK4, cyclin E, CDK2, and cyclin B1. Furthermore, HBx induction triggered cell death via apoptosis, as determined by DNA fragmentation, TUNEL staining, caspase-3 activity assay, and PI staining. CONCLUSION Most importantly, our results indicated that HBx induction in the CCL13-HBx stable cell line downregulated Wnt-3/beta-catenin expression and suppressed cell growth by repressing cell proliferation or triggering cell apoptosis.
Collapse
Affiliation(s)
- Chan-Yen Kuo
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
45
|
Chung C, Park SG, Park YM, Joh JW, Jung G. Interferon-gamma sensitizes hepatitis B virus-expressing hepatocarcinoma cells to 5-fluorouracil through inhibition of hepatitis B virus-mediated nuclear factor-kappaB activation. Cancer Sci 2007; 98:1758-66. [PMID: 17711513 PMCID: PMC11159465 DOI: 10.1111/j.1349-7006.2007.00591.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor (NF)-kappaB is important for immune responses and cell survival; however, abnormal activation of NF-kappaB is linked with many types of diseases, including hepatocellular carcinoma (HCC). Our previous report indicated that hepatitis B virus (HBV) induces NF-kappaB activation through NF-kappaB-inducing kinase (NIK), and this can be blocked specifically by interferon (IFN)-gamma. In the present study, we report that HBV expression in HCC cell lines induces drug resistance against 5-fluorouracil (5-FU). This drug resistance was abolished by inhibition of NF-kappaB activation through small interfering RNA-mediated NIK 'knockdown' and IFN-gamma treatment. In addition to the reduced NF-kappaB activation and drug resistance, the upregulated growth arrest- and DNA damage-inducible protein 45beta (Gadd45beta) in HBV-expressing HCC cell lines was downregulated by the small interfering RNA-mediated NIK knockdown and IFN-gamma treatment. The overexpression of Gadd45beta in HCC cell lines also induces drug resistance against 5-FU. Based on our data, we suggest that IFN-gamma treatment might be helpful for chemotherapy in HBV-integrated HCC through inhibition of the NIK-mediated NF-kappaB activation and downregulation of the NF-kappaB target gene Gadd45beta.
Collapse
Affiliation(s)
- Chan Chung
- School of Biological Sciences, Seoul National University, Shillim-dong, Kwanak-gu, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
46
|
Chin R, Earnest-Silveira L, Koeberlein B, Franz S, Zentgraf H, Dong X, Gowans E, Bock CT, Torresi J. Modulation of MAPK pathways and cell cycle by replicating hepatitis B virus: factors contributing to hepatocarcinogenesis. J Hepatol 2007; 47:325-37. [PMID: 17512084 DOI: 10.1016/j.jhep.2007.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Chronic infection with the hepatitis B virus (HBV) is strongly associated with the development of hepatocellular carcinoma but the mechanism by which this occurs is unknown. Numerous studies have focused on the HBV X protein showing that it activates signal transduction pathways while few have investigated these changes in HBV-replicating hepatocytes. METHODS We utilized the recombinant adenovirus system to deliver a replication competent HBV genome into Huh7 and primary marmoset hepatocytes (PMH) to examine the effects of active viral replication on the regulation of Ras-ERK signal transduction and related pathways. RESULTS Huh7 cells and PMHs replicating HBV demonstrated significant upregulation in phosphorylated ERK, Akt, c-myc together with increased p53, cyclin B1 and p21(cip1) expression and cell cycle progression to G2 phase in the absence of increased cell proliferation. Phosphorylation of the key cell survival kinase, Akt, was significantly increased, resulting in increased serine phosphorylation of the downstream target, GSK3-beta. CONCLUSIONS These results demonstrated simultaneous activation of the MAP Kinase and Akt pathways in HBV-replicating hepatocytes that resulted in dysregulation in the control of cell cycle progression and which help explain the early pathogenic mechanisms that underlie malignant transformation associated with chronic hepatitis B infection.
Collapse
Affiliation(s)
- Ruth Chin
- Department of Medicine, CCREID, Royal Melbourne Hospital, University of Melbourne, Post Office, Parkville, Vic. 3050, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen HY, Tang NH, Lin N, Chen ZX, Wang XZ. Hepatitis B virus X protein induces apoptosis and cell cycle deregulation through interfering with DNA repair and checkpoint responses. Hepatol Res 2007; 38:174-82. [PMID: 17683505 DOI: 10.1111/j.1872-034x.2007.00213.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM To investigate the effects of hepatitis B virus X (HBx) gene on apoptosis and cell cycle in hepatocyte line HL-7702 and to discuss the possible mechanisms in the pathway. METHODS The recombinant plasmid pcDNA3-X and vector pcDNA3 were transfected into HL-7702 cells and selected by G418 to construct two new cell lines, which were named HL-7702-HBx and HL-7702-con, respectively. Reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis were used to confirm that HBx gene was expressed steadily in the HL-7702-HBx cells. Then apoptosis and cell cycle of the two cells were detected by DNA ladder, flow cytometric analysis, and electronic microscope observation. Apoptosis and cell cycle gene expressions in the two cells were subsequently evaluated by using gene arrays. Some of results were further confirmed by real-time PCR and western blot analysis. RESULTS RT-PCR and the western blot analysis showed that HL-7702-HBx expressed the HBx gene steadily. Comparedwith the HL-7702-con cells, there was increased apoptosis and accumulation of the S phase in the HL-7702-HBx cells. The gene array analysis indicated that some DNA repair genes (XRCC1, DDB1, etc.) and DNA damage checkpoint-related genes (Cdc47, RAD17, etc.) played roles in the HBx-mediated imbalance of apoptosis and cell cycle. Both cDNA array analysis and real-time RT-PCR showed that mRNA of XRCC1, Cdc47 and RAD17 were upregulated by HBx. Unexpectedly, the western blot analysis revealed that HBx inhibited their protein expression. CONCLUSION The expression of HBx in HL-7702 cells promoted apoptosis and accumulation of the S phase through the inhibition of DNA repair and checkpoints via post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Hong-Ying Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, China
| | | | | | | | | |
Collapse
|
48
|
Su JM, Lai XM, Lan KH, Li CP, Chao Y, Yen SH, Chang FY, Lee SD, Lee WP. X protein of hepatitis B virus functions as a transcriptional corepressor on the human telomerase promoter. Hepatology 2007; 46:402-13. [PMID: 17559154 DOI: 10.1002/hep.21675] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED The X protein of hepatitis B virus (HBx) is essential for transactivation of hepatitis B viral and host cellular genes. It has been specifically implicated in the development of hepatocellular carcinoma; however, the molecular mechanism remains unknown. Telomeres, the DNA-protein complexes at the ends of eukaryotic chromosomes, protect chromosomes from degradation at the terminal regions, fusion with a broken DNA end, and inappropriate recombination. The shortening of telomeres that occurs during hepatocellular carcinogenesis has been well studied. In the present study, we isolated an HBx isoform that resulted in telomere shortening in hepatoma cell lines. We found that this HBx isoform down-regulated the expression of human telomerase by transcriptionally repressing its promoter. To further determine the molecular mechanism, we examined human telomerase promoter and identified myc-associated zinc finger protein (MAZ) as a transcriptional repressor of the promoter. We found that the HBx isoform achieved transcriptional suppression of human telomerase by enhancing MAZ binding to its consensus sequence in the promoter through physical association with MAZ. CONCLUSION The data suggest that HBx can induce telomere shortening by acting as a transcriptional corepressor of MAZ on the human telomerase promoter.
Collapse
Affiliation(s)
- Jiun-Ming Su
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zheng Y, Chen WL, Ma WLM, Chang C, Ou JHJ. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein. Virology 2007; 363:454-61. [PMID: 17335866 PMCID: PMC1976269 DOI: 10.1016/j.virol.2007.01.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 01/22/2007] [Accepted: 01/30/2007] [Indexed: 01/19/2023]
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Wen-ling Chen
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - W.-L. Maverick Ma
- George Whipple Lab for Cancer Research, Department of Pathology, Urology, Radiation Oncology and the Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Department of Pathology, Urology, Radiation Oncology and the Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - J.-H. James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
- Corresponding author: Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA 90033; phone, 323-442-1720; fax, 323-442-1721; e-mail:
| |
Collapse
|
50
|
Cheng ASL, Wong N, Tse AMY, Chan KYY, Chan KK, Sung JJY, Chan HLY. RNA interference targeting HBx suppresses tumor growth and enhances cisplatin chemosensitivity in human hepatocellular carcinoma. Cancer Lett 2007; 253:43-52. [PMID: 17296261 DOI: 10.1016/j.canlet.2007.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 12/31/2006] [Accepted: 01/05/2007] [Indexed: 12/22/2022]
Abstract
The X protein of hepatitis B virus (HBx) is often expressed in human hepatocellular carcinoma (HCC) but its role on tumor growth is not fully clarified. In this study, RNA interference was employed to knockdown HBx expression in Hep3B HCC cells, which naturally express carboxyl-end truncated form of HBx frequently found in HCC tissues. Specific knockdown of HBx strongly inhibited cell growth and tumorigenicity in xenograft model. HBx repression induced apoptosis in Hep3B cells and significantly increased cell sensitivity to cisplatin-induced apoptosis. These results suggest that RNA interference-mediated HBx suppression exerts potent anti-proliferative and chemosensitizing effects in human HCC.
Collapse
Affiliation(s)
- Alfred S L Cheng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | | | |
Collapse
|