1
|
Santos LC, Fernandes AMS, Alves IA, Serafini MR, Silva LDSE, de Freitas HF, Leite LCC, Santos CC. Trends in Viral Vector-Based Vaccines for Tuberculosis: A Patent Review (2010-2023). Vaccines (Basel) 2024; 12:876. [PMID: 39204002 PMCID: PMC11359462 DOI: 10.3390/vaccines12080876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Tuberculosis (TB) is an ancient global public health problem. Several strategies have been applied to develop new and more effective vaccines against TB, from attenuated or inactivated mycobacteria to recombinant subunit or genetic vaccines, including viral vectors. This review aimed to evaluate patents filed between 2010 and 2023 for TB vaccine candidates. It focuses on viral vector-based strategies. A search was carried out in Espacenet, using the descriptors "mycobacterium and tuberculosis" and the classification A61K39. Of the 411 patents preliminarily identified, the majority were related to subunit vaccines, with 10 patents based on viral vector platforms selected in this study. Most of the identified patents belong to the United States or China, with a concentration of patent filings between 2013 and 2023. Adenoviruses were the most explored viral vectors, and the most common immunodominant Mycobacterium tuberculosis (Mtb) antigens were present in all the selected patents. The majority of patents were tested in mouse models by intranasal or subcutaneous route of immunization. In the coming years, an increased use of this platform for prophylactic and/or therapeutic approaches for TB and other diseases is expected. Along with this, expanding knowledge about the safety of this technology is essential to advance its use.
Collapse
Affiliation(s)
- Lana C. Santos
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | - Antônio Márcio Santana Fernandes
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | - Izabel Almeida Alves
- Departamento do Medicamento, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Estado da Bahia, Salvador 41150-000, BA, Brazil
| | - Mairim Russo Serafini
- Departamento de Farmácia, Universidade Federal do Sergipe, São Cristóvão 49100-000, SE, Brazil;
| | - Leandra da Silva e Silva
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | | | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | - Carina C. Santos
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil
| |
Collapse
|
2
|
Development of a T Cell-Based COVID-19 Vaccine Using a Live Attenuated Influenza Vaccine Viral Vector. Vaccines (Basel) 2022; 10:vaccines10071142. [PMID: 35891306 PMCID: PMC9318028 DOI: 10.3390/vaccines10071142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic emerged in 2020 and has caused an unprecedented burden to all countries in the world. SARS-CoV-2 continues to circulate and antigenically evolve, enabling multiple reinfections. To address the issue of the virus antigenic variability, T cell-based vaccines are being developed, which are directed to more conserved viral epitopes. We used live attenuated influenza vaccine (LAIV) virus vector to generate recombinant influenza viruses expressing various T-cell epitopes of SARS-CoV-2 from either neuraminidase (NA) or non-structural (NS1) genes, via the P2A self-cleavage site. Intranasal immunization of human leukocyte antigen-A*0201 (HLA-A2.1) transgenic mice with these recombinant viruses did not result in significant SARS-CoV-2-specific T-cell responses, due to the immunodominance of NP366 influenza T-cell epitope. However, side-by-side stimulation of peripheral blood mononuclear cells (PBMCs) of COVID-19 convalescents with recombinant viruses and LAIV vector demonstrated activation of memory T cells in samples stimulated with LAIV/SARS-CoV-2, but not LAIV alone. Hamsters immunized with a selected LAIV/SARS-CoV-2 prototype were protected against challenge with influenza virus and a high dose of SARS-CoV-2 of Wuhan and Delta lineages, which was confirmed by reduced weight loss, milder clinical symptoms and less pronounced histopathological signs of SARS-CoV-2 infection in the lungs, compared to LAIV- and mock-immunized animals. Overall, LAIV is a promising platform for the development of a bivalent vaccine against influenza and SARS-CoV-2.
Collapse
|
3
|
Mucosal Priming with a Recombinant Influenza A Virus-Vectored Vaccine Elicits T-Cell and Antibody Responses to HIV-1 in Mice. J Virol 2021; 95:JVI.00059-21. [PMID: 33789991 DOI: 10.1128/jvi.00059-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Recombinant influenza A viral (IAV) vectors are potential to stimulate systemic and mucosal immunity, but the packaging capacity is limited and only one or a few epitopes can be carried. Here, we report the generation of a replication-competent IAV vector that carries a full-length HIV-1 p24 gene linked to the 5'-terminal coding region of the neuraminidase segment via a protease cleavage sequence (IAV-p24). IAV-p24 was successfully rescued and stably propagated, and P24 protein was efficiently expressed in infected mammalian cells. In BALB/c mice, IAV-p24 showed attenuated pathogenicity compared to that of the parental A/PR/8/34 (H1N1) virus. An intranasal inoculation with IAV-p24 elicited moderate HIV-specific cell-mediated immune (CMI) responses in the airway and vaginal tracts and in the spleen, and an intranasal boost with a replication-incompetent adenovirus type 2 vector expressing the HIV-1 gag gene (Ad2-gag) greatly improved these responses. Importantly, compared to an Ad2-gag prime plus IAV-p24 boost regimen, the IAV-p24 prime plus Ad2-gag boost regimen had a greater efficacy in eliciting HIV-specific CMI responses. P24-specific CD8+ T cells and antibodies were robustly provoked both systemically and in mucosal sites and showed long-term durability, revealing that IAV-p24 may be used as a mucosa-targeted priming vaccine. Our results illustrate that IAV-p24 is able to prime systemic and mucosal immunity against HIV-1 and warrants further evaluation in nonhuman primates.IMPORTANCE An effective HIV-1 vaccine remains elusive despite nearly 40 years of research. CD8+ T cells and protective antibodies may both be desirable for preventing HIV-1 infection in susceptible mucosal sites. Recombinant influenza A virus (IAV) vector has the potential to stimulate these immune responses, but the packaging capacity is extremely limited. Here, we describe a replication-competent IAV vector expressing the HIV-1 p24 gene (IAV-p24). Unlike most other IAV vectors that carried one or several antigenic epitopes, IAV-p24 stably expressed the full-length P24 protein, which contains multiple epitopes and is highly conserved among all known HIV-1 sequences. Compared to the parental A/PR/8/34 (H1N1) virus, IAV-p24 showed an attenuated pathogenicity in BALB/c mice. When combined with an adenovirus vector expressing the HIV-1 gag gene, IAV-p24 was able to prime P24-specific systemic and mucosal immune responses. IAV-p24 as an alternative priming vaccine against HIV-1 warrants further evaluation in nonhuman primates.
Collapse
|
4
|
Pulkina AA, Sergeeva MV, Krokhin A, Stukova MA, Egorov A. Evidence for the extracellular delivery of influenza NS1 protein. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2021. [DOI: 10.18527/2500-2236-2021-8-1-27-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We constructed a reporter influenza A/Puerto Rico/8/1934 virus expressing truncated 124aa N-terminal NS1 protein fused to a luciferase reporter sequence (NanoLuc) without signal peptide. The reproduction activity of the vector correlated well with the luminescent activity in the lysates of infected cell cultures or mouse respiratory organ suspensions. Surprisingly, we found that luciferase enzymatic activity was present not only in the intracellular compartments but also in cell culture supernatants as well as in the sera or bronchiolar lavages of infected mice. This fact allowed us to formulate a working hypothesis about the extracellular delivery mechanism of the NS1 protein. To test this idea, we conducted co-transfection experiments in Vero cells with different combinations of plasmids encoding influenza genomic segments and chimeric NS1-NanoLuc encoding plasmid. We found that the emergence of the luciferase reporter in the extracellular compartment was promoted by the formation of the ribonucleoprotein complex (RNP) from the co-transfection of plasmids expressing PB1, PB2, PA, and NP proteins. Therefore, influenza NS1 protein may be delivered to the extracellular compartment together with the nascent RNP complexes during the maturation of virus particles.
Collapse
Affiliation(s)
- A. A. Pulkina
- Smorodintsev Research Institute of Influenza;
Peter the Great St. Petersburg Polytechnic University
| | - M. V. Sergeeva
- Smorodintsev Research Institute of Influenza;
Peter the Great St. Petersburg Polytechnic University
| | - A. Krokhin
- Smorodintsev Research Institute of Influenza
| | | | - A. Egorov
- Smorodintsev Research Institute of Influenza
| |
Collapse
|
5
|
Matyushenko V, Kotomina T, Kudryavtsev I, Mezhenskaya D, Prokopenko P, Matushkina A, Sivak K, Muzhikyan A, Rudenko L, Isakova-Sivak I. Conserved T-cell epitopes of respiratory syncytial virus (RSV) delivered by recombinant live attenuated influenza vaccine viruses efficiently induce RSV-specific lung-localized memory T cells and augment influenza-specific resident memory T-cell responses. Antiviral Res 2020; 182:104864. [PMID: 32585323 PMCID: PMC7313889 DOI: 10.1016/j.antiviral.2020.104864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/30/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Respiratory syncytial virus (RSV) can cause recurrent infection in people because it does not stimulate a long-lived immunological memory. There is an urgent need to develop a safe and efficacious vaccine against RSV that would induce immunological memory without causing immunopathology following natural RSV infection. We have previously generated two recombinant live attenuated influenza vaccine (LAIV) viruses that encode immunodominant T-cell epitopes of RSV M2 protein in the neuraminidase or NS1 genes. These chimeric vaccines afforded protection against influenza and RSV infection in mice, without causing pulmonary eosinophilia or inflammatory RSV disease. The current study assessed the formation of influenza-specific and RSV-specific CD4 and CD8 T-cell responses in the lungs of mice, with special attention to the lung tissue-resident memory T cell subsets (TRM). The RSV epitopes did not affect influenza-specific CD4 effector memory T cell (Tem) levels in the lungs. The majority of these cells formed by LAIV or LAIV-RSV viruses had CD69+CD103- phenotype. Both LAIV+NA/RSV and LAIV+NS/RSV recombinant viruses induced significant levels of RSV M282 epitope-specific lung-localized CD8 Tem cells expressing both CD69 and CD103 TRM markers. Surprisingly, the CD69+CD103+ influenza-specific CD8 Tem responses were augmented by the addition of RSV epitopes, possibly as a result of the local microenvironment formed by the RSV-specific memory T cells differentiating to TRM in the lungs of mice immunized with LAIV-RSV chimeric viruses. This study provides evidence that LAIV vector-based vaccination can induce robust lung-localized T-cell immunity to the inserted T-cell epitope of a foreign pathogen, without altering the immunogenicity of the viral vector itself. Two LAIV-RSV vaccine viruses induced RSV M282-specific effector memory CD8 T cells producing both IFNγ and TNFα cytokines. The inserted RSV epitopes did not affect influenza-specific CD4 Tem levels in the lungs of immunized mice. LAIV-RSV viruses induced RSV M282-specific lung-localized CD8 Tem cells expressing both CD69 and CD103 TRM markers. The magnitude of RSV M282-specific CD8 Tem responses correlates with protection against RSV-induced lung pathology. The addition of RSV epitopes into the LAIV strain augmented CD69+CD103+ influenza-specific CD8 Tem responses in the lungs.
Collapse
Affiliation(s)
- Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Anastasia Matushkina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Arman Muzhikyan
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia.
| |
Collapse
|
6
|
Isakova-Sivak I, Matyushenko V, Stepanova E, Matushkina A, Kotomina T, Mezhenskaya D, Prokopenko P, Kudryavtsev I, Kopeykin P, Sivak K, Rudenko L. Recombinant Live Attenuated Influenza Vaccine Viruses Carrying Conserved T-cell Epitopes of Human Adenoviruses Induce Functional Cytotoxic T-Cell Responses and Protect Mice against Both Infections. Vaccines (Basel) 2020; 8:E196. [PMID: 32344618 PMCID: PMC7349758 DOI: 10.3390/vaccines8020196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Human adenoviruses (AdVs) are one of the most common causes of acute respiratory viral infections worldwide. Multiple AdV serotypes with low cross-reactivity circulate in the human population, making the development of an effective vaccine very challenging. In the current study, we designed a cross-reactive AdV vaccine based on the T-cell epitopes conserved among various AdV serotypes, which were inserted into the genome of a licensed cold-adapted live attenuated influenza vaccine (LAIV) backbone. We rescued two recombinant LAIV-AdV vaccines by inserting the selected AdV T-cell epitopes into the open reading frame of full-length NA and truncated the NS1 proteins of the H7N9 LAIV virus. We then tested the bivalent vaccines for their efficacy against influenza and human AdV5 in a mouse model. The vaccine viruses were attenuated in C57BL/6J mice and induced a strong influenza-specific antibody and cell-mediated immunity, fully protecting the mice against virulent influenza virus infection. The CD8 T-cell responses induced by both LAIV-AdV candidates were functional and efficiently killed the target cells loaded either with influenza NP366 or AdV DBP418 peptides. In addition, high levels of recall memory T cells targeted to an immunodominant H2b-restricted CD8 T-cell epitope were detected in the immunized mice after the AdV5 challenge, and the magnitude of these responses correlated with the level of protection against pulmonary pathology caused by the AdV5 infection. Our findings suggest that the developed recombinant vaccines can be used for combined protection against influenza and human adenoviruses and warrant further evaluation on humanized animal models and subsequent human trials.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Victoria Matyushenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Ekaterina Stepanova
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Anastasia Matushkina
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Tatiana Kotomina
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Daria Mezhenskaya
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Polina Prokopenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Igor Kudryavtsev
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Pavel Kopeykin
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia;
| | - Larisa Rudenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| |
Collapse
|
7
|
Furusawa Y, Yamada S, da Silva Lopes TJ, Dutta J, Khan Z, Kriti D, van Bakel H, Kawaoka Y. Influenza Virus Polymerase Mutation Stabilizes a Foreign Gene Inserted into the Virus Genome by Enhancing the Transcription/Replication Efficiency of the Modified Segment. mBio 2019; 10:e01794-19. [PMID: 31575766 PMCID: PMC6775454 DOI: 10.1128/mbio.01794-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
We previously attempted to establish a reporter influenza virus by inserting the gene for the Venus fluorescent protein into the NS segment of influenza A/Puerto Rico/8/34 (PR8, H1N1) virus to yield WT-Venus-PR8. Although the inserted Venus gene was deleted during serial passages of WT-Venus-PR8, we discovered that the PB2-E712D mutation stabilizes the Venus gene. Here, we explored the mechanisms by which Venus gene deletion occurs and how the polymerase mutation stabilizes the Venus gene. Deep sequencing analysis revealed that PB2-E712D does not cause an appreciable change in the mutation rate, suggesting that the stability of the Venus gene is not affected by polymerase fidelity. We found by using quantitative real-time PCR that WT-Venus-PR8 induces high-level interferon beta (IFN-β) expression. The induction of IFN-β expression seemed to result from the reduced transcription/replication efficiency of the modified NS segment in WT-Venus-PR8. In contrast, the transcription/replication efficiency of the modified NS segment was enhanced by the PB2-E712D mutation. Loss of the Venus gene in WT-Venus-PR8 appeared to be caused by internal deletions in the NS segment. Moreover, to further our understanding of the Venus stabilization mechanisms, we identified additional amino acid mutations in the virus polymerase complex that stabilize the Venus gene. We found that some of these amino acids are located near the template exit or the product exit of the viral polymerase, suggesting that these amino acids contribute to the stability of the Venus gene by affecting the binding affinity between the polymerase complex and the RNA template and product.IMPORTANCE The reverse genetics method of influenza virus generation has enabled us to generate recombinant viruses bearing modified viral proteins. Recombinant influenza viruses expressing foreign genes have become useful tools in basic research, and such viruses can be utilized as efficient virus vectors or multivalent vaccines. However, the insertion of a foreign gene into the influenza virus genome often impairs virus replication, and the inserted genes are unstable. Elucidation of the mechanisms of foreign gene stabilization will help us to establish useful recombinant influenza viruses.
Collapse
Affiliation(s)
- Yuri Furusawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tiago Jose da Silva Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Kotomina T, Isakova-Sivak I, Matyushenko V, Kim KH, Lee Y, Jung YJ, Kang SM, Rudenko L. Recombinant live attenuated influenza vaccine viruses carrying CD8 T-cell epitopes of respiratory syncytial virus protect mice against both pathogens without inflammatory disease. Antiviral Res 2019; 168:9-17. [PMID: 31075351 PMCID: PMC6620116 DOI: 10.1016/j.antiviral.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory disease in young children, elderly and immunocompromised adults. There is no licensed vaccine against RSV although development of an effective and safe RSV vaccine has been a high priority for several decades. Among the various vaccine platforms, the viral-vectored RSV vaccines based on licensed cold-adapted live attenuated influenza vaccine (LAIV) might offer an advantage of inducing adequate mucosal CD8 T cell immunity at the infection site of respiratory pathogens. We constructed two recombinant LAIV viruses expressing immunodominant T-cell epitopes of RSV M2-1 protein. The results in this study provide evidence that RSV CD8 T cell epitopes delivered by LAIV viral vector could confer protection against RSV infection without causing pulmonary eosinophilia and inflammatory RSV disease in mice. In addition, these chimeric LAIV-RSV vaccines retained their attenuated phenotype and ability to protect against virulent influenza virus, thus providing a unique approach to fight against two dangerous respiratory viral pathogens using a single vaccine preparation.
Collapse
Affiliation(s)
- Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia.
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia
| |
Collapse
|
9
|
Kotomina T, Korenkov D, Matyushenko V, Prokopenko P, Rudenko L, Isakova-Sivak I. Live attenuated influenza vaccine viral vector induces functional cytotoxic T-cell immune response against foreign CD8+ T-cell epitopes inserted into NA and NS1 genes using the 2A self-cleavage site. Hum Vaccin Immunother 2018; 14:2964-2970. [PMID: 30024831 DOI: 10.1080/21645515.2018.1502529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of viral vector vaccines against various pathogens for which conventional vaccination approaches are not applicable has been a priority for a number of years. One promising approach is the insertion of immunodominant conservative cytotoxic T-cell (CTL) epitopes into the genome of a viral vector, which then delivers these epitopes to target cells, inducing immunity. Many different viruses have been assessed as viral vectors for CTL-based vaccines, but only a few of them are clinically relevant, mainly because of safety issues and limited knowledge about their performance in humans. In this regard, the use of licensed cold-adapted live attenuated influenza vaccine (LAIV) viruses as a vector delivery system has clear advantages for CTL-based vector vaccines against other respiratory pathogens: LAIV is known to induce all arms of the adaptive immune system and is administered via nasal spray, and its production process is relatively easy and inexpensive. Here we present the first results of the use of an LAIV backbone for designing a CTL epitope-based vaccine against respiratory syncytial virus (RSV). The chimeric LAIV-RSV vaccine candidates were attenuated in mice and induced strong, fully functional CTL immunity in this animal model.
Collapse
Affiliation(s)
- Tatiana Kotomina
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - Daniil Korenkov
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - Victoria Matyushenko
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - Polina Prokopenko
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - Larisa Rudenko
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - Irina Isakova-Sivak
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| |
Collapse
|
10
|
Sergeeva MV, Pulkina AA, Vasiliev KA, Romanovskaya-Romanko EA, Komissarov AB, Kuchur OA, Egorov AY, Tsybalova LM, Stukova MA. SAFETY AND IMMUNOGENICITY OF COLD-ADAPTED RECOMBINANT INFLUENZA VECTOR EXPRESSING ESAT-6 AND AG85А ANTIGENS OF M. TUBERCULOSIS. Vopr Virusol 2017; 62:266-272. [PMID: 36494958 DOI: 10.18821/0507-4088-2017-62-6-266-272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Recombinant viral vectors represent one of the most promising platforms for creating a new generation of vaccines against tuberculosis. We constructed a vaccine candidate based on a cold-adapted influenza vector with a truncated NS1 protein containing an insert of tuberculosis ESAT-6 and Ag85A antigens. The recombinant virus possessed a cold-adapted and temperature-sensitive phenotype and was attenuated for mice when administered intranasally. Immunofluorescent staining and Western blot showed the expression of ESAT-6 protein in MDCK cells infected by recombinant virus. After intranasal administration to mice, the recombinant virus stimulated a specific anti-tuberculosis CD4 + Th1-type response with the formation of polyfunctional antigen-specific T cells.
Collapse
Affiliation(s)
| | - A A Pulkina
- Research Institute of Influenza.,Peter the Great St. Petersburg Polytechnic University
| | | | | | - A B Komissarov
- Research Institute of Influenza.,St. Petersburg State University
| | | | | | | | | |
Collapse
|
11
|
Tan HX, Gilbertson BP, Jegaskanda S, Alcantara S, Amarasena T, Stambas J, McAuley JL, Kent SJ, De Rose R. Recombinant influenza virus expressing HIV-1 p24 capsid protein induces mucosal HIV-specific CD8 T-cell responses. Vaccine 2016; 34:1172-9. [PMID: 26826545 DOI: 10.1016/j.vaccine.2016.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/24/2015] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
Abstract
Influenza viruses are promising mucosal vaccine vectors for HIV but their use has been limited by difficulties in engineering the expression of large amounts of foreign protein. We developed recombinant influenza viruses incorporating the HIV-1 p24 gag capsid into the NS-segment of PR8 (H1N1) and X31 (H3N2) influenza viruses with the use of multiple 2A ribosomal skip sequences. Despite the insertion of a sizable HIV-1 gene into the influenza genome, recombinant viruses were readily rescued to high titers. Intracellular expression of p24 capsid was confirmed by in vitro infection assays. The recombinant influenza viruses were subsequently tested as mucosal vaccines in BALB/c mice. Recombinant viruses were attenuated and safe in immunized mice. Systemic and mucosal HIV-specific CD8 T-cell responses were elicited in mice that were immunized via intranasal route with a prime-boost regimen. Isolated HIV-specific CD8 T-cells displayed polyfunctional cytokine and degranulation profiles. Mice boosted via intravaginal route induced recall responses from the distal lung mucosa and developed heightened HIV-specific CD8 T-cell responses in the vaginal mucosa. These findings demonstrate the potential utility of recombinant influenza viruses as vaccines for mucosal immunity against HIV-1 infection.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892, United States
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, Victoria, Australia; CSIRO Animal Health Laboratories, Geelong, Victoria, Australia
| | - Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Melbourne Sexual Health Centre, Alfred Hospital, Monash University Central Clinical School, Victoria, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Victoria, Australia.
| | - Robert De Rose
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| |
Collapse
|
12
|
Lee YN, Hwang HS, Kim MC, Lee YT, Kim YJ, Lee FEH, Kang SM. Protection against respiratory syncytial virus by inactivated influenza virus carrying a fusion protein neutralizing epitope in a chimeric hemagglutinin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:759-770. [PMID: 26656630 DOI: 10.1016/j.nano.2015.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED A desirable vaccine against respiratory syncytial virus (RSV) should induce neutralizing antibodies without eliciting abnormal T cell responses to avoid vaccine-enhanced pathology. In an approach to deliver RSV neutralizing epitopes without RSV-specific T cell antigens, we genetically engineered chimeric influenza virus expressing RSV F262-276 neutralizing epitopes in the globular head domain as a chimeric hemagglutinin (HA) protein. Immunization of mice with formalin-inactivated recombinant chimeric influenza/RSV F262-276 was able to induce RSV protective neutralizing antibodies and lower lung viral loads after challenge. Formalin-inactivated RSV immune mice showed high levels of pulmonary inflammatory cytokines, macrophages, IL-4-producing T cells, and extensive histopathology. However, RSV-specific T cell responses and enhancement of pulmonary histopathology were not observed after RSV infection of inactivated chimeric influenza/RSV F262-276. This study provides evidence that an inactivated vaccine platform of chimeric influenza/RSV virus can be developed into a safe RSV vaccine candidate without priming RSV-specific T cells and immunopathology. FROM THE CLINICAL EDITOR Respiratory syncytial virus (RSV) is a major cause of respiratory tract illness and morbidity in children. Hence, there is a need to develop an effective vaccine against this virus. In this article, the authors engineered chimeric influenza virus to express RSV neutralizing epitopes. The positive findings in in-vivo experiments provide a beginning for future clinical trials and perhaps eventual product realization.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Animal and Plant Quarantine Agency, Gyeonggi-do, Republic of Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Jindra C, Huber B, Shafti-Keramat S, Wolschek M, Ferko B, Muster T, Brandt S, Kirnbauer R. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach. PLoS One 2015; 10:e0138722. [PMID: 26381401 PMCID: PMC4575162 DOI: 10.1371/journal.pone.0138722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs)-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c.) prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.
Collapse
Affiliation(s)
- Christoph Jindra
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bettina Huber
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Saeed Shafti-Keramat
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Wolschek
- Research Group Oncology (RGO), Equine Clinic, Veterinary University of Vienna, Vienna, Austria
- Bluesky Vaccines, Vienna, Austria
| | | | | | - Sabine Brandt
- Research Group Oncology (RGO), Equine Clinic, Veterinary University of Vienna, Vienna, Austria
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
14
|
Kittel C, Wressnigg N, Shurygina AP, Wolschek M, Stukova M, Romanovskaya-Romanko E, Romanova J, Kiselev O, Muster T, Egorov A. A genetically adjuvanted influenza B virus vector increases immunogenicity and protective efficacy in mice. Arch Virol 2015. [PMID: 26215439 DOI: 10.1007/s00705-015-2525-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The existence of multiple antigenically distinct types and subtypes of influenza viruses allows the construction of a multivalent vector system for the mucosal delivery of foreign sequences. Influenza A viruses have been exploited successfully for the expression of extraneous antigens as well as immunostimulatory molecules. In this study, we describe the development of an influenza B virus vector whose functional part of the interferon antagonist NS1 was replaced by human interleukin 2 (IL2) as a genetic adjuvant. We demonstrate that IL2 expressed by this viral vector displays immune adjuvant activity in immunized mice. Animals vaccinated with the IL2 viral vector showed an increased hemagglutination inhibition antibody response and higher protective efficacy after challenge with a wild-type influenza B virus when compared to mice vaccinated with a control virus. Our results demonstrate that it is feasible to construct influenza B vaccine strains expressing immune-potentiating foreign sequences from the NS genomic segment. Based on these data, it is now hypothetically possible to create a trivalent (or quadrivalent) live attenuated influenza vaccine in which each component expresses a selected genetic adjuvant with tailored expression levels.
Collapse
Affiliation(s)
- Christian Kittel
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria.
| | - Nina Wressnigg
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
| | - Anna Polina Shurygina
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
- Influenza Research Institute, Russian Academy of Medical Sciences, Prof. Popov Str. 15/17, St. Petersburg, 197376, Russia
| | - Markus Wolschek
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
| | - Marina Stukova
- Influenza Research Institute, Russian Academy of Medical Sciences, Prof. Popov Str. 15/17, St. Petersburg, 197376, Russia
| | | | - Julia Romanova
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
| | - Oleg Kiselev
- Influenza Research Institute, Russian Academy of Medical Sciences, Prof. Popov Str. 15/17, St. Petersburg, 197376, Russia
| | - Thomas Muster
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
| | - Andrej Egorov
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
| |
Collapse
|
15
|
Tabynov K, Ryskeldinova S, Sansyzbay A. An influenza viral vector Brucella abortus vaccine induces good cross-protection against Brucella melitensis infection in pregnant heifers. Vaccine 2015; 33:3619-23. [PMID: 26093199 DOI: 10.1016/j.vaccine.2015.06.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 11/29/2022]
Abstract
Brucella melitensis can be transmitted and cause disease in cattle herds as a result of inadequate management of mixed livestock farms. Ideally, vaccines against Brucella abortus for cattle should also provide cross-protection against B. melitensis. Previously we created a novel influenza viral vector B. abortus (Flu-BA) vaccine expressing the Brucella ribosomal proteins L7/L12 or Omp16. This study demonstrated Flu-BA vaccine with adjuvant Montanide Gel01 provided 100% protection against abortion in vaccinated pregnant heifers and good cross-protection of the heifers and their calves or fetuses (90-100%) after challenge with B. melitensis 16M; the level of protection provided by Flu-BA was comparable to the commercial vaccine B. abortus S19. In terms of the index of infection and colonization of Brucella in tissues, both vaccines demonstrated significant (P=0.02 to P<0.0001) protection against B. melitensis 16M infection compared to the negative control group (PBS+Montanide Gel01). Thus, we conclude the Flu-BA vaccine provides cross-protection against B. melitensis infection in pregnant heifers.
Collapse
Affiliation(s)
- Kaissar Tabynov
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409 Gvardeiskiy, Kazakhstan.
| | - Sholpan Ryskeldinova
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409 Gvardeiskiy, Kazakhstan
| | - Abylai Sansyzbay
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, 080409 Gvardeiskiy, Kazakhstan
| |
Collapse
|
16
|
Finch C, Li W, Perez DR. Design of alternative live attenuated influenza virus vaccines. Curr Top Microbiol Immunol 2015; 386:205-35. [PMID: 25005928 DOI: 10.1007/82_2014_404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Each year due to the ever-evolving nature of influenza, new influenza vaccines must be produced to provide protection against the influenza viruses in circulation. Currently, there are two mainstream strategies to generate seasonal influenza vaccines: inactivated and live-attenuated. Inactivated vaccines are non-replicating forms of whole influenza virus, while live-attenuated vaccines are viruses modified to be replication impaired. Although it is widely believed that by inducing both mucosal and humoral immune responses the live-attenuated vaccine provides better protection than that of the inactivated vaccine, there are large populations of individuals who cannot safely receive the LAIV vaccine. Thus, safer LAIV vaccines are needed to provide adequate protection to these populations. Improvement is also needed in the area of vaccine production. Current strategies relying on traditional tissue culture-based and egg-based methods are slow and delay production time. This chapter describes experimental vaccine generation and production strategies that address the deficiencies in current methods for potential human and agricultural use.
Collapse
Affiliation(s)
- Courtney Finch
- Department of Veterinary Medicine, College Park and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | | |
Collapse
|
17
|
Shane HL, Klonowski KD. Every breath you take: the impact of environment on resident memory CD8 T cells in the lung. Front Immunol 2014; 5:320. [PMID: 25071780 PMCID: PMC4085719 DOI: 10.3389/fimmu.2014.00320] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/24/2014] [Indexed: 01/08/2023] Open
Abstract
Resident memory T cells (TRM) are broadly defined as a population of T cells, which persist in non-lymphoid sites long-term, do not re-enter the circulation, and are distinct from central memory T cells (TCM) and circulating effector memory T cells (TEM). Recent studies have described populations of TRM cells in the skin, gut, lungs, and nervous tissue. However, it is becoming increasingly clear that the specific environment in which the TRM reside can further refine their phenotypical and functional properties. Here, we focus on the TRM cells that develop following respiratory infection and reside in the lungs and the lung airways. Specifically, we will review recent studies that have described some of the requirements for establishment of TRM cells in these tissues, and the defining characteristics of TRM in the lungs and lung airways. With continual bombardment of the respiratory tract by both pathogenic and environmental antigens, dynamic fluctuations in the local milieu including homeostatic resources and niche restrictions can impact TRM longevity. Beyond a comprehensive characterization of lung TRM cells, special attention will be placed on studies, which have defined how the microenvironment of the lung influences memory T cell survival at this site. As memory T cell populations in the lung airways are requisite for protection yet wane numerically over time, developing a comprehensive picture of factors which may influence TRM development and persistence at these sites is important for improving T cell-based vaccine design.
Collapse
Affiliation(s)
- Hillary L Shane
- Department of Cellular Biology, University of Georgia , Athens, GA , USA
| | | |
Collapse
|
18
|
Tabynov K, Sansyzbay A, Kydyrbayev Z, Yespembetov B, Ryskeldinova S, Zinina N, Assanzhanova N, Sultankulova K, Sandybayev N, Khairullin B, Kuznetsova I, Ferko B, Egorov A. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection. Virol J 2014; 11:69. [PMID: 24716528 PMCID: PMC3997475 DOI: 10.1186/1743-422x-11-69] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/04/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND We generated novel, effective candidate vaccine against Brucella abortus based on recombinant influenza viruses expressing the Brucella ribosomal protein L7/L12 or outer membrane protein (Omp)-16 from the NS1 open reading frame. The main purpose of this work was to evaluate the safety, immunogenicity and protectiveness of vaccine candidate in laboratory animals. METHODS AND RESULTS Four recombinant influenza A viral constructs of the subtypes Н5N1 or H1N1 expressing the Brucella proteins L7/L12 or Omp16 were obtained by a reverse genetics method: Flu-NS1-124-L7/L12-H5N1, Flu-NS1-124-Omp16-H5N1, Flu-NS1-124-L7/L12-H1N1 and Flu-NS1-124-Omp16-H1N1. Despite of substantial modification of NS1 gene, all constructs replicated well and were retain their Brucella inserts over five passages in embryonated chicken eggs (CE). Administration of the mono- or bivalent vaccine formulation via prime-boost intranasal (i.n.), conjunctival (c.) or subcutaneous (s.c.) immunization was safe in mice; no deaths, body weight loss or pathomorphological changes were observed over 56 days. Moreover, guinea pigs vaccinated i.n. with vaccine vectors did not shed the vaccine viruses through their upper respiratory tract after the prime and booster vaccination. These findings confirmed the replication-deficient phenotype of viral vectors. The highest antibody response to Brucella antigen was obtained with constructs expressing L7/L12 (ELISA, GMT 242.5-735.0); whereas the highest T-cell immune response- with construct expressing Omp16 (ELISPOT, 337 ± 52-651 ± 45 spots/4×105cells), which was comparable (P > 0.05) to the response induced by the commercial vaccine B. abortus 19. Interestingly, c. immunization appeared to be optimal for eliciting T-cell immune response. In guinea pigs, the highest protective efficacy after challenge with B. abortus 544 was achieved with Omp16 expressing constructs in both monovalent or bivalent vaccine formulations; protective efficacy was comparable to those induced by a commercial live B. abortus 19 vaccine. CONCLUSION Thus, influenza vectors expressing Brucella protective antigens can be developed as novel influenza vectored vaccine against B. abortus infection.
Collapse
Affiliation(s)
- Kaissar Tabynov
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Republic of Kazakhstan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Influenza virus vaccine expressing fusion and attachment protein epitopes of respiratory syncytial virus induces protective antibodies in BALB/c mice. Antiviral Res 2014; 104:110-7. [DOI: 10.1016/j.antiviral.2014.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 11/21/2022]
|
20
|
Tabynov K, Kydyrbayev Z, Ryskeldinova S, Yespembetov B, Zinina N, Assanzhanova N, Kozhamkulov Y, Inkarbekov D, Gotskina T, Sansyzbay A. Novel influenza virus vectors expressing Brucella L7/L12 or Omp16 proteins in cattle induced a strong T-cell immune response, as well as high protectiveness against B. abortus infection. Vaccine 2014; 32:2034-41. [PMID: 24598723 DOI: 10.1016/j.vaccine.2014.02.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 12/17/2022]
Abstract
This paper presents the results of a study of the immunogenicity and protectiveness of new candidate vector vaccine against Brucella abortus - a bivalent vaccine formulation consisting of a mixture of recombinant influenza A subtype H5N1 or H1N1 (viral constructs vaccine formulation) viruses expressing Brucella ribosomal protein L7/L12 and Omp16, in cattle. To increase the effectiveness of the candidate vaccine, adjuvants such as Montanide Gel01 or chitosan were included in its composition. Immunization of cattle (heifers aged 1-1.5 years, 5 animals per group) with the viral constructs vaccine formulation only, or its combination with adjuvants Montanide Gel01 or chitosan, was conducted via the conjunctival method using cross prime (influenza virus subtype H5N1) and booster (influenza virus subtype H1N1) vaccination schedules at an interval of 28 days. Vaccine candidates were evaluated in comparison with the positive (B. abortus S19) and negative (PBS) controls. The viral constructs vaccine formulations, particularly in combination with Montanide Gel01 adjuvant promoted formation of IgG antibodies (with a predominance of antibodies of isotype IgG2a) against Brucella L7/L12 and Omp16 proteins in ELISA. Moreover, these vaccines in cattle induced a strong antigen-specific T-cell immune response, as indicated by a high number of CD4(+) and CD8(+) cells, as well as the concentration of IFN-γ, and most importantly provided a high level of protectiveness comparable to the commercial B. abortus S19 vaccine and superior to the B. abortus S19 vaccine in combination with Montanide Gel01 adjuvant. Based on these findings, we recommended the bivalent vaccine formulation containing the adjuvant Montanide Gel01 for practical use in cattle.
Collapse
Affiliation(s)
- Kaissar Tabynov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan.
| | - Zhailaubay Kydyrbayev
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Sholpan Ryskeldinova
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Bolat Yespembetov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Nadezhda Zinina
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Nurika Assanzhanova
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Yerken Kozhamkulov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Dulat Inkarbekov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Tatyana Gotskina
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Abylai Sansyzbay
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| |
Collapse
|
21
|
Kuznetsova I, Shurygina AP, Wolf B, Wolschek M, Enzmann F, Sansyzbay A, Khairullin B, Sandybayev N, Stukova M, Kiselev O, Egorov A, Bergmann M. Adaptive mutation in nuclear export protein allows stable transgene expression in a chimaeric influenza A virus vector. J Gen Virol 2013; 95:337-349. [PMID: 24222196 DOI: 10.1099/vir.0.056036-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of influenza virus vectors with long insertions of foreign sequences remains difficult due to the small size and instable nature of the virus. Here, we used the influenza virus inherent property of self-optimization to generate a vector stably expressing long transgenes from the NS1 protein ORF. This was achieved by continuous selection of bright fluorescent plaques of a GFP-expressing vector during multiple passages in mouse B16f1 cells. The newly generated vector acquired stability in IFN-competent cell lines and in vivo in murine lungs. Although improved vector fitness was associated with the appearance of four coding mutations in the polymerase (PB2), haemagglutinin and non-structural (NS) segments, the stability of the transgene expression was dependent primarily on the single mutation Q20R in the nuclear export protein (NEP). Importantly, a longer insert, such as a cassette of 1299 nt encoding two Mycobacterium tuberculosis Esat6 and Ag85A proteins, could substitute for the GFP transgene. Thus, the inherent property of the influenza virus to adapt can also be used to adjust a vector backbone to give stable expression of long transgenes.
Collapse
Affiliation(s)
- Irina Kuznetsova
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Anna-Polina Shurygina
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Brigitte Wolf
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Markus Wolschek
- Avir Green Hills Biotechnology AG, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Florian Enzmann
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Abylay Sansyzbay
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Berik Khairullin
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Nurlan Sandybayev
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Marina Stukova
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Oleg Kiselev
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Andrej Egorov
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Michael Bergmann
- Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
22
|
Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection. PLoS One 2013; 8:e61795. [PMID: 23637908 PMCID: PMC3634828 DOI: 10.1371/journal.pone.0061795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/13/2013] [Indexed: 12/13/2022] Open
Abstract
In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.
Collapse
|
23
|
Abstract
The influenza virus is a respiratory pathogen with a negative-sense, segmented RNA genome. Construction of recombinant influenza viruses in the laboratory was reported starting in the 1980s. Within a short period of time, pioneer researchers had devised methods that made it possible to construct influenza viral vectors from cDNA plasmid systems. Herein, we discuss the evolution of influenza virus reverse genetics, from helper virus-dependent systems, to helper virus-independent 17-plasmid systems, and all the way to 3- and 1- plasmid systems. Successes in the modification of different gene segments for various applications, including vaccine and gene therapies are highlighted.
Collapse
Affiliation(s)
- Junwei Li
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | | | | |
Collapse
|
24
|
Immunogenicity of a recombinant influenza virus bearing both the CD4+ and CD8+ T cell epitopes of ovalbumin. J Biomed Biotechnol 2011; 2011:497364. [PMID: 22007143 PMCID: PMC3189626 DOI: 10.1155/2011/497364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 01/28/2023] Open
Abstract
Recombinant influenza viruses that bear the single immunodominant CD8+ T cell epitope OVA257−264 or the CD4+ T cell epitope OVA323−339 of the model antigen ovalbumin (OVA) have been useful tools in immunology. Here, we generated a recombinant influenza virus, WSN-OVAI/II, that bears both OVA-specific CD8+ and CD4+ epitopes on its hemagglutinin molecule. Live and heat-inactivated WSN-OVAI/II viruses were efficiently presented by dendritic cells in vitro to OT-I TCR transgenic CD8+ T cells and OT-II TCR transgenic CD4+ T cells. In vivo, WSN-OVAI/II virus was attenuated in virulence, highly immunogenic, and protected mice from B16-OVA tumor challenge in a prophylactic model of vaccination. Thus, WSN-OVAI/II virus represents an additional tool, along with OVA TCR transgenic mice, for further studies on T cell responses and may be of value in vaccine design.
Collapse
|
25
|
Yu M, Vajdy M. Mucosal HIV transmission and vaccination strategies through oral compared with vaginal and rectal routes. Expert Opin Biol Ther 2010; 10:1181-95. [PMID: 20624114 DOI: 10.1517/14712598.2010.496776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE OF THE FIELD There are currently over thirty million people infected with HIV and there are no vaccines available to prevent HIV infections or disease. The genitourinary, rectal and oral mucosa are the mucosal HIV transmission routes. An effective vaccine that can induce both systemic and local mucosal immunity is generally accepted as a major means of protection against mucosal HIV transmission and AIDS. WHAT THE READER WILL GAIN Structure and cells that comprise the oral, vaginal and rectal mucosa pertaining to HIV transmission and vaccination strategies through each mucosal route to prevent mucosal and systemic infection will be discussed. AREAS COVERED IN THIS REVIEW Covering publications from 1980s through 2010, mucosal transmission of HIV and current and previous approaches to vaccinations are discussed. TAKE HOME MESSAGE Although oral transmission of HIV is far less common than vaginal and rectal transmissions, infections through this route do occur through oral sex as well as vertically from mother to child. Mucosal vaccination strategies against oral and other mucosal HIV transmissions are under intensive research but the lack of consensus on immune correlates of protection and lack of safe and effective mucosal adjuvants and delivery systems hamper progress towards a licensed vaccine.
Collapse
Affiliation(s)
- Mingke Yu
- EpitoGenesis, Inc., Walnut Creek, CA 94598, USA
| | | |
Collapse
|
26
|
Machado AV, Caetano BC, Barbosa RP, Salgado APC, Rabelo RH, Garcia CC, Bruna-Romero O, Escriou N, Gazzinelli RT. Prime and boost immunization with influenza and adenovirus encoding the Toxoplasma gondii surface antigen 2 (SAG2) induces strong protective immunity. Vaccine 2010; 28:3247-56. [PMID: 20189485 DOI: 10.1016/j.vaccine.2010.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 01/21/2010] [Accepted: 02/03/2010] [Indexed: 11/25/2022]
Abstract
In this work, we explored an original vaccination protocol using recombinant influenza and adenovirus. We constructed recombinant influenza viruses harboring dicistronic NA segments containing the surface antigen 2 (SAG2) from Toxoplasma gondii under control of the duplicated 3' promoter. Recombinant influenza viruses were able to drive the expression of the foreign SAG2 sequence in cell culture and to replicate efficiently both in cell culture and in lungs of infected mice. In addition, mice primed with recombinant influenza virus and boosted with a recombinant adenovirus encoding SAG2 elicited both humoral and cellular immune responses specific for SAG2. Moreover, when immunized animals were challenged with the cystogenic P-Br strain of T. gondii, they displayed up to 85% of reduction in parasite burden. These results demonstrate the potential use of recombinant influenza vectors harboring the dicistronic segments in the development of vaccines against infectious diseases.
Collapse
Affiliation(s)
- Alexandre V Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu R, Guan Y, Yang Z, Chen J, Wang H, Chen Q, Sui Z, Fang F, Chen Z. A live bivalent influenza vaccine based on a H9N2 virus strain. Vaccine 2009; 28:673-80. [PMID: 19892041 DOI: 10.1016/j.vaccine.2009.10.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 10/11/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to construct an H9N2 virus-based bivalent live vaccine expressing the protective antigen of a different subtype of influenza virus. Reverse genetics was used to generate an influenza virus containing nine gene segments derived from the A/Chicken/Jiangsu/11/2002 (H9N2) strain, including independent M1 and M2 matrix gene segments. A recombinant virus expressing the H1N1 HA1 hemagglutinin protein was produced on this framework by substituting the extracellular domain of the H9N2 M2 gene with the H1N1 HA1 fragment from A/PR/8/34 (PR8, H1N1). The resulting hybrid virus H9N2-PR8/HA1 was genetically stable and of low pathogenicity. Intra-nasal immunization of BALB/c mice with H9N2-PR8/HA1 virus induced both anti-H9N2 virus and anti-PR8 HA antibodies and conferred protection to mice against lethal challenge (40x LD(50)) with either H1N1 or H9N2 viruses. This study provides a new influenza H9N2 virus model for the expression and/or delivery of foreign antigens.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Characterization of recombinant influenza A virus as a vector for HIV-1 p17Gag. Vaccine 2009; 27:5735-9. [PMID: 19647812 DOI: 10.1016/j.vaccine.2009.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 11/21/2022]
Abstract
We have generated a recombinant influenza A virus with the HIV-1 p17(Gag) (rFlu-p17) gene inserted into the influenza virus neuraminidase (NA) gene. Expression of HIV-1 p17 protein was detected by conventional Western blot analysis and also by liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis of rFlu-p17 infected cells. The latter method does not depend on protein-specific antibody preparations and proved to be a powerful tool to detect proteins of interest. Next, antigen presentation of p17 expressed after infection of antigen-presenting cells was determined. Cloned p17-specific CD8+ T-cells were co-cultured with rFlu-p17 infected B-cells and produced IFN-gamma upon stimulation. Furthermore, we showed that immunization with rFlu-p17 elicited a humoral immune response in mice. This study shows that replication-deficient rFlu-p17 is antigenic in vitro and immunogenic in vivo and warrants further development as a candidate vaccine vector.
Collapse
|
29
|
Richt JA, García-Sastre A. Attenuated influenza virus vaccines with modified NS1 proteins. Curr Top Microbiol Immunol 2009; 333:177-95. [PMID: 19768406 DOI: 10.1007/978-3-540-92165-3_9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of reverse genetics techniques allowing the rescue of influenza virus from plasmid DNA has opened up the possibility of inserting mutations into the genome of this virus for the generation of novel live attenuated influenza virus vaccines. Modifications introduced into the viral NS1 gene via reverse genetics have resulted in attenuated influenza viruses with promising vaccine potential. One of the main functions of the NS1 protein of influenza virus is the inhibition of the innate host type I interferon-mediated antiviral response. Upon viral infection, influenza viruses with modified NS1 genes induce a robust local type I interferon response that limits their replication, resulting in disease attenuation in different animal models. Nevertheless, these viruses can be grown to high titers in cell- and egg-based substrates with deficiencies in the type I IFN system. Intranasal inoculation of mice, pigs, horses, and macaques with NS1-modified influenza virus strains induced robust humoral and cellular immune responses, and generated immune protection against challenge with wild-type virus. This protective response was not limited to homologous strains of influenza viruses, as reduced replication of heterologous strains was also demonstrated in animals vaccinated with NS1-modified viruses, indicating the induction of a broad cross-neutralizing response by these vaccine candidates. The immunogenicity of NS1-modified viruses correlated with enhanced activation of antigen-presenting cells. While further studies on their safety and efficacy are still needed, the results obtained so far indicate that NS1-modified viruses could represent a new generation of improved influenza virus vaccines, and they suggest that modifying viral interferon antagonists in other virus families is a promising strategy for the generation of live attenuated virus vaccines.
Collapse
Affiliation(s)
- Jüergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
30
|
Rimmelzwaan GF, Nieuwkoop NJ, de Mutsert G, Boon ACM, Kuiken T, Fouchier RAM, Osterhaus ADME. Attachment of infectious influenza A viruses of various subtypes to live mammalian and avian cells as measured by flow cytometry. Virus Res 2007; 129:175-81. [PMID: 17714820 DOI: 10.1016/j.virusres.2007.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/10/2007] [Accepted: 07/12/2007] [Indexed: 11/19/2022]
Abstract
At present there is much interest in the cell tropism and host range of influenza viruses, especially those of the H5N1 subtype. We wished to develop a method that would enable investigation of attachment of infectious virus through the interaction of the hemagglutinin molecule and live mammalian and avian cells and the subsequent infection of these cells. To this end, influenza viruses of various HA subtypes were constructed that either carry the green fluorescent protein (GFP) instead of the neuraminidase protein, or that express GFP in the cytoplasm of infected cells. The HA genes were derived from influenza viruses A/PR/8/34 (H1N1), A/Netherlands/178/95 (H3N2) and A/Vietnam/1194/04 (H5N1). Using these pairs of viruses, attachment and post-attachment events in the virus replication cycle can be distinguished. In general, the expression of NeuAc(alpha2-3)Gal or NeuAc(alpha2-6)Gal receptors on the cells tested corresponded with the attachment of the viruses that were studied with respect to predicted receptor specificity. Virus attachment was not always predictive for efficient infection of the cells.
Collapse
MESH Headings
- Animals
- Birds/virology
- Cell Line
- Flow Cytometry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza A virus/physiology
- Orthomyxoviridae Infections/virology
- Receptors, Virus/metabolism
- Virus Attachment
- Virus Replication
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Department of Virology, Postgraduate School Molecular Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Schneider JA, Alam SA, Ackers M, Parekh B, Chen HY, Graham P, Gurwith M, Mayer K, Novak RM. Mucosal HIV-binding antibody and neutralizing activity in high-risk HIV-uninfected female participants in a trial of HIV-vaccine efficacy. J Infect Dis 2007; 196:1637-44. [PMID: 18008247 DOI: 10.1086/522232] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 05/14/2007] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND This study investigated gp120-binding antibody and neutralizing activity, at the gingival- and cervical-mucosal levels, in response to a bivalent gp120 candidate vaccine. METHODS Women who met the study's inclusion criteria for documented high-risk behaviors participated in a nested substudy of the multicenter phase 3 trial of human immunodeficiency virus (HIV)-vaccine efficacy, VAX004. Gingival, cervicovaginal lavage, and plasma specimens were collected at 6-month intervals for 3 years. Binding-antibody and neutralizing-activity assays quantified the presence of anti-HIV activity in mucosal specimens. RESULTS Vaccine recipients were more likely than placebo recipients to have IgG binding antibodies in all 3 compartments tested and to have only IgA binding antibody in plasma (P<.0001). The relationship between vaccine and cervicovaginal IgG achieved significance (odds ratio [OR], 6.6 [P=.01]) but was weakened by the presence of cervicovaginal leukocytes. There was no relationship between immunization and the presence of neutralizing activity, in either bivariate or multivariate modeling (OR, 6.0 [P=.29]). CONCLUSIONS Vaccination is associated with the presence of both gp120-binding IgG in all compartments and plasma IgA but not with neutralizing activity. There is a role for the measurement of mucosal immunity in response to candidate vaccines and, in particular, for a determination of HIV-specific neutralizing antibodies.
Collapse
Affiliation(s)
- John A Schneider
- Department of Medicine, Tufts-New England Medical Center, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Newly optimized reverse genetics techniques have allowed influenza researchers to generate recombinant influenza viruses expressing mutant viral proteins, as well as foreign proteins. Approaches include the insertion of noninfluenza epitopes and polypeptides into viral glycoproteins, foreign open reading frames as additional segments, and the fusion of independent proteins into viral genes encoding glycoproteins or the nonstructural protein 1. These genetically engineered viruses have been demonstrated to be good viral vectors for mounting B- and T-cell responses and are attractive candidates for vaccine development. As the molecular biology of influenza viral infection is more fully understood, influenza vectors can be concurrently manipulated to produce designed chimeric viruses, unveiling the possibility of a prosperous future with cheap, effective and safe vaccines against different human diseases.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Mount Sinai School of Medicine, Department of Microbiology, Emerging Pathogens Institute, 1 Gustave L Levy Place, Box #1124, NY 10029, USA
| | - Adolfo García-Sastre
- Mount Sinai School of Medicine, Department of Microbiology, Emerging Pathogens Institute & Department of Medicine, Division of Infectious Diseases, 1 Gustave L Levy Place, Box #1124, NY 10029, USA
| |
Collapse
|
33
|
Garulli B, Meola M, Stillitano MG, Kawaoka Y, Castrucci MR. Efficient vagina-to-lower respiratory tract immune trafficking in a murine model of influenza A virus infection. Virology 2007; 361:274-82. [PMID: 17222437 DOI: 10.1016/j.virol.2006.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/23/2006] [Accepted: 12/01/2006] [Indexed: 11/30/2022]
Abstract
Effective vaccination strategies for infectious diseases take into account the induction, long-term maintenance and recall of memory T-cell populations. To understand the immunological cross-talk within the mucosal compartments, we compared intranasal to vaginal immunization and demonstrated that vaginal infection of BALB/c mice with influenza A virus provides protective mucosal immunity against both homosubtypic and heterosubtypic virus challenge in the respiratory tract. We found that, prior to the viral challenge, in vaginally primed mice, antigen-specific CD8+ T cells were not detected in the lung airways and levels of serum antibodies were lower than those observed in intranasally immunized mice. However, following pulmonary challenge, NP147-specific CD8+ T cells were recruited and amplified in vaginally primed mice to the same extent as those in intranasally primed mice. Thus, the long-term memory immune response elicited by vaginal immunization with influenza virus is efficiently recalled and offers reasonable protection against infection in the respiratory tract.
Collapse
Affiliation(s)
- Bruno Garulli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|
34
|
Stukova MA, Sereinig S, Zabolotnyh NV, Ferko B, Kittel C, Romanova J, Vinogradova TI, Katinger H, Kiselev OI, Egorov A. Vaccine potential of influenza vectors expressing Mycobacterium tuberculosis ESAT-6 protein. Tuberculosis (Edinb) 2007; 86:236-46. [PMID: 16677861 DOI: 10.1016/j.tube.2006.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
We generated several attenuated recombinant influenza A vectors expressing the Mycobacterium tuberculosis early secretory antigenic target (ESAT-6) protein. The ESAT-6 protein was recently identified as one of the most promising protective antigens for cell-mediated immunity. The obtained vectors appeared to be capable of inducing ESAT-6 specific Th1 immune response in mice after intranasal immunization. We found that double immunization with two influenza vectors of different subtypes provided a significant level of protection in mice, when applied as prophylactic vaccine, as well as substantial therapeutic effect in mice with pre-established tuberculosis infection. Moreover, we found a strong synergistic effect when vaccination with Flu/ESAT-6 vectors was combined with isoniazid treatment, resulting in a dramatic reduction of bacterial load in the lungs of infected mice.
Collapse
Affiliation(s)
- M A Stukova
- Influenza Research Institute, Russian Academy of Medical Sciences, St. Petersburg
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ferko B, Kittel C, Romanova J, Sereinig S, Katinger H, Egorov A. Live attenuated influenza virus expressing human interleukin-2 reveals increased immunogenic potential in young and aged hosts. J Virol 2006; 80:11621-7. [PMID: 16971432 PMCID: PMC1642586 DOI: 10.1128/jvi.01645-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the reported efficacy of commercially available influenza virus vaccines, a considerable proportion of the human population does not respond well to vaccination. In an attempt to improve the immunogenicity of live influenza vaccines, an attenuated, cold-adapted (ca) influenza A virus expressing human interleukin-2 (IL-2) from the NS gene was generated. Intranasal immunization of young adult and aged mice with the IL-2-expressing virus resulted in markedly enhanced mucosal and cellular immune responses compared to those of mice immunized with the nonrecombinant ca parent strain. Interestingly, the mucosal immunoglobulin A (IgA) and CD8(+) T-cell responses in the respiratory compartment could be restored in aged mice primed with the IL-2-expressing virus to magnitudes similar to those in young adult mice. The immunomodulating effect of locally expressed IL-2 also gave rise to a systemic CD8(+) T-cell and distant urogenital IgA response in young adult mice, but this effect was less distinct in aged mice. Importantly, only mice immunized with the recombinant IL-2 virus were completely protected from a pathogenic wild-type virus challenge and revealed a stronger onset of virus-specific CD8(+) T-cell recall response. Our findings emphasize the potential of reverse genetics to improve the efficacy of live influenza vaccines, thus rendering them more suitable for high-risk age groups.
Collapse
Affiliation(s)
- Boris Ferko
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18B, A-1190 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
36
|
Sereinig S, Stukova M, Zabolotnyh N, Ferko B, Kittel C, Romanova J, Vinogradova T, Katinger H, Kiselev O, Egorov A. Influenza virus NS vectors expressing the mycobacterium tuberculosis ESAT-6 protein induce CD4+ Th1 immune response and protect animals against tuberculosis challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:898-904. [PMID: 16893990 PMCID: PMC1539114 DOI: 10.1128/cvi.00056-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/27/2006] [Accepted: 05/10/2006] [Indexed: 11/20/2022]
Abstract
Infection with Mycobacterium tuberculosis remains a major cause of morbidity and mortality all over the world. Since the effectiveness of the only available tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is suboptimal, there is a strong demand to develop new tuberculosis vaccines. As tuberculosis is an airborne disease, the intranasal route of vaccination might be preferable. Live influenza virus vaccines might be considered as potential vectors for mucosal immunization against various viral or bacterial pathogens, including M. tuberculosis. We generated several subtypes of attenuated recombinant influenza A viruses expressing the 6-kDa early secretory antigenic target protein (ESAT-6) of M. tuberculosis from the NS1 reading frame. We were able to demonstrate the potency of influenza virus NS vectors to induce an M. tuberculosis-specific Th1 immune response in mice. Moreover, intranasal immunization of mice and guinea pigs with such vectors induced protection against mycobacterial challenge, similar to that induced by BCG vaccination.
Collapse
Affiliation(s)
- Sabine Sereinig
- Institute of Applied Microbiology, Muthgasse 18, 1190 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
HIV poses a serious health threat in the world. Mucosal transmission of HIV through the genitourinary tract may be the most important route of transmission. Intranasal immunisations induce vaginal and systemic immune responses. Various protein-, DNA- and RNA-based immunopotentiating adjuvants/delivery systems and live bacterial and viral vectors are available for intranasal immunisations, and these systems may differ in their ability to induce a specific type of immune response (e.g., a cytotoxic T cell versus an antibody response). As the protection against HIV may require both cytotoxic T cell and antibodies, a combination of adjuvants/delivery systems for combinations of mucosal and parenteral immunisations may be required in order to develop a protective anti-HIV vaccine.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA.
| | | |
Collapse
|
38
|
Vieira Machado A, Naffakh N, Gerbaud S, van der Werf S, Escriou N. Recombinant influenza A viruses harboring optimized dicistronic NA segment with an extended native 5' terminal sequence: induction of heterospecific B and T cell responses in mice. Virology 2005; 345:73-87. [PMID: 16271378 DOI: 10.1016/j.virol.2005.09.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 06/23/2005] [Accepted: 09/23/2005] [Indexed: 11/27/2022]
Abstract
We generated novel recombinant influenza A viruses (vNA38) harboring dicistronic NA segments with an extended native 5' terminal sequence of 70 nucleotides comprised of the last 42 nucleotides of the NA ORF and the 5' noncoding region (5' NCR). vNA38 viruses replicated stably and more efficiently than vNA35 viruses with a dicistronic NA segment comprised of the native 5' NCR only, that we described previously (Vieira Machado, A., Naffakh, N., van der Werf, S., Escriou, N., 2003. Expression of a foreign gene by stable recombinant influenza viruses harboring a dicistronic genomic segment with an internal promoter. Virology 313, 235-249). In addition, vNA38 viruses drove the expression of higher levels of encoded heterologous proteins than corresponding vNA35 viruses, both in cell culture and in the pulmonary tissue of infected mice. These data demonstrate that a sequence overlapping 5' coding and noncoding regions of the NA segment determines efficient replication and/or propagation of the vRNA. Intranasal immunization of mice with live vNA38 viruses induced B and T cell responses specific for the heterologous protein expressed, establishing the usefulness of such recombinant influenza viruses with a dicistronic segment for the development of live bivalent vaccines.
Collapse
Affiliation(s)
- Alexandre Vieira Machado
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
39
|
Abstract
The majority of infections initiate their departure from a mucosal surface, such as Human immunodeficiency virus (HIV), a sexually transmitted virus. Therefore, the induction of mucosal immunity is a high priority in the development of vaccines against mucosal pathogens. The selection of an appropriate antigen delivery system is necessary to induce an efficient mucosal immune response. Poxvirus vectors have been the most intensively studied live recombinant vector, and numerous studies have demonstrated their ability to induce mucosal immune responses against foreign expressed antigens. Previous studies have demonstrated that recombinants based on the attenuated modified vaccinia virus Ankara (MVA) vector were effective in inducing protective responses against different respiratory viruses, such as influenza and respiratory syncytial virus, following immunization via mucosal routes. Recent studies performed in the murine and macaque models have shown that recombinant MVA (rMVA) does not only stimulate HIV-specific immunity in the genital and rectal tracts following mucosal delivery, but can also control simian/human immunodeficiency viraemia and disease progression. In addition, a prime-boost vaccination approach against tuberculosis emphasized the importance of the intranasal rMVA antigen delivery to induce protective immunity against Mycobacterium tuberculosis. The aim of this review is to summarize the studies employing recombinant poxviruses, specifically rMVA as a mucosal delivery vector. The results demonstrate that rMVAs can activate specific immune responses at mucosal surfaces, and encourage further studies to characterize and improve the MVA mucosal immunogenicity of poxvirus vectors.
Collapse
Affiliation(s)
- M Magdalena Gherardi
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
- National Reference Center for AIDS, Department of Microbiology, School of Medicine, University of Buenos Aires, Paraguay 2155 piso 11 (C1121ABG), Buenos Aires, Argentina
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
40
|
Falcón AM, Fernandez-Sesma A, Nakaya Y, Moran TM, Ortín J, García-Sastre A. Attenuation and immunogenicity in mice of temperature-sensitive influenza viruses expressing truncated NS1 proteins. J Gen Virol 2005; 86:2817-2821. [PMID: 16186237 DOI: 10.1099/vir.0.80991-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was previously shown that two mutant influenza A viruses expressing C-terminally truncated forms of the NS1 protein (NS1-81 and NS1-110) were temperature sensitive in vitro. These viruses contain HA, NA and M genes derived from influenza A/WSN/33 H1N1 virus (mouse-adapted), and the remaining five genes from human influenza A/Victoria/3/75 virus. Mice intranasally infected with the NS1 mutant viruses showed undetectable levels of virus in lungs at day 3, whereas those infected with the NS1 wild-type control virus still had detectable levels of virus at this time. Nevertheless, the temperature-sensitive mutant viruses induced specific cellular and humoral immune responses similar to those induced by the wild-type virus. Mice immunized with the NS1 mutant viruses were protected against a lethal challenge with influenza A/WSN/33 virus. These results indicate that truncations in the NS1 protein resulting in temperature-sensitive phenotypes in vitro correlate with attenuation in vivo without compromising viral immunogenicity, an ideal characteristic for live attenuated viral vaccines.
Collapse
Affiliation(s)
- Ana M Falcón
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Ana Fernandez-Sesma
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Yurie Nakaya
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Thomas M Moran
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Juan Ortín
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
41
|
Kittel C, Ferko B, Kurz M, Voglauer R, Sereinig S, Romanova J, Stiegler G, Katinger H, Egorov A. Generation of an influenza A virus vector expressing biologically active human interleukin-2 from the NS gene segment. J Virol 2005; 79:10672-7. [PMID: 16051859 PMCID: PMC1182655 DOI: 10.1128/jvi.79.16.10672-10677.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Engineering of the influenza A virus NS1 protein became an attractive approach to the development of influenza vaccine vectors since it can tolerate large inserts of foreign proteins. However, influenza virus vectors expressing long foreign sequences from the NS1 open reading frame (ORF) are usually replication deficient in animals due to the abrogation of their NS1 protein function. In this study, we describe a bicistronic expression strategy based on the insertion of an overlapping UAAUG stop-start codon cassette into the NS gene, allowing the reinitiation of translation of a foreign sequence. Although the expression level of green fluorescent protein (GFP) from the newly created reading frame was significantly lower than that obtained previously from an influenza virus vector expressing GFP from the NS1 ORF, the bicistronic vector appeared to be replication competent in mice and showed outstanding genetic stability. All viral isolates derived from mouse lungs at 10 days postinfection were still capable of expressing GFP in infected cells. Utilizing this bicistronic approach, we constructed another recombinant influenza virus, allowing the secretion of biologically active human interleukin-2 (IL-2). Although this virus also replicated to high titers in mouse lungs, it did not display any mortality rate in infected animals, in contrast to control viruses. Moreover, the IL-2-expressing virus showed an enhanced CD8+ response to viral antigens in mice after a single intranasal immunization. These results indicate that influenza viruses could be engineered for the expression of biologically active molecules such as cytokines for immune modulation purposes.
Collapse
Affiliation(s)
- Christian Kittel
- Institute of Applied Microbiology, Muthgasse 18B, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang D, Christopher ME, Nagata LP, Zabielski MA, Li H, Wong JP, Samuel J. Intranasal immunization with liposome-encapsulated plasmid DNA encoding influenza virus hemagglutinin elicits mucosal, cellular and humoral immune responses. J Clin Virol 2005; 31 Suppl 1:S99-106. [PMID: 15567101 DOI: 10.1016/j.jcv.2004.09.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Influenza viral infections are a significant global public health concern due to the morbidity and mortality associated with acute respiratory disease, associated secondary complications and pandemic threat. Currently, the most effective preventative measure is an annual intramuscular (i.m.) injection of a trivalent vaccine. Intramuscular immunization induces strong systemic humoral responses but not mucosal immune responses which are important in the first line of defense against influenza. OBJECTIVES A plasmid encoding influenza A/PR/8/34 (H1N1) hemagglutinin (HA; pCI-HA10) was evaluated with respect to the mucosal, cellular and humoral immune responses generated and to its efficacy in protection against a challenge with a lethal dose of influenza. STUDY DESIGN BALB/c mice were immunized with pCI-HA10 DNA or liposome-encapsulated pCI-HA10 by either an intranasal (i.n.) or i.m. route. Sera and bronchoalveolar lavage (BAL) fluid were collected at various times and evaluated for HA-specific IgG and IgA antibodies and T cells, isolated from draining lymph nodes and spleens, were analyzed for their proliferative ability. Immunized mice were challenged with a lethal dose (5LD(50)) of influenza and monitored for survival. RESULTS AND CONCLUSIONS Intranasal immunization with liposome-encapsulated pCI-HA10 stimulated both IgG and IgA humoral responses and increased IgA titers in BAL fluid, whereas immunization with naked pCI-HA10 had no effect on the antibody response. Intramuscular immunization with both naked and liposome-encapsulated pCI-HA10 elevated serum IgG levels, but had no effect on IgA levels in either the serum or BAL fluid. Both i.n. and i.m. administration of HA vaccine (naked and liposome-encapsulated) elicited T cell proliferative responses. These results suggest that i.n. administration of liposome-encapsulated HA-encoding DNA is effective at eliciting mucosal, cellular and humoral immune responses. Mice immunized i.n. were able to withstand a lethal challenge of influenza virus, confirming that the immune responses mediated by the vaccine were protective.
Collapse
Affiliation(s)
- Daqing Wang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2N8
| | | | | | | | | | | | | |
Collapse
|
43
|
Ferko B, Stasakova J, Romanova J, Kittel C, Sereinig S, Katinger H, Egorov A. Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. J Virol 2004; 78:13037-45. [PMID: 15542655 PMCID: PMC524997 DOI: 10.1128/jvi.78.23.13037-13045.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We explored the immunogenic properties of influenza A viruses with altered NS1 genes (NS1 mutant viruses). NS1 mutant viruses expressing NS1 proteins with an impaired RNA-binding function or insertion of a longer foreign sequence did not replicate in murine lungs but still were capable of inducing a Th1-type immune response resulting in significant titers of virus-specific serum and mucosal immunoglobulin G2 (IgG2) and IgA, but with lower titers of IgG1. In contrast, replicating viruses elicited high titers of serum and mucosal IgG1 but less serum IgA. Replication-deficient NS1 mutant viruses induced a rapid local release of proinflammatory cytokines such as interleukin-1beta (IL-1beta) and IL-6. Moreover, these viruses also elicited markedly higher levels of IFN-alpha/beta in serum than the wild-type virus. Comparable numbers of virus-specific primary CD8(+) T cells were determined in all of the groups of immunized mice. The most rapid onset of the recall CD8(+)-T-cell response upon the wild-type virus challenge was detected in mice primed with NS1 mutant viruses eliciting high levels of cytokines. It is noteworthy that there was one NS1 mutant virus encoding NS1 protein with a deletion of 40 amino acids predominantly in the RNA-binding domain that induced the highest levels of IFN-alpha/beta, IL-6 and IL-1beta after infection. Mice that were immunized with this virus were completely protected from the challenge infection. These findings indicate that a targeted modification of the RNA-binding domain of the NS1 protein is a valuable technique to generate replication-deficient, but immunogenic influenza virus vaccines.
Collapse
Affiliation(s)
- Boris Ferko
- Institute of Applied Microbiology, Muthgasse 18B, A-1190 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ophorst OJAE, Kostense S, Goudsmit J, De Swart RL, Verhaagh S, Zakhartchouk A, Van Meijer M, Sprangers M, Van Amerongen G, Yüksel S, Osterhaus ADME, Havenga MJE. An adenoviral type 5 vector carrying a type 35 fiber as a vaccine vehicle: DC targeting, cross neutralization, and immunogenicity. Vaccine 2004; 22:3035-44. [PMID: 15297053 DOI: 10.1016/j.vaccine.2004.02.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2003] [Accepted: 02/05/2004] [Indexed: 10/26/2022]
Abstract
Substituting the coat proteins of adenoviral vector serotype 5 (Ad5) can alter vector tropism and circumvent vector neutralization. Here we report that an Ad5 vector carrying a part of the fiber molecule of human subgroup B adenovirus serotype 35 (Ad5.Fib35) transduces cultured human dendritic cells (DC) and circulating myeloid derived DC with approximately 10-fold greater efficiency than Ad5 in vitro. The improved DC transduction results in increased T-cell activation ex vivo. In vivo however, immunogenicity of the vectors in mice and non-human primates did not correlate with in vitro DC tropism. Ad5.Fib35 was less immunogenic in monkeys than Ad5, despite the improved primate DC tropism of Ad5.Fib35. In mice with high Ad5 vector-specific immunity, Ad5.Fib35 showed no significant difference in anti-insert immunity over Ad5 indicating that fiber exchange alone does not evade pre-existing Ad5 immunity. We thus conclude that, for ex vivo vaccination, Ad5.Fib35 shows promise as vector for loading of DC but is unable to circumvent anti-Ad5 immunity limiting its in vivo utility.
Collapse
|
45
|
Kittel C, Sereinig S, Ferko B, Stasakova J, Romanova J, Wolkerstorfer A, Katinger H, Egorov A. Rescue of influenza virus expressing GFP from the NS1 reading frame. Virology 2004; 324:67-73. [PMID: 15183054 DOI: 10.1016/j.virol.2004.03.035] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/18/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
In this study, several influenza NS1 mutants were examined for their growth ability in interferon (IFN)-deficient Vero cells treated with human interferon alpha (IFN-alpha). Mutants with an intact RNA binding domain showed similar growth properties as the wild-type virus, whereas viruses carrying an impaired RNA binding domain were dramatically attenuated. Relying on the ability of the first half of the NS1 protein to antagonize the IFN action, we established a rescue system for the NS gene based on the transfection of one plasmid expressing recombinant NS vRNA and subsequent coinfection with an IFN sensitive helper virus followed by adding of human IFN-alpha as a selection drug. Using this method, a recombinant influenza A virus expressing green fluorescence protein (GFP) from the NS1 reading frame was rescued. To ensure the posttranslational cleavage of GFP from the N-terminal 125 amino acids (aa) of NS1 protein, a peptide sequence comprising a caspase recognition site (CRS) was inserted upstream the GFP protein. Although a rather long sequence of 275 aa was inserted into the NS1 reading frame, the rescued recombinant vector appeared to be genetically stable while passaging in Vero cells and was able to replicate in PKR knockout mice.
Collapse
Affiliation(s)
- Christian Kittel
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Debates are still being waged over what is the best strategy for developing a potent AIDS vaccine. All the obvious approaches to making AIDS vaccines have been tried in the past two decades without much success. It is clear that new thinking and a revision of prevailing dogmas needs to be in place if we really want a vaccine. Conventional envelope-based antibody-inducing vaccines do not appear to hold promise, and broadly-neutralizing antibodies are now being searched as an alternative to the failed approach with subunit vaccines. The current consensus is that cellular immune responses, especially those mediated by CD8 cytotoxic/suppressor (CTL) and CD4 helper T lymphocytes, are needed to control HIV. Vaccines capable of inducing cell-mediated responses are, therefore, considered critical for controlling the spread of HIV. DNA-based vaccines triggering CTL reaction are currently thought to be an answer, but will they fulfill the promise? In the following paragraphs, a critical assessment of the state of the art will be provided in an attempt to analyze what we know and still don't know. The focus of this review is primarily on mucosal vaccines-a relatively new area in AIDS research. The update on V-1 Immunitor, the first mucosal AIDS vaccine available commercially, is provided within this context. Some of the reviewed concepts may be disputable, but without departure from the uninspiring consensus no substantial progress in the AIDS vaccine field can be envisioned.
Collapse
|
47
|
Garulli B, Kawaoka Y, Castrucci MR. Mucosal and systemic immune responses to a human immunodeficiency virus type 1 epitope induced upon vaginal infection with a recombinant influenza A virus. J Virol 2004; 78:1020-5. [PMID: 14694134 PMCID: PMC368805 DOI: 10.1128/jvi.78.2.1020-1025.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The humoral and cellular immune responses in the genital mucosa likely play an important role in the prevention of sexually transmitted infections, including infection with human immunodeficiency virus type 1 (HIV-1). Here we show that vaginal infection of progesterone-treated BALB/c mice with a recombinant influenza virus bearing the immunodominant P18IIIB cytotoxic T-lymphocyte (CTL) epitope of the gp160 envelope protein from an HIV-1 IIIB isolate (P18IIIB; RIQRGPGRAFVTIGK) can induce a specific immune response in regional mucosal lymph nodes, as well as in a systemic site (the spleen). A single inoculation of mice with the recombinant influenza virus induced long-lasting (at least 5 months) antigen-specific CTL memory detectable as a rapid recall of effector CTLs upon vaginal infection with recombinant vaccinia virus expressing HIV-1 IIIB envelope gene products. Long-term antigen-specific CTL memory was also induced and maintained in distant mucosal tissues when mice were intranasally immunized with the recombinant influenza virus. These results indicate that mucosal immunization and, in particular, local vaginal immunization with recombinant influenza virus can provide strong, durable immune responses in the female genital tract of mice.
Collapse
Affiliation(s)
- Bruno Garulli
- Laboratory of Virology, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | |
Collapse
|
48
|
Machado AV, Naffakh N, van der Werf S, Escriou N. Expression of a foreign gene by stable recombinant influenza viruses harboring a dicistronic genomic segment with an internal promoter. Virology 2003; 313:235-49. [PMID: 12951036 DOI: 10.1016/s0042-6822(03)00289-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Based on the observation that an internally located 3' promoter sequence can be functional (R. Flick and G. Hobom, Virology, 1999, 262(1), 93-103), we generated transfectant influenza A viruses harboring a dicistronic segment containing the CAT gene (660 nt) or a fragment of the Mengo virus VP0 capsid gene (306 nt) under the control of a duplicated 3' promoter sequence. Despite slightly reduced NA expression, the transfectant viruses replicated efficiently and proved to be stable upon both serial passage in vitro in MDCK cells and in vivo replication in the pulmonary tissue of infected mice. Internal initiation of replication and transcription from the second, internal, 3' promoter directed the synthesis of subgenomic vRNA and mRNA and therefore permitted expression of the foreign gene product, e.g., the CAT enzyme. The design of this vector may prove particularly appropriate for the utilization of influenza virus for the expression of heterologous proteins in their native form.
Collapse
Affiliation(s)
- Alexandre Vieira Machado
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
49
|
Efferson CL, Schickli J, Ko BK, Kawano K, Mouzi S, Palese P, García-Sastre A, Ioannides CG. Activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs) by human dendritic cells infected with an attenuated influenza A virus expressing a CTL epitope derived from the HER-2/neu proto-oncogene. J Virol 2003; 77:7411-24. [PMID: 12805440 PMCID: PMC164815 DOI: 10.1128/jvi.77.13.7411-7424.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of cancer vaccines requires approaches to induce expansion and functional differentiation of tumor antigen-specific cytotoxic T lymphocyte (CTL) effectors which posses cytolytic capability and produce cytokines. Efficient induction of such cells is hindered by the poor immunogenicity of tumor antigens and by the poor transduction efficiency of dendritic cells (DCs) with current nonreplicating vectors. We have investigated the use of influenza A virus, a potent viral inducer of CTLs, as a vector expressing the immunodominant HER-2 CTL epitope KIF (E75). For this purpose, an attenuated influenza A/PR8/34 virus with a truncated nonstructural (NS1) gene was generated containing the E75 epitope in its neuraminidase protein (KIF-NS virus). Stimulation of peripheral blood mononuclear cells from healthy donors and of tumor-associated lymphocytes from ovarian and breast cancer patients with DCs infected with KIF-NS virus (KIF-NS DC) induced CTLs that specifically recognized the peptide KIF and HER-2-expressing tumors in cytotoxicity assays and secreted gamma interferon (IFN-gamma) and interleukin-2 at recall with peptide. Priming with KIF-NS DCs increased the number of E75(+) CD45RO(+) cells by more than 10-fold compared to nonstimulated cells. In addition, KIF-NS virus induced high levels of IFN-alpha in DCs. This is the first report demonstrating induction of human epitope-specific CTLs against a tumor-associated antigen with a live attenuated recombinant influenza virus vector. Such vectors may provide a novel approach for tumor antigen delivery, lymphocyte activation, and differentiation in human cancer vaccine development.
Collapse
Affiliation(s)
- Clay L Efferson
- Department of Gynecologic Oncology, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gherardi MM, Nájera JL, Pérez-Jiménez E, Guerra S, García-Sastre A, Esteban M. Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes. J Virol 2003; 77:7048-57. [PMID: 12768024 PMCID: PMC156204 DOI: 10.1128/jvi.77.12.7048-7057.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccines that elicit systemic and mucosal immune responses should be the choice to control human immunodeficiency virus (HIV) infections. We have previously shown that prime-boost immunizations with influenza virus Env and vaccinia virus (VV) WR Env recombinants induced an enhanced systemic CD8(+) T-cell response against HIV-1 Env antigen. In this report, we analyzed in BALB/c mice after priming with influenza virus Env the ability of two VV recombinants expressing HIV-1 Env B (VV WR Env and the highly attenuated modified VV Ankara [MVA] Env) to boost cellular immune responses in the spleen and in the lymph nodes draining the genital and rectal tracts. Groups of mice were primed by the intranasal route with 10(4) PFU of influenza virus Env and boosted 14 days later by the intraperitoneal or intranasal route with 10(7) PFU of MVA Env or VV WR Env, while the control group received two immunizations with influenza virus Env. We found that the combined immunization (Flu/VV) increased more than 60 times the number of gamma interferon-specific CD8(+) T cells compared to the Flu/Flu scheme. Significantly, boosting with MVA Env by the intraperitoneal route induced a response 1.25 or 2.5 times (spleen or genital lymph nodes) higher with respect to that found after the boost with VV WR Env. Mice with an enhanced CD8(+) T-cell response also had an increased Th1/Th2 ratio, evaluated by the cytokine pattern secreted following in vitro restimulation with gp160 protein and by the specific immunoglobulin G2a (IgG2a)/IgG1 ratio in serum. By the intranasal route recombinant WR Env booster gave a more efficient immune response (10 and 1.3 times in spleen and genital lymph nodes, respectively) than recombinant MVA Env. However, the scheme influenza virus Env/MVA Env increased four times the response in the spleen, giving a low but significant response in the genital lymph nodes compared with a single intranasal immunization with MVA Env. These results demonstrate that the combination Flu/MVA in prime-booster immunization regimens is an effective vaccination approach to generate cellular immune responses to HIV antigens at sites critical for protective responses.
Collapse
Affiliation(s)
- M Magdalena Gherardi
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|