1
|
Chaminade F, Darlix JL, Fossé P. RNA Structural Requirements for Nucleocapsid Protein-Mediated Extended Dimer Formation. Viruses 2022; 14:606. [PMID: 35337013 PMCID: PMC8953772 DOI: 10.3390/v14030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Retroviruses package two copies of their genomic RNA (gRNA) as non-covalently linked dimers. Many studies suggest that the retroviral nucleocapsid protein (NC) plays an important role in gRNA dimerization. The upper part of the L3 RNA stem-loop in the 5' leader of the avian leukosis virus (ALV) is converted to the extended dimer by ALV NC. The L3 hairpin contains three stems and two internal loops. To investigate the roles of internal loops and stems in the NC-mediated extended dimer formation, we performed site-directed mutagenesis, gel electrophoresis, and analysis of thermostability of dimeric RNAs. We showed that the internal loops are necessary for efficient extended dimer formation. Destabilization of the lower stem of L3 is necessary for RNA dimerization, although it is not involved in the linkage structure of the extended dimer. We found that NCs from ALV, human immunodeficiency virus type 1 (HIV-1), and Moloney murine leukemia virus (M-MuLV) cannot promote the formation of the extended dimer when the apical stem contains ten consecutive base pairs. Five base pairs correspond to the maximum length for efficient L3 dimerization induced by the three NCs. L3 dimerization was less efficient with M-MuLV NC than with ALV NC and HIV-1 NC.
Collapse
Affiliation(s)
- Françoise Chaminade
- LBPA, UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Jean-Luc Darlix
- Laboratoire de Bioimagerie et Pathologies, UMR7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67400 Illkirch, France;
| | - Philippe Fossé
- LBPA, UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
2
|
Gilmer O, Mailler E, Paillart JC, Mouhand A, Tisné C, Mak J, Smyth RP, Marquet R, Vivet-Boudou V. Structural maturation of the HIV-1 RNA 5' untranslated region by Pr55 Gag and its maturation products. RNA Biol 2022; 19:191-205. [PMID: 35067194 PMCID: PMC8786341 DOI: 10.1080/15476286.2021.2021677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Maturation of the HIV-1 viral particles shortly after budding is required for infectivity. During this process, the Pr55Gag precursor undergoes a cascade of proteolytic cleavages, and whilst the structural rearrangements of the viral proteins are well understood, the concomitant maturation of the genomic RNA (gRNA) structure is unexplored, despite evidence that it is required for infectivity. To get insight into this process, we systematically analysed the interactions between Pr55Gag or its maturation products (NCp15, NCp9 and NCp7) and the 5ʹ gRNA region and their structural consequences, in vitro. We show that Pr55Gag and its maturation products mostly bind at different RNA sites and with different contributions of their two zinc knuckle domains. Importantly, these proteins have different transient and permanent effects on the RNA structure, the late NCp9 and NCp7 inducing dramatic structural rearrangements. Altogether, our results reveal the distinct contributions of the different Pr55Gag maturation products on the gRNA structural maturation.
Collapse
Affiliation(s)
- Orian Gilmer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Elodie Mailler
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Assia Mouhand
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-chimique, Paris, France
| | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-chimique, Paris, France
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Redmond P Smyth
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| |
Collapse
|
3
|
Wang Y, Li Z, Shmidov Y, Carrazzone RJ, Bitton R, Matson JB. Crescent-Shaped Supramolecular Tetrapeptide Nanostructures. J Am Chem Soc 2020; 142:20058-20065. [PMID: 33186019 PMCID: PMC7702297 DOI: 10.1021/jacs.0c09399] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Self-assembly of amphiphilic peptide-based building blocks gives rise to a plethora of interesting nanostructures such as ribbons, fibers, and tubes. However, it remains a great challenge to employ peptide self-assembly to directly produce nanostructures with lower symmetry than these highly symmetric motifs. We report here our discovery that persistent and regular crescent nanostructures with a diameter of 28 ± 3 nm formed from a series of tetrapeptides with the general structure AdKSKSEX (Ad = adamantyl group, KS = lysine residue functionalized with an S-aroylthiooxime (SATO) group, E = glutamic acid residue, and X = variable amino acid residue). In the presence of cysteine, the biological signaling gas hydrogen sulfide (H2S) was released from the SATO units of the crescent nanostructures, termed peptide-H2S donor conjugates (PHDCs), reducing levels of reactive oxygen species (ROS) in macrophage cells. Additional in vitro studies showed that the crescent nanostructures alleviated cytotoxicity induced by phorbol 12-myristate-13-acetate more effectively than common H2S donors and a PHDC of a similar chemical structure, AdKSKSE, that formed short nanoworms instead of nanocrescents. Cell internalization studies indicated that nanocrescent-forming PHDCs were more effective in reducing ROS levels in macrophages because they entered into and remained in cells better than nanoworms, highlighting how nanostructure morphology can affect bioactivity in drug delivery.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zhao Li
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ryan J. Carrazzone
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
4
|
Nucleocapsid Protein Precursors NCp9 and NCp15 Suppress ATP-Mediated Rescue of AZT-Terminated Primers by HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2020; 64:AAC.00958-20. [PMID: 32747359 DOI: 10.1128/aac.00958-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023] Open
Abstract
In HIV-1, development of resistance to AZT (3'-azido-3'-deoxythymidine) is mediated by the acquisition of thymidine analogue resistance mutations (TAMs) (i.e., M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) in the viral reverse transcriptase (RT). Clinically relevant combinations of TAMs, such as M41L/T215Y or D67N/K70R/T215F/K219Q, enhance the ATP-mediated excision of AZT monophosphate (AZTMP) from the 3' end of the primer, allowing DNA synthesis to continue. Additionally, during HIV-1 maturation, the Gag polyprotein is cleaved to release a mature nucleocapsid protein (NCp7) and two intermediate precursors (NCp9 and NCp15). NC proteins interact with the viral genome and facilitate the reverse transcription process. Using wild-type and TAM-containing RTs, we showed that both NCp9 and NCp15 inhibited ATP-mediated rescue of AZTMP-terminated primers annealed to RNA templates but not DNA templates, while NCp7 had no effect on rescue activity. RNase H inactivation by introducing the active-site mutation E478Q led to the loss of the inhibitory effect shown by NCp9. NCp15 had a stimulatory effect on the RT's RNase H activity not observed with NCp7 and NCp9. However, analysis of RNase H cleavage patterns revealed that in the presence of NCp9, RNA/DNA complexes containing duplexes of 12 bp had reduced stability in comparison with those obtained in the absence of NC or with NCp7 or NCp15. These effects are expected to have a strong influence on the inhibitory action of NCp9 and NCp15 by affecting the efficiency of RNA-dependent DNA polymerization after unblocking DNA primers terminated with AZTMP and other nucleotide analogues.
Collapse
|
5
|
Significant Differences in RNA Structure Destabilization by HIV-1 GagDp6 and NCp7 Proteins. Viruses 2020; 12:v12050484. [PMID: 32344834 PMCID: PMC7290599 DOI: 10.3390/v12050484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
Retroviral nucleocapsid (NC) proteins are nucleic acid chaperones that play distinct roles in the viral life cycle. During reverse transcription, HIV-1 NC facilitates the rearrangement of nucleic acid secondary structures, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a complementary RNA hairpin. In contrast, during viral assembly, NC, as a domain of the group-specific antigen (Gag) polyprotein, binds the genomic RNA and facilitates packaging into new virions. It is not clear how the same protein, alone or as part of Gag, performs such different RNA binding functions in the viral life cycle. By combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the equilibrium stability and unfolding barrier for TAR RNA. Comparing measured results with a model of discrete protein binding allows us to localize affected binding sites, in addition to quantifying hairpin stability. We find that, while both NCp7 and Gag∆p6 destabilize the TAR hairpin, Gag∆p6 binding is localized to two sites in the stem, while NCp7 targets sites near the top loop. Unlike Gag∆p6, NCp7 destabilizes this loop, shifting the location of the reaction barrier toward the folded state and increasing the natural rate of hairpin opening by ~104. Thus, our results explain why Gag cleavage and NC release is an essential prerequisite for reverse transcription within the virion.
Collapse
|
6
|
Potempa M, Lee SK, Kurt Yilmaz N, Nalivaika EA, Rogers A, Spielvogel E, Carter CW, Schiffer CA, Swanstrom R. HIV-1 Protease Uses Bi-Specific S2/S2' Subsites to Optimize Cleavage of Two Classes of Target Sites. J Mol Biol 2018; 430:5182-5195. [PMID: 30414407 DOI: 10.1016/j.jmb.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022]
Abstract
Retroviral proteases (PRs) have a unique specificity that allows cleavage of sites with or without a P1' proline. A P1' proline is required at the MA/CA cleavage site due to its role in a post-cleavage conformational change in the capsid protein. However, the HIV-1 PR prefers to have large hydrophobic amino acids flanking the scissile bond, suggesting that PR recognizes two different classes of substrate sequences. We analyzed the cleavage rate of over 150 combinations of six different HIV-1 cleavage sites to explore rate determinants of cleavage. We found that cleavage rates are strongly influenced by the two amino acids flanking the amino acids at the scissile bond (P2-P1/P1'-P2'), with two complementary sets of rules. When P1' is proline, the P2 side chain interacts with a polar region in the S2 subsite of the PR, while the P2' amino acid interacts with a hydrophobic region of the S2' subsite. When P1' is not proline, the orientations of the P2 and P2' side chains with respect to the scissile bond are reversed; P2 residues interact with a hydrophobic face of the S2 subsite, while the P2' amino acid usually engages hydrophilic amino acids in the S2' subsite. These results reveal that the HIV-1 PR has evolved bi-functional S2 and S2' subsites to accommodate the steric effects imposed by a P1' proline on the orientation of P2 and P2' substrate side chains. These results also suggest a new strategy for inhibitor design to engage the multiple specificities in these subsites.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sook-Kyung Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amy Rogers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Wapling J, Srivastava S, Shehu-Xhilaga M, Tachedjian G. Targeting Human Immunodeficiency Virus Type 1 Assembly, Maturation and Budding. Drug Target Insights 2017. [DOI: 10.1177/117739280700200020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Johanna Wapling
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | - Seema Srivastava
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - Miranda Shehu-Xhilaga
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
- Infectious Diseases Unit, Alfred Hospital, Prahran, Victoria 3181, Australia
| | - Gilda Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
| |
Collapse
|
8
|
Radzinski SC, Foster JC, Scannelli SJ, Weaver JR, Arrington KJ, Matson JB. Tapered Bottlebrush Polymers: Cone-Shaped Nanostructures by Sequential Addition of Macromonomers. ACS Macro Lett 2017; 6:1175-1179. [PMID: 35650938 DOI: 10.1021/acsmacrolett.7b00724] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tapered (cone-shaped) bottlebrush polymers were synthesized for the first time by ring-opening metathesis polymerization (ROMP) using a sequential-addition of macromonomers (SAM) strategy. Polystyrene macromonomers with molecular weights that increased from 1 to 10 kg mol-1 were polymerized in sequence to high conversion, yielding tapered bottlebrush polymers that could be visualized by atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Scott C. Radzinski
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jeffrey C. Foster
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jeffrey R. Weaver
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kyle J. Arrington
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
10
|
Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3. Viruses 2016; 8:v8070193. [PMID: 27428991 PMCID: PMC4974528 DOI: 10.3390/v8070193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation.
Collapse
|
11
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
12
|
Potempa M, Lee SK, Wolfenden R, Swanstrom R. The triple threat of HIV-1 protease inhibitors. Curr Top Microbiol Immunol 2015; 389:203-41. [PMID: 25778681 DOI: 10.1007/82_2015_438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
13
|
van Bel N, van der Velden Y, Bonnard D, Le Rouzic E, Das AT, Benarous R, Berkhout B. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome. PLoS One 2014; 9:e103552. [PMID: 25072705 PMCID: PMC4114784 DOI: 10.1371/journal.pone.0103552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 12/30/2022] Open
Abstract
The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.
Collapse
Affiliation(s)
- Nikki van Bel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yme van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Atze T. Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
14
|
Understanding HIV-1 protease autoprocessing for novel therapeutic development. Future Med Chem 2014; 5:1215-29. [PMID: 23859204 DOI: 10.4155/fmc.13.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the infected cell, HIV-1 protease (PR) is initially synthesized as part of the GagPol polyprotein. PR autoprocessing is a virus-specific process by which the PR domain embedded in the precursor catalyzes proteolytic reactions responsible for liberation of free mature PRs, which then recognize and cleave at least ten different peptide sequences in the Gag and GagPol polyproteins. Despite extensive structure and function studies of the mature PRs as well as the successful development of ten US FDA-approved catalytic-site inhibitors, the precursor autoprocessing mechanism remains an intriguing yet-to-be-solved puzzle. This article discusses current understanding of the autoprocessing mechanism, in an effort to prompt the development of novel anti-HIV drugs that selectively target precursor autoprocessing.
Collapse
|
15
|
Torrecilla E, Llácer Delicado T, Holguín Á. New findings in cleavage sites variability across groups, subtypes and recombinants of human immunodeficiency virus type 1. PLoS One 2014; 9:e88099. [PMID: 24516589 PMCID: PMC3917854 DOI: 10.1371/journal.pone.0088099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022] Open
Abstract
Background Polymorphisms at cleavage sites (CS) can influence Gag and Pol proteins processing by the viral protease (PR), restore viral fitness and influence the virological outcome of specific antiretroviral drugs. However, data of HIV-1 variant-associated CS variability is scarce. Methods In this descriptive research, we examine the effect of HIV-1 variants on CS conservation using all 9,028 gag and 3,906 pol HIV-1 sequences deposited in GenBank, focusing on the 110 residues (10 per site) involved at 11 CS: P17/P24, P24/P2, P2/P7, P7/P1, P1/P6gag, NC/TFP, TFP/P6pol, P6pol/PR, PR/RTp51, RTp51/RTp66 and RTp66/IN. CS consensus amino acid sequences across HIV-1 groups (M, O, N, P), group M 9 subtypes and 51 circulating recombinant forms (CRF) were inferred from our alignments and compared to the HIV-1 consensus-of-consensuses sequence provided by GenBank. Results In all HIV-1 variants, the most conserved CS were PR/RTp51, RTp51/RTp66, P24/P2 and RTp66/IN and the least P2/P7 and P6pol/PR. Conservation was significantly lower in subtypes vs. recombinants in P2/P7 and TFP/P6pol and higher in P17/P24. We found a significantly higher conservation rate among Group M vs. non-M Groups HIV-1. The late processing sites at Gag (P7/P1) and GagPol precursors (PR/RTp51) presented a significantly higher conservation vs. the first CS (P2/P7) in the 4 HIV-1 groups. Here we show 52 highly conserved residues across HIV-1 variants in 11 CS and the amino acid consensus sequence in each HIV-1 group and HIV-1 group M variant for each 11 CS. Conclusions This is the first study to describe the CS conservation level across all HIV-1 variants and 11 sites in one of the largest available sequence HIV-1 dataset. These results could help other researchers for the future design of both novel antiretroviral agents acting as maturation inhibitors as well as for vaccine targeting CS.
Collapse
Affiliation(s)
- Esther Torrecilla
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal- IRYCIS and CIBERESP, Madrid, Spain
| | - Teresa Llácer Delicado
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal- IRYCIS and CIBERESP, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal- IRYCIS and CIBERESP, Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Meng B, Lever AM. Wrapping up the bad news: HIV assembly and release. Retrovirology 2013; 10:5. [PMID: 23305486 PMCID: PMC3558412 DOI: 10.1186/1742-4690-10-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/21/2012] [Indexed: 02/02/2023] Open
Abstract
The late Nobel Laureate Sir Peter Medawar once memorably described viruses as ‘bad news wrapped in protein’. Virus assembly in HIV is a remarkably well coordinated process in which the virus achieves extracellular budding using primarily intracellular budding machinery and also the unusual phenomenon of export from the cell of an RNA. Recruitment of the ESCRT system by HIV is one of the best documented examples of the comprehensive way in which a virus hijacks a normal cellular process. This review is a summary of our current understanding of the budding process of HIV, from genomic RNA capture through budding and on to viral maturation, but centering on the proteins of the ESCRT pathway and highlighting some recent advances in our understanding of the cellular components involved and the complex interplay between the Gag protein and the genomic RNA.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
17
|
Lee SK, Potempa M, Swanstrom R. The choreography of HIV-1 proteolytic processing and virion assembly. J Biol Chem 2012; 287:40867-74. [PMID: 23043111 DOI: 10.1074/jbc.r112.399444] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 has been the target of intensive research at the molecular and biochemical levels for >25 years. Collectively, this work has led to a detailed understanding of viral replication and the development of 24 approved drugs that have five different targets on various viral proteins and one cellular target (CCR5). Although most drugs target viral enzymatic activities, our detailed knowledge of so much of the viral life cycle is leading us into other types of inhibitors that can block or disrupt protein-protein interactions. Viruses have compact genomes and employ a strategy of using a small number of proteins that can form repeating structures to enclose space (i.e. condensing the viral genome inside of a protein shell), thus minimizing the need for a large protein coding capacity. This creates a relatively small number of critical protein-protein interactions that are essential for viral replication. For HIV-1, the Gag protein has the role of a polyprotein precursor that contains all of the structural proteins of the virion: matrix, capsid, spacer peptide 1, nucleocapsid, spacer peptide 2, and p6 (which contains protein-binding domains that interact with host proteins during budding). Similarly, the Gag-Pro-Pol precursor encodes most of the Gag protein but now includes the viral enzymes: protease, reverse transcriptase (with its associated RNase H activity), and integrase. Gag and Gag-Pro-Pol are the substrates of the viral protease, which is responsible for cleaving these precursors into their mature and fully active forms (see Fig. 1A).
Collapse
Affiliation(s)
- Sook-Kyung Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
18
|
HIV-2 genome dimerization is required for the correct processing of Gag: a second-site reversion in matrix can restore both processes in dimerization-impaired mutant viruses. J Virol 2012; 86:5867-76. [PMID: 22419802 DOI: 10.1128/jvi.00124-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A unique feature of retroviruses is the packaging of two copies of their genome, noncovalently linked at their 5' ends. In vitro, dimerization of human immunodeficiency virus type 2 (HIV-2) RNA occurs by interaction of a self-complementary sequence exposed in the loop of stem-loop 1 (SL-1), also termed the dimer initiation site (DIS). However, in virions, HIV-2 genome dimerization does not depend on the DIS. Instead, a palindrome located within the packaging signal (Psi) is the essential motif for genome dimerization. We reported previously that a mutation within Psi decreasing genome dimerization and packaging also resulted in a reduced proportion of mature particles (A. L'Hernault, J. S. Greatorex, R. A. Crowther, and A. M. Lever, Retrovirology 4:90, 2007). In this study, we investigated further the relationship between HIV-2 genome dimerization, particle maturation, and infectivity by using a series of targeted mutations in SL-1. Our results show that disruption of a purine-rich ((392)-GGAG-(395)) motif within Psi causes a severe reduction in genome dimerization and a replication defect. Maintaining the extended SL-1 structure in combination with the (392)-GGAG-(395) motif enhanced packaging. Unlike that of HIV-1, which can replicate despite mutation of the DIS, HIV-2 replication depends critically on genome dimerization rather than just packaging efficiency. Gag processing was altered in the HIV-2 dimerization mutants, resulting in the accumulation of the MA-CA-p2 processing intermediate and suggesting a link between genome dimerization and particle assembly. Analysis of revertant SL-1 mutant viruses revealed that a compensatory mutation in matrix (70TI) could rescue viral replication and partially restore genome dimerization and Gag processing. Our results are consistent with interdependence between HIV-2 RNA dimerization and the correct proteolytic cleavage of the Gag polyprotein.
Collapse
|
19
|
[What's going on post-budding?]. Uirusu 2011; 61:91-8. [PMID: 21972560 DOI: 10.2222/jsv.61.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In general, the retrovirus particles become infectious on post-budding with cleavages of structural protein Gag by viral protease. Protease defective mutants bud particles normally, but the particles are non-infectious and called donuts-like particle because of their morphology. The viral genomes inside the donuts-like particles form very fragile dimer, which are far different from those in wild-type particles. The ordered particle maturation process is essential for infectivity of virus, but its mechanism largely remains unclear. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. As results, we found that these process progressed synchronously, but each transition point did not coincide completely. The mutual relationship between viral protein and RNA maturation is discussed for a further understanding of the retroviral life cycle.
Collapse
|
20
|
Jin S, Ellis E, Veetil JV, Yao H, Ye K. Visualization of human immunodeficiency virus protease inhibition using a novel Förster resonance energy transfer molecular probe. Biotechnol Prog 2011; 27:1107-14. [PMID: 21584951 DOI: 10.1002/btpr.628] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 03/23/2011] [Indexed: 11/11/2022]
Abstract
The in vivo high-throughput screening (HTS) of human immunodeficiency virus (HIV) protease inhibitors is a significant challenge because of the lack of reliable assays that allow the visualization of HIV targets within living cells. In this study, we developed a new molecular probe that utilizes the principles of Förster resonance energy transfer (FRET) to visualize HIV-1 protease inhibition within living cells. The probe is constructed by linking two fluorescent proteins: AcGFP1 (a mutant green fluorescent protein) and mCherry (a red fluorescent protein) with an HIV-1 protease cleavable p2/p7 peptide. The cleavage of the linker peptide by HIV-1 protease leads to separation of AcGFP1 from mCherry, quenching FRET between AcGFP1 and mCherry. Conversely, the addition of a protease inhibitor prevents the cleavage of the linker peptide by the protease, allowing FRET from AcGFP1 to mCherry. Thus, HIV-1 protease inhibition can be determined by measuring the FRET signal's change generated from the probe. Both in vitro and in vivo studies demonstrated the feasibility of applying the probe for quantitative analyses of HIV-1 protease inhibition. By cotransfecting HIV-1 protease and the probe expression plasmids into 293T cells, we showed that the inhibition of HIV-1 protease by inhibitors can be visualized or quantitatively determined within living cells through ratiometric FRET microscopy imaging measurement. It is expected that this new probe will allow high-content screening (HCS) of new anti-HIV drugs.
Collapse
Affiliation(s)
- Sha Jin
- Biomedical Engineering Program, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | |
Collapse
|
21
|
Ohishi M, Nakano T, Sakuragi S, Shioda T, Sano K, Sakuragi JI. The relationship between HIV-1 genome RNA dimerization, virion maturation and infectivity. Nucleic Acids Res 2010; 39:3404-17. [PMID: 21186186 PMCID: PMC3082877 DOI: 10.1093/nar/gkq1314] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relationship between virion protein maturation and genomic RNA dimerization of human immunodeficiency virus type 1 (HIV-1) remains incompletely understood. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. Within the virion maturation process, the RNA dimer stabilization begins during the primary cleavage (p2-NC) of Pr55 Gag. However, the primary cleavage alone is not sufficient, and the ensuing cleavages are required for the completion of dimerization. From our observations, the increase of cleavage products may not put a threshold on the transition from fragile to stable dimeric RNA. Most of the RNA dimerization process did not require viral core formation, and particle morphology dynamics during viral maturation did not completely synchronize with the transition of dimeric RNA status. Although the endogenous virion RT activity was fully acquired at the initial step of maturation, the following process was necessary for viral DNA production in infected cell, suggesting the maturation of viral RNA/protein plays critical role for viral infectivity other than RT process.
Collapse
Affiliation(s)
- Masahisa Ohishi
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Clavel F, Mammano F. Role of Gag in HIV Resistance to Protease Inhibitors. Viruses 2010; 2:1411-1426. [PMID: 21994687 PMCID: PMC3185719 DOI: 10.3390/v2071411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/21/2010] [Accepted: 06/25/2010] [Indexed: 11/16/2022] Open
Abstract
Cleavage of Gag and Gag-Pol precursors by the viral protease is an essential step in the replication cycle of HIV. Protease inhibitors, which compete with natural cleavage sites, strongly impair viral infectivity and have proven to be highly valuable in the treatment of HIV-infected subjects. However, as with all other antiretroviral drugs, the clinical benefit of protease inhibitors can be compromised by resistance. One key feature of HIV resistance to protease inhibitors is that the mutations that promote resistance are not only located in the protease itself, but also in some of its natural substrates. The best documented resistance-associated substrate mutations are located in, or near, the cleavage sites in the NC/SP2/p6 region of Gag. These mutations improve interactions between the substrate and the mutated enzyme and correspondingly increase cleavage. Initially described as compensatory mutations able to partially correct the loss of viral fitness that results from protease mutations, changes in Gag are now recognized as being directly involved in resistance. Besides NC/SP2/p6 mutations, polymorphisms in other regions of Gag have been found to exert various effects on viral fitness and or resistance, but their importance deserves further evaluation.
Collapse
Affiliation(s)
- François Clavel
- Inserm U941, Paris 75010, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Paris 75010, France
- Hôpital Saint Louis, AP-HP, Paris 75010, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +331-5727-6764; Fax: +331-5727-6804
| | - Fabrizio Mammano
- Institut Pasteur, Unité Virus et Immunité, Paris 75015, France
- CNRS URA 3015, Paris 75015, France
| |
Collapse
|
23
|
Molefe DM, Ganto MM, Lobb KA, Kaye PT. Chromone Studies. Part 17. Tricyclic Scaffolds from Reactions of chromone-3-carbaldehydes and methyl vinyl ketone under Baylis–Hillman conditions. JOURNAL OF CHEMICAL RESEARCH 2009. [DOI: 10.3184/030823409x465277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reaction of a series of chromone-3-carbaldehydes with methyl vinyl ketone under Baylis–Hillman conditions, using 3-hydroxyquinuclidine in chloroform or DABCO in 1-methyl-2-pyrrolidinone, affords unprecedented tricylic chromone derivatives which, depending on the conditions, may be accompanied by the normal Baylis–Hillman products or their respective tricyclic dimers.
Collapse
Affiliation(s)
- Duduzile M. Molefe
- Department of Chemistry and Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Mlungiseleli M. Ganto
- Department of Chemistry and Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Kevin A. Lobb
- Department of Chemistry and Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Perry T. Kaye
- Department of Chemistry and Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| |
Collapse
|
24
|
Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors. Microbiol Mol Biol Rev 2009; 73:211-32. [PMID: 19487726 DOI: 10.1128/mmbr.00040-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55(Gag), by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F.
Collapse
|
25
|
Payne RP, Matthews PC, Prado JG, Goulder PJR. HLA-mediated control of HIV and HIV adaptation to HLA. ADVANCES IN PARASITOLOGY 2009; 68:1-20. [PMID: 19289188 DOI: 10.1016/s0065-308x(08)00601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The human immunodeficiency virus (HIV) epidemic provides a rare opportunity to examine in detail the initial stages of a host-pathogen co-evolutionary struggle in humans. The genes encoding the human leukocyte antigen (HLA) class I molecules have a critical influence in the success or failure of the immune response against HIV. The particular HLA class I molecules expressed by each individual defines the type of cytotoxic T-lymphocyte (CTL) response that is made against the virus. This chapter describes the role of HLA class I and the CTL response in controlling HIV replication, and discusses the extent to which HIV has already adapted to those HLA class I molecules and CTL responses that are most effective in viral suppression. It is evident that viral mutations that enable HIV to evade the CTL response are indeed already accumulating in populations where the selecting HLA molecules are highly prevalent, indicating the dynamic and shifting nature of the evolutionary interplay between HIV and human populations.
Collapse
Affiliation(s)
- Rebecca P Payne
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | | | | | | |
Collapse
|
26
|
Moore MD, Hu WS. HIV-1 RNA dimerization: It takes two to tango. AIDS Rev 2009; 11:91-102. [PMID: 19529749 PMCID: PMC3056336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Each viral particle of HIV-1, the infectious agent of AIDS, contains two copies of the full-length viral genomic RNA. Encapsidating two copies of genomic RNA is one of the characteristics of the retrovirus family. The two RNA molecules are both positive-sense and often identical; furthermore, each RNA encodes the full complement of genetic information required for viral replication. The two strands of RNA are intricately entwined within the core of the mature infectious virus as a ribonuclear complex with the viral proteins, including nucleocapsid. Multiple steps in the biogenesis of the genomic full-length RNA are involved in achieving this location and dimeric state. The viral sequences and proteins involved in the process of RNA dimerization, both for the initial interstrand contact and subsequent steps that result in the condensed, stable conformation of the genomic RNA, are outlined in this review. In addition, the impact of the dimeric state of HIV-1 viral RNA is discussed with respect to its importance in efficient viral replication and, consequently, the potential development of antiviral strategies designed to disrupt the formation of dimeric RNA.
Collapse
Affiliation(s)
- Michael D Moore
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
27
|
Leiherer A, Ludwig C, Wagner R. Influence of extended mutations of the HIV-1 transframe protein p6 on Nef-dependent viral replication and infectivity in vitro. Virology 2009; 387:200-10. [PMID: 19269660 DOI: 10.1016/j.virol.2009.01.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/06/2009] [Accepted: 01/29/2009] [Indexed: 11/15/2022]
Abstract
The HIV-1 transframe protein p6 known to modulate HIV-1 protease activation has been suggested to interact with the viral pathogenicity factor Nef. However, a potential interaction site in p6 has not been mapped so far. To evaluate effects of p6 modification on viral replication in light of Nef function, clustered substitutions were introduced into the central p6 region of the infectious provirus NL4-3 and virus growth and composition of the various mutants was analyzed in different cell cultures in the presence or absence of Nef. Whereas clustered p6 substitutions did neither affect particle incorporation of Nef, nor precursor maturation or viral infectivity, a simultaneous substitution of 40 of the total 56 p6 residues significantly diminished viral infectivity and replication in a Nef-independent manner. Furthermore, this extended modification was not capable of rescuing the negative effects of a transdominant Nef mutant on particle production suggesting that the proposed target for Nef interaction in Gag-Pol is located outside the modified p6 region. In sum these data strongly argue against a functional connection of the central p6 region and Nef during viral life cycle.
Collapse
Affiliation(s)
- Andreas Leiherer
- Molecular Microbiology and Gene Therapy, Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Straubeta Allee 11, D-93053 Regensburg, Germany
| | | | | |
Collapse
|
28
|
Kafaie J, Dolatshahi M, Ajamian L, Song R, Mouland AJ, Rouiller I, Laughrea M. Role of capsid sequence and immature nucleocapsid proteins p9 and p15 in Human Immunodeficiency Virus type 1 genomic RNA dimerization. Virology 2009; 385:233-44. [DOI: 10.1016/j.virol.2008.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 10/18/2008] [Accepted: 11/14/2008] [Indexed: 11/28/2022]
|
29
|
Dafonseca S, Coric P, Gay B, Hong SS, Bouaziz S, Boulanger P. The inhibition of assembly of HIV-1 virus-like particles by 3-O-(3',3'-dimethylsuccinyl) betulinic acid (DSB) is counteracted by Vif and requires its Zinc-binding domain. Virol J 2008; 5:162. [PMID: 19105849 PMCID: PMC2628355 DOI: 10.1186/1743-422x-5-162] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/23/2008] [Indexed: 01/02/2023] Open
Abstract
Background DSB, the 3-O-(3',3'dimethylsuccinyl) derivative of betulinic acid, blocks the last step of protease-mediated processing of HIV-1 Gag precursor (Pr55Gag), which leads to immature, noninfectious virions. When administered to Pr55Gag-expressing insect cells (Sf9), DSB inhibits the assembly and budding of membrane-enveloped virus-like particles (VLP). In order to explore the possibility that viral factors could modulate the susceptibility to DSB of the VLP assembly process, several viral proteins were coexpressed individually with Pr55Gag in DSB-treated cells, and VLP yields assayed in the extracellular medium. Results Wild-type Vif (Vifwt) restored the VLP production in DSB-treated cells to levels observed in control, untreated cells. DSB-counteracting effect was also observed with Vif mutants defective in encapsidation into VLP, suggesting that packaging and anti-DSB effect were separate functions in Vif. The anti-DSB effect was abolished for VifC133S and VifS116V, two mutants which lacked the zinc binding domain (ZBD) formed by the four H108C114C133H139 coordinates with a Zn atom. Electron microscopic analysis of cells coexpressing Pr55Gag and Vifwt showed that a large proportion of VLP budded into cytoplasmic vesicles and were released from Sf9 cells by exocytosis. However, in the presence of mutant VifC133S or VifS116V, most of the VLP assembled and budded at the plasma membrane, as in control cells expressing Pr55Gag alone. Conclusion The function of HIV-1 Vif protein which negated the DSB inhibition of VLP assembly was independent of its packaging capability, but depended on the integrity of ZBD. In the presence of Vifwt, but not with ZBD mutants VifC133S and VifS116V, VLP were redirected to a vesicular compartment and egressed via the exocytic pathway.
Collapse
Affiliation(s)
- Sandrina Dafonseca
- Université de Lyon I-Claude Bernard, Faculté de Médecine Laënnec, Laboratoire de Virologie & Pathologie Humaine, CNRS FRE-3011, 69372 Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|
30
|
Keating CP, Hill MK, Hawkes DJ, Smyth RP, Isel C, Le SY, Palmenberg AC, Marshall JA, Marquet R, Nabel GJ, Mak J. The A-rich RNA sequences of HIV-1 pol are important for the synthesis of viral cDNA. Nucleic Acids Res 2008; 37:945-56. [PMID: 19106143 PMCID: PMC2647285 DOI: 10.1093/nar/gkn1015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bias of A-rich codons in HIV-1 pol is thought to be a record of hypermutations in viral genomes that lack biological functions. Bioinformatic analysis predicted that A-rich sequences are generally associated with minimal local RNA structures. Using codon modifications to reduce the amount of A-rich sequences within HIV-1 genomes, we have reduced the flexibility of RNA sequences in pol to analyze the functional significance of these A-rich 'structurally poor' RNA elements in HIV-1 pol. Our data showed that codon modification of HIV-1 sequences led to a suppression of virus infectivity by 5-100-fold, and this defect does not correlate with, viral entry, viral protein expression levels, viral protein profiles or virion packaging of genomic RNA. Codon modification of HIV-1 pol correlated with an enhanced dimer stability of the viral RNA genome, which was associated with a reduction of viral cDNA synthesis both during HIV-1 infection and in a cell free reverse transcription assay. Our data provided direct evidence that the HIV-1 A-rich pol sequence is not merely an evolutionary artifact of enzyme-induced hypermutations, and that HIV-1 has adapted to rely on A-rich RNA sequences to support the synthesis of viral cDNA during reverse transcription, highlighting the utility of using 'structurally poor' RNA domains in regulating biological process.
Collapse
Affiliation(s)
- Cameron P Keating
- Centre for Virology, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Moore MD, Fu W, Soheilian F, Nagashima K, Ptak RG, Pathak VK, Hu WS. Suboptimal inhibition of protease activity in human immunodeficiency virus type 1: effects on virion morphogenesis and RNA maturation. Virology 2008; 379:152-60. [PMID: 18657842 DOI: 10.1016/j.virol.2008.06.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 12/30/2022]
Abstract
Protease activity within nascently released human immunodeficiency virus type 1 (HIV-1) particles is responsible for the cleavage of the viral polyproteins Gag and Gag-Pol into their constituent parts, which results in the subsequent condensation of the mature conical core surrounding the viral genomic RNA. Concomitant with viral maturation is a conformational change in the packaged viral RNA from a loosely associated dimer into a more thermodynamically stable form. In this study we used suboptimal concentrations of two protease inhibitors, lopinavir and atazanavir, to study their effects on Gag polyprotein processing and on the properties of the RNA in treated virions. Analysis of the treated virions demonstrated that even with high levels of inhibition of viral infectivity (IC(90)), most of the Gag and Gag-Pol polyproteins were processed, although slight but significant increases in processing intermediates of Gag were detected. Drug treatments also caused a significant increase in the proportion of viruses displaying either immature or aberrant mature morphologies. The aberrant mature particles were characterized by an electron-dense region at the viral periphery and an electron-lucent core structure in the viral center, possibly indicating exclusion of the genomic RNA from these viral cores. Intriguingly, drug treatments caused only a slight decrease in overall thermodynamic stability of the viral RNA dimer, suggesting that the dimeric viral RNA was able to mature in the absence of correct core condensation.
Collapse
Affiliation(s)
- Michael D Moore
- HIV Drug Resistance Program, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 336, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Jacob DT, DeStefano JJ. A new role for HIV nucleocapsid protein in modulating the specificity of plus strand priming. Virology 2008; 378:385-96. [PMID: 18632127 DOI: 10.1016/j.virol.2008.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 11/28/2022]
Abstract
The current study indicates a new role for HIV nucleocapsid protein (NC) in modulating the specificity of plus strand priming. RNase H cleavage by reverse transcriptase (RT) during minus strand synthesis gives rise to RNA fragments that could potentially be used as primers for synthesis of the plus strand, leading to the initiation of priming from multiple points as has been observed for other retroviruses. For HIV, the central and 3' polypurine tracts (PPTs) are the major sites of plus strand initiation. Using reconstituted in vitro assays, results showed that NC greatly reduced the efficiency of extension of non-PPT RNA primers, but not PPT. Experiments mimicking HIV replication showed that RT generated and used both PPT and non-PPT RNAs to initiate "plus strand" synthesis, but non-PPT usage was strongly inhibited by NC. The results support a role for NC in specifying primer usage during plus strand synthesis.
Collapse
Affiliation(s)
- Deena T Jacob
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
33
|
Nucleocapsid protein function in early infection processes. Virus Res 2008; 134:39-63. [PMID: 18279991 DOI: 10.1016/j.virusres.2007.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/15/2023]
Abstract
The role of nucleocapsid protein (NC) in the early steps of retroviral replication appears largely that of a facilitator for reverse transcription and integration. Using a wide variety of cell-free assay systems, the properties of mature NC proteins (e.g. HIV-1 p7(NC) or MLV p10(NC)) as nucleic acid chaperones have been extensively investigated. The effect of NC on tRNA annealing, reverse transcription initiation, minus-strand-transfer, processivity of reverse transcription, plus-strand-transfer, strand-displacement synthesis, 3' processing of viral DNA by integrase, and integrase-mediated strand-transfer has been determined by a large number of laboratories. Interestingly, these reactions can all be accomplished to varying degrees in the absence of NC; some are facilitated by both viral and non-viral proteins and peptides that may or may not be involved in vivo. What is one to conclude from the observation that NC is not strictly required for these necessary reactions to occur? NC likely enhances the efficiency of each of these steps, thereby vastly improving the productivity of infection. In other words, one of the major roles of NC is to enhance the effectiveness of early infection, thereby increasing the probability of productive replication and ultimately of retrovirus survival.
Collapse
|
34
|
Westerman KA, Ao Z, Cohen EA, Leboulch P. Design of a trans protease lentiviral packaging system that produces high titer virus. Retrovirology 2007; 4:96. [PMID: 18163907 PMCID: PMC2259377 DOI: 10.1186/1742-4690-4-96] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 12/28/2007] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The structural and enzymatic proteins of the human immunodeficiency virus (HIV) are initially generated as two long polyproteins encoded from overlapping reading frames, one producing the structural proteins (Gag) and the second producing both structural and enzymatic proteins (Gag-Pol). The Gag to Gag-Pol ratio is critical for the proper assembly and maturation of viral particles. To minimize the risk of producing a replication competent lentivirus (RCL), we developed a "super-split" lentiviral packaging system in which Gag was separated from Pol with minimal loss of transducibility by supplying protease (PR) in trans independently of both Gag and Pol. RESULTS In developing this "super-split" packaging system, we incorporated several new safety features that include removing the Gag/Gag-Pol frameshift, splitting the Gag, PR, and reverse transcriptase/integrase (RT/IN) functions onto separate plasmids, and greatly reducing the nucleotide sequence overlap between vector and Gag and between Gag and Pol. As part of the construction of this novel system, we used a truncated form of the accessory protein Vpr, which binds the P6 region of Gag, as a vehicle to deliver both PR and RT/IN as fusion proteins to the site of viral assembly and budding. We also replaced wt PR with a slightly less active T26S PR mutant in an effort to prevent premature processing and cytoxicity associated with wt PR. This novel "super-split" packaging system yielded lentiviral titers comparable to those generated by conventional lentiviral packaging where Gag-Pol is supplied intact (1.0 x 106 TU/ml, unconcentrated). CONCLUSION Here, we were able to create a true "split-function" lentiviral packaging system that has the potential to be used for gene therapy applications. This novel system incorporates many new safety features while maintaining high titers. In addition, because PR is supplied in trans, this unique system may also provide opportunities to examine viral protein processing and maturation.
Collapse
Affiliation(s)
- Karen A Westerman
- Brigham and Women's Hospital, Department of Anesthesia (SR157), 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
35
|
L'Hernault A, Greatorex JS, Crowther RA, Lever AML. Dimerisation of HIV-2 genomic RNA is linked to efficient RNA packaging, normal particle maturation and viral infectivity. Retrovirology 2007; 4:90. [PMID: 18078509 PMCID: PMC2222663 DOI: 10.1186/1742-4690-4-90] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 12/13/2007] [Indexed: 01/13/2023] Open
Abstract
Background Retroviruses selectively encapsidate two copies of their genomic RNA, the Gag protein binding a specific RNA motif in the 5' UTR of the genome. In human immunodeficiency virus type 2 (HIV-2), the principal packaging signal (Psi) is upstream of the major splice donor and hence is present on all the viral RNA species. Cotranslational capture of the full length genome ensures specificity. HIV-2 RNA dimerisation is thought to occur at the dimer initiation site (DIS) located in stem-loop 1 (SL-1), downstream of the main packaging determinant. However, the HIV-2 packaging signal also contains a palindromic sequence (pal) involved in dimerisation. In this study, we analysed the role of the HIV-2 packaging signal in genomic RNA dimerisation in vivo and its implication in viral replication. Results Using a series of deletion and substitution mutants in SL-1 and the Psi region, we show that in fully infectious HIV-2, genomic RNA dimerisation is mediated by the palindrome pal. Mutation of the DIS had no effect on dimerisation or viral infectivity, while mutations in the packaging signal severely reduce both processes as well as RNA encapsidation. Electron micrographs of the Psi-deleted virions revealed a significant reduction in the proportion of mature particles and an increase in that of particles containing multiple cores. Conclusion In addition to its role in RNA encapsidation, the HIV-2 packaging signal contains a palindromic sequence that is critical for genomic RNA dimerisation. Encapsidation of a dimeric genome seems required for the production of infectious mature particles, and provides a promising therapeutic target.
Collapse
Affiliation(s)
- Anne L'Hernault
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK.
| | | | | | | |
Collapse
|
36
|
Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Borde I, Reboud-Ravaux M, Restle T, Gorelick RJ, Le Cam E. HIV-1 protease and reverse transcriptase control the architecture of their nucleocapsid partner. PLoS One 2007; 2:e669. [PMID: 17712401 PMCID: PMC1940317 DOI: 10.1371/journal.pone.0000669] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/18/2007] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 nucleocapsid is formed during protease (PR)-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT) on nucleocapsid plasticity, using in vitro reconstitutions. After binding to nucleic acids, NCp15, a proteolytic intermediate of nucleocapsid protein (NC), was processed at its C-terminus by PR, yielding premature NC (NCp9) followed by mature NC (NCp7), through the consecutive removal of p6 and p1. This allowed NC co-aggregation with its single-stranded nucleic-acid substrate. Examination of these co-aggregates for the ability of RT to catalyse reverse transcription showed an effective synthesis of double-stranded DNA that, remarkably, escaped from the aggregates more efficiently with NCp7 than with NCp9. These data offer a compelling explanation for results from previous virological studies that focused on i) Gag processing leading to nucleocapsid condensation, and ii) the disappearance of NCp7 from the HIV-1 pre-integration complexes. We propose that HIV-1 PR and RT, by controlling the nucleocapsid architecture during the steps of condensation and dismantling, engage in a successive nucleoprotein-remodelling process that spatiotemporally coordinates the pre-integration steps of HIV-1. Finally we suggest that nucleoprotein remodelling mechanisms are common features developed by mobile genetic elements to ensure successful replication.
Collapse
Affiliation(s)
- Gilles Mirambeau
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
- Division de Biochimie, UFR des Sciences de la Vie, Université Pierre et Marie Curie-Paris, Paris, France
- * To whom correspondence should be addressed. E-mail: (GM); (ELC)
| | - Sébastien Lyonnais
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Dominique Coulaud
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Laurence Hameau
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Sophie Lafosse
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Josette Jeusset
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Isabelle Borde
- Laboratoire Biologie et Multimedia, Université Pierre et Marie Curie-Paris, Paris, France
| | - Michèle Reboud-Ravaux
- Laboratoire d'Enzymologie Moléculaire et Fonctionnelle, CNRS FRE 2852, Institut Jacques Monod, CNRS-Université Pierre et Marie Curie-Paris, Paris, France
| | - Tobias Restle
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Lübeck, Germany
| | - Robert J. Gorelick
- AIDS Vaccine Program, Basic Research Program, Science Applications International Corporation at Frederick, The National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eric Le Cam
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
- * To whom correspondence should be addressed. E-mail: (GM); (ELC)
| |
Collapse
|
37
|
Ali MB, Chaminade F, Kanevsky I, Ennifar E, Josset L, Ficheux D, Darlix JL, Fossé P. Structural requirements for nucleocapsid protein-mediated dimerization of avian leukosis virus RNA. J Mol Biol 2007; 372:1082-1096. [PMID: 17706668 DOI: 10.1016/j.jmb.2007.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
The avian leukosis virus (ALV) belongs to the alpha group of retroviruses that are widespread in nature. The 5'-untranslated region of ALV genome contains the L3 element that is important for virus infectivity and the formation of an unstable RNA dimer in vitro. The L3 sequence is predicted to fold into a long stem-loop structure with two internal loops and an apical one. Phylogenetic analysis predicts that the L3 stem-loop is conserved in alpharetroviruses. Furthermore, a significant selection mechanism maintains a palindrome in the apical loop. The nucleocapsid protein of the alpharetroviruses (NCp12) is required for RNA dimer formation and replication in vivo. It is not known whether L3 can be an NCp12-mediated RNA dimerization site able to bind NCp12 with high affinity. Here, we report that NCp12 chaperones formation of a stable ALV RNA dimer through L3. To investigate the NCp12-mediated L3 dimerization reaction, we performed site-directed mutagenesis, gel retardation and heterodimerization assays and analysis of thermostability of dimeric RNAs. We show that the affinity of NCp12 for L3 is lower than its affinity for the microPsi RNA packaging signal. Results show that conservation of a long stem-loop structure and a loop-loop interaction are not required for NCp12-mediated L3 dimerization. We show that the L3 apical stem-loop is sufficient to form an extended duplex and the whole stem-loop L3 cannot be converted by NCp12 into a duplex extending throughout L3. Three-dimensional modelling of the stable L3 dimer supports the notion that the extended duplex may represent the minimal dimer linkage structure found in the genomic RNA.
Collapse
Affiliation(s)
- Moez Ben Ali
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Françoise Chaminade
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Igor Kanevsky
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Eric Ennifar
- CNRS UPR9002, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg cedex, France
| | - Laurence Josset
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Damien Ficheux
- CNRS UMR5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon cedex 07, France
| | - Jean-Luc Darlix
- Laboretro Unité de Virologie Humaine INSERM #758, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Philippe Fossé
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France.
| |
Collapse
|
38
|
Henriet S, Sinck L, Bec G, Gorelick RJ, Marquet R, Paillart JC. Vif is a RNA chaperone that could temporally regulate RNA dimerization and the early steps of HIV-1 reverse transcription. Nucleic Acids Res 2007; 35:5141-53. [PMID: 17660191 PMCID: PMC1976464 DOI: 10.1093/nar/gkm542] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV-1 Vif (viral infectivity factor) is associated with the assembly complexes and packaged at low level into the viral particles, and is essential for viral replication in non-permissive cells. Viral particles produced in the absence of Vif exhibit structural defects and are defective in the early steps of reverse transcription. Here, we show that Vif is able to anneal primer tRNALys3 to the viral RNA, to decrease pausing of reverse transcriptase during (–) strand strong-stop DNA synthesis, and to promote the first strand transfer. Vif also stimulates formation of loose HIV-1 genomic RNA dimers. These results indicate that Vif is a bona fide RNA chaperone. We next studied the effects of Vif in the presence of HIV-1 NCp, which is a well-established RNA chaperone. Vif inhibits NCp-mediated formation of tight RNA dimers and hybridization of tRNALys3, while it has little effects on NCp-mediated strand transfer and it collaborates with nucleocapsid (NC) to increase RT processivity. Thus, Vif might negatively regulate NC-assisted maturation of the RNA dimer and early steps of reverse transcription in the assembly complexes, but these inhibitory effects would be relieved after viral budding, thanks to the limited packaging of Vif in the virions.
Collapse
Affiliation(s)
- S. Henriet
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg cedex, France and AIDS Vaccine Program, SAIC-Frederick Inc., NCI-Frederick, P.O. Box B, Frederick, MD, USA
| | - L. Sinck
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg cedex, France and AIDS Vaccine Program, SAIC-Frederick Inc., NCI-Frederick, P.O. Box B, Frederick, MD, USA
| | - G. Bec
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg cedex, France and AIDS Vaccine Program, SAIC-Frederick Inc., NCI-Frederick, P.O. Box B, Frederick, MD, USA
| | - R. J. Gorelick
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg cedex, France and AIDS Vaccine Program, SAIC-Frederick Inc., NCI-Frederick, P.O. Box B, Frederick, MD, USA
| | - R. Marquet
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg cedex, France and AIDS Vaccine Program, SAIC-Frederick Inc., NCI-Frederick, P.O. Box B, Frederick, MD, USA
| | - J.-C. Paillart
- Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg cedex, France and AIDS Vaccine Program, SAIC-Frederick Inc., NCI-Frederick, P.O. Box B, Frederick, MD, USA
- *To whom correspondence should be addressed.+33 0 3 88 41 70 35+33 0 3 88 60 22 18 Correspondence may also be addressed to Roland Marquet.+33 0 3 88 41 70 54+33 0 3 88 60 22 18
| |
Collapse
|
39
|
Wapling J, Srivastava S, Shehu-Xhilaga M, Tachedjian G. Targeting human immunodeficiency virus type 1 assembly, maturation and budding. Drug Target Insights 2007; 2:159-82. [PMID: 21901072 PMCID: PMC3155237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The targets for licensed drugs used for the treatment of human immunodeficiency virus type 1 (HIV-1) are confined to the viral reverse transcriptase (RT), protease (PR), and the gp41 transmembrane protein (TM). While currently approved drugs are effective in controlling HIV-1 infections, new drug targets and agents are needed due to the eventual emergence of drug resistant strains and drug toxicity. Our increased understanding of the virus life-cycle and how the virus interacts with the host cell has unveiled novel mechanisms for blocking HIV-1 replication. This review focuses on inhibitors that target the late stages of virus replication including the synthesis and trafficking of the viral polyproteins, viral assembly, maturation and budding. Novel approaches to blocking the oligomerization of viral enzymes and the interactions between viral proteins and host cell factors, including their feasibility as drug targets, are discussed.
Collapse
Affiliation(s)
- Johanna Wapling
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia,Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | - Seema Srivastava
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - Miranda Shehu-Xhilaga
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia,Infectious Diseases Unit, Alfred Hospital, Prahran, Victoria 3181, Australia
| | - Gilda Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia,Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia,Department of Medicine, Monash University, Prahran, Victoria 3181, Australia,Correspondence: Gilda Tachedjian, Ph.D., Molecular Interactions Group, The Macfarlane Burnet Institute for Medical Research and Public Health, GPO Box 2284, Melbourne, Victoria, 3001, Australia. Tel: 61 3 9282 2256; Fax: 61 3 9282 2100;
| |
Collapse
|
40
|
Whitney JB, Wainberg MA. Recovery of fitness of a live attenuated simian immunodeficiency virus through compensation in both the coding and non-coding regions of the viral genome. Retrovirology 2007; 4:44. [PMID: 17608929 PMCID: PMC1934378 DOI: 10.1186/1742-4690-4-44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 07/03/2007] [Indexed: 12/23/2022] Open
Abstract
We have analyzed a SIV deletion mutant that was compromised both in viral replication and RNA packaging. Serial passage of this variant in two different T-cell lines resulted in compensatory reversion and the generation of independent groups of point mutations within each cell line. Within each group, single point mutations were shown to contribute to increased viral infectivity and the rescue of wild-type replication kinetics. The complete recovery of viral fitness ultimately correlated with the restoration of viral RNA packaging. Consistent with the latter finding was the rescue of Pr55 Gag processing, also restoring proper virus core morphology in mature virions. These seemingly independently arising groups of compensatory mutations were functionally interchangeable in regard to the recovery of wild type replication in rhesus PBMCs. These findings indicate that viral reversion that overcomes a genetic bottleneck is not limited to a single pathway, and illustrates the remarkable adaptability of lentiviruses.
Collapse
Affiliation(s)
- James B Whitney
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
41
|
Sun X, Zhang Q, Al-Hashimi HM. Resolving fast and slow motions in the internal loop containing stem-loop 1 of HIV-1 that are modulated by Mg2+ binding: role in the kissing-duplex structural transition. Nucleic Acids Res 2007; 35:1698-713. [PMID: 17311812 PMCID: PMC1865058 DOI: 10.1093/nar/gkm020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stem loop 1 (SL1) is a highly conserved hairpin in the 5'-leader of the human immunodeficiency virus type I that forms a metastable kissing dimer that is converted during viral maturation into a stable duplex with the aid of the nucleocapsid (NC) protein. SL1 contains a highly conserved internal loop that promotes the kissing-duplex transition by a mechanism that remains poorly understood. Using NMR, we characterized internal motions induced by the internal loop in an SL1 monomer that may promote the kissing-duplex transition. This includes micro-to-millisecond secondary structural transitions that cause partial melting of three base-pairs above the internal loop making them key nucleation sites for exchanging strands and nanosecond rigid-body stem motions that can help bring strands into spatial register. We show that while Mg2+ binds to the internal loop and arrests these internal motions, it preserves and/or activates local mobility at internal loop residues G272 and G273 which are implicated in NC binding. By stabilizing SL1 without compromising the accessibility of G272 and G273 for NC binding, Mg2+ may increase the dependence of the kissing-duplex transition on NC binding thus preventing spontaneous transitions from taking place and ensuring that viral RNA and protein maturation occur in concert.
Collapse
|
42
|
Bukrinskaya A. HIV-1 matrix protein: a mysterious regulator of the viral life cycle. Virus Res 2007; 124:1-11. [PMID: 17210199 DOI: 10.1016/j.virusres.2006.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/30/2006] [Accepted: 07/05/2006] [Indexed: 01/17/2023]
Abstract
Significant progress has been achieved in the last few years concerning the human immunodeficiency virus (HIV-1) life cycle, mostly in the fields of cellular receptors for the virus, virus assembly and budding of virus particles from the cell surface. Meanwhile, some aspects, such as postentry events, virus maturation and the regulatory role of individual viral proteins remain poorly defined. This review summarizes some recent findings concerning the role of Gag Pr55 and its proteolytic processing in the HIV-1 life cycle with particular emphasis on the functions of matrix protein p17 (MA), the protein which plays a key role in regulation of the early and late steps of viral morphogenesis. Based on our recent observations, the possibility is discussed that two subsets of MA exist, one cleaved from the Gag precursor in the host cell (cMA), and the other cleaved in the virions (vMA). It is suggested that two MA fractions possess diverse functions and are involved in different stages of virus morphogenesis as key regulators of the viral life cycle.
Collapse
Affiliation(s)
- Alissa Bukrinskaya
- D.I.Ivanovsky Institute of Virology, Russian Academy of Medical Sciences, Moscow 123098, RF, Russia.
| |
Collapse
|
43
|
Affiliation(s)
- Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
44
|
Whitney JB, Wainberg MA. Impaired RNA incorporation and dimerization in live attenuated leader-variants of SIVmac239. Retrovirology 2006; 3:96. [PMID: 17184529 PMCID: PMC1766366 DOI: 10.1186/1742-4690-3-96] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 12/21/2006] [Indexed: 11/13/2022] Open
Abstract
Background The 5' untranslated region (UTR) or leader sequence of simian immunodeficiency virus (SIVmac239) is multifunctional and harbors the regulatory elements for viral replication, persistence, gene translation, expression, and the packaging and dimerization of viral genomic RNA (vRNA). We have constructed a series of deletions in the SIVmac239 leader sequence in order to determine the involvement of this region in both the packaging and dimerization of viral genomic RNA. We also assessed the impact of these deletions upon viral infectiousness, replication kinetics and gene expression in cell lines and monkey peripheral blood mononuclear cells (PBMC). Results Regions on both sides of the major splice donor (SD) were found to be necessary for the efficiency and specificity of viral genome packaging. However, stem-loop1 is critical for both RNA encapsidation and dimerization. Downstream elements between the splice donor and the initiation site of SIV-Gag have additive effects on RNA packaging and contribute to a lesser degree to RNA dimerization. The targeted disruption of structures on both sides of the SD also severely impacts viral infectiousness, gene expression and replication in both CEMx174 cells and rhesus PBMC. Conclusion In the leader region of SIVmac239, stem-loop1 functions as the primary determinant for both RNA encapsidation and dimerization. Downstream elements between the splice donor and the translational initiation site of SIV-Gag are classified as secondary determinants and play a role in dimerization. Collectively, these data signify a linkage between the primary encapsidation determinant of SIVmac239 and RNA dimerization.
Collapse
Affiliation(s)
- James B Whitney
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 022115, USA
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
45
|
Narayanan N, Gorelick RJ, DeStefano JJ. Structure/function mapping of amino acids in the N-terminal zinc finger of the human immunodeficiency virus type 1 nucleocapsid protein: residues responsible for nucleic acid helix destabilizing activity. Biochemistry 2006; 45:12617-28. [PMID: 17029416 PMCID: PMC4829079 DOI: 10.1021/bi060925c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleocapsid protein (NC) of HIV-1 is 55 amino acids in length and possesses two CCHC-type zinc fingers. Finger one (N-terminal) contributes significantly more to helix destabilizing activity than finger two (C-terminal). Five amino acids differ between the two zinc fingers. To determine at the amino acid level the reason for the apparent distinction between the fingers, each different residue in finger one was incrementally replaced by the one at the corresponding location in finger two. Mutants were analyzed in annealing assays with unstructured and structured substrates. Three groupings emerged: (1) those similar to wild-type levels (N17K, A25M), (2) those with diminished activity (I24Q, N27D), and (3) mutant F16W, which had substantially greater helix destabilizing activity than that of the wild type. Unlike I24Q and the other mutants, N27D was defective in DNA binding. Only I24Q and N27D showed reduced strand transfer in in vitro assays. Double and triple mutants F16W/I24Q, F16W/N27D, and F16W/I24Q/N27D all showed defects in DNA binding, strand transfer, and helix destabilization, suggesting that the I24Q and N27D mutations have a dominant negative effect and abolish the positive influence of F16W. Results show that amino acid differences at positions 24 and 27 contribute significantly to finger one's helix destabilizing activity.
Collapse
Affiliation(s)
- Nirupama Narayanan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| | - Robert J. Gorelick
- AIDS Vaccine Program, SAIC-Frederick, Inc., NCI at Frederick, Frederick, MD
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| |
Collapse
|
46
|
Anthony RM, DeStefano JJ. In vitro synthesis of long DNA products in reactions with HIV-RT and nucleocapsid protein. J Mol Biol 2006; 365:310-24. [PMID: 17070544 PMCID: PMC2493291 DOI: 10.1016/j.jmb.2006.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/29/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
In vitro reaction conditions using HIV reverse transcriptase (RT) and nucleocapsid protein (NC) that allowed efficient synthesis of single-stranded DNA products over a thousand nucleotides in length from genomic HIV RNA were characterized. Consistent with previous reports, the reactions required high concentrations of NC and RT. Long products were produced as a result of frequent strand transfer between RNA templates, averaging at least one transfer per 300 nucleotides synthesized. No change in RT processivity was observed in the reactions in the presence versus absence of NC. Synthesis of long products required formation of a high molecular mass aggregate between NC and nucleic acids. The aggregate formed rapidly and pelleted with low speed centrifugation. The aggregate was accessible to RT as pre-formed aggregates synthesized long products when RT was added. NC finger mutants lacking either finger one or two or with the finger positions switched were all effective in promoting long products. This suggests that the aggregation/condensation but not helix-destabilizing activity of NC was required. We propose that these high molecular mass aggregates promote synthesis of long reverse transcription products in vitro by concentrating nucleic acids, RT enzyme and NC to close proximity, thereby mimicking the role of the capsid environment within the host cell.
Collapse
|
47
|
Verheyen J, Litau E, Sing T, Däumer M, Balduin M, Oette M, Fätkenheuer G, Rockstroh JK, Schuldenzucker U, Hoffmann D, Pfister H, Kaiser R. Compensatory Mutations at the HIV Cleavage Sites P7/P1 and P1/P6-Gag in Therapy-Naive and Therapy-Experienced Patients. Antivir Ther 2006. [DOI: 10.1177/135965350601100708] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Mutations in the genome of HIV conferring drug resistance are a major reason for the failure of antiretroviral therapy, but they often compromise viral fitness. Protease (PR) cleavage site (CS) mutations could compensate for impaired replication capacity of drug-resistant viruses. Patients and methods We analysed the cleavage sites p1/p7 and p1/p6-gag of 500 HIV-1 subtype B infected patients. The collective consists of 275 therapy-naive and 225 therapy-experienced patients with at least one primary PR mutation, from whom eight underwent therapy-interruption in different clinical settings. Results Multiple mutations within the CS p7/p1 and p1/p6-gag accumulated in therapy-experienced isolates (p7/p1: A431V-K436R-I437V and p1/p6-gag: L449F/V-P452S-P453L/A). Further rare CS mutations were totally absent in therapy-naive viruses. Sixty percent of all therapy-experienced viruses exhibited at least one therapy-associated CS mutation, but so did 10% of therapy-naive viruses. The analysis of CS and PR mutations in therapy-experienced viruses revealed several positive correlations - A431V with L24I-M46I/L-I54V-V82A; I437V with I54V-V82F/T/S; L449V with I54M/L/S/T/A; and L449F/R452S/P453L: with D30N-I84V - whereas P453L and V82A were negatively correlated. Mutagenetic trees constructed form this cross-sectional data showed an ordered accumulation of the most prominent CS mutations along two pathways - L90M-I84V- P453L and I54-V82– A431V followed by either M46L or L24I. Furthermore, eight viruses with at least one therapy-associated mutation at each CS displayed an outstanding maintenance of major PR mutations during therapy interruption. Conclusions These findings emphasize the relevance of CS mutations in the evolution of HIV resistance to PR inhibitors. Therefore, therapy-associated CS mutations should be considered in HIV resistance tests to estimate viral fitness in different clinical settings.
Collapse
Affiliation(s)
- Jens Verheyen
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Elena Litau
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Tobias Sing
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Martin Däumer
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Melanie Balduin
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Mark Oette
- Clinic for Gastroenterology, Hepatology and infectious Diseases, University Clinic Düsseldorf, Germany
| | - Gerd Fätkenheuer
- Department of Internal Medicine 1, University of Cologne, Cologne, Germany
| | | | | | - Daniel Hoffmann
- Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Justome A, Delain E, Gorelick RJ, Le Cam E. Transmission electron microscopy reveals an optimal HIV-1 nucleocapsid aggregation with single-stranded nucleic acids and the mature HIV-1 nucleocapsid protein. J Mol Biol 2006; 364:496-511. [PMID: 17020765 DOI: 10.1016/j.jmb.2006.08.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 08/14/2006] [Indexed: 11/19/2022]
Abstract
HIV-1 nucleocapsid protein (NCp7) condenses the viral RNA within the mature capsid. In a capsid-free system, NCp7 promotes an efficient mechanism of aggregation with both RNA and DNA. Here, we show an analysis of these macromolecular complexes by dark-field imaging using transmission electron microscopy. Thousands of mature NCp7 proteins co-aggregate with hundreds of single-stranded circular DNA molecules (ssDNA) within minutes, as observed with poly(rA). These co-aggregates are highly stable but dynamic structures, as they dissociate under harsh conditions, and after addition of potent ssDNA or NCp7 competitive ligands. The N-terminal domain and zinc fingers of NCp7 are both required for efficient association. Addition of magnesium slightly increases the avidity of NCp7 for ssDNA, while it strongly inhibits co-aggregation with relaxed circular double-stranded DNA (dsDNA). This DNA selectivity is restricted to mature NCp7, compared to its precursors NCp15 and NCp9. Moreover, for NCp15, the linkage of NCp7 with the Gag C-terminal p6-peptide provokes a deficiency in ssDNA aggregation, but results in DNA spreading similar to prototypical SSB proteins. Finally, this co-aggregation is discussed in a dynamic architectural context with regard to the mature HIV-1 nucleocapsid. On the basis of the present data, we propose that condensation of encapsidated RNA requires the C-terminal processing of NCp. Subsequently, disassembly of the nucleocapsid should be favoured once dsDNA is produced by HIV-1 reverse transcriptase.
Collapse
Affiliation(s)
- Gilles Mirambeau
- Laboratoire de Microscopie Moléculaire et Cellulaire, CNRS UMR 8126, Institut Gustave Roussy, 94805 Villejuif, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fu W, Dang Q, Nagashima K, Freed EO, Pathak VK, Hu WS. Effects of Gag mutation and processing on retroviral dimeric RNA maturation. J Virol 2006; 80:1242-9. [PMID: 16415001 PMCID: PMC1346957 DOI: 10.1128/jvi.80.3.1242-1249.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After their release from host cells, most retroviral particles undergo a maturation process, which includes viral protein cleavage, core condensation, and increased stability of the viral RNA dimer. Inactivating the viral protease prevents protein cleavage; the resulting virions lack condensed cores and contain fragile RNA dimers. Therefore, protein cleavage is linked to virion morphological change and increased stability of the RNA dimer. However, it is unclear whether protein cleavage is sufficient for mediating virus RNA maturation. We have observed a novel phenotype in a murine leukemia virus capsid mutant, which has normal virion production, viral protein cleavage, and RNA packaging. However, this mutant also has immature virion morphology and contains a fragile RNA dimer, which is reminiscent of protease-deficient mutants. To our knowledge, this mutant provides the first evidence that Gag cleavage alone is not sufficient to promote RNA dimer maturation. To extend our study further, we examined a well-defined human immunodeficiency virus type 1 (HIV-1) Gag mutant that lacks a functional PTAP motif and produces immature virions without major defects in viral protein cleavage. We found that the viral RNA dimer in the PTAP mutant is more fragile and unstable compared with those from wild-type HIV-1. Based on the results of experiments using two different Gag mutants from two distinct retroviruses, we conclude that Gag cleavage is not sufficient for promoting RNA dimer maturation, and we propose that there is a link between the maturation of virion morphology and the viral RNA dimer.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Base Sequence
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Cell Line
- Dogs
- Gene Products, gag/genetics
- Genes, gag
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/physiology
- Microscopy, Electron
- Molecular Sequence Data
- Mutation
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Sequence Homology, Amino Acid
- Virus Replication/genetics
Collapse
Affiliation(s)
- William Fu
- HIV Drug Resistance Program, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 336, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
50
|
Cruceanu M, Urbaneja MA, Hixson CV, Johnson DG, Datta SA, Fivash MJ, Stephen AG, Fisher RJ, Gorelick RJ, Casas-Finet JR, Rein A, Rouzina I, Williams MC. Nucleic acid binding and chaperone properties of HIV-1 Gag and nucleocapsid proteins. Nucleic Acids Res 2006; 34:593-605. [PMID: 16449201 PMCID: PMC1356529 DOI: 10.1093/nar/gkj458] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Gag polyprotein of HIV-1 is essential for retroviral replication and packaging. The nucleocapsid (NC) protein is the primary region for the interaction of Gag with nucleic acids. In this study, we examine the interactions of Gag and its NC cleavage products (NCp15, NCp9 and NCp7) with nucleic acids using solution and single molecule experiments. The NC cleavage products bound DNA with comparable affinity and strongly destabilized the DNA duplex. In contrast, the binding constant of Gag to DNA was found to be approximately 10-fold higher than that of the NC proteins, and its destabilizing effect on dsDNA was negligible. These findings are consistent with the primary function of Gag as a nucleic acid binding and packaging protein and the primary function of the NC proteins as nucleic acid chaperones. Also, our results suggest that NCp7's capability for fast sequence-nonspecific nucleic acid duplex destabilization, as well as its ability to facilitate nucleic acid strand annealing by inducing electrostatic attraction between strands, likely optimize the fully processed NC protein to facilitate complex nucleic acid secondary structure rearrangements. In contrast, Gag's stronger DNA binding and aggregation capabilities likely make it an effective chaperone for processes that do not require significant duplex destabilization.
Collapse
Affiliation(s)
- Margareta Cruceanu
- Department of Physics, Northeastern University111 Dana Research Center, 110 Forsyth Street, Boston, MA 02115, USA
| | - Maria A. Urbaneja
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | - Catherine V. Hixson
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | - Donald G. Johnson
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | | | - Matthew J. Fivash
- Data Management Services, Inc.NCI-Frederick, Frederick, MD 2170, USA
| | - Andrew G. Stephen
- Protein Chemistry Laboratory, SAIC Frederick, Inc.NCI at Frederick, Frederick, MD 2170, USA
| | - Robert J. Fisher
- Protein Chemistry Laboratory, SAIC Frederick, Inc.NCI at Frederick, Frederick, MD 2170, USA
| | - Robert J. Gorelick
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | | | - Alan Rein
- HIV Drug Resistance Program, NCI-FrederickFrederick, MD 21702-1201, USA
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota6-155 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University111 Dana Research Center, 110 Forsyth Street, Boston, MA 02115, USA
- Center for Interdisciplinary Research on Complex Systems, Northeastern University111 Dana Research Center, 110 Forsyth Street, Boston, MA 02115, USA
- To whom correspondence should be addressed. Tel: 1 617 373 7323; Fax: 1 617 373 2943;
| |
Collapse
|