1
|
Mamabolo K, Wadee R, Perner Y, Magangane P, Duze ST, Marimani M. Differential Epigenetic Regulation in Uninfected and Tuberculosis-Human Immunodeficiency Virus Co-Infected Patients. Microorganisms 2024; 12:1001. [PMID: 38792830 PMCID: PMC11123988 DOI: 10.3390/microorganisms12051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to compare the degree of epigenetic modifications between a TB-HIV co-infected cohort and uninfected subjects. Formalin-fixed paraffin-embedded (FFPE) tissues were retrieved from 45 TB-HIV co-infected and 45 control individuals. Real-time PCR was applied to compare the level of expression of genes involved in epigenetic regulation. The protein multiplex assay was used to assess the degree of protein modification. DNA sequencing was used to determine the evolutionary relationships between the infecting HIV and Mtb strains. Our results indicated a significant increase in the expression of the five candidate genes in the patients with TB-HIV relative to the control cohort. A sharp increase in the degree of histone methylation, acetylation and phosphorylation was observed in TB-HIV co-infected patients. The phylogenetic analysis classified the strains into three distinct HIV clusters and five Mtb clusters. The disparities in the expression profiles of our candidate genes between the TB-HIV cohort and non-TB-HIV group highlights the important role played by various TB and HIV strains in regulating the host gene expression landscape.
Collapse
Affiliation(s)
- Katlego Mamabolo
- Anatomical Pathology, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa (R.W.)
| | - Reubina Wadee
- Anatomical Pathology, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa (R.W.)
| | - Yvonne Perner
- Anatomical Pathology, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa (R.W.)
| | - Pumza Magangane
- Anatomical Pathology, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa (R.W.)
| | - Sanelisiwe Thinasonke Duze
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
| | - Musa Marimani
- Anatomical Pathology, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa (R.W.)
| |
Collapse
|
2
|
Periyasamy P, Thangaraj A, Kannan M, Oladapo A, Buch S. The Epigenetic Role of miR-124 in HIV-1 Tat- and Cocaine-Mediated Microglial Activation. Int J Mol Sci 2022; 23:ijms232315017. [PMID: 36499350 PMCID: PMC9738975 DOI: 10.3390/ijms232315017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
HIV-1 and drug abuse have been indissolubly allied as entwined epidemics. It is well-known that drug abuse can hasten the progression of HIV-1 and its consequences, especially in the brain, causing neuroinflammation. This study reports the combined effects of HIV-1 Transactivator of Transcription (Tat) protein and cocaine on miR-124 promoter DNA methylation and its role in microglial activation and neuroinflammation. The exposure of mouse primary microglial cells to HIV-1 Tat (25 ng/mL) and/or cocaine (10 μM) resulted in the significantly decreased expression of primary (pri)-miR-124-1, pri-miR-124-2, and mature miR-124 with a concomitant upregulation in DNMT1 expression as well as global DNA methylation. Our bisulfite-converted genomic DNA sequencing also revealed significant promoter DNA methylation in the pri-miR-124-1 and pri-miR-124-2 in HIV-1 Tat- and cocaine-exposed mouse primary microglial cells. We also found the increased expression of proinflammatory cytokines such as IL1β, IL6 and TNF in the mouse primary microglia exposed to HIV-1 Tat and cocaine correlated with microglial activation. Overall, our findings demonstrate that the exposure of mouse primary microglia to both HIV-1 Tat and cocaine could result in intensified microglial activation via the promoter DNA hypermethylation of miR-124, leading to the exacerbated release of proinflammatory cytokines, ultimately culminating in neuroinflammation.
Collapse
|
3
|
DNA Methyltransferases: From Evolution to Clinical Applications. Int J Mol Sci 2022; 23:ijms23168994. [PMID: 36012258 PMCID: PMC9409253 DOI: 10.3390/ijms23168994] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is an epigenetic mark that living beings have used in different environments. The MTases family catalyzes DNA methylation. This process is conserved from archaea to eukaryotes, from fertilization to every stage of development, and from the early stages of cancer to metastasis. The family of DNMTs has been classified into DNMT1, DNMT2, and DNMT3. Each DNMT has been duplicated or deleted, having consequences on DNMT structure and cellular function, resulting in a conserved evolutionary reaction of DNA methylation. DNMTs are conserved in the five kingdoms of life: bacteria, protists, fungi, plants, and animals. The importance of DNMTs in whether methylate or not has a historical adaptation that in mammals has been discovered in complex regulatory mechanisms to develop another padlock to genomic insurance stability. The regulatory mechanisms that control DNMTs expression are involved in a diversity of cell phenotypes and are associated with pathologies transcription deregulation. This work focused on DNA methyltransferases, their biology, functions, and new inhibitory mechanisms reported. We also discuss different approaches to inhibit DNMTs, the use of non-coding RNAs and nucleoside chemical compounds in recent studies, and their importance in biological, clinical, and industry research.
Collapse
|
4
|
Arumugam T, Ramphal U, Adimulam T, Chinniah R, Ramsuran V. Deciphering DNA Methylation in HIV Infection. Front Immunol 2021; 12:795121. [PMID: 34925380 PMCID: PMC8674454 DOI: 10.3389/fimmu.2021.795121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million new global infections per year, it is imperative that we advance our understanding of all factors contributing to HIV infection. While most studies have focused on the influence of host genetic factors on HIV pathogenesis, epigenetic factors are gaining attention. Epigenetics involves alterations in gene expression without altering the DNA sequence. DNA methylation is a critical epigenetic mechanism that influences both viral and host factors. This review has five focal points, which examines (i) fluctuations in the expression of methylation modifying factors upon HIV infection (ii) the effect of DNA methylation on HIV viral genes and (iii) host genome (iv) inferences from other infectious and non-communicable diseases, we provide a list of HIV-associated host genes that are regulated by methylation in other disease models (v) the potential of DNA methylation as an epi-therapeutic strategy and biomarker. DNA methylation has also been shown to serve as a robust therapeutic strategy and precision medicine biomarker against diseases such as cancer and autoimmune conditions. Despite new drugs being discovered for HIV, drug resistance is a problem in high disease burden settings such as Sub-Saharan Africa. Furthermore, genetic therapies that are under investigation are irreversible and may have off target effects. Alternative therapies that are nongenetic are essential. In this review, we discuss the potential role of DNA methylation as a novel therapeutic intervention against HIV.
Collapse
Affiliation(s)
- Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Upasana Ramphal
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Romona Chinniah
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Mantovani N, Defelicibus A, da Silva IT, Cicero MF, Santana LC, Arnold R, de Castro DF, Duro RLS, Nishiyama-Jr MY, Junqueira-de-Azevedo ILM, da Silva BCM, da Silva Duarte AJ, Casseb J, de Barros Tenore S, Hunter J, Diaz RS, Komninakis SCV. Latency-associated DNA methylation patterns among HIV-1 infected individuals with distinct disease progression courses or antiretroviral virologic response. Sci Rep 2021; 11:22993. [PMID: 34837007 PMCID: PMC8626465 DOI: 10.1038/s41598-021-02463-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
DNA methylation is one of the epigenetic modifications that configures gene transcription programs. This study describes the DNA methylation profile of HIV-infected individuals with distinct characteristics related to natural and artificial viremia control. Sheared DNA from circulating mononuclear cells was subjected to target enrichment bisulfite sequencing designed to cover CpG-rich genomic regions. Gene expression was assessed through RNA-seq. Hypermethylation in virologic responders was highly distributed closer to Transcription Start Sites (p-value = 0.03). Hyper and hypomethylation levels within TSS adjacencies varied according to disease progression status (Kruskal-Wallis, p < 0.001), and specific differentially methylated regions associated genes were identified for each group. The lower the promoter methylation, the higher the gene expression in subjects undergoing virologic failure (R = - 0.82, p = 0.00068). Among the inversely correlated genes, those supporting glycolysis and its related pathways were hypomethylated and up-regulated in virologic failures. Disease progression heterogeneity was associated with distinct DNA methylation patterns in terms of rates and distribution. Methylation was associated with the expression of genes sustaining intracellular glucose metabolism in subjects undergoing antiretroviral virologic failure. Our findings highlight that DNA methylation is associated with latency, disease progression, and fundamental cellular processes.
Collapse
Affiliation(s)
- Nathalia Mantovani
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil.
| | - Alexandre Defelicibus
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, Rua Taguá, 440, São Paulo, SP, 01508-010, Brazil
| | - Israel Tojal da Silva
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, Rua Taguá, 440, São Paulo, SP, 01508-010, Brazil
| | - Maira Ferreira Cicero
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Luiz Claudio Santana
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Rafael Arnold
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Daniela Funayama de Castro
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Rodrigo Lopes Sanz Duro
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Milton Yutaka Nishiyama-Jr
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo, SP, 05503-900, Brazil
| | | | - Bosco Christiano Maciel da Silva
- Laboratório de Investigação Médica 56 (LIM/56), Faculdade de Medicina FMUSP, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Alberto José da Silva Duarte
- Laboratório de Investigação Médica 56 (LIM/56), Faculdade de Medicina FMUSP, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Jorge Casseb
- Laboratório de Investigação Médica 56 (LIM/56), Faculdade de Medicina FMUSP, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Simone de Barros Tenore
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - James Hunter
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Ricardo Sobhie Diaz
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Shirley Cavalcante Vasconcelos Komninakis
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| |
Collapse
|
6
|
Svensson JP. Targeting Epigenetics to Cure HIV-1: Lessons From (and for) Cancer Treatment. Front Cell Infect Microbiol 2021; 11:668637. [PMID: 34026665 PMCID: PMC8137950 DOI: 10.3389/fcimb.2021.668637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) integrates in the host genome as a provirus resulting in a long-lived reservoir of infected CD4 cells. As a provirus, HIV-1 has several aspects in common with an oncogene. Both the HIV-1 provirus and oncogenes only cause disease when expressed. A successful cure of both cancer and HIV-1 includes elimination of all cells with potential to regenerate the disease. For over two decades, epigenetic drugs developed against cancer have been used in the HIV-1 field to modulate the state of the proviral chromatin. Cells with an intact HIV-1 provirus exist in three states of infection: productive, inducible latent, and non-inducible latent. Here focus is on HIV-1, transcription control and chromatin structure; how the inducible proviruses are maintained in a chromatin structure that allows reactivation of transcription; and how transcription switches between different stages to allow for an abundance of different transcripts from a single promoter. Recently it was shown that a functional cure of HIV can be achieved by encapsulating all intact HIV-1 proviruses in heterochromatin, giving hope that epigenetic interventions may be used to end the HIV-1 epidemic.
Collapse
Affiliation(s)
- J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Huddinge, Sweden
| |
Collapse
|
7
|
Marimani M, Ahmad A, Stacey S, Duse A. Examining the levels of acetylation, DNA methylation and phosphorylation in HIV-1 positive and multidrug-resistant TB-HIV patients. J Glob Antimicrob Resist 2020; 23:232-242. [PMID: 33045438 DOI: 10.1016/j.jgar.2020.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/30/2020] [Accepted: 09/27/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES In this study, we examined the impact of epigenetic modifications on host gene functioning by assessing the expression of seven candidate genes in three separate groups including healthy, multidrug-resistant (MDR) TB-HIV co-infected and HIV-1 positive individuals. METHODS Ten patients with MDR TB and HIV-1 co-infection on TB and HIV therapy and a cohort comprised of 10 newly diagnosed individuals with HIV-1 infection were recruited from the TB and HIV clinics at the Charlotte Maxeke Johannesburg Academic Hospital. Notably, the HIV-1 positive individuals were not placed on antiretroviral therapy (ART) at the time of recruitment and blood collection. A third group consisting of 10 healthy participants without MDR TB or HIV infection was recruited from the University of the Witwatersrand. Blood samples collected from all three cohorts were employed for extraction of plasma, total RNA and genomic DNA. RESULTS Our data indicated that the expression of DNA methyltransferase 1 (DNMT1) and Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) genes was significantly increased in HIV-1 positive patients and was lowest in MDR TB-HIV co-infected patients. By contrast, histone acetyltransferase (HAT), histone deacetylase (HDAC), protein tyrosine kinase (PtkA) and protein tyrosine phosphatase (PtpA) mRNA expression levels were substantially enhanced in HIV-1 infected and were lowest in healthy individuals. Conversely, Dicer expression levels were comparable among all three study groups. CONCLUSION Promising preliminary data emanating from this investigation may potentially be used for generation of novel vaccines and therapeutic compounds capable of neutralising MDR TB-HIV and HIV-1 infection.
Collapse
Affiliation(s)
- Musa Marimani
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa.
| | - Sarah Stacey
- Division of Pulmonology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Adriano Duse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
8
|
Abstract
Human immunodeficiency virus 1 (HIV-1) replicates through the integration of its viral DNA into the genome of human immune target cells. Chronically infected individuals thus carry a genomic burden of virus-derived sequences that persists through antiretroviral therapy. This burden consists of a small fraction of intact, but transcriptionally silenced, i.e. latent, viral genomes and a dominant fraction of defective sequences. Remarkably, all viral-derived sequences are subject to interaction with host cellular physiology at various levels. In this review, we focus on epigenetic aspects of this interaction. We provide a comprehensive overview of how epigenetic mechanisms contribute to establishment and maintenance of HIV-1 gene repression during latency. We furthermore summarize findings indicating that HIV-1 infection leads to changes in the epigenome of target and bystander immune cells. Finally, we discuss how an improved understanding of epigenetic features and mechanisms involved in HIV-1 infection could be exploited for clinical use.
Collapse
|
9
|
Zhao X, Fan Y, Vann PH, Wong JM, Sumien N, He JJ. Long-term HIV-1 Tat Expression in the Brain Led to Neurobehavioral, Pathological, and Epigenetic Changes Reminiscent of Accelerated Aging. Aging Dis 2020; 11:93-107. [PMID: 32010484 PMCID: PMC6961778 DOI: 10.14336/ad.2019.0323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
HIV infects the central nervous system and causes HIV/neuroAIDS, which is predominantly manifested in the form of mild cognitive and motor disorder in the era of combination antiretroviral therapy. HIV Tat protein is known to be a major pathogenic factor for HIV/neuroAIDS through a myriad of direct and indirect mechanisms. However, most, if not all of studies involve short-time exposure of recombinant Tat protein in vitro or short-term Tat expression in vivo. In this study, we took advantage of the doxycycline-inducible brain-specific HIV-1 Tat transgenic mouse model, fed the animals for 12 months, and assessed behavioral, pathological, and epigenetic changes in these mice. Long-term Tat expression led to poorer short-and long-term memory, lower locomotor activity and impaired coordination and balance ability, increased astrocyte activation and compromised neuronal integrity, and decreased global genomic DNA methylation. There were sex- and brain region-dependent differences in behaviors, pathologies, and epigenetic changes resulting from long-term Tat expression. All these changes are reminiscent of accelerated aging, raising the possibility that HIV Tat contributes, at least in part, to HIV infection-associated accelerated aging in HIV-infected individuals. These findings also suggest another utility of this model for HIV infection-associated accelerated aging studies.
Collapse
Affiliation(s)
- Xiaojie Zhao
- 1Department of Microbiology, Immunology & Genetics and
| | - Yan Fan
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Philip H Vann
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jessica M Wong
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Nathalie Sumien
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Johnny J He
- 1Department of Microbiology, Immunology & Genetics and
| |
Collapse
|
10
|
Abstract
DNA methylation is an epigenetic mechanism most commonly associated with transcriptional repression. While it is clear that DNA methylation can silence HIV proviral expression in in vitro latency models, its correlation with HIV persistence and expression in vivo is ambiguous, particularly in persons living with HIV (PLWH) receiving antiretroviral therapy (ART). DNA methylation is an epigenetic mechanism most commonly associated with transcriptional repression. While it is clear that DNA methylation can silence HIV proviral expression in in vitro latency models, its correlation with HIV persistence and expression in vivo is ambiguous, particularly in persons living with HIV (PLWH) receiving antiretroviral therapy (ART). Several factors potentially contribute to discrepancies between results in the literature, including differences in integration sites, functional proviral load, sampling bias, and stochastic PCR amplification. Recent studies into genomic features of cytosine methylation sites in mammalian genes offer potentially significant insights into this mechanism. Here, we discuss the importance of these factors in the context of the HIV.
Collapse
|
11
|
Buch S, Periyasamy P, Guo M. Involvement of Epigenetic Promoter DNA Methylation of miR-124 in the Pathogenesis of HIV-1-Associated Neurocognitive Disorders. Epigenet Insights 2018; 11:2516865718806904. [PMID: 30443645 PMCID: PMC6233963 DOI: 10.1177/2516865718806904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 02/01/2023] Open
Abstract
Despite the efficacy of combination antiretroviral therapy (cART) in controlling viremia, the central nervous system (CNS) continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins, including HIV-1 Transactivator of transcription (HIV-1 Tat) protein. Based on the premise that cART does not impact levels of HIV-1 Tat, and since the CNS is inaccessible to the cART regimens, HIV-1-Tat-mediated neuroinflammation has been implicated as an underlying mediator of HIV-1-associated neurocognitive disorders (HAND). The mechanism(s) underlying the pathogenesis of HAND, however, remain less understood. Understanding the epigenetic/molecular mechanism(s) by which viral proteins such as HIV-1 Tat activate microglia is thus of paramount importance. The study published by Periyasamy et al provides new mechanistic insights into the role of HIV-1-Tat-mediated DNA methylation of miR-124 promoter in regulating microglial activation via the MECP2-STAT3 signaling axis. Furthermore, the authors have also reported that exposure of mouse primary microglial cells to HIV-1 Tat notably increased DNA methylation of primary miR-124-1 and primary miR-124-2 promoters (with no change in primary miR-124-3), resulting in turn to downregulated expression of both primary miR-124-1 and primary miR-124-2 as well as mature miR-124 in mouse primary microglial cells. The authors also examined the involvement of MECP2-STAT3 signaling in HIV-1-Tat-mediated microglial activation. Based on these novel findings, it is evident that dysregulation of miR-124 is involved in the pathogenesis of HAND and that restoration of miR-124 could serve as an adjunctive treatment for dampening neuroinflammation associated with HAND.
Collapse
Affiliation(s)
- Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Minglei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Nunes JM, Furtado MN, de Morais Nunes ER, Sucupira MCA, Diaz RS, Janini LMR. Modulation of epigenetic factors during the early stages of HIV-1 infection in CD4 + T cells in vitro. Virology 2018; 523:41-51. [PMID: 30077875 DOI: 10.1016/j.virol.2018.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 11/15/2022]
Abstract
Several studies have related epigenetic mechanisms to HIV-1 latency. However, the epigenetic modifications of the host cell genome involved in the early stages of HIV-1 infection remain unclear. This study aimed to investigate epigenetic factors that are regulated at the beginning of HIV-1 infection in activated and resting CD4+ T cells. We analyzed the gene expression of 84 epigenetic targets, global DNA methylation, and HIV-1 replication kinetics for 36 h after infecting CD4+ T cells obtained from the blood of twelve healthy donors. The epigenetic targets aurora kinase B (AURKB), aurora kinase C (AURKC) and DNA methyltransferase 3B (DNMT3B), and the global DNA methylation profile are regulated during HIV-1 replication in CD4+ T cells, and this regulation can be influenced by the activation state of the cell at the time of infection. Approaches that affect the expression of these epigenetic targets could help current strategies to suppress HIV-1 replication.
Collapse
Affiliation(s)
- Jorge Meneses Nunes
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| | - Maria Nadiege Furtado
- Laboratory of Retrovirology, Discipline of Infectious Diseases, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| | - Edsel Renata de Morais Nunes
- Laboratory of Retrovirology, Discipline of Infectious Diseases, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| | - Maria Cecilia Araripe Sucupira
- Laboratory of Retrovirology, Discipline of Infectious Diseases, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| | - Ricardo Sobhie Diaz
- Laboratory of Retrovirology, Discipline of Infectious Diseases, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| | - Luiz Mário Ramos Janini
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil; Laboratory of Retrovirology, Discipline of Infectious Diseases, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
13
|
Epigenetic Promoter DNA Methylation of miR-124 Promotes HIV-1 Tat-Mediated Microglial Activation via MECP2-STAT3 Axis. J Neurosci 2018; 38:5367-5383. [PMID: 29760177 DOI: 10.1523/jneurosci.3474-17.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 11/21/2022] Open
Abstract
The present study demonstrates HIV-1 Tat-mediated epigenetic downregulation of microglial miR-124 and its association with microglial activation. Exposure of mouse primary microglia isolated from newborn pups of either sex to HIV-1 Tat resulted in decreased expression of primary miR-124-1, primary miR-124-2 as well as the mature miR-124. In parallel, HIV-1 Tat exposure to mouse primary microglial cells resulted in increased expression of DNA methylation enzymes, such as DNMT1, DNMT3A, and DNMT3B, which were also accompanied by increased global DNA methylation. Bisulfite-converted genomic DNA sequencing in the HIV-1 Tat-exposed mouse primary microglial cells further confirmed increased DNA methylation of the primary miR-124-1 and primary miR-124-2 promoters. Bioinformatic analyses identified MECP2 as a novel 3'-UTR target of miR-124. This was further validated in mouse primary microglial cells wherein HIV-1 Tat-mediated downregulation of miR-124 resulted in increased expression of MECP2, leading in turn to further repression of miR-124 via the feedback loop. In addition to MECP2, miR-124 also modulated the levels of STAT3 through its binding to the 3'-UTR, leading to microglial activation. Luciferase assays and Ago2 immunoprecipitation determined the direct binding between miR-124 and 3'-UTR of both MECP2 and STAT3. Gene silencing of MECP2 and DNMT1 and overexpression of miR-124 blocked HIV-1 Tat-mediated downregulation of miR-124 and microglial activation. In vitro findings were also confirmed in the basal ganglia of SIV-infected rhesus macaques (both sexes). In summary, our findings demonstrate a novel mechanism of HIV-1 Tat-mediated activation of microglia via downregulation of miR-124, leading ultimately to increased MECP2 and STAT3 signaling.SIGNIFICANCE STATEMENT Despite the effectiveness of combination antiretroviral therapy in controlling viremia, the CNS continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins, including HIV-1 Tat protein. Understanding the epigenetic/molecular mechanism(s) by which viral proteins, such as HIV-1 Tat, can activate microglia is thus of paramount importance. This study demonstrated that HIV-1 Tat-mediated DNA methylation of the miR-124 promoter leads to its downregulation with a concomitant upregulation of the MECP2-STAT3-IL6, resulting in microglial activation. These findings reveal an unexplored epigenetic/molecular mechanism(s) underlying HIV-1 Tat-mediated microglial activation, thereby providing a potential target for the development of therapeutics aimed at ameliorating microglial activation and neuroinflammation in the context of HIV-1 infection.
Collapse
|
14
|
Expression profiling of chromatin-modifying enzymes and global DNA methylation in CD4+ T cells from patients with chronic HIV infection at different HIV control and progression states. Clin Epigenetics 2018; 10:20. [PMID: 29449904 PMCID: PMC5812196 DOI: 10.1186/s13148-018-0448-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/24/2018] [Indexed: 12/19/2022] Open
Abstract
Background Integration of human immunodeficiency virus type 1 (HIV-1) into the host genome causes global disruption of the chromatin environment. The abundance level of various chromatin-modifying enzymes produces these alterations and affects both the provirus and cellular gene expression. Here, we investigated potential changes in enzyme expression and global DNA methylation in chronically infected individuals with HIV-1 and compared these changes with non-HIV infected individuals. We also evaluated the effect of viral replication and degree of disease progression over these changes. Results Individuals with HIV-1 had a significant surge in the expression of DNA and histone methyltransferases (DNMT3A and DNMT3B, SETDB1, SUV39H1) compared with non-infected individuals, with the exception of PRMT6, which was downregulated. Some histone deacetylases (HDAC2 and HDAC3) were also upregulated in patients with HIV. Among individuals with HIV-1 with various degrees of progression and HIV control, the group of treated patients with undetectable viremia showed greater differences with the other two groups (untreated HIV-1 controllers and non-controllers). These latter two groups exhibited a similar behavior between them. Of interest, the overexpression of genes that associate with viral protein Tat (such as SETDB1 along with DNMT3A and HDAC1, and SIRT-1) was more prevalent in treated patients. We also observed elevated levels of global DNA methylation in individuals with HIV-1 in an inverse correlation with the CD4/CD8 ratio. Conclusions The current study shows an increase in chromatin-modifying enzymes and remodelers and in global DNA methylation in patients with chronic HIV-1 infection, modulated by various levels of viral control and progression.
Collapse
|
15
|
Boehm D, Ott M. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Res Hum Retroviruses 2017; 33:S8-S22. [PMID: 29140109 DOI: 10.1089/aid.2017.0180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
16
|
Rosca A, Anton G, Ene L, Iancu I, Temereanca A, Achim CL, Ruta SM. Immunoassay and molecular methods to investigate DNA methylation changes in peripheral blood mononuclear cells in HIV infected patients on cART. J Immunoassay Immunochem 2016; 38:299-307. [PMID: 27854146 DOI: 10.1080/15321819.2016.1260587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to investigate the influence of antiretroviral therapy on methylation markers, in a group of HIV infected, heavily treated patients. Immune and molecular methods were used to investigate potential changes in methylation profile in DNA isolated from peripheral blood mononuclear cells collected from antiretroviral-experienced HIV infected patients and healthy controls. The percentage of 5-methylcytosine was inversely correlated with proviral DNA and active replication while DNMT1 (p = 0.01) and DNMT3A (p = 0.004) independently correlated with active viral replication. DNMT3A expression increased with total treatment duration (p = 0.03), number of antiretroviral drugs ever used (p = 0.003), and cumulative exposure to protease inhibitors (p = 0.02) even in currently HIV undetectable patients.
Collapse
Affiliation(s)
- Adelina Rosca
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania.,b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Gabriela Anton
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Luminita Ene
- c Infectious Diseases Department , Victor Babes Hospital for Infectious and Tropical Diseases , Bucharest , Romania
| | - Iulia Iancu
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Aura Temereanca
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania.,b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Cristian L Achim
- d Department of Psychiatry , University of California , San Diego , California
| | - Simona M Ruta
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania.,b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| |
Collapse
|
17
|
Zhang X, Justice AC, Hu Y, Wang Z, Zhao H, Wang G, Johnson EO, Emu B, Sutton RE, Krystal JH, Xu K. Epigenome-wide differential DNA methylation between HIV-infected and uninfected individuals. Epigenetics 2016; 11:750-760. [PMID: 27672717 PMCID: PMC5094631 DOI: 10.1080/15592294.2016.1221569] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic control of human immunodeficiency virus-1 (HIV-1) genes is critical for viral integration and latency. However, epigenetic changes in the HIV-1-infected host genome have not been well characterized. Here, we report the first large-scale epigenome-wide association study of DNA methylation for HIV-1 infection. We recruited HIV-infected (n = 261) and uninfected (n = 117) patients from the Veteran Aging Cohort Study (VACS) and all samples were profiled for 485,521 CpG sites in DNA extracted from the blood. After adjusting for cell type and clinical confounders, we identified 20 epigenome-wide significant CpGs for HIV-1 infection. Importantly, 2 CpGs in the promoter of the NLR family, CARD domain containing gene 5 (NLRC5), a key regulator of major histocompatibility complex class I gene expression, showed significantly lower methylation in HIV-infected subjects than in uninfected subjects (cg07839457: t = −6.03, Pnominal = 4.96 × 10−9; cg16411857: t = −7.63, Pnominal = 3.07 × 10−13). Hypomethylation of these 2 CpGs was replicated in an independent sample (GSE67705: cg07839457: t = −4.44, Pnominal = 1.61 × 10−5; cg16411857: t = −5.90; P = 1.99 × 10−8). Methylation of these 2 CpGs in NLRC5 was negatively correlated with viral load in the 2 HIV-infected samples (cg07839457: P = 1.8 × 10−4; cg16411857: P = 0.03 in the VACS; and cg07839457: P = 0.04; cg164111857: P = 0.01 in GSE53840). Our findings demonstrate that differential DNA methylation is associated with HIV infection and suggest the involvement of a novel host gene, NLRC5, in HIV pathogenesis.
Collapse
Affiliation(s)
- Xinyu Zhang
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Amy C Justice
- c Yale University School of Medicine, New Haven Veterans Affairs Connecticut Healthcare System , West Haven , CT , USA
| | - Ying Hu
- d Center for Biomedical Informatics & Information Technology, National Cancer Institute , Bethesda , MD , USA
| | - Zuoheng Wang
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Hongyu Zhao
- f Department of Biostatistics , Yale School of Public Health , New Haven , CT , USA
| | - Guilin Wang
- g Yale Center of Genomic Analysis, West Campus , Orange , CT , USA
| | - Eric O Johnson
- h Fellow Program and Behavioral Health and Criminal Justice Division, RTI International , Research Triangle Park, NC , USA
| | - Brinda Emu
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Richard E Sutton
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - John H Krystal
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Ke Xu
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| |
Collapse
|
18
|
Kim D, Thairu MW, Hansen AK. Novel Insights into Insect-Microbe Interactions-Role of Epigenomics and Small RNAs. FRONTIERS IN PLANT SCIENCE 2016; 7:1164. [PMID: 27540386 PMCID: PMC4972996 DOI: 10.3389/fpls.2016.01164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/20/2016] [Indexed: 05/23/2023]
Abstract
It has become increasingly clear that microbes form close associations with the vast majority of animal species, especially insects. In fact, an array of diverse microbes is known to form shared metabolic pathways with their insect hosts. A growing area of research in insect-microbe interactions, notably for hemipteran insects and their mutualistic symbionts, is to elucidate the regulation of this inter-domain metabolism. This review examines two new emerging mechanisms of gene regulation and their importance in host-microbe interactions. Specifically, we highlight how the incipient areas of research on regulatory "dark matter" such as epigenomics and small RNAs, can play a pivotal role in the evolution of both insect and microbe gene regulation. We then propose specific models of how these dynamic forms of gene regulation can influence insect-symbiont-plant interactions. Future studies in this area of research will give us a systematic understanding of how these symbiotic microbes and animals reciprocally respond to and regulate their shared metabolic processes.
Collapse
|
19
|
Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo. Viruses 2016; 8:80. [PMID: 26985903 PMCID: PMC4810270 DOI: 10.3390/v8030080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1) infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1), HTLV-1 plasma RNA is sparse. The contribution of the "mitotic" spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR) DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT) usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC) of asymptomatic carriers (ACs) and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T cell leukaemia/lymphoma (ATLL). 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.
Collapse
|
20
|
Lopez M, Halby L, Arimondo PB. DNA Methyltransferase Inhibitors: Development and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:431-473. [DOI: 10.1007/978-3-319-43624-1_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Yang T, Li S, Zhang X, Pang X, Lin Q, Cao J. Resveratrol, sirtuins, and viruses. Rev Med Virol 2015; 25:431-45. [DOI: 10.1002/rmv.1858] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Tao Yang
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Shugang Li
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang; Tarim University; Alar Xinjiang China
| | - Xuming Zhang
- Department of Microbiology and Immunology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Xiaowu Pang
- Departments of Oral Pathology, College of Dentistry; Howard University; Washington DC USA
| | - Qinlu Lin
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Jianzhong Cao
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| |
Collapse
|
22
|
Zhang Y, Li SK, Tsui SKW. Genome-wide analysis of DNA methylation associated with HIV infection based on a pair of monozygotic twins. GENOMICS DATA 2015; 6:12-5. [PMID: 26697319 PMCID: PMC4664672 DOI: 10.1016/j.gdata.2015.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022]
Abstract
Alteration of DNA methylation in mammalian cells could be elicited by many factors, including viral infections [1]. HIV has shown the ability to interact with host cellular factors to change the methylation status of some genes [2], [3], [4]. However, the change of the DNA methylation associated with HIV infection based on the whole genome has not been well illustrated. In this study, a unique pair of monozygotic twins was recruited: one of the twins was infected with HIV without further anti-retroviral therapy while the other one was healthy, which could be considered as a relatively ideal model for profiling the alterations of DNA methylation associated with HIV infection. Therefore, using methylated DNA immunoprecipitation–microarray method (MeDIP–microarray), we found the increased DNA methylation level in peripheral blood mononuclear cells from HIV infected twin compared to her normal sibling. Moreover, several distinguished differential methylation regions (DMRs) in HIV infected twin worth further study. The raw data has been deposited in Gene Expression Omnibus (GEO) datasets with reference number GSE68028.
Collapse
Affiliation(s)
- Yinfeng Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Sai-Kam Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong ; Hong Kong Bioinformatics Center, The Chinese University of Hong Kong, Hong Kong ; Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Whole genome methylation array reveals the down-regulation of IGFBP6 and SATB2 by HIV-1. Sci Rep 2015; 5:10806. [PMID: 26039376 PMCID: PMC4454074 DOI: 10.1038/srep10806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/29/2015] [Indexed: 12/18/2022] Open
Abstract
Nowadays, the knowledge in DNA methylation-mediated gene regulation has shed light on the understanding of virus-host interplay in the context of genome alteration. It has also been shown that HIV is able to change the DNA methylation pattern by DNA methyltransferases and such changes can be correlated with the progression of AIDS. In this study, we have investigated the relationship between genome-wide DNA methylation pattern and HIV infection using the methylated DNA immunoprecipitation - microarray method. A pair of monozygotic twins was recruited: one of the twins was infected with HIV while the other was not. Based on data from the microarray experiment, 4679 differentially methylated regions in the HIV positive subject with the significant peak values were identified. Selected genes were then validated in human T lymphocyte CEM*174 cell line and HIV/AIDS patients by comparing with normal subjects. We found that IGFBP6 and SATB2 were significantly down-regulated in HIV-infected CEM*174 cells and 3 different cohorts of HIV/AIDS patients while their promoters were predominantly hyper-methylated compared with normal controls. This study also provides a resource for the identification of HIV-induced methylation and contributes to better understanding of the development of HIV/AIDS.
Collapse
|
24
|
Li H, Yang F, Gao B, Yu Z, Liu X, Xie F, Zhang J. Hepatitis B virus infection in hepatocellular carcinoma tissues upregulates expression of DNA methyltransferases. Int J Clin Exp Med 2015; 8:4175-4185. [PMID: 26064328 PMCID: PMC4443162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
PURPOSE Our previous research identified that Hepatitis B virus (HBV) infection results in the increased methylation of p16; however, the mechanism(s) of the methylation changes observed following HBV infection are yet to be deduced. DNA methylation is governed by the interaction of DNA methyltransferases (DNMT). To investigate the expression of DNMT in cancerous tissue, cirrhotic tissues and non-cancerous tissue, we examined the relationship between HBV infection and DNMT expression. METHODS We compared the mRNA expression levels of the four DNMTs in cancerous, cirrhotic and matched non-cancerous tissues of HCC with HBV infection by real-time PCR. RESULTS The results showed that compared with the level in the corresponding non-cancerous liver tissues, the levels of DNMT1, DNMT3A and DNMT3B were elevated in 54.5%, 68.2% and 38.6% of cancerous tissues and 31.4%, 40% and 25.8% of cirrhotic tissues, respectively. The average mRNA expression for DNMT2 in cancerous and cirrhotic tissues of HCC was not significantly different from that in the corresponding non-cancerous liver tissues. In HBV-associated tissue samples, both the average level and the elevated frequency of DNMT1, DNMT3A and DNMT3B mRNA expression were significantly higher than in non-HBV-associated cirrhotic and cancerous tissues; even in non-cancerous tissues, the mRNA levels of DNMT1 and DNMT3A in HBV-associated samples were significantly higher than in the non-HBV-associated samples. Correlations analysis demonstrated a significant association between HBV infection and the overexpression of DNMTs and p16 methylation. CONCLUSIONS The results of our current study suggest that persistent HBV infection can stimulate the overexpression of DNMTs, particularly DNMT1, DNMT3A and DNMT3B, which may result in the hyper-methylation/inactivation of p16, thus indirectly regulating the progression of hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Haiping Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Fengmei Yang
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Bo Gao
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Zongtao Yu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Xiaobo Liu
- Department of Gestroenterology, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Fei Xie
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Jicai Zhang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| |
Collapse
|
25
|
Luzzi A, Morettini F, Gazaneo S, Mundo L, Onnis A, Mannucci S, Rogena EA, Bellan C, Leoncini L, De Falco G. HIV-1 Tat induces DNMT over-expression through microRNA dysregulation in HIV-related non Hodgkin lymphomas. Infect Agent Cancer 2014; 9:41. [PMID: 25705251 PMCID: PMC4334912 DOI: 10.1186/1750-9378-9-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/14/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A close association between HIV infection and the development of cancer exists. Although the advent of highly active antiretroviral therapy has changed the epidemiology of AIDS-associated malignancies, a better understanding on how HIV can induce malignant transformation will help the development of novel therapeutic agents. METHODS HIV has been reported to induce the expression of DNMT1 in vitro, but still no information is available about the mechanisms regulating DNMT expression in HIV-related B-cell lymphomas. In this paper, we investigated the expression of DNMT family members (DNMT1, DNMT3a/b) in primary cases of aggressive B-cell lymphomas of HIV-positive subjects. RESULTS Our results confirmed the activation of DNMT1 by HIV in vivo, and reported for the first time a marked up-regulation of DNMT3a and DNMT3b in HIV-positive aggressive B-cell lymphomas. DNMT up-regulation in HIV-positive tumors correlated with down-regulation of specific microRNAs, as the miR29 family, the miR148-152 cluster, known to regulate their expression. Literature reports the activation of DNMTs by the human polyomavirus BKV large T-antigen and adenovirus E1a, through the pRb/E2F pathway. We have previously demonstrated that the HIV Tat protein is able to bind to the pocket proteins and to inactivate their oncosuppressive properties, resulting in uncontrolled cell proliferation. Therefore, we focused on the role of Tat, due to its capability to be released from infected cells and to dysregulate uninfected ones, using an in vitro model in which Tat was ectopically expressed in B-cells. CONCLUSIONS Our findings demonstrated that the ectopic expression of Tat was per se sufficient to determine DNMT up-regulation, based on microRNA down-regulation, and that this results in aberrant hypermethylation of target genes and microRNAs. These results point at a direct role for Tat in participating in uninfected B-cell lymphomagenesis, through dysregulation of the epigenetical control of gene expression.
Collapse
Affiliation(s)
- Anna Luzzi
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Federica Morettini
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sara Gazaneo
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lucia Mundo
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Onnis
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Susanna Mannucci
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Emily A Rogena
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
- />Department of Pathology, University of Nairobi, Nairobi, Kenya
| | - Cristiana Bellan
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lorenzo Leoncini
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia De Falco
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
- />School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
26
|
Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell Biosci 2014; 4:46. [PMID: 25949795 PMCID: PMC4422219 DOI: 10.1186/2045-3701-4-46] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023] Open
Abstract
Cancer is a leading cause of death worldwide. Aberrant promoter hypermethylation of CpG islands associated with tumor suppressor genes can lead to transcriptional silencing and result in tumorigenesis. DNA methyltransferases (DNMTs) are the enzymes responsible for DNA methylation and have been reported to be over-expressed in various cancers. This review highlights the current status of transcriptional and post-translational regulation of the DNMT expression and activity with a focus on dysregulation involved in tumorigenesis. The transcriptional up-regulation of DNMT gene expression can be induced by Ras-c-Jun signaling pathway, Sp1 and Sp3 zinc finger proteins and virus oncoproteins. Transcriptional repression on DNMT genes has also been reported for p53, RB and FOXO3a transcriptional regulators and corepressors. In addition, the low expressions of microRNAs 29 family, 143, 148a and 152 are associated with DNMTs overexpression in various cancers. Several important post-translational modifications including acetylation and phosphorylation have been reported to mediate protein stability and activity of the DNMTs especially DNMT1. In this review, we also discuss drugs targeting DNMT protein expression and activation for therapeutic strategy against cancer.
Collapse
|
27
|
Epigenetic analysis of HIV-1 proviral genomes from infected individuals: predominance of unmethylated CpG's. Virology 2013; 449:181-9. [PMID: 24418551 DOI: 10.1016/j.virol.2013.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/26/2013] [Accepted: 11/06/2013] [Indexed: 12/30/2022]
Abstract
Efforts to cure HIV-1 infections aim at eliminating proviral DNA. Integrated DNA from various viruses often becomes methylated de novo and transcriptionally inactivated. We therefore investigated CpG methylation profiles of 55 of 94 CpG's (58.5%) in HIV-1 proviral genomes including ten CpG's in each LTR and additional CpG's in portions of gag, env, nef, rev, and tat genes. We analyzed 33 DNA samples from PBMC's of 23 subjects representing a broad spectrum of HIV-1 disease. In 22 of 23 HIV-1-infected individuals, there were only unmethylated CpG's regardless of infection status. In one long term nonprogressor, however, methylation of proviral DNA varied between 0 and 75% over an 11-year period although the CD4+ counts remained stable. Hence levels of proviral DNA methylation can fluctuate. The preponderance of unmethylated CpG's suggests that proviral methylation is not a major factor in regulating HIV-1 proviral activity in PBMC's. Unmethylated CpG's may play a role in HIV-1 immunopathogenesis.
Collapse
|
28
|
Sun DF, Zhang YJ, Tian XQ, Chen YX, Fang JY. Inhibition of mTOR signalling potentiates the effects of trichostatin A in human gastric cancer cell lines by promoting histone acetylation. Cell Biol Int 2013; 38:50-63. [PMID: 24030871 DOI: 10.1002/cbin.10179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022]
Abstract
Deregulation of the mammalian target of rapamycin pathway (mTOR pathway) is associated with human cancer. The relationship between mTOR pathway and histone acetylation is still unclear in gastric cancer (GC). Immunohistochemistry was used to examine the phosphorylation of mTOR and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in GC tissues. MKN45 and SGC7901 cells were treated with the mTOR inhibitor rapamycin (RAPA) alone or in combination with the phosphatidylinositol 3-kinase inhibitor LY294002 and the histone deacetylase (HDAC) inhibitor trichostatin A (TSA). Small interfering RNA (siRNA) technology was also used to knockdown mTOR. Phosphorylated mTOR and phosphorylated 4E-BP1 were expressed in 71.1% and 68.4% of the human GC tissues tested, respectively; significantly higher than the levels in para-cancerous tissues (50% and 57.9%) and normal tissues (44.6% and 29%). RAPA markedly inhibited cell proliferation, induced G1 cell cycle arrest, and reduced phosphorylation of p70 S6 protein kinase (p70S6K) and 4E-BP1 in GC cells, particularly when used in combination with LY294002 or TSA. The mRNA expression of the tumour suppressor gene p21(WAF1) increased significantly in GC cells treated with both RAPA and TSA. Histone acetylation also increased after RAPA and TSA treatment or siRNA knockdown of mTOR. Our findings suggest that the mTOR pathway is activated in GC, and also that inhibition of mTOR enhances the ability of TSA to suppress cell proliferation and lead to cell cycle arrest via increasing histone acetylation and p21(WAF1) transcription in human MKN45 and SGC7901 GC cells.
Collapse
Affiliation(s)
- Dan-feng Sun
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institution of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health (Shanghai Jiao Tong University), 145 Middle Shandong Rd., Shanghai, 200001, China
| | | | | | | | | |
Collapse
|
29
|
Pion M, Jaramillo-Ruiz D, Martínez A, Muñoz-Fernández MA, Correa-Rocha R. HIV infection of human regulatory T cells downregulates Foxp3 expression by increasing DNMT3b levels and DNA methylation in the FOXP3 gene. AIDS 2013; 27:2019-29. [PMID: 24201117 DOI: 10.1097/qad.0b013e32836253fd] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Regulatory T cells (Tregs) play an important role in infections modulating host immune responses and avoiding overreactive immunity. The mechanisms underlying their action in HIV-infected patients have not been well established. HIV can infect Treg, but little is known about the effects of the infection on Treg phenotype and function. The objective of this study was to investigate whether in-vitro HIV infection modifies the phenotype and suppressive capacity of Treg cells. DESIGN Because Treg cells are a subset of CD4 T cells, HIV infection could produce alterations in the phenotype and methylation pattern of Treg disturbing the functionality of these cells. METHODS Isolated Treg cells from healthy volunteers were cultured in the presence of HIV-1, and phenotype, methylation pattern of FOXP3 locus, cytokine secretion profile and suppressive function of infected Treg were analysed in comparison with noninfected Treg. RESULTS We demonstrate that HIV-1 directly infects Treg and deregulates the function and the phenotype that define these cells. HIV infection downregulates the Foxp3 expression in Treg, which is followed by the loss of suppressive capacity and alterations in cytokine secretion pattern, with decreased production of transforming growth factor-beta (TGF-β) and an increased production of interleukin (IL)-4. Foxp3 downregulation in HIV-infected Treg was related to an increase in the expression of DNA methyltransferase3b (DNMT3b) associated with higher methylation of CpG sites in the FOXP3 locus. CONCLUSION These findings are pivotal to our understanding of the role of Treg in HIV infection and indicate that regulatory function could be seriously impaired in HIV-infected patients contributing to the immune hyperactivation.
Collapse
Affiliation(s)
- Marjorie Pion
- Laboratorio de Inmunobiología Molecular, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Martinez-Colom A, Lasarte S, Fernández-Pineda A, Relloso M, Muñoz-Fernández MA. A new chimeric protein represses HIV-1 LTR-mediated expression by DNA methylase. Antiviral Res 2013; 98:394-400. [PMID: 23588231 DOI: 10.1016/j.antiviral.2013.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/19/2022]
Abstract
Once the human immunodeficiency virus (HIV) genome is inserted into the host genome, the virus cannot be removed, which results in latency periods and makes it difficult to eradicate. The majority of strategies to eradicate HIV have been based on preventing virus latency, thereby enabling antiretroviral drugs to act against HIV replication. Another innovative strategy is permanently silencing the integrated virus to prevent the spread of infection. Epigenetic processes are natural mechanisms that can silence viral replication. We describe a new chimeric protein (IN3b) that consists of a HIV-1 integrase domain, which recognises the HIV long terminal repeat (LTR) and the catalytic domain of DNA methyltransferase DNMT3b. Our objective was to silence HIV replication by the specific delivery of the catalytic methyltransferase domain to the LTR promoter to induce its methylation. We found that our IN3b chimeric protein was expressed in the nucleus and decreased LTR-associated HIV genome expression and HIV replication. Therefore, the IN3b chimeric protein may be an effective tool against HIV replication and maybe used in a new line of research to induce or maintain HIV latency.
Collapse
Affiliation(s)
- Alberto Martinez-Colom
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Weng YR, Kong X, Yu YN, Wang YC, Hong J, Zhao SL, Fang JY. The role of ERK2 in colorectal carcinogenesis is partly regulated by TRAPPC4. Mol Carcinog 2013; 53 Suppl 1:E72-84. [DOI: 10.1002/mc.22031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/03/2013] [Accepted: 03/12/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Yu-Rong Weng
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Xuan Kong
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Ya-Nan Yu
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Ying-Chao Wang
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Jie Hong
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Shu-Liang Zhao
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| |
Collapse
|
32
|
Niller HH, Banati F, Ay E, Minarovits J. Microbe-Induced Epigenetic Alterations. PATHO-EPIGENETICS OF DISEASE 2012:419-455. [DOI: 10.1007/978-1-4614-3345-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Rodriguez-Cortez VC, Hernando H, de la Rica L, Vento R, Ballestar E. Epigenomic deregulation in the immune system. Epigenomics 2011; 3:697-713. [PMID: 22126290 DOI: 10.2217/epi.11.99] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Proper immune function is the result of multiple cell commitment and differentiation steps, and adequate control of activation mechanisms. Deregulation of transcriptional programs in immune cells leads to the development of hematological malignancies, autoimmune diseases or immunodeficiencies. In this sense, epigenetic control of gene expression plays an essential role in the correct function of the immune system and the integrity of identity of relevant cell types. Epigenetic deregulation can result as a consequence of genetic changes in transcription factors, elements of signaling pathways or epigenetic enzymes, or as an effect of a variety of environmental factors. On top of genetic predisposition, viral infection and other external factors influence the development of immune-related diseases. In recent years, major strides have been made towards understanding the contribution of genetics in these immune disorders. Less progress has been made in dissecting the contribution of epigenetic factors in their etiology. Herein, it is presented what is currently known about epigenetic alterations in immune system associated disorders. It is also discussed how epigenomic analysis can help to understand the molecular basis of these diseases and how this information can be used in the clinical setting.
Collapse
Affiliation(s)
- Virginia C Rodriguez-Cortez
- Cancer Epigenetics & Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | |
Collapse
|
34
|
Zhao SL, Hong J, Xie ZQ, Tang JT, Su WY, Du W, Chen YX, Lu R, Sun DF, Fang JY. TRAPPC4-ERK2 interaction activates ERK1/2, modulates its nuclear localization and regulates proliferation and apoptosis of colorectal cancer cells. PLoS One 2011; 6:e23262. [PMID: 21826244 PMCID: PMC3149646 DOI: 10.1371/journal.pone.0023262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/10/2011] [Indexed: 12/26/2022] Open
Abstract
The trafficking protein particle complex 4 (TRAPPC4) is implicated in vesicle-mediated transport, but its association with disease has rarely been reported. We explored its potential interaction with ERK2, part of the ERK1/2 complex in the Extracellular Signal-regulated Kinase/ Mitogen-activated Protein Kinase (ERK-MAPK) pathway, by a yeast two-hybrid screen and confirmed by co-immunoprecipitation (Co-IP) and glutathione S-transferase (GST) pull-down. Further investigation found that when TRAPPC4 was depleted, activated ERK1/2 specifically decreased in the nucleus, which was accompanied with cell growth suppression and apoptosis in colorectal cancer (CRC) cells. Overexpression of TRAPPC4 promoted cell viability and caused activated ERK1/2 to increase overall, but especially in the nucleus. TRAPPC4 was expressed more highly in the nucleus of CRC cells than in normal colonic epithelium or adenoma which corresponded with nuclear staining of pERK1/2. We demonstrate here that TRAPPC4 may regulate cell proliferation and apoptosis in CRC by interaction with ERK2 and subsequently phosphorylating ERK1/2 as well as modulating the subcellular location of pERK1/2 to activate the relevant signaling pathway.
Collapse
Affiliation(s)
- Shu-Liang Zhao
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
| | - Jie Hong
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
| | - Zuo-Quan Xie
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jie-Ting Tang
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
| | - Wen-Yu Su
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
| | - Wan Du
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
| | - Ying-Xuan Chen
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
| | - Rong Lu
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
| | - Dan-Feng Sun
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
| | - Jing-Yuan Fang
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
- * E-mail: .
| |
Collapse
|
35
|
Cumulative Epigenetic Abnormalities in Host Genes with Viral and Microbial Infection during Initiation and Progression of Malignant Lymphoma/Leukemia. Cancers (Basel) 2011; 3:568-81. [PMID: 24212629 PMCID: PMC3756377 DOI: 10.3390/cancers3010568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 01/08/2023] Open
Abstract
Although cancers have been thought to be predominantly driven by acquired genetic changes, it is becoming clear that microenvironment-mediated epigenetic alterations play important roles. Aberrant promoter hypermethylation is a prevalent phenomenon in human cancers as well as malignant lymphoma/leukemia. Tumor suppressor genes become frequent targets of aberrant hypermethylation in the course of gene-silencing due to the increased and deregulated DNA methyltransferases (DNMTs). The purpose of this article is to review the current status of knowledge about the contribution of cumulative epigenetic abnormalities of the host genes after microbial and virus infection to the crisis and progression of malignant lymphoma/leukemia. In addition, the relevance of this knowledge to malignant lymphoma/leukemia assessment, prevention and early detection will be discussed.
Collapse
|
36
|
|
37
|
Easley R, Van Duyne R, Coley W, Guendel I, Dadgar S, Kehn-Hall K, Kashanchi F. Chromatin dynamics associated with HIV-1 Tat-activated transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:275-85. [PMID: 19716452 DOI: 10.1016/j.bbagrm.2009.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/14/2009] [Accepted: 08/20/2009] [Indexed: 02/07/2023]
Abstract
Chromatin remodeling is an essential event for HIV-1 transcription. Over the last two decades this field of research has come to the forefront, as silencing of the HIV-1 provirus through chromatin modifications has been linked to latency. Here, we focus on chromatin remodeling, especially in relation to the transactivator Tat, and review the most important and newly emerging studies that investigate remodeling mechanisms. We begin by discussing covalent modifications that can alter chromatin structure including acetylation, deacetylation, and methylation, as well as topics addressing the interplay between chromatin remodeling and splicing. Next, we focus on complexes that use the energy of ATP to remove or secure nucleosomes and can additionally act to control HIV-1 transcription. Finally, we cover recent literature on viral microRNAs which have been shown to alter chromatin structure by inducing methylation or even by remodeling nucleosomes.
Collapse
Affiliation(s)
- Rebecca Easley
- The George Washington University Medical Center, Department of Microbiology, Immunology, and Tropical Medicine, Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Liu H, Li H, Guo L, Li C, Li M, Jiang W, Liu X, McNutt MA, Li G. The mechanism involved in the repression of the μ opioid receptor gene expression in CEM ×174 cells infected by simian immunodeficiency virus. J Leukoc Biol 2009; 85:684-691. [DOI: 10.1189/jlb.0908543] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2023] Open
Abstract
AbstractMorphine can promote the pathogenesis of human acquired immunodeficiency syndrome through binding to the μ opioid receptor (MOR) in immune cells. Previous investigation has suggested that expression of the MOR gene in lymphocytes is triggered by cooperative interaction between transcription factors, specificity protein 1 (Sp1) and Ying Yang 1 (YY1), in the promoter region. However, the specific molecular mechanism by which immunodeficiency virus infection impacts regulation of the MOR gene expression in lymphocytes is still unclear. In this study, it was demonstrated that SIV (SIVmac239) infection may result in gradual reduction of the MOR gene expression and Sp1 during a period of 48 h postinfection by analysis of quantitative real-time RT-PCR and Western blotting. The results of methylation-specific PCR showed that two of 14 CpG islands adjacent to the Sp1 and YY1 elements in the promoter region were methylated, which together with reduced Sp1, contributed to the failure of interaction of Sp1 with YY1 and their binding to the elements, as determined by coimmunoprecipitation, chromatin immunoprecipitation-real-time PCR, and EMSAs. The repression of the MOR gene secondary to SIVmac239 infection could be abolished by the demethylating agent 5-aza-2′-deoxycytidine. Transfection with Sp1-expressing vector (PN3-Sp1) was also able to enhance the activity of the promoter in SIVmac239-infected cells. We therefore concluded that aberrant methylation of the promoter and reduction of Sp1 resulting from SIVmac239 infection led to the silencing of the MOR gene. This finding will be helpful in understanding the synergistic mechanism of HIV infection and morphine addiction in the pathogenesis of AIDS.
Collapse
Affiliation(s)
- Han Liu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Peking University , Beijing , China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Peking University , Beijing , China
| | - Liyuan Guo
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Peking University , Beijing , China
| | - Chaoying Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Peking University , Beijing , China
| | - Mengsen Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Peking University , Beijing , China
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Peking University , Beijing , China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Peking University , Beijing , China
| | - Michael A McNutt
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Peking University , Beijing , China
| | - Gang Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Peking University , Beijing , China
| |
Collapse
|
39
|
Minárovits J. Microbe-induced epigenetic alterations in host cells: the coming era of patho-epigenetics of microbial infections. A review. Acta Microbiol Immunol Hung 2009; 56:1-19. [PMID: 19388554 DOI: 10.1556/amicr.56.2009.1.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is well documented that the double-stranded DNA (dsDNA) genomes of certain viruses and the proviral genomes of retroviruses are regularly targeted by epigenetic regulatory mechanisms (DNA methylation, histone modifications, binding of regulatory proteins) in infected cells. In parallel, proteins encoded by viral genomes may affect the activity of a set of cellular promoters by interacting with the very same epigenetic regulatory machinery. This may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes (e.g. initiation and progression of malignant neoplasms; immunodeficiency). Bacteria infecting mammals may cause diseases in a similar manner, by causing hypermethylation of key cellular promoters at CpG dinucleotides (promoter silencing, e.g. by Campylobacter rectus in the placenta or by Helicobacter pylori in gastric mucosa). I suggest that in addition to viruses and bacteria, other microparasites (protozoa) as well as macroparasites (helminths, arthropods, fungi) may induce pathological changes by epigenetic reprogramming of host cells they are interacting with. Elucidation of the epigenetic consequences of microbe-host interactions (the emerging new field of patho-epigenetics) may have important therapeutic implications because epigenetic processes can be reverted and elimination of microbes inducing patho-epigenetic changes may prevent disease development.
Collapse
Affiliation(s)
- J Minárovits
- Microbiological Research Group, National Center for Epidemiology, Piheno u. 1, H-1529 Budapest, Hungary.
| |
Collapse
|
40
|
Foley DL, Craig JM, Morley R, Olsson CA, Dwyer T, Smith K, Saffery R. Prospects for epigenetic epidemiology. Am J Epidemiol 2009; 169:389-400. [PMID: 19139055 DOI: 10.1093/aje/kwn380] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epigenetic modification can mediate environmental influences on gene expression and can modulate the disease risk associated with genetic variation. Epigenetic analysis therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. The spatial and temporal variance in epigenetic profile is of particular relevance for developmental epidemiology and the study of aging, including the variable age at onset for many common diseases. This review serves as a general introduction to the topic by describing epigenetic mechanisms, with a focus on DNA methylation; genetic and environmental factors that influence DNA methylation; epigenetic influences on development, aging, and disease; and current methodology for measuring epigenetic profile. Methodological considerations for epidemiologic studies that seek to include epigenetic analysis are also discussed.
Collapse
Affiliation(s)
- Debra L Foley
- Orygen Youth Health Research Centre & Department of Psychiatry, University of Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cellular defence mechanisms against HIV contribute to its persistence. One of the cellular defenses against virus infection is the silencing of viral gene expression. There is evidence that at least two gene-silencing mechanisms are used against the human immuno-deficiency virus (HIV). Paradoxically, this cellular defense mechanism contributes to viral latency and persistence, and we review here the relationship of viral latency to gene-silencing mechanisms.
Collapse
Affiliation(s)
- Hoi-Ping Mok
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | | |
Collapse
|
42
|
Berger G, Goujon C, Darlix JL, Cimarelli A. SIVMAC Vpx improves the transduction of dendritic cells with nonintegrative HIV-1-derived vectors. Gene Ther 2008; 16:159-63. [PMID: 18668143 DOI: 10.1038/gt.2008.128] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lentiviral vector (LV)-mediated gene therapy bears an intrinsic risk of insertional mutagenesis following integration into the host genome. Nonintegrative LVs may offer an alternative avenue at least in nondividing cells where episomal viral DNA persists stably. Owing to their central role in immune system functions, differentiated dendritic cells (DCs) offer an interesting cell target for these vectors. We have previously described that the transduction of DCs with wild-type HIV-1-derived vectors can be considerably improved by providing DCs with noninfectious virion-like particles (VLPs) carrying Vpx (Vpx-VLPs), a nonstructural protein coded by members of the SIV(SM)/HIV-2 lineage that removes a specific restriction to lentiviral infection in these cells. Here, we describe that the transduction efficiency of DCs with nonintegrative HIV-1 vectors can also be improved via Vpx-VLPs that promote the accumulation of complete and episomal viral DNA. In this setting, Vpx increases both the number of transduced cells and the levels of transgene expression. Thus, these results describe a simple procedure by which transduction of differentiated DCs can be achieved at low viral inputs with safer LVs to improve both the number of transduced cells and the levels of transgene expression.
Collapse
Affiliation(s)
- G Berger
- LaboRetro, Department of Human Virology, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
43
|
Williams SA, Greene WC. Regulation of HIV-1 latency by T-cell activation. Cytokine 2007; 39:63-74. [PMID: 17643313 PMCID: PMC2063506 DOI: 10.1016/j.cyto.2007.05.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/23/2007] [Accepted: 05/30/2007] [Indexed: 01/06/2023]
Abstract
HIV-infected patients harbor approximately 10(5)-10(6) memory CD4 T-cells that contain fully integrated but transcriptionally silent HIV proviruses. While small in number, these latently infected cells form a drug-insensitive reservoir that importantly contributes to the life-long persistence of HIV despite highly effective antiviral therapy. In tissue culture, latent HIV proviruses can be activated when their cellular hosts are exposed to select proinflammatory cytokines or their T-cell receptors are ligated. However, due to a lack of potency and/or dose-limiting toxicity, attempts to purge virus from this latent reservoir in vivo with immune-activating agents, such as anti-CD3 antibodies and IL-2, have failed. A deeper understanding of the molecular underpinnings of HIV latency is clearly required, including determining whether viral latency is actively reinforced by transcriptional repressors, defining which inducible host transcription factors most effectively antagonize latency, and elucidating the role of chromatin in viral latency. Only through such an improved understanding will it be possible to identify combination therapies that might allow complete purging of the latent reservoir and to realize the difficult and elusive goal of complete eradication of HIV in infected patients.
Collapse
Affiliation(s)
- Samuel A. Williams
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, 94141-1230
- Department of Physiology, University of California, San Francisco, CA, 94141-1230
- Department of Medicine, University of California, San Francisco, CA, 94141-1230
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, 94141-1230
- Department of Medicine, University of California, San Francisco, CA, 94141-1230
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94141-1230
- *Corresponding author. Mailing address: Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA, 94158, Phone: (415) 734-2000, Fax: (415) 355-0153,
| |
Collapse
|
44
|
Chen YX, Fang JY, Lu R, Qiu DK. Expression of p21 WAF1 is related to acetylation of histone H3 in total chromatin in human colorectal cancer. World J Gastroenterol 2007; 13:2209-13. [PMID: 17465503 PMCID: PMC4146846 DOI: 10.3748/wjg.v13.i15.2209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the relationship between acetylation of histone in total chromatin and p21WAF1 expression regulation in human colorectal carcinoma.
METHODS: We analyzed the expression of tumor suppressor gene p21WAF1 mRNA by RT-PCR or real-time PCR in 33 samples of colorectal cancerous tissue, corresponding para-cancerous tissue and normal colorectal mucosa, and also examined the level of acetylated histone H3 in total chromatin using Western blotting.
RESULTS: The expression level of p21WAF1 mRNA was significantly lower in colorectal cancerous tissue from 33 patients than in para-cancerous tissue and normal colorectal mucosa (2377.95 ± 865.80 vs 3216.58 ± 1149.42 and 3541.61 ± 1433.17 respectively, P < 0.01). In addition, when p21WAF1 mRNA expression was undectectable or at very low level (50% less than that in adjacent tissue and normal colorectal mucosa) in all tissues, the level of acetylated histone H3 in colorectal cancerous tissue was significantly lower than that in corresponding para-cancerous tissue and normal colorectal mucosa in five of seven (71.43%) cases. The transcriptional level of p21WAF1 in colorectal carcinoma might not be associated with its biological behaviors.
CONCLUSION: The down-regulation of p21WAF1 transcription is involved in the tumorigenesis and development of colorectal carcinoma. The down-expression of p21WAF1 mRNA in colorectal carcinoma might be associated with histone hypoacetylation in chromatin but not with biological behaviors.
Collapse
Affiliation(s)
- Ying-Xuan Chen
- Shanghai Jiaotong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease, 145 Shandong Zhong Lu, Shanghai 200001, China
| | | | | | | |
Collapse
|
45
|
Lu R, Wang X, Chen ZF, Sun DF, Tian XQ, Fang JY. Inhibition of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway decreases DNA methylation in colon cancer cells. J Biol Chem 2007; 282:12249-59. [PMID: 17307743 DOI: 10.1074/jbc.m608525200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) pathway is a critical intermediary for cell proliferation, differentiation, and survival. In the human colon cancer cell line SW1116, treatment with the DNA methyltransferase 1 (DNMT1) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) or the ERK-MAPK inhibitors PD98059 or rottlerin, or transient transfection with the MAP/ERK kinase (MEK)1/2 small interfering RNA down-regulates DNMT1 and proliferating cell nuclear antigen levels. In this report, we found that drug treatment or small interfering RNA transfection of SW1116 cells induced promoter demethylation of the p16(INK4A) and p21(WAF1) genes, which up-regulated their mRNA and protein expression levels. Flow cytometry revealed that rottlerin treatment induced cell cycle arrest at phase G(1) (p < 0.05). Thus, the ERK-MAPK inhibitor treatment or siRNA-mediated knockdown of ERK-MAPK decreases DNA methylation via down-regulating DNMT1 expression and other unknown mediator(s) in SW1116 colon cancer cells.
Collapse
Affiliation(s)
- Rong Lu
- Shanghai Jiaotong University School of Medicine, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | | | | | | | | | | |
Collapse
|
46
|
Huang L, Zhang KL, Li H, Chen XY, Kong QY, Sun Y, Gao X, Guan HW, Liu J. Infrequent COX-2 expression due to promoter hypermethylation in gastric cancers in Dalian, China. Hum Pathol 2006; 37:1557-67. [PMID: 16949912 DOI: 10.1016/j.humpath.2006.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 04/06/2006] [Accepted: 05/26/2006] [Indexed: 01/26/2023]
Abstract
Cyclooxygenase-2 (COX-2) has been shown to play oncogenic roles during stepwise gastrocarcinogenesis, and its expression is correlated with Helicobacter pylori infection, tumor necrosis factor alpha-mediated nuclear factor (NF)-kappaB activation, and Wnt signaling. To examine COX-2 expression and the status of its regulatory factors, we examined 49 gastric cancers (GCs), 21 premalignant tissues, and 10 noncancerous gastric mucosa from residents of Dalian, China. Unexpectedly, it was found that COX-2 expression was infrequent in the gastric samples (18.8%, 15/80) regardless of the type of lesion or morphological phenotype. H pylori infection was detected in 19 of 35 tested GC cases. Tumor necrosis factor alpha expression, NF-kappaB nuclear translocation, or Wnt2 overexpression was observed in 56 (82.3%) of 68, 40 (50.0%) of 80, and 62 (77.5%) of 80 of the gastric tissue samples, respectively. Methylation-sensitive restriction enzyme digestion followed by polymerase chain reaction of COX-2 promoter regions revealed a remarkably high hypermethylation rate (100%, 20/20) among the COX-2-negative GCs, which was associated with the overexpression of DNA methyltransferase (DNMT) 1 (r = 0.587, P < .01). These results indicate that (1) in contrast to previous findings using other GC sources, our results show that COX-2 activity may not be a critical molecular event during GC formation, (2) the tumor-promoting effects of H pylori infection and Wnt and NF-kappaB activities may be mediated by COX-2-independent pathways, and (3) promoter hypermethylation is the major cause of COX-2 silencing in Dalian GCs, apparently because of increased expression of DNMTs (especially DNMT1). Consequently, a COX-2-oriented preventive or therapeutic strategy is not practical for Dalian GCs. The frequent COX-2 hypermethylation observed in Dalian GCs could have insightful epigenetic and epidemiologic implications.
Collapse
Affiliation(s)
- Lei Huang
- Cancer Institute and Liaoning Laboratory of Cancer Genomics, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Polesskaya OO, Aston C, Sokolov BP. Allele C-specific methylation of the 5-HT2A receptor gene: evidence for correlation with its expression and expression of DNA methylase DNMT1. J Neurosci Res 2006; 83:362-73. [PMID: 16358338 DOI: 10.1002/jnr.20732] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Differential DNA methylation has been suggested to contribute to differential activity of alleles C and T and thereby to genetic associations between the C/T(102) polymorphism in the 5-HT2A receptor gene (5HT2AR) and psychiatric disorders. We surveyed methylation in two CpG sites, which are specific to allele C. The majority of allele C-specific CpG sites were methylated in human temporal cortex and peripheral leukocytes and levels of methylation varied between individuals. Levels of methylation in the promoter correlated significantly with the expression of 5HT2AR. Methylation of allele C-specific CpG sites in the first exon correlated significantly with the expression of DNA methylase 1 (DNMT1) but not S-adenosylhomocysteine hydrolase (AHCY). These findings support the hypothesis that allele-specific DNA methylation is involved in regulation of 5HT2AR expression, influencing expression differences between alleles C and T.
Collapse
Affiliation(s)
- Oxana O Polesskaya
- Molecular Neurobiology Branch, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
48
|
Fang JY, Lu R, Mikovits JA, Cheng ZH, Zhu HY, Chen YX. Regulation of hMSH2 and hMLH1 expression in the human colon cancer cell line SW1116 by DNA methyltransferase 1. Cancer Lett 2006; 233:124-30. [PMID: 16473673 DOI: 10.1016/j.canlet.2005.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 03/04/2005] [Accepted: 03/06/2005] [Indexed: 11/28/2022]
Abstract
Aberrant DNA methylation is now recognized as an important epigenetic alteration occurring early in human cancer. To directly study the role of DNA methyltransferase 1 (DNMT1) in the regulation of expression of tumor-related genes in human colon cancer cells, we stably transfected expression constructs containing sense or antisense DNMT1 into the human colon cancer cell line, SW1116. The expression level of mismatch repair genes (MMR), human mut-L homologue 1 (hMLH1) and human Mut S homologue 2 (hMSH2), was monitored by real-time RT-PCR. The methylation status of hMLH1 and hMSH2 promoters was determined by bisulfite modification and methylation-specific PCR (MSP). The protein levels of DNMT1, hMSH2 and hMLH1 were determined by Western analysis. The results show that DNMT1 protein expression was increased or decreased in transfected cell lines containing sense or antisense DNMT1 constructs, respectively. In cells expressing the sense DNMT1 construct, the expression of hMLH1 and hMSH2 was down-regulated through hypermethylation of their respective promoters. Furthermore, antisense DNMT1 expression induced promoter demethylation and up-regulated transcription of hMSH2 (P<0.05) and hMLH1 (P=0.064) in SW1116 cells.
Collapse
Affiliation(s)
- Jing Yuan Fang
- Shanghai Second Medical University Renji Hospital, Shanghai Institute of Digestive Disease, 145 Shandong Zhong Road, Shanghai 200001, China.
| | | | | | | | | | | |
Collapse
|
49
|
Kouidou S, Agidou T, Kyrkou A, Andreou A, Katopodi T, Georgiou E, Krikelis D, Dimitriadou A, Spanos P, Tsilikas C, Destouni H, Tzimagiorgis G. Non-CpG cytosine methylation of p53 exon 5 in non-small cell lung carcinoma. Lung Cancer 2005; 50:299-307. [PMID: 16125822 DOI: 10.1016/j.lungcan.2005.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 12/12/2022]
Abstract
Non-CpG methylation of cytosine residues, a mechanism associated with regulation of gene expression, has not been investigated in human cancer until now. Analysis of the p53 exon 5 mutation spectrum in mutation databases for lung cancer reveals frequent GC>AT transitions, several of which occur at non-CpG sequences. To investigate the involvement of cytosine methylation in this mutagenesis process, we analyzed the methylation profile of p53 exon 5, in lung carcinoma. In this report, we present evidence that extensive clustered non-CpG methylation is observed in three regions of this exon, namely the sequences spanning codons 156-159, 175-179 and the 3' splice site, as well as in scattered CpA sequences. This methylation pattern was verified using direct methylation sequencing, and a two-stage methylation-specific PCR assay (MSP), designed for the detection of methylation in a GC rich region (oligo C sequence, of codons 175-179) of exon 5. The results from this MSP assay reveal that DNA from cancerous specimens was more heavily methylated in non-CpG cytosines, compared to that from non-cancerous lung tissue of cancer patients (14/19 cancerous and 6/19 non-cancerous, respectively). DNA isolated from human leucocytes and some non-cancerous specimens (2/19) was free of non-CpG methylation. Careful analysis of the mutations reported in p53 mutation databases also provides corroborating evidence that the high incidence of GC>AT mutations in the p53 gene, observed in lung cancer, might also be related to non-CpG methylation, as well as to the overall increase of methylation sites in this locus.
Collapse
Affiliation(s)
- Sofia Kouidou
- Department of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gillim-Ross L, Cara A, Klotman ME. Nef expressed from human immunodeficiency virus type 1 extrachromosomal DNA downregulates CD4 on primary CD4+ T lymphocytes: implications for integrase inhibitors. J Gen Virol 2005; 86:765-771. [PMID: 15722538 DOI: 10.1099/vir.0.80570-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently developed integrase inhibitors targeting the HIV-1 integrase (IN) protein block integration of HIV DNA in the target cell, preventing subsequent virus replication. In the absence of integration, viral DNA is shunted towards the formation of extrachromosomal DNA (E-DNA). Although HIV-1 E-DNA does not support productive replication, it is transcriptionally active and produces viral proteins. However, the significance of E-DNA in virus replication and pathogenesis is poorly understood. In this study, the functional activity of the HIV-1 Nef protein expressed in the absence of viral integration was analysed. Using both a recombinant HIV-1 IN defective virus and a diketo acid IN inhibitor, evidence was provided showing that Nef expressed from E-DNA downregulates CD4 surface expression on primary CD4(+) T lymphocytes. These results suggest that proteins expressed in the absence of integration may have potential clinical consequences, an issue that should be further explored with the introduction of IN inhibitors.
Collapse
Affiliation(s)
- Laura Gillim-Ross
- Mount Sinai School of Medicine, Division of Infectious Diseases, 1 Gustave L. Levy Place, Box 1090, New York, NY 10029, USA
| | - Andrea Cara
- Laboratory of Virology, Istituto Superiore di Sanita, 00161 Roma, Italy
| | - Mary E Klotman
- Mount Sinai School of Medicine, Division of Infectious Diseases, 1 Gustave L. Levy Place, Box 1090, New York, NY 10029, USA
| |
Collapse
|