1
|
Li W, Wang S, Jin Y, Mu X, Guo Z, Qiao S, Jiang S, Liu Q, Cui X. The role of the hepatitis B virus genome and its integration in the hepatocellular carcinoma. Front Microbiol 2024; 15:1469016. [PMID: 39309526 PMCID: PMC11412822 DOI: 10.3389/fmicb.2024.1469016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The integration of Hepatitis B Virus (HBV) is now known to be closely associated with the occurrence of liver cancer and can impact the functionality of liver cells through multiple dimensions. However, despite the detailed understanding of the characteristics of HBV integration and the mechanisms involved, the subsequent effects on cellular function are still poorly understood in current research. This study first systematically discusses the relationship between HBV integration and the occurrence of liver cancer, and then analyzes the status of the viral genome produced by HBV replication, highlighting the close relationship and structure between double-stranded linear (DSL)-HBV DNA and the occurrence of viral integration. The integration of DSL-HBV DNA leads to a certain preference for HBV integration itself. Additionally, exploration of HBV integration hotspots reveals obvious hotspot areas of HBV integration on the human genome. Virus integration in these hotspot areas is often associated with the occurrence and development of liver cancer, and it has been determined that HBV integration can promote the occurrence of cancer by inducing genome instability and other aspects. Furthermore, a comprehensive study of viral integration explored the mechanisms of viral integration and the internal integration mode, discovering that HBV integration may form extrachromosomal DNA (ecDNA), which exists outside the chromosome and can integrate into the chromosome under certain conditions. The prospect of HBV integration as a biomarker was also probed, with the expectation that combining HBV integration research with CRISPR technology will vigorously promote the progress of HBV integration research in the future. In summary, exploring the characteristics and mechanisms in HBV integration holds significant importance for an in-depth comprehension of viral integration.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Suhao Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yani Jin
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Xiao Mu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Zhenzhen Guo
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Sen Qiao
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Shulong Jiang
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Qingbin Liu
- Jining First People's Hospital, Shandong First Medical University, Jining, China
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Xiaofang Cui
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| |
Collapse
|
2
|
Hou L, Zhao J, Cai L, Jin L, Liu B, Li S, Yang J, Ji T, Li S, Shi L, Shen B, Yu H, Wang Y, Cai X. HBV PreC interacts with SUV39H1 to induce viral replication by blocking the proteasomal degradation of viral polymerase. J Med Virol 2024; 96:e29607. [PMID: 38628076 DOI: 10.1002/jmv.29607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Hepatitis B e antigen (HBeAg) seropositivity during the natural history of chronic hepatitis B (CHB) is known to coincide with significant increases in serum and intrahepatic HBV DNA levels. However, the precise underlying mechanism remains unclear. In this study, we found that PreC (HBeAg precursor) genetic ablation leads to reduced viral replication both in vitro and in vivo. Furthermore, PreC impedes the proteasomal degradation of HBV polymerase, promoting viral replication. We discovered that PreC interacts with SUV39H1, a histone methyltransferase, resulting in a reduction in the expression of Cdt2, an adaptor protein of CRL4 E3 ligase targeting HBV polymerase. SUV39H1 induces H3K9 trimethylation of the Cdt2 promoter in a PreC-induced manner. CRISPR-mediated knockout of endogenous SUV39H1 or pharmaceutical inhibition of SUV39H1 decreases HBV loads in the mouse liver. Additionally, genetic depletion of Cdt2 in the mouse liver abrogates PreC-related HBV replication. Interestingly, a negative correlation of intrahepatic Cdt2 with serum HBeAg and HBV DNA load was observed in CHB patient samples. Our study thus sheds light on the mechanistic role of PreC in inducing HBV replication and identifies potential therapeutic targets for HBV treatment.
Collapse
Affiliation(s)
- Lidan Hou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Liuxin Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Boqiang Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Jin Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Songyi Li
- Animal Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| |
Collapse
|
3
|
Seong MS, Jang JA, Jeong YR, Kim YB, Kyaw YY, Kong HJ, Lee JH, Cheong J. Fibroblast Growth Factor 11 Inhibits Hepatitis B Virus Gene Expression Through FXRα Suppression. J Microbiol 2023; 61:693-702. [PMID: 37646922 PMCID: PMC10477102 DOI: 10.1007/s12275-023-00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 09/01/2023]
Abstract
Fibroblast growth factor 11 (FGF11) is a member of the intracellular FGF family, which shows different signal transmission compared with other FGF superfamily members. The molecular function of FGF11 is not clearly understood. In this study, we identified the inhibitory effect of FGF11 on hepatitis B virus (HBV) gene expression through transcriptional suppression. FGF11 decreased the mRNA and protein expression of HBV genes in liver cells. While the nuclear receptor FXRα1 increased HBV promoter transactivation, FGF11 decreased the FXRα-mediated gene induction of the HBV promoter by the FXRα agonist. Reduced endogenous levels of FXRα by siRNA and the dominant negative mutant protein (aa 1-187 without ligand binding domain) of FXRα expression indicated that HBV gene suppression by FGF11 is dependent on FXRα inhibition. In addition, FGF11 interacts with FXRα protein and reduces FXRα protein stability. These results indicate that FGF11 inhibits HBV replicative expression through the liver cell-specific transcription factor, FXRα, and suppresses HBV promoter activity. Our findings may contribute to the establishment of better regimens for the treatment of chronic HBV infections by including FGF11 to alter the bile acid mediated FXR pathway.
Collapse
Affiliation(s)
- Mi So Seong
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeong Ah Jang
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Rim Jeong
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Bin Kim
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yi Yi Kyaw
- Advanced Molecular Research Centre, Department of Medical Research, Republic of Union of Myanmar, Yangon, 11191, Myanmar
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - JaeHun Cheong
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Sharma S, Rawal P, Kaur S, Puria R. Liver organoids as a primary human model to study HBV-mediated Hepatocellular carcinoma. A review. Exp Cell Res 2023; 428:113618. [PMID: 37142202 DOI: 10.1016/j.yexcr.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Hepatitis B Virus (HBV) is the prevailing cause of chronic liver disease, which progresses to Hepatocellular carcinoma (HCC) in 75% of cases. It represents a serious health concern being the fourth leading cause of cancer-related mortality worldwide. Treatments available to date fail to provide a complete cure with high chances of recurrence and related side effects. The lack of reliable, reproducible, and scalable in vitro modeling systems that could recapitulate the viral life cycle and represent virus-host interactions has hindered the development of effective treatments so far. The present review provides insights into the current in-vivo and in-vitro models used for studying HBV and their major limitations. We highlight the use of three-dimensional liver organoids as a novel and suitable platform for modeling HBV infection and HBV-mediated HCC. HBV organoids can be expanded, genetically altered, patient-derived, tested for drug discovery, and biobanked. This review also provides the general guidelines for culturing HBV organoids and highlights their several prospects for HBV drug discovery and screening.
Collapse
Affiliation(s)
- Simran Sharma
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, Delhi, India.
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India.
| |
Collapse
|
5
|
Identification of Retinoic Acid Receptor Agonists as Potent Hepatitis B Virus Inhibitors via a Drug Repurposing Screen. Antimicrob Agents Chemother 2018; 62:AAC.00465-18. [PMID: 30224536 DOI: 10.1128/aac.00465-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Currently available therapies for chronic hepatitis B virus (HBV) infection can efficiently reduce viremia but induce hepatitis B surface antigen (HBsAg) loss in very few patients; also, these therapies do not greatly affect the viral covalently closed circular DNA (cccDNA). To discover new agents with complementary anti-HBV effects, we performed a drug repurposing screen of 1,018 Food and Drug Administration (FDA)-approved compounds using HBV-infected primary human hepatocytes (PHH). Several compounds belonging to the family of retinoic acid receptor (RAR) agonists were identified that reduced HBsAg levels in a dose-dependent manner without significant cytotoxicity. Among them, tazarotene exhibited the most potent anti-HBV effect, with a half-maximal inhibitory concentration (IC50) for HBsAg of less than 30 nM in PHH. The inhibitory effect was also observed in HBV-infected differentiated HepaRG (dHepaRG) models, but not in HepG2.215 cells, and HBV genotypes A to D were similarly inhibited. Tazarotene was further demonstrated to repress HBV cccDNA transcription, as determined by the levels of HBV cccDNA and RNAs and the activation of HBV promoters. Moreover, RNA sequence analysis showed that tazarotene did not induce an interferon response but altered the expression of a number of genes associated with RAR and metabolic pathways. Inhibition of RARβ, but not RARα, by a specific antagonist significantly attenuated the anti-HBV activity of tazarotene, suggesting that tazarotene inhibits HBV in part through RARβ. Finally, a synergistic effect of tazarotene and entecavir on HBV DNA levels was observed. Therefore, RAR agonists as represented by tazarotene were identified as potential novel anti-HBV agents.
Collapse
|
6
|
Nie YZ, Zheng YW, Miyakawa K, Murata S, Zhang RR, Sekine K, Ueno Y, Takebe T, Wakita T, Ryo A, Taniguchi H. Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine 2018; 35:114-123. [PMID: 30120080 PMCID: PMC6156717 DOI: 10.1016/j.ebiom.2018.08.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/23/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Therapies against hepatitis B virus (HBV) have improved in recent decades; however, the development of individualized treatments has been limited by the lack of individualized infection models. In this study, we used human induced pluripotent stem cell (hiPSC) to generate a functional liver organoid (LO) that inherited the genetic background of the donor, and evaluated its application in modeling HBV infection and exploring virus–host interactions. To establish a functional hiPSC-LO, we cultured hiPSC-derived endodermal, mesenchymal, and endothelial cells with a chemically defined medium in a three-dimensional microwell culture system. Based on cell-cell interactions, these cells could organize themselves and gradually differentiate into a functional organoid, which exhibited stronger hepatic functions than hiPSC derived hepatic like cell (HLC). Moreover, the functional LO demonstrated more susceptibility to HBV infection than hiPSC-HLC, and could maintain HBV propagation and produce infectious virus for a prolonged duration. Furthermore, we found that virus infection could cause hepatic dysfunction of hiPSC-LOs, with down-regulation of hepatic gene expression, induced release of early acute liver failure markers, and altered hepatic ultrastructure. Therefore, our study demonstrated that HBV infection in hiPSC-LOs could recapitulate virus life cycle and virus induced hepatic dysfunction, suggesting that hiPSC-LOs may provide a promising individualized infection model for the development of individualized treatment for hepatitis.
Collapse
Affiliation(s)
- Yun-Zhong Nie
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan; Department of Advanced Gastroenterological Surgical Science and Technology, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575, Japan; Research Center of Stem Cells and Regenerative Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China,.
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Soichiro Murata
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Ran-Ran Zhang
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
7
|
Du L, Ma Y, Liu M, Yan L, Tang H. Peroxisome Proliferators Activated Receptor (PPAR) agonists activate hepatitis B virus replication in vivo. Virol J 2017; 14:96. [PMID: 28545573 PMCID: PMC5445479 DOI: 10.1186/s12985-017-0765-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background PPAR agonists are often used in HBV infected patients with metabolic disorders. However, as liver-enriched transcriptional factors, PPARs would activate HBV replication. Risks exsit in such patients. This study aimed to assess the influence of commonly used synthetic PPAR agonists on hepatitis B virus (HBV) transcription, replication and expression through HBV replicative mouse models, providing information for physicians to make necessary monitoring and therapeutic adjustment when HBV infected patients receive PPAR agonists treatment. Methods The HBV replicative mouse model was established by hydrodynamic injection of HBV replicative plasmid and the mice were divided into four groups and treated daily for 3 days with saline, PPAR pan-agonist (bezafibrate), PPARα agonist (fenofibrate) and PPARγ agonist (rosiglitazone) respectively. Their serum samples were collected for ECLIA analysis of HBsAg and HBeAg and real-time PCR analysis of Serum HBV DNA. The liver samples were collected for DNA (Southern) filter hybridization of HBV replication intermediates, real-time PCR analysis of HBV mRNA and immunohistochemistry (IHC) analysis of hepatic HBcAg. The alternation of viral transcription, replication and expression were compared in these groups. Result Serum HBsAg, HBeAg and HBV DNA were significantly elevated after PPAR agonist treatment. So did the viral replication intermediates in mouse livers. HBV mRNA was also significantly increased by these PPAR agonists, implying that PPAR agonists activate HBV replication at transcription level. Moreover, hepatic HBcAg expression in mouse livers with PPAR agonist treatment was elevated as well. Conclusion Our in vivo study proved that synthetic PPAR agonists bezafibrate, fenofibrate and rosiglitazone would increase HBV replication. It suggested that when HBV infected patients were treated with PPARs agonists because of metabolic diseases, HBV viral load should be monitored and regimens may need to be adjusted, an antiviral therapy may be added. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0765-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yuanji Ma
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Hensel KO, Rendon JC, Navas MC, Rots MG, Postberg J. Virus-host interplay in hepatitis B virus infection and epigenetic treatment strategies. FEBS J 2017; 284:3550-3572. [PMID: 28457020 DOI: 10.1111/febs.14094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/25/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Worldwide, chronic hepatitis B virus (HBV) infection is a major health problem and no cure exists. Importantly, hepatocyte intrusion by HBV particles results in a complex deregulation of both viral and host cellular genetic and epigenetic processes. Among the attempts to develop novel therapeutic approaches against HBV infection, several options targeting the epigenomic regulation of HBV replication are gaining attention. These include the experimental treatment with 'epidrugs'. Moreover, as a targeted approach, the principle of 'epigenetic editing' recently is being exploited to control viral replication. Silencing of HBV by specific rewriting of epigenetic marks might diminish viral replication, viremia, and infectivity, eventually controlling the disease and its complications. Additionally, epigenetic editing can be used as an experimental tool to increase our limited understanding regarding the role of epigenetic modifications in viral infections. Aiming for permanent epigenetic reprogramming of the viral genome without unspecific side effects, this breakthrough may pave the roads for an ambitious technological pursuit: to start designing a curative approach utilizing manipulative molecular therapies for viral infections in vivo.
Collapse
Affiliation(s)
- Kai O Hensel
- HELIOS Medical Centre Wuppertal, Paediatrics Centre, Centre for Clinical & Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Germany
| | - Julio C Rendon
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), The Netherlands.,Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellin, Colombia
| | - Maria-Cristina Navas
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellin, Colombia
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), The Netherlands
| | - Jan Postberg
- HELIOS Medical Centre Wuppertal, Paediatrics Centre, Centre for Clinical & Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Germany
| |
Collapse
|
9
|
Cleaved c-FLIP mediates the antiviral effect of TNF-α against hepatitis B virus by dysregulating hepatocyte nuclear factors. J Hepatol 2016; 64:268-277. [PMID: 26409214 DOI: 10.1016/j.jhep.2015.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/31/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cytokines are key molecules implicated in the defense against virus infection. Tumor necrosis factor-alpha (TNF-α) is well known to block the replication of hepatitis B virus (HBV). However, the molecular mechanism and the downstream effector molecules remain largely unknown. METHODS In this study, we investigated the antiviral effect and mechanism of p22-FLIP (FLICE-inhibitory protein) by ectopic expression in vitro and in vivo. In addition, to provide the biological relevance of our study, we examined that the p22-FLIP is involved in TNF-α-mediated suppression of HBV in primary human hepatocytes. RESULTS We found that p22-FLIP, a newly discovered c-FLIP cleavage product, inhibited HBV replication at the transcriptional level in both hepatoma cells and primary human hepatocytes, and that c-FLIP conversion to p22-FLIP was stimulated by the TNF-α/NF-κB pathway. p22-FLIP inhibited HBV replication through the upregulation of HNF3β but downregulation of HNF4α, thus inhibiting both HBV enhancer elements. Finally, p22-FLIP potently inhibited HBV DNA replication in a mouse model of HBV replication. CONCLUSIONS Taken together, these findings suggest that the anti-apoptotic p22-FLIP serves a novel function of inhibiting HBV transcription, and mediates the antiviral effect of TNF-α against HBV replication.
Collapse
|
10
|
Huang JY, Chou SF, Lee JW, Chen HL, Chen CM, Tao MH, Shih C. MicroRNA-130a can inhibit hepatitis B virus replication via targeting PGC1α and PPARγ. RNA (NEW YORK, N.Y.) 2015; 21:385-400. [PMID: 25595716 PMCID: PMC4338335 DOI: 10.1261/rna.048744.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
In hepatitis B virus (HBV)-replicating hepatocytes, miR-130a expression was significantly reduced. In a reciprocal manner, miR-130a reduced HBV replication by targeting at two major metabolic regulators PGC1α and PPARγ, both of which can potently stimulate HBV replication. We proposed a positive feed-forward loop between HBV, miR-130a, PPARγ, and PGC1α. Accordingly, HBV can significantly enhance viral replication by reducing miR-130a and increasing PGC1α and PPARγ. NF-κB/p65 can strongly stimulate miR-130a promoter, while miR-130a can promote NF-κB/p65 protein level by reducing PPARγ and thus NF-κB/p65 protein degradation. We postulated another positive feed-forward loop between miR-130a and NF-κB/p65 via PPARγ. During liver inflammation, NF-κB signaling could contribute to viral clearance via its positive effect on miR-130a transcription. Conversely, in asymptomatic HBV carriers, persistent viral infection could reduce miR-130a and NF-κB expression, leading to dampened inflammation and immune tolerance. Finally, miR-130a could contribute to metabolic homeostasis by dual targeting PGC1α and PPARγ simultaneously.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114 Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Shu-Fan Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 110 Taiwan
| | - Jun-Wei Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Chun-Ming Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Chiaho Shih
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114 Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
11
|
He F, Chen EQ, Liu L, Zhou TY, Liu C, Cheng X, Liu FJ, Tang H. Inhibition of hepatitis B Virus replication by hepatocyte nuclear factor 4-alpha specific short hairpin RNA. Liver Int 2012; 32:742-51. [PMID: 22340507 DOI: 10.1111/j.1478-3231.2011.02748.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/27/2011] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous studies showed that hepatocyte nuclear factor 4α (HNF4α) may play a critical role in hepatitis B virus (HBV) replication. AIMS This study aimed to investigate the effect of knocking down of HNF4α with RNA interference technique on HBV replication in a HBV replication mouse model. METHODS Four HNF4α, specific short hairpin RNA (shRNA)-producing plasmids were constructed. HBV mRNA and DNA replication intermediates were analysed using Northern and Southern blot respectively. The expression of HNF4α and HBV core antigen (HBcAg) was detected using immunohistochemistry technique. RESULTS One of the HNF4α shRNAs, HNF4α shRNA1, efficiently inhibited the expression of HNF4α in HepG2 cells and mice liver. HBV RNA transcripts and DNA replication intermediates in HNF4α shRNA1 group were decreased 67.3 and 76%, respectively, in HepG2 cells, and 68.1 and 70.6% in mice liver respectively. The expression level of HBcAg in the liver was also decreased with the inhibition of HNF4α expression. CONCLUSIONS These results suggested that decreasing of HNF4α expression was associated with the reduced level of HBV replication in HepG2 cells and mice liver. These data indicated that HNF4α played a critical role in HBV replication in vivo, and HNF4α shRNA could inhibit HBV replication in vivo.
Collapse
Affiliation(s)
- Fang He
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Hu W, Wang X, Ding X, Li Y, Zhang X, Xie P, Yang J, Wang S. MicroRNA-141 represses HBV replication by targeting PPARA. PLoS One 2012; 7:e34165. [PMID: 22479552 PMCID: PMC3316618 DOI: 10.1371/journal.pone.0034165] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/23/2012] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression primarily at the post-transcriptional level and play critical roles in a variety of physiological and pathological processes. In this report, miR-141 was identified to repress HBV expression by screening a small miRNA expressing library and synthetic miR-141 mimics could also significantly suppress HBV expression and replication in HepG2 cells. Bioinformatic analysis and experiment assays indicate that peroxisome proliferator-activated receptor alpha (PPARA) was the target of hsa-miR-141 during this process. Furthermore, knockdown of PPARA by small interfering RNA (siRNA) inhibited HBV replication similar to levels observed for miR-141. Promoter functional analysis indicated that repression of HBV replication by miR-141 mimics or siRNA was mediated by interfering with the HBV promoter functions, consistent with previous studies demonstrating that PPARA regulated HBV gene expression through interactions with HBV promoter regulatory elements. Our results suggest that miR-141 suppressed HBV replication by reducing HBV promoter activities by down-regulating PPARA. This study provides new insights into the molecular mechanisms associated with HBV-host interactions. Furthermore, this information may facilitate the development of novel anti-HBV therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Yang
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
14
|
Hong MH, Chou YC, Wu YC, Tsai KN, Hu CP, Jeng KS, Chen ML, Chang C. Transforming growth factor-β1 suppresses hepatitis B virus replication by the reduction of hepatocyte nuclear factor-4α expression. PLoS One 2012; 7:e30360. [PMID: 22276183 PMCID: PMC3262823 DOI: 10.1371/journal.pone.0030360] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/14/2011] [Indexed: 12/13/2022] Open
Abstract
Several studies have demonstrated that cytokine-mediated noncytopathic suppression of hepatitis B virus (HBV) replication may provide an alternative therapeutic strategy for the treatment of chronic hepatitis B infection. In our previous study, we showed that transforming growth factor-beta1 (TGF-β1) could effectively suppress HBV replication at physiological concentrations. Here, we provide more evidence that TGF-β1 specifically diminishes HBV core promoter activity, which subsequently results in a reduction in the level of viral pregenomic RNA (pgRNA), core protein (HBc), nucleocapsid, and consequently suppresses HBV replication. The hepatocyte nuclear factor 4alpha (HNF-4α) binding element(s) within the HBV core promoter region was characterized to be responsive for the inhibitory effect of TGF-β1 on HBV regulation. Furthermore, we found that TGF-β1 treatment significantly repressed HNF-4α expression at both mRNA and protein levels. We demonstrated that RNAi-mediated depletion of HNF-4α was sufficient to reduce HBc synthesis as TGF-β1 did. Prevention of HNF-4α degradation by treating with proteasome inhibitor MG132 also prevented the inhibitory effect of TGF-β1. Finally, we confirmed that HBV replication could be rescued by ectopic expression of HNF-4α in TGF-β1-treated cells. Our data clarify the mechanism by which TGF-β1 suppresses HBV replication, primarily through modulating the expression of HNF-4α gene.
Collapse
Affiliation(s)
- Ming-Hsiang Hong
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chi Chou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chieh Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuen-Nan Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng-po Hu
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - King-Song Jeng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Mong-Liang Chen
- Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Chungming Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Jiang Z, Jhunjhunwala S, Liu J, Haverty PM, Kennemer MI, Guan Y, Lee W, Carnevali P, Stinson J, Johnson S, Diao J, Yeung S, Jubb A, Ye W, Wu TD, Kapadia SB, de Sauvage FJ, Gentleman RC, Stern HM, Seshagiri S, Pant KP, Modrusan Z, Ballinger DG, Zhang Z. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res 2012. [PMID: 22267523 DOI: 10.1101/gr.133926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hepatitis B virus (HBV) infection is a leading risk factor for hepatocellular carcinoma (HCC). HBV integration into the host genome has been reported, but its scale, impact and contribution to HCC development is not clear. Here, we sequenced the tumor and nontumor genomes (>80× coverage) and transcriptomes of four HCC patients and identified 255 HBV integration sites. Increased sequencing to 240× coverage revealed a proportionally higher number of integration sites. Clonal expansion of HBV-integrated hepatocytes was found specifically in tumor samples. We observe a diverse collection of genomic perturbations near viral integration sites, including direct gene disruption, viral promoter-driven human transcription, viral-human transcript fusion, and DNA copy number alteration. Thus, we report the most comprehensive characterization of HBV integration in hepatocellular carcinoma patients. Such widespread random viral integration will likely increase carcinogenic opportunities in HBV-infected individuals.
Collapse
Affiliation(s)
- Zhaoshi Jiang
- Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jiang Z, Jhunjhunwala S, Liu J, Haverty PM, Kennemer MI, Guan Y, Lee W, Carnevali P, Stinson J, Johnson S, Diao J, Yeung S, Jubb A, Ye W, Wu TD, Kapadia SB, de Sauvage FJ, Gentleman RC, Stern HM, Seshagiri S, Pant KP, Modrusan Z, Ballinger DG, Zhang Z. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res 2012; 22:593-601. [PMID: 22267523 DOI: 10.1101/gr.133926.111] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection is a leading risk factor for hepatocellular carcinoma (HCC). HBV integration into the host genome has been reported, but its scale, impact and contribution to HCC development is not clear. Here, we sequenced the tumor and nontumor genomes (>80× coverage) and transcriptomes of four HCC patients and identified 255 HBV integration sites. Increased sequencing to 240× coverage revealed a proportionally higher number of integration sites. Clonal expansion of HBV-integrated hepatocytes was found specifically in tumor samples. We observe a diverse collection of genomic perturbations near viral integration sites, including direct gene disruption, viral promoter-driven human transcription, viral-human transcript fusion, and DNA copy number alteration. Thus, we report the most comprehensive characterization of HBV integration in hepatocellular carcinoma patients. Such widespread random viral integration will likely increase carcinogenic opportunities in HBV-infected individuals.
Collapse
Affiliation(s)
- Zhaoshi Jiang
- Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Limited effects of bile acids and small heterodimer partner on hepatitis B virus biosynthesis in vivo. J Virol 2011; 86:2760-8. [PMID: 22171277 DOI: 10.1128/jvi.06742-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multiple nuclear receptors, including hepatocyte nuclear factor 4α (HNF4α), retinoid X receptor α (RXRα) plus peroxisome proliferator-activated receptor α (PPARα), RXRα plus farnesoid X receptor α (FXRα), liver receptor homolog 1 (LRH1), and estrogen-related receptors (ERRs), have been shown to support efficient viral biosynthesis in nonhepatoma cells in the absence of additional liver-enriched transcription factors. Although HNF4α has been shown to be critical for the developmental expression of hepatitis B virus (HBV) biosynthesis in the liver, the relative importance of the various nuclear receptors capable of supporting viral transcription and replication in the adult in vivo has not been clearly established. To investigate the role of the nuclear receptor FXR and the corepressor small heterodimer partner (SHP) in viral biosynthesis in vivo, SHP-expressing and SHP-null HBV transgenic mice were fed a bile acid-supplemented diet. The increased FXR activity and SHP expression levels resulting from bile acid treatment did not greatly modulate HBV RNA and DNA synthesis. Therefore, FXR and SHP appear to play a limited role in modulating HBV biosynthesis, suggesting that alternative nuclear receptors are more critical determinants of viral transcription in the HBV transgenic mouse model of chronic viral infection. These observations suggest that hepatic bile acid levels or therapeutic agents targeting FXR may not greatly modulate viremia during natural infection.
Collapse
|
18
|
Miller MS, Mymryk JS. An unhealthy relationship: viral manipulation of the nuclear receptor superfamily. Future Microbiol 2011; 6:999-1019. [PMID: 21958141 DOI: 10.2217/fmb.11.80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor (NR) superfamily is a diverse group of over 50 proteins whose function is to regulate the transcription of a vast array of cellular genes. These proteins are able to tune transcription over an extremely dynamic range due to the fact that they may act as either transcriptional activators or repressors depending on promoter context and ligand status. Due to these unique properties, diverse families of viruses have evolved strategies to exploit NRs in order to regulate expression of their own genes and to optimize the cellular milieu to facilitate the viral lifecycle. While the specific NRs targeted by these viruses vary, the strategies used to target them are common. This is accomplished at the cis-level by incorporation of nuclear receptor response elements into the viral genome and at the trans-level by viral proteins that target NRs directly or indirectly to modulate their function. The specific NR(s) targeted by a particular virus are likely to be reflective of the tissue tropism of the virus in question. Thus, the essential role played by NRs in the replication cycles of such diverse viruses underscores the importance of understanding their functions in the context of specific infections. This knowledge will allow appropriate considerations to be made when treating infected individuals with hormone-associated diseases and will potentially assist in the rational design of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Matthew S Miller
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
19
|
Wu S, Kanda T, Imazeki F, Nakamoto S, Shirasawa H, Yokosuka O. Nuclear receptor mRNA expression by HBV in human hepatoblastoma cell lines. Cancer Lett 2011; 312:33-42. [PMID: 21903321 DOI: 10.1016/j.canlet.2011.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 02/07/2023]
Abstract
Recent studies have implicated nuclear receptors (NRs) in the development of hepatocarcinogenesis. We assumed that hepatitis B virus (HBV) alters the expression of NRs and coregulators, and compared the gene expression profiling for 84 NRs and related genes between HpeG2.2.15, which secretes complete HBV virion, and HepG2 by real-time RT-PCR with SyBr green. Forty (47.6%) genes were upregulated 2-fold or greater, and only 5 (5.9%) were downregulated 2-fold or more, in HepG2.2.15 compared to HepG2. These results suggest that HBV affects NRs and their related signal transduction, and that they play important roles in viral replication and HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Medicine and Clinical Oncology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Oxygenated derivatives of cholesterol promote hepatitis B virus gene expression through nuclear receptor LXRα activation. Virus Res 2011; 158:55-61. [DOI: 10.1016/j.virusres.2011.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 11/21/2022]
|
21
|
André P, Ramière C, Scholtes C, Curtil C, Lotteau V. Role of nuclear receptors in hepatitis B and C infections. Clin Res Hepatol Gastroenterol 2011; 35:169-75. [PMID: 21316326 DOI: 10.1016/j.clinre.2011.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 12/26/2010] [Accepted: 01/03/2011] [Indexed: 02/04/2023]
Abstract
Nuclear receptors are key regulators of many cellular functions including energy supply by the direct control of the expression of target genes. They constitute a super-family of transcription factors activated by ligands, hormones or metabolites, and therefore, sensible to host metabolic stimuli. Viral replication and production requires energy and elementary building blocks from the infected cells. Hepatitis B and C virus replication is modulated in part by liver nuclear receptors that regulate the glucose and lipid metabolism. However, nuclear receptors control the two viruses' replication by different mechanisms. The expression of hepatitis B virus genes is directly under the control of nuclear receptors, which bind to the viral genome regulatory regions. Viral replication and production may, therefore, be optimal when cells receive the correct metabolic signals. Hepatitis C virus replication and production depend to a large extent on lipidogenesis and lipoprotein secretion. The role of nuclear receptors in controlling hepatitis C replication may be to turn on the cellular mode that would provide the appropriate metabolic environment for viral replication.
Collapse
Affiliation(s)
- Patrice André
- INSERM U851, IFR 128 biosciences Lyon Gerland, université de Lyon 1, 21 avenue Tony-Garnier, Lyon, France.
| | | | | | | | | |
Collapse
|
22
|
Kim HY, Cho HK, Choi YH, Lee KS, Cheong J. Bile acids increase hepatitis B virus gene expression and inhibit interferon-α activity. FEBS J 2010; 277:2791-802. [DOI: 10.1111/j.1742-4658.2010.07695.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Yan TD, Wu H, Zhang HP, Lu N, Ye P, Yu FH, Zhou H, Li WG, Cao X, Lin YY, He JY, Gao WW, Zhao Y, Xie L, Chen JB, Zhang XK, Zeng JZ. Oncogenic potential of retinoic acid receptor-gamma in hepatocellular carcinoma. Cancer Res 2010; 70:2285-95. [PMID: 20197465 DOI: 10.1158/0008-5472.can-09-2968] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinoic acid receptors (RAR; alpha, beta, and gamma), members of the nuclear receptor superfamily, mediate the pleiotropic effects of the vitamin A metabolite retinoic acid (RA) and derivatives (retinoids) in normal and cancer cells. Abnormal expression and function of RARs are often involved in the growth and development of cancer. However, the underlying molecular mechanisms remain largely elusive. Here, we report that levels of RARgamma were significantly elevated in tumor tissues from a majority of human hepatocellular carcinoma (HCC) and in HCC cell lines. Overexpression of RARgamma promoted colony formation by HCC cells in vitro and the growth of HCC xenografts in animals. In HepG2 cells, transfection of RARgamma enhanced, whereas downregulation of RARgamma expression by siRNA approach impaired, the effect of RA on inducing the expression of alpha-fetoprotein, a protein marker of hepatocarcinogenesis. In studying the possible mechanism by which overexpression of RARgamma contributed to liver cancer cell growth and transformation, we observed that RARgamma resided mainly in the cytoplasm of HCC cells, interacting with the p85alpha regulatory subunit of phosphatidylinositol 3-kinase (PI3K). The interaction between RARgamma and p85alpha resulted in activation of Akt and NF-kappaB, critical regulators of the growth and survival of cancer cells. Together, our results show that overexpression of RARgamma plays a role in the growth of HCC cells through nongenomic activation of the PI3K/Akt and NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Ting-Dong Yan
- Institute for Biomedical Research, Xiamen University; First Hospital of Xiamen, Xiamen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vivekanandan P, Thomas D, Torbenson M. Methylation regulates hepatitis B viral protein expression. J Infect Dis 2009; 199:1286-91. [PMID: 19301974 DOI: 10.1086/597614] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) DNA has been shown to contain CpG islands that are methylated in human tissue, which suggests a role for methylation in regulating viral protein production. However, data are lacking about whether methylation regulates viral gene expression. METHODS To investigate the hypothesis that methylation of viral DNA regulates viral gene expression, unmethylated, partially methylated, and fully methylated viral DNA was transfected into HepG2 cells. In addition, a new assay was designed that specifically identifies methylated covalently closed circular DNA (cccDNA) in human liver tissue. RESULTS Transfection of methylated HBV DNA led to reduced HBV mRNA levels in HepG2 cells, decreased surface and core protein expression in these cells, and decreased secretion of HBV viral proteins into the cell supernatant. These data provide direct evidence that CpG islands regulate gene transcription of HBV. Furthermore, methylated cccDNA was found in tumor and nonneoplastic human liver tissues. Finally, an in vitro equivalent of cccDNA showed decreased viral protein production in HepG2 cells after DNA methylation. CONCLUSION Taken together, these data demonstrate that methylation of viral CpG islands can regulate viral protein production.
Collapse
Affiliation(s)
- Perumal Vivekanandan
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
25
|
Transactivation of the hepatitis B virus core promoter by the nuclear receptor FXRalpha. J Virol 2008; 82:10832-40. [PMID: 18768987 DOI: 10.1128/jvi.00883-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis B virus (HBV) core promoter activity is positively and negatively regulated by nuclear receptors, a superfamily of ligand-activated transcription factors, via cis-acting sequences located in the viral genome. In this study, we investigated the role of farnesoid X receptor alpha (FXRalpha) in modulating transcription from the HBV core promoter. FXRalpha is a liver-enriched nuclear receptor activated by bile acids recognizing hormone response elements by forming heterodimers with retinoid X receptor alpha (RXRalpha). Electrophoretic mobility shift assays demonstrated that FXRalpha-RXRalpha heterodimers can bind two motifs on the HBV enhancer II and core promoter regions, presenting high homology to the consensus (AGGTCA) inverted repeat FXRalpha response elements. In transient transfection of the human hepatoma cell line Huh-7, bile acids enhanced the activity of a luciferase reporter containing the HBV enhancer II and core promoter sequences through FXRalpha. Moreover, using a greater-than-genome-length HBV construct, we showed that FXRalpha also increased synthesis of the viral pregenomic RNA and DNA replication intermediates. The data strongly suggest that FXRalpha is another member of the nuclear receptor superfamily implicated in the regulation of HBV core promoter activity and that bile acids could play an important role in the natural history of HBV infection.
Collapse
|
26
|
Jammeh S, Tavner F, Watson R, Thomas HC, Karayiannis P. Effect of basal core promoter and pre-core mutations on hepatitis B virus replication. J Gen Virol 2008; 89:901-909. [PMID: 18343830 DOI: 10.1099/vir.0.83468-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There are two hypotheses explaining a fulminant outcome after hepatitis B virus (HBV) infection, both of which may be applicable at the same time: (i) basal core promoter (BCP) mutations increase viral replication, allowing rapid spread of the virus through the liver, and (ii) pre-core (pre-C) mutations abrogating hepatitis B e antigen (HBeAg) synthesis remove its tolerogenic effect, leading to a vigorous immune response. This study investigated the effect of these mutations on virus replication efficiency and HBeAg production. Substitutions A1762T/G1764A and T1753C, C1766T and T1768A in the BCP region, and G1896A and G1899A in the pre-C region, were examined either alone or in combination, using a common genetic background. Huh7 cells were transfected with these constructs and real-time PCR was used to quantify released virion-associated and intracellular HBV DNA, pregenomic RNA and pre-C mRNA. In addition, culture supernatants were tested for hepatitis B surface antigen (HBsAg) and HBeAg. The double BCP mutation (A1762T/G1764A) and the pre-C mutations (G1896A, G1899A), either alone or in combination, had no appreciable effect on the replication capacity of the virus. In contrast, clones with mutations at positions 1766/1768, 1762/1764/1766 and 1753/1762/1764 exhibited increased-replication phenotypes. HBeAg was undetectable in all cultures transfected with constructs bearing the G1896A stop-codon mutation, as expected. In contrast, constructs with additional mutations in the BCP region had appreciably lower levels of HBeAg expression than the wild type. Thus, core promoter mutations other than those at 1762/1764 appear to upregulate viral DNA replication and, at the same time, greatly reduce HBeAg production.
Collapse
Affiliation(s)
- Saffie Jammeh
- Department of Medicine, Imperial College, St Mary's Campus, London, UK
| | - Fiona Tavner
- Department of Virology, Imperial College, St Mary's Campus, London, UK
| | - Roger Watson
- Department of Virology, Imperial College, St Mary's Campus, London, UK
| | - Howard C Thomas
- Department of Medicine, Imperial College, St Mary's Campus, London, UK
| | - Peter Karayiannis
- Department of Medicine, Imperial College, St Mary's Campus, London, UK
| |
Collapse
|
27
|
Co-replication analyses of naturally occurring defective hepatitis B virus variants with wild-type. Virology 2008; 372:247-59. [DOI: 10.1016/j.virol.2007.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/29/2007] [Accepted: 10/31/2007] [Indexed: 11/18/2022]
|
28
|
Lin TJ, Yang RY, Lee HJ. Collective repression of the hepatitis B virus enhancer II by human TR4 and TR2 orphan receptors. Hepatol Res 2008; 38:79-84. [PMID: 17645519 DOI: 10.1111/j.1872-034x.2007.00208.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM The human testicular receptor 4 and 2 (TR4 and TR2) orphan receptors are members of the nuclear receptor superfamily that regulate target gene expression via binding to the consensus AGGTCA direct repeats of the hormone response elements. Previous studies have reported that TR4 and other nuclear receptors could bind to the direct repeat 1 element of the hepatitis B virus (HBV) core promoter. METHODS Differential gene expression of HBV caused by TR4 and TR2 was determined by gel retardation and functional assays. RESULTS Electrophoretic mobility shift assay demonstrated that TR4 and TR2 might bind to the direct repeat 6 element of the HBV enhancer II region. RESULTS of the dual-luciferasereporter gene assay showed that TR4 and TR2 might significantly suppress HBV gene expression through this direct repeat 6 element in the enhancer II. CONCLUSION These results implied that TR4 together with its heterodimer partner TR2 could collectively play a significant role in the transcriptional suppression of HBV gene expression via the direct repeat 6 element in the enhancer II. Therefore, the application of nuclear receptors potentially may be antiviral agents in chronic HBV infection.
Collapse
Affiliation(s)
- Tzu-Jon Lin
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan
| | | | | |
Collapse
|
29
|
Kim KH, Shin HJ, Kim K, Choi HM, Rhee SH, Moon HB, Kim HH, Yang US, Yu DY, Cheong J. Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPARgamma. Gastroenterology 2007; 132:1955-67. [PMID: 17484888 DOI: 10.1053/j.gastro.2007.03.039] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 02/15/2007] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Hepatic steatosis occurs frequently in patients with chronic hepatitis B virus (HBV) or chronic hepatitis C virus (HCV) infection. Recently, several studies suggested that steatosis plays an important role as a cofactor in other liver diseases such as hepatic fibrosis, hepatitis, and liver cancer. In contrast to HCV, however, the molecular mechanism by which HBV mediates hepatic steatosis has not been clearly studied. Here, we show the molecular mechanism by which hepatitis B virus X protein (HBx) induces hepatic steatosis. METHODS Lipid accumulation and the expression of various lipid metabolic genes were investigated in HBx-transfected Chang liver cells, HepG2-HBx stable cells, and HBx-transgenic mice. RESULTS Overexpression of HBx induced hepatic lipid accumulation in HepG2-HBx stable cells and HBx-transgenic mice. It also up-regulated the messenger RNA and protein levels of sterol regulatory element binding protein 1, but not peroxisome proliferator-activated receptor alpha (PPARalpha). Moreover, we also determined that the expression of HBx increases PPARgamma gene expression as well as its transcriptional activity in hepatic cells, mediated by CCAAT enhancer binding protein alpha activation. Finally, we showed that HBx expression is able to up-regulate the gene expressions of various lipogenic and adipogenic enzymes in hepatic cells. CONCLUSIONS We showed that the increased HBx expression causes lipid accumulation in hepatic cells mediated by sterol regulatory element binding protein 1 and PPARgamma, which could be a putative molecular mechanism mediating the pathophysiology of HBV infection.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Department of Molecular Biology, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pan XB, Wei L, Chen HS, Liu F, Gao Y. Liver-derived cell lines QSG-7701 and HepG2 support different HBV replication patterns. Arch Virol 2007; 152:1159-73. [PMID: 17308979 DOI: 10.1007/s00705-006-0927-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 12/12/2006] [Indexed: 01/10/2023]
Abstract
Hepatitis B virus (HBV) infection is currently still a worldwide heath concern. In our study, we compared HBV replication patterns in two liver-derived cell lines, QSG-7701 and HepG2. Viral markers of HBV replication in culture medium and cells were analyzed after transfection of these cells with plasmid pUC18-HBV1.2 into. We showed that QSG-7701 cells could support more stable and a higher level of HBV replication than HepG2 cells. Gene expression profiles of QSG-7701 and HepG2 cells by microarray analysis showed that many genes were differentially expressed between these two cell lines, including those that are related to the HBV life cycle. The global gene expression profile of these two cell types provides some clues to explain how different HBV replication is achieved. QSG-7701 cells offer a new opportunity for basic research on HBV virus-host interactions.
Collapse
Affiliation(s)
- X B Pan
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing, P.R. China
| | | | | | | | | |
Collapse
|
31
|
Shlomai A, Paran N, Shaul Y. PGC-1alpha controls hepatitis B virus through nutritional signals. Proc Natl Acad Sci U S A 2006; 103:16003-8. [PMID: 17043229 PMCID: PMC1635117 DOI: 10.1073/pnas.0607837103] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a 3.2-kb DNA virus that replicates preferentially in the liver. Liver-enriched nuclear receptors (NRs) play a major role in the HBV life cycle, operating as essential transcription factors for viral gene expression. Notably, these NRs are also key players in metabolic processes that occur in the liver, serving as central transcription factors for key enzymes of gluconeogenesis, fatty acid beta-oxidation, and ketogenesis. However, the association between these metabolic events and HBV gene expression is poorly understood. Here we show that peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), a major metabolic regulator and a coactivator of key gluconeogenic genes, robustly coactivates HBV transcription. We further demonstrate that the liver-enriched NR hepatocyte nuclear factor 4alpha that binds HBV plays an important role in this process. Physiologically, we show that a short-term fast that turns on the gluconeogenic program robustly induces HBV gene expression in vivo. This induction is completely reversible by refeeding and depends on PGC-1alpha. We conclude that HBV is tightly regulated by changes in the body's nutritional state through the metabolic regulator PGC-1alpha. Our data provide evidence for nutrition signaling to control viral gene expression and life cycle and thus ascribe to metabolism an important role in virus-host interaction.
Collapse
Affiliation(s)
- Amir Shlomai
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Paran
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Miller MM, Jarosinski KW, Schat KA. Positive and negative regulation of chicken anemia virus transcription. J Virol 2005; 79:2859-68. [PMID: 15709005 PMCID: PMC548473 DOI: 10.1128/jvi.79.5.2859-2868.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chicken anemia virus (CAV) is a small circular single-stranded DNA virus with a single promoter-enhancer region containing four consensus cyclic AMP response element sequences (AGCTCA), which are similar to the estrogen response element (ERE) consensus half-sites (A)GGTCA. These sequences are arranged as direct repeats, an arrangement that can be recognized by members of the nuclear receptor superfamily. Transient-transfection assays which use a short CAV promoter construct that ended at the transcription start site and drive expression of enhanced green fluorescent protein (EGFP) showed high basal activity in DF-1, LMH, LMH/2A, and primary theca and granulosa cells. The estrogen receptor-enhanced cell line, LMH/2A, had significantly greater expression than LMH cells, and this expression was significantly increased with estrogen treatment. A long promoter construct which included GGTCA-like sequences downstream of the first CAV protein translation start site was found to have significantly less EGFP expression in DF-1 cells than the short promoter, which was largely due to decreased RNA transcription. DNA-protein binding assays indicated that proteins recognizing a consensus ERE palindrome also bind GGTCA-like sequences in the CAV promoter. Estrogen receptor and other members of the nuclear receptor superfamily may provide a mechanism to regulate CAV activity in situations of low virus copy number.
Collapse
Affiliation(s)
- Myrna M Miller
- Unit of Avian Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
33
|
Dharancy S, Malapel M, Perlemuter G, Roskams T, Cheng Y, Dubuquoy L, Podevin P, Conti F, Canva V, Philippe D, Gambiez L, Mathurin P, Paris JC, Schoonjans K, Calmus Y, Pol S, Auwerx J, Desreumaux P. Impaired expression of the peroxisome proliferator-activated receptor alpha during hepatitis C virus infection. Gastroenterology 2005; 128:334-42. [PMID: 15685545 DOI: 10.1053/j.gastro.2004.11.016] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Liver inflammation, fibrosis, and dyslipidemia are common features in patients with chronic hepatitis C virus (HCV) infection. Because peroxisome proliferator-activated receptor alpha (PPARalpha) is highly expressed in the liver and is involved in the regulation of lipid metabolism and inflammation, we sought to determine whether HCV infection may locally impair PPARalpha expression and activity. METHODS PPARalpha expression was investigated in liver biopsy specimens of 86 untreated patients with HCV infection and controls, by using real-time polymerase chain reaction (PCR), Western blot analysis, and immunohistochemistry. PPARalpha activity was assessed by quantification of the key gene target carnitine palmitoyl acyl-CoA transferase 1 (CPT1A) messenger RNA (mRNA). The influence of HCV core protein on PPARalpha mRNA expression was analyzed in vitro by real-time PCR in HCV core-expressing HepG2 cells activated with the PPARalpha ligand fenofibric acid. RESULTS Hepatic concentrations of PPARalpha and CPT1A expressed by hepatocytes were impaired profoundly in the livers of untreated patients with HCV infection compared with controls. A mean decrease of 85% in PPARalpha mRNA expression paralleled with a lack of CPT1A mRNA induction also were observed in HCV core-expressing HepG2 cells compared with controls. CONCLUSIONS HCV infection is related to altered expression and function of the anti-inflammatory nuclear receptor PPARalpha. These results identify hepatic PPARalpha as one mechanism underlying the pathogenesis of HCV infection, and as a new therapeutic target in traditional treatment of HCV-induced liver injury.
Collapse
Affiliation(s)
- Sébastien Dharancy
- Equipe Mixte INSERM 0114, Centre Hospitalier Universitaire, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zheng Y, Li J, Ou JH. Regulation of hepatitis B virus core promoter by transcription factors HNF1 and HNF4 and the viral X protein. J Virol 2004; 78:6908-14. [PMID: 15194767 PMCID: PMC421633 DOI: 10.1128/jvi.78.13.6908-6914.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) core promoter contains a binding site for nuclear receptors. A natural double mutation in this binding site, which changes nucleotide (nt) 1765 from A to T and nt 1767 from G to A, selectively abolishes the binding of several nuclear receptors without affecting that of HNF4. This double mutation also creates a binding site for the transcription factor HNF1 and changes two amino acids in the overlapping X protein sequence. In this study, we have examined the roles of HNF1, HNF4, and the X protein in the regulation of the core promoter activities in Huh7 hepatoma cells. Our results indicate that HNF4 could stimulate the expression of the precore RNA and the core RNA from the core promoter of both the wild-type (WT) HBV and the double mutant, although its effect on the former was more prominent. In contrast, HNF1, which did not affect the WT core promoter, suppressed the precore RNA expression of the double mutant. Further analysis using HBV genomic constructs, with and without the ability to express the X protein, indicates that the X protein did not affect the HNF4 activity on the core promoter and affected the HNF1 activity on the core promoter of only the double mutant. Thus, our results indicate that the phenotypic differences of HBV WT and double-mutant core promoters are at least partially due to the differential activities of HNF1, HNF4, and the X protein on these two promoters.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
35
|
Cai YN, Zhou Q, Kong YY, Li M, Viollet B, Xie YH, Wang Y. LRH-1/hB1F and HNF1 synergistically up-regulate hepatitis B virus gene transcription and DNA replication. Cell Res 2004; 13:451-8. [PMID: 14728801 DOI: 10.1038/sj.cr.7290187] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enhancer II (ENII) is one of the critical cis-elements in the Hepatitis B Virus (HBV) genome for the hepatic viral gene transcription and DNA replication. The liver-specific activity of ENII is regulated by multiple liver-enriched transcription factors, including LRH-1/hB1F, HNF1, HNF3b, HNF4 and C/EBP. Knowledge on the interplay of these important factors is still limited. In this study, we demonstrate a functional synergism between the orphan nuclear receptor LRH-1/hB1F and the homeoprotein HNF1 in up-regulating the liver-specific activity of ENII. This synergism is sufficient for initiating the viral gene transcription and DNA replication in non-hepatic cells. We have defined the activation domains in hB1F and HNF1 that contribute to the synergism. We further show that hB1F and HNF1 can interact directly in vitro and have mapped the domains required for this interaction.
Collapse
Affiliation(s)
- Yan Ning Cai
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Choi YH, Kim HI, Seong JK, Yu DY, Cho H, Lee MO, Lee JM, Ahn YH, Kim SJ, Park JH. Hepatitis B virus X protein modulates peroxisome proliferator-activated receptor gamma through protein-protein interaction. FEBS Lett 2004; 557:73-80. [PMID: 14741344 DOI: 10.1016/s0014-5793(03)01449-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ligand activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been reported to induce growth inhibition and apoptosis in various cancers including hepatocellular carcinoma (HCC). However, the effect of hepatitis B virus X protein (HBx) on PPARgamma activation has not been characterized in hepatitis B virus (HBV)-associated HCC. Herein, we demonstrated that HBx counteracted growth inhibition caused by PPARgamma ligand in HBx-associated HCC cells. We found that HBx bound to DNA binding domain of PPARgamma and HBx/PPARgamma interaction blocked nuclear localization and binding to recognition site of PPARgamma. HBx significantly suppressed a PPARgamma-mediated transactivation. These results suggest that HBx modulates PPARgamma function through protein-protein interaction.
Collapse
Affiliation(s)
- Youn-Hee Choi
- Department of Microbiology and Brain Korea 21 Project of Medical Sciences, Institute for Immunology and Immunological Diseases, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Previous studies of human hepatitis B virus (HBV) transcription revealed the requirement of two enhancer elements. Enhancer I (EnhI) is located upstream of the X promoter and is targeted by multiple activators, including basic leucine zipper proteins, and enhancer II (EnhII) is located upstream to the PreCore promoter and is targeted mainly by nuclear receptors (NRs). The mode of interplay between these enhancers and their unique contributions in regulating HBV transcription remained obscure. By using time course analysis we revealed that the HBV transcripts are categorized into early and late groups. Chang (CCL-13) cells are impaired in expression of the late transcripts. This could be corrected by overexpressing EnhII activators, such as hepatocyte nuclear factor 4 alpha, the retinoid X receptor alpha, and the peroxisome proliferator-activated receptor alpha, suggesting that in Chang cells EnhI but not EnhII is active. Replacing the 5'-end EnhI sequence with a synthetic Gal4 response (UAS) DNA fragment ceased the production of the early transcripts. Under this condition NR overexpression poorly activated EnhII. However, activation of the UAS by Gal4-p53 restored both the expression of the early transcripts and the EnhII response to NRs. Thus, a functional EnhI is required for activation of EnhII. We found a major difference between Gal4-p53 and Gal4-VP16 behavior. Gal4-p53 activated the early transcripts, while Gal4-VP16 inhibited the early transcripts but activated the late transcripts. These findings indicate that the composition of the EnhI binding proteins may play a role in early to late switching. Our data provides strong evidence for the role of EnhI in regulating global and temporal HBV gene expression.
Collapse
Affiliation(s)
- Gilad Doitsh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
38
|
Parekh S, Zoulim F, Ahn SH, Tsai A, Li J, Kawai S, Khan N, Trépo C, Wands J, Tong S. Genome replication, virion secretion, and e antigen expression of naturally occurring hepatitis B virus core promoter mutants. J Virol 2003; 77:6601-12. [PMID: 12767980 PMCID: PMC156182 DOI: 10.1128/jvi.77.12.6601-6612.2003] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The core promoter mutants of hepatitis B virus (HBV) emerge as the dominant viral population at the late HBeAg and the anti-HBe stages of HBV infection, with the A1762T/G1764A substitutions as the hotspot mutations. The double core promoter mutations were found by many investigators to moderately enhance viral genome replication and reduce hepatitis B e antigen (HBeAg) expression. A much higher replication capacity was reported for a naturally occurring core promoter mutant implicated in the outbreak of fulminant hepatitis, which was caused by the neighboring C1766T/T1768A mutations instead. To systemically study the biological properties of naturally occurring core promoter mutants, we amplified full-length HBV genomes by PCR from sera of HBeAg(+) individuals infected with genotype A. All 12 HBV genomes derived from highly viremic sera (5 x 10(9) to 5.7 x 10(9) copies of viral genome/ml) harbored wild-type core promoter sequence, whereas 37 of 43 clones from low-viremia samples (0.2 x 10(7) to 4.6 x 10(7) copies/ml) were core promoter mutants. Of the 11 wild-type genomes and 14 core promoter mutants analyzed by transfection experiments in human hepatoma cell lines, 6 core promoter mutants but none of the wild-type genomes replicated at high levels. All had 1762/1764 mutations and an additional substitution at position 1753 (T to C), at position 1766 (C to T), or both. Moreover, these HBV clones varied greatly in their ability to secrete enveloped viral particles irrespective of the presence of core promoter mutations. High-replication clones with 1762/1764/1766 or 1753/1762/1764/1766 mutations expressed very low levels of HBeAg, whereas high-replication clones with 1753/1762/1764 triple mutations expressed high levels of HBeAg. Experiments with site-directed mutants revealed that both 1762/1764/1766 and 1753/1762/1764/1766 mutations conferred significantly higher viral replication and lower HBeAg expression than 1762/1764 mutations alone, whereas the 1753/1762/1764 triple mutant displayed only mild reduction in HBeAg expression similar to the 1762/1764 mutant. Thus, core promoter mutations other than those at positions 1762 and 1764 can have major impact on viral DNA replication and HBeAg expression.
Collapse
Affiliation(s)
- Sameer Parekh
- The Liver Research Center, Rhode Island Hospital, and Brown Medical School, Providence, Rhode Island 02903, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Uprichard SL, Wieland SF, Althage A, Chisari FV. Transcriptional and posttranscriptional control of hepatitis B virus gene expression. Proc Natl Acad Sci U S A 2003; 100:1310-5. [PMID: 12552098 PMCID: PMC298769 DOI: 10.1073/pnas.252773599] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infects humans and certain nonhuman primates. Viral clearance and acute disease are associated with a strong, polyclonal, multispecific cytotoxic T lymphocyte response. Infiltrating T cells, as well as other activated inflammatory cells, produce cytokines that can regulate hepatocellular gene expression. Using an HBV transgenic mouse model, our laboratory has previously demonstrated that adoptive transfer of HBV-specific cytotoxic T lymphocytes or injection of IL-2 can noncytopathically inhibit HBV gene expression by a posttranscriptional IFN-gamma- and/or tumor necrosis factor alpha-dependent mechanism. Here, we report that HBV gene expression can also be controlled at the posttranscriptional level during persistent lymphocytic choriomeningitis virus infection. In contrast, it is controlled at the transcriptional level during acute murine cytomegalovirus infection or after repetitive polyinosinic-polycytidylic acid injection. Finally, we show that transcriptional inhibition of HBV is associated with changes in liver-specific gene expression. These results elucidate pathways that regulate the viral life cycle and suggest additional approaches for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Susan L Uprichard
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
40
|
Yu X, Mertz JE. Distinct modes of regulation of transcription of hepatitis B virus by the nuclear receptors HNF4alpha and COUP-TF1. J Virol 2003; 77:2489-99. [PMID: 12551987 PMCID: PMC141100 DOI: 10.1128/jvi.77.4.2489-2499.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To study the effects of the nuclear receptors (NRs) HNF4alpha and COUP-TF1 on the life cycle of hepatitis B virus (HBV), the human hepatoma cell line Huh7 was transiently cotransfected with plasmids containing the HBV genome and encoding these two NRs. Overexpression of HNF4alpha and COUP-TF1 led to a 9-fold increase and a 7- to 10-fold decrease, respectively, in viral DNA synthesis. These two NRs also exhibited distinct modes of regulation of viral transcription. Overexpression of HNF4alpha led to a more-than-10-fold increase in synthesis of the pregenomic RNA but to only a 2- to 3-fold increase in synthesis of the pre-C and S RNAs. Moreover, the NR response element within the pre-C promoter, NRRE(preC,) played the major role in activation of pregenomic RNA synthesis by HNF4alpha. On the other hand, overexpression of COUP-TF1 led to an over-10-fold repression of synthesis of both pre-C and pregenomic RNAs mediated through either NRRE(preC) or NRRE(enhI). HNF4alpha and COUP-TF1 antagonized each other's effects on synthesis of pregenomic RNA and viral DNA when they were co-overexpressed. A naturally occurring HBV variant which allows for binding by HNF4alpha but not COUP-TF1 in its NRRE(preC) exhibited significantly higher levels of synthesis of pregenomic RNA and viral DNA than wild-type HBV in coexpression experiments. Last, deletion analysis revealed that non-NRRE sequences located within both the C and pre-S1 regions are also essential for maximum activation of the pregenomic promoter by HNF4alpha but not for repression by COUP-TF1. Thus, HNF4alpha and COUP-TF1 function through different mechanisms to regulate expression of the HBV genes.
Collapse
Affiliation(s)
- Xianming Yu
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, WI 53706-1599, USA
| | | |
Collapse
|