1
|
Gao Y, Raghavan A, Espinosa Garcia SA, Deng B, Hurtado de Mendoza D, Liang B. In vitro higher-order oligomeric assembly of the respiratory syncytial virus M2-1 protein with longer RNAs. J Virol 2024; 98:e0104624. [PMID: 39016557 PMCID: PMC11334520 DOI: 10.1128/jvi.01046-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
The respiratory syncytial virus (RSV) M2-1 protein is a transcriptional antitermination factor crucial for efficiently synthesizing multiple full-length viral mRNAs. During RSV infection, M2-1 exists in a complex with mRNA within cytoplasmic compartments called inclusion body-associated granules (IBAGs). Prior studies showed that M2-1 can bind along the entire length of viral mRNAs instead of just gene-end (GE) sequences, suggesting that M2-1 has more sophisticated RNA recognition and binding characteristics. Here, we analyzed the higher oligomeric complexes formed by M2-1 and RNAs in vitro using size exclusion chromatography (SEC), electrophoretic mobility shift assays (EMSA), negative stain electron microscopy (EM), and mutagenesis. We observed that the minimal RNA length for such higher oligomeric assembly is about 14 nucleotides for polyadenine sequences, and longer RNAs exhibit distinct RNA-induced binding modality to M2-1, leading to enhanced particle formation frequency and particle homogeneity as the local RNA concentration increases. We showed that particular cysteine residues of the M2-1 cysteine-cysteine-cystine-histidine (CCCH) zinc-binding motif are essential for higher oligomeric assembly. Furthermore, complexes assembled with long polyadenine sequences remain unaffected when co-incubated with ribonucleases or a zinc chelation agent. Our study provided new insights into the higher oligomeric assembly of M2-1 with longer RNA.IMPORTANCERespiratory syncytial virus (RSV) causes significant respiratory infections in infants, the elderly, and immunocompromised individuals. The virus forms specialized compartments to produce genetic material, with the M2-1 protein playing a pivotal role. M2-1 acts as an anti-terminator in viral transcription, ensuring the creation of complete viral mRNA and associating with both viral and cellular mRNA. Our research focuses on understanding M2-1's function in viral mRNA synthesis by modeling interactions in a controlled environment. This approach is crucial due to the challenges of studying these compartments in vivo. Reconstructing the system in vitro uncovers structural and biochemical aspects and reveals the potential functions of M2-1 and its homologs in related viruses. Our work may contribute to identifying targets for antiviral inhibitors and advancing RSV infection treatment.
Collapse
Affiliation(s)
- Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anirudh Raghavan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bowei Deng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Kerkhofs K, Guydosh NR, Bayfield MA. Respiratory Syncytial Virus (RSV) optimizes the translational landscape during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606199. [PMID: 39131278 PMCID: PMC11312563 DOI: 10.1101/2024.08.02.606199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Viral infection often triggers eukaryotic initiator factor 2α (eIF2α) phosphorylation, leading to global 5'-cap-dependent translation inhibition. RSV encodes messenger RNAs (mRNAs) mimicking 5'-cap structures of host mRNAs and thus inhibition of cap-dependent translation initiation would likely also reduce viral translation. We confirmed that RSV limits widespread translation initiation inhibition and unexpectedly found that the fraction of ribosomes within polysomes increases during infection, indicating higher ribosome loading on mRNAs during infection. We found that AU-rich host transcripts that are less efficiently translated under normal conditions become more efficient at recruiting ribosomes, similar to RSV transcripts. Viral transcripts are transcribed in cytoplasmic inclusion bodies, where the viral AU-rich binding protein M2-1 has been shown to bind viral transcripts and shuttle them into the cytoplasm. We further demonstrated that M2-1 is found on polysomes, and that M2-1 might deliver host AU-rich transcripts for translation.
Collapse
Affiliation(s)
- Kyra Kerkhofs
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| | - Nicholas R. Guydosh
- Section on mRNA Regulation and Translation, Laboratory of Biochemistry & Genetics. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A. Bayfield
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| |
Collapse
|
3
|
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses 2023; 15:v15020341. [PMID: 36851554 PMCID: PMC9960070 DOI: 10.3390/v15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.
Collapse
Affiliation(s)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, F78350 Jouy en Josas, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- Correspondence:
| |
Collapse
|
4
|
Braun MR, Noton SL, Blanchard EL, Shareef A, Santangelo PJ, Johnson WE, Fearns R. Respiratory syncytial virus M2-1 protein associates non-specifically with viral messenger RNA and with specific cellular messenger RNA transcripts. PLoS Pathog 2021; 17:e1009589. [PMID: 34003848 PMCID: PMC8162694 DOI: 10.1371/journal.ppat.1009589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/28/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory disease in infants and the elderly. RSV is a non-segmented negative strand RNA virus. The viral M2-1 protein plays a key role in viral transcription, serving as an elongation factor to enable synthesis of full-length mRNAs. M2-1 contains an unusual CCCH zinc-finger motif that is conserved in the related human metapneumovirus M2-1 protein and filovirus VP30 proteins. Previous biochemical studies have suggested that RSV M2-1 might bind to specific virus RNA sequences, such as the transcription gene end signals or poly A tails, but there was no clear consensus on what RSV sequences it binds. To determine if M2-1 binds to specific RSV RNA sequences during infection, we mapped points of M2-1:RNA interactions in RSV-infected cells at 8 and 18 hours post infection using crosslinking immunoprecipitation with RNA sequencing (CLIP-Seq). This analysis revealed that M2-1 interacts specifically with positive sense RSV RNA, but not negative sense genome RNA. It also showed that M2-1 makes contacts along the length of each viral mRNA, indicating that M2-1 functions as a component of the transcriptase complex, transiently associating with nascent mRNA being extruded from the polymerase. In addition, we found that M2-1 binds specific cellular mRNAs. In contrast to the situation with RSV mRNA, M2-1 binds discrete sites within cellular mRNAs, with a preference for A/U rich sequences. These results suggest that in addition to its previously described role in transcription elongation, M2-1 might have an additional role involving cellular RNA interactions.
Collapse
Affiliation(s)
- Molly R. Braun
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Emmeline L. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Afzaal Shareef
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - W. Evan Johnson
- Division of Computational Biomedicine and Bioinformatics Program and Department of Biostatistics, Boston University, Boston, Massachusetts, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Ruiz-Gómez X, Vázquez-Pérez JA, Flores-Herrera O, Esparza-Perusquía M, Santiago-Olivares C, Gaona-Bernal J, Gómez B, Mejía-Nepomuceno F, Méndez C, Rivera-Toledo E. Steady-state persistence of respiratory syncytial virus in a macrophage-like cell line and sequence analysis of the persistent viral genome. Virus Res 2021; 297:198367. [PMID: 33684421 DOI: 10.1016/j.virusres.2021.198367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023]
Abstract
Long-term infection by human respiratory syncytial virus (hRSV) has been reported in immunocompromised patients. Cell lines are valuable in vitro model systems to study mechanisms associated with viral persistence. Persistent infections in cell cultures have been categorized at least as in "carrier-state", where there exist a low proportion of cells infected by a lytic virus, and as in "steady-state", where most of cells are infected, but in absence of cytophatic effect. Here, we showed that hRSV maintained a steady-state persistence in a macrophage-like cell line after 120 passages, since the viral genome was detected in all of the cells analyzed by fluorescence in situ hybridization, whereas only defective viruses were identified by sucrose gradients and titration assay. Interestingly, eight percent of cells harboring the hRSV genome revealed undetectable expression of the viral nucleoprotein N; however, when this cell population was sorted by flow cytometry and independently cultured, viral protein expression was induced at detectable levels since the first post-sorting passage, supporting that sorted cells harbored the viral genome. Sequencing of the persistent hRSV genome obtained from virus collected from cell-culture supernatants, allowed assembling of a complete genome that displayed 24 synonymous and 38 nonsynonymous substitutions in coding regions, whereas extragenic and intergenic regions displayed 12 substitutions, two insertions and one deletion. Previous reports characterizing mutations in extragenic regulatory sequences of hRSV, suggested that some mutations localized at the 3' leader region of our persistent virus might alter viral transcription and replication, as well as assembly of viral nucleocapsids. Besides, substitutions in P, F and G proteins might contribute to altered viral assembly, budding and membrane fusion, reducing the cytopathic effect and in consequence, contributing to host-cell survival. Full-length mutant genomes might be part of the repertoire of defective viral genomes formed during hRSV infections, contributing to the establishment and maintenance of virus persistence.
Collapse
Affiliation(s)
- Ximena Ruiz-Gómez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | | | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | - Mercedes Esparza-Perusquía
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | - Carlos Santiago-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | - Jorge Gaona-Bernal
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Beatriz Gómez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | | | - Carmen Méndez
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| | - Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Cardone C, Caseau CM, Pereira N, Sizun C. Pneumoviral Phosphoprotein, a Multidomain Adaptor-Like Protein of Apparent Low Structural Complexity and High Conformational Versatility. Int J Mol Sci 2021; 22:ijms22041537. [PMID: 33546457 PMCID: PMC7913705 DOI: 10.3390/ijms22041537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
Mononegavirales phosphoproteins (P) are essential co-factors of the viral polymerase by serving as a linchpin between the catalytic subunit and the ribonucleoprotein template. They have highly diverged, but their overall architecture is conserved. They are multidomain proteins, which all possess an oligomerization domain that separates N- and C-terminal domains. Large intrinsically disordered regions constitute their hallmark. Here, we exemplify their structural features and interaction potential, based on the Pneumoviridae P proteins. These P proteins are rather small, and their oligomerization domain is the only part with a defined 3D structure, owing to a quaternary arrangement. All other parts are either flexible or form short-lived secondary structure elements that transiently associate with the rest of the protein. Pneumoviridae P proteins interact with several viral and cellular proteins that are essential for viral transcription and replication. The combination of intrinsic disorder and tetrameric organization enables them to structurally adapt to different partners and to act as adaptor-like platforms to bring the latter close in space. Transient structures are stabilized in complex with protein partners. This class of proteins gives an insight into the structural versatility of non-globular intrinsically disordered protein domains.
Collapse
|
7
|
Dawson AR, Wilson GM, Freiberger EC, Mondal A, Coon JJ, Mehle A. Phosphorylation controls RNA binding and transcription by the influenza virus polymerase. PLoS Pathog 2020; 16:e1008841. [PMID: 32881973 PMCID: PMC7494117 DOI: 10.1371/journal.ppat.1008841] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/16/2020] [Accepted: 07/25/2020] [Indexed: 12/03/2022] Open
Abstract
The influenza virus polymerase transcribes and replicates the viral genome. The proper timing and balance of polymerase activity is important for successful replication. Genome replication is controlled in part by phosphorylation of NP that regulates assembly of the replication machinery. However, it remains unclear whether phosphorylation directly regulated polymerase activity. Here we identified polymerase phosphosites that control its function. Mutating phosphosites in the catalytic subunit PB1 altered polymerase activity and virus replication. Biochemical analyses revealed phosphorylation events that disrupted global polymerase function by blocking the NTP entry channel or preventing RNA binding. We also identified a regulatory site that split polymerase function by specifically suppressing transcription. These experiments show that host kinases phospho-regulate viral RNA synthesis directly by modulating polymerase activity and indirectly by controlling assembly of replication machinery. Further, they suggest polymerase phosphorylation may bias replication versus transcription at discrete times or locations during the infectious cycle. The influenza virus polymerase is a multifunctional enzyme directing viral gene expression and genome replication. Immediately following infection, the polymerase primarily performs transcription to make the viral mRNAs that program the replication cycle. The polymerase then shifts output to produce more copies of the viral genome at later stages of infection. The balance between transcription and replication is critical for successful infection. Here we identify phosphorylation sites within the viral polymerase and describe how these post-translational modifications control polymerase activity. Cellular kinases modify the viral polymerase. We identified a phosphorylation site in the catalytic subunit PB1 that selectively disables transcription, but not replication. We also describe a phosphorylation site in PB1 that disrupts binding to viral RNAs, disabling all activities of the polymerase. These modifications may establish polymerases with specialized function, and help regulate the balance between transcription and replication throughout the viral life cycle.
Collapse
Affiliation(s)
- Anthony R. Dawson
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Gary M. Wilson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Elyse C. Freiberger
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Arindam Mondal
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
8
|
Gao Y, Cao D, Pawnikar S, John KP, Ahn HM, Hill S, Ha JM, Parikh P, Ogilvie C, Swain A, Yang A, Bell A, Salazar A, Miao Y, Liang B. Structure of the Human Respiratory Syncytial Virus M2-1 Protein in Complex with a Short Positive-Sense Gene-End RNA. Structure 2020; 28:979-990.e4. [PMID: 32697936 DOI: 10.1016/j.str.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
Abstract
The M2-1 protein of human respiratory syncytial virus (HRSV) is a transcription anti-terminator that regulates the processivity of the HRSV RNA-dependent RNA polymerase (RdRP). Here, we report a crystal structure of HRSV M2-1 bound to a short positive-sense gene-end RNA (SH7) at 2.7 Å resolution. We identified multiple critical residues of M2-1 involved in RNA interaction and examined their roles using mutagenesis and MicroScale Thermophoresis (MST) assay. We found that hydrophobic residue Phe23 is indispensable for M2-1 to recognize the base of RNA. We also captured spontaneous binding of RNA (SH7) to M2-1 in all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method. Both experiments and simulations revealed that the interactions of RNA with two separate domains of M2-1, the zinc-binding domain (ZBD) and the core domain (CD), are independent of each other. Collectively, our results provided a structural basis for RNA recognition by HRSV M2-1.
Collapse
Affiliation(s)
- Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Karen P John
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Hyunjun Max Ahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shaylan Hill
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ju Mi Ha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Priyal Parikh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Claire Ogilvie
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Anshuman Swain
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amy Yang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amber Bell
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Angela Salazar
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA.
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA.
| |
Collapse
|
9
|
The Interactome analysis of the Respiratory Syncytial Virus protein M2-1 suggests a new role in viral mRNA metabolism post-transcription. Sci Rep 2019; 9:15258. [PMID: 31649314 PMCID: PMC6813310 DOI: 10.1038/s41598-019-51746-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a globally prevalent negative-stranded RNA virus, which can cause life-threatening respiratory infections in young children, elderly people and immunocompromised patients. Its transcription termination factor M2-1 plays an essential role in viral transcription, but the mechanisms underpinning its function are still unclear. We investigated the cellular interactome of M2-1 using green fluorescent protein (GFP)-trap immunoprecipitation on RSV infected cells coupled with mass spectrometry analysis. We identified 137 potential cellular partners of M2-1, among which many proteins associated with mRNA metabolism, and particularly mRNA maturation, translation and stabilization. Among these, the cytoplasmic polyA-binding protein 1 (PABPC1), a candidate with a major role in both translation and mRNA stabilization, was confirmed to interact with M2-1 using protein complementation assay and specific immunoprecipitation. PABPC1 was also shown to colocalize with M2-1 from its accumulation in inclusion bodies associated granules (IBAGs) to its liberation in the cytoplasm. Altogether, these results strongly suggest that M2-1 interacts with viral mRNA and mRNA metabolism factors from transcription to translation, and imply that M2-1 may have an additional role in the fate of viral mRNA downstream of transcription.
Collapse
|
10
|
Selvaraj M, Yegambaram K, Todd EJAA, Richard CA, Dods RL, Pangratiou GM, Trinh CH, Moul SL, Murphy JC, Mankouri J, Éléouët JF, Barr JN, Edwards TA. The Structure of the Human Respiratory Syncytial Virus M2-1 Protein Bound to the Interaction Domain of the Phosphoprotein P Defines the Orientation of the Complex. mBio 2018; 9:e01554-18. [PMID: 30425144 PMCID: PMC6234862 DOI: 10.1128/mbio.01554-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 01/09/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a negative-stranded RNA virus that causes a globally prevalent respiratory infection, which can cause life-threatening illness, particularly in the young, elderly, and immunocompromised. HRSV multiplication depends on replication and transcription of the HRSV genes by the virus-encoded RNA-dependent RNA polymerase (RdRp). For replication, this complex comprises the phosphoprotein (P) and the large protein (L), whereas for transcription, the M2-1 protein is also required. M2-1 is recruited to the RdRp by interaction with P and also interacts with RNA at overlapping binding sites on the M2-1 surface, such that binding of these partners is mutually exclusive. The molecular basis for the transcriptional requirement of M2-1 is unclear, as is the consequence of competition between P and RNA for M2-1 binding, which is likely a critical step in the transcription mechanism. Here, we report the crystal structure at 2.4 Å of M2-1 bound to the P interaction domain, which comprises P residues 90 to 110. The P90-110 peptide is alpha helical, and its position on the surface of M2-1 defines the orientation of the three transcriptase components within the complex. The M2-1/P interface includes ionic, hydrophobic, and hydrogen bond interactions, and the critical contribution of these contacts to complex formation was assessed using a minigenome assay. The affinity of M2-1 for RNA and P ligands was quantified using fluorescence anisotropy, which showed high-affinity RNAs could outcompete P. This has important implications for the mechanism of transcription, particularly the events surrounding transcription termination and synthesis of poly(A) sequences.IMPORTANCE Human respiratory syncytial virus (HRSV) is a leading cause of respiratory illness, particularly in the young, elderly, and immunocompromised, and has also been linked to the development of asthma. HRSV replication depends on P and L, whereas transcription also requires M2-1. M2-1 interacts with P and RNA at overlapping binding sites; while these interactions are necessary for transcriptional activity, the mechanism of M2-1 action is unclear. To better understand HRSV transcription, we solved the crystal structure of M2-1 in complex with the minimal P interaction domain, revealing molecular details of the M2-1/P interface and defining the orientation of M2-1 within the tripartite complex. The M2-1/P interaction is relatively weak, suggesting high-affinity RNAs may displace M2-1 from the complex, providing the basis for a new model describing the role of M2-1 in transcription. Recently, the small molecules quercetin and cyclopamine have been used to validate M2-1 as a drug target.
Collapse
Affiliation(s)
- Muniyandi Selvaraj
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Kavestri Yegambaram
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Eleanor J A A Todd
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rachel L Dods
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Georgia M Pangratiou
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Chi H Trinh
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sophie L Moul
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - James C Murphy
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Jean-François Éléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Soto JA, Gálvez NMS, Benavente FM, Pizarro-Ortega MS, Lay MK, Riedel C, Bueno SM, Gonzalez PA, Kalergis AM. Human Metapneumovirus: Mechanisms and Molecular Targets Used by the Virus to Avoid the Immune System. Front Immunol 2018; 9:2466. [PMID: 30405642 PMCID: PMC6207598 DOI: 10.3389/fimmu.2018.02466] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory virus, first reported the year 2001. Since then, it has been described as one of the main etiological agents that causes acute lower respiratory tract infections (ALRTIs), which is characterized by symptoms such as bronchiolitis, wheezing and coughing. Susceptible population to hMPV-infection includes newborn, children, elderly and immunocompromised individuals. This viral agent is a negative-sense, single-stranded RNA enveloped virus, that belongs to the Pneumoviridae family and Metapneumovirus genus. Early reports—previous to 2001—state several cases of respiratory illness without clear identification of the responsible pathogen, which could be related to hMPV. Despite the similarities of hMPV with several other viruses, such as the human respiratory syncytial virus or influenza virus, mechanisms used by hMPV to avoid the host immune system are still unclear. In fact, evidence indicates that hMPV induces a poor innate immune response, thereby affecting the adaptive immunity. Among these mechanisms, is the promotion of an anergic state in T cells, instead of an effective polarization or activation, which could be induced by low levels of cytokine secretion. Further, the evidences support the notion that hMPV interferes with several pattern recognition receptors (PRRs) and cell signaling pathways triggered by interferon-associated genes. However, these mechanisms reported in hMPV are not like the ones reported for hRSV, as the latter has two non-structural proteins that are able to inhibit these pathways. Several reports suggest that viral glycoproteins, such as G and SH, could play immune-modulator roles during infection. In this work, we discuss the state of the art regarding the mechanisms that underlie the poor immunity elicited by hMPV. Importantly, these mechanisms will be compared with those elicited by other common respiratory viruses.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Richard CA, Rincheval V, Lassoued S, Fix J, Cardone C, Esneau C, Nekhai S, Galloux M, Rameix-Welti MA, Sizun C, Eléouët JF. RSV hijacks cellular protein phosphatase 1 to regulate M2-1 phosphorylation and viral transcription. PLoS Pathog 2018; 14:e1006920. [PMID: 29489893 PMCID: PMC5847313 DOI: 10.1371/journal.ppat.1006920] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/12/2018] [Accepted: 02/04/2018] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) RNA synthesis occurs in cytoplasmic inclusion bodies (IBs) in which all the components of the viral RNA polymerase are concentrated. In this work, we show that RSV P protein recruits the essential RSV transcription factor M2-1 to IBs independently of the phosphorylation state of M2-1. We also show that M2-1 dephosphorylation is achieved by a complex formed between P and the cellular phosphatase PP1. We identified the PP1 binding site of P, which is an RVxF-like motif located nearby and upstream of the M2-1 binding region. NMR confirmed both P-M2-1 and P-PP1 interaction regions in P. When the P-PP1 interaction was disrupted, M2-1 remained phosphorylated and viral transcription was impaired, showing that M2-1 dephosphorylation is required, in a cyclic manner, for efficient viral transcription. IBs contain substructures called inclusion bodies associated granules (IBAGs), where M2-1 and neo-synthesized viral mRNAs concentrate. Disruption of the P-PP1 interaction was correlated with M2-1 exclusion from IBAGs, indicating that only dephosphorylated M2-1 is competent for viral mRNA binding and hence for a previously proposed post-transcriptional function.
Collapse
Affiliation(s)
- Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Rincheval
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, France
| | - Safa Lassoued
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jenna Fix
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christophe Cardone
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Camille Esneau
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, Howard University, Washington, D. C., United States of America
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Anne Rameix-Welti
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, France
- AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
13
|
Rincheval V, Lelek M, Gault E, Bouillier C, Sitterlin D, Blouquit-Laye S, Galloux M, Zimmer C, Eleouet JF, Rameix-Welti MA. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat Commun 2017; 8:563. [PMID: 28916773 PMCID: PMC5601476 DOI: 10.1038/s41467-017-00655-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022] Open
Abstract
Infection of cells by respiratory syncytial virus induces the formation of cytoplasmic inclusion bodies (IBs) where all the components of the viral RNA polymerase complex are concentrated. However, the exact organization and function of these IBs remain unclear. In this study, we use conventional and super-resolution imaging to dissect the internal structure of IBs. We observe that newly synthetized viral mRNA and the viral transcription anti-terminator M2-1 concentrate in IB sub-compartments, which we term “IB-associated granules” (IBAGs). In contrast, viral genomic RNA, the nucleoprotein, the L polymerase and its cofactor P are excluded from IBAGs. Live imaging reveals that IBAGs are highly dynamic structures. Our data show that IBs are the main site of viral RNA synthesis. They further suggest that shortly after synthesis in IBs, viral mRNAs and M2-1 transiently concentrate in IBAGs before reaching the cytosol and suggest a novel post-transcriptional function for M2-1. Respiratory syncytial virus (RSV) induces formation of inclusion bodies (IBs) sheltering viral RNA synthesis. Here, Rincheval et al. identify highly dynamic IB-associated granules (IBAGs) that accumulate newly synthetized viral mRNA and the viral M2-1 protein but exclude viral genomic RNA and RNA polymerase complexes.
Collapse
Affiliation(s)
- Vincent Rincheval
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Mickael Lelek
- Institut Pasteur Unité Imagerie et Modélisation, CNRS UMR 3691; C3BI, USR 3756, IP CNRS, Paris, 75015, France
| | - Elyanne Gault
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France.,AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, 92104, France
| | - Camille Bouillier
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Delphine Sitterlin
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Sabine Blouquit-Laye
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, 78352, France
| | - Christophe Zimmer
- Institut Pasteur Unité Imagerie et Modélisation, CNRS UMR 3691; C3BI, USR 3756, IP CNRS, Paris, 75015, France
| | - Jean-François Eleouet
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, 78352, France
| | - Marie-Anne Rameix-Welti
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France. .,AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, 92104, France.
| |
Collapse
|
14
|
Lier C, Becker S, Biedenkopf N. Dynamic phosphorylation of Ebola virus VP30 in NP-induced inclusion bodies. Virology 2017; 512:39-47. [PMID: 28915404 DOI: 10.1016/j.virol.2017.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
Zaire Ebolavirus (EBOV) causes a severe feverish disease with high case fatality rates. Transcription of EBOV is dependent on the activity of the nucleocapsid protein VP30 which represents an essential viral transcription factor. Activity of VP30 is regulated via phosphorylation at six N-terminal serine residues. Recent data demonstrated that dynamic phosphorylation and dephosphorylation of serine residue 29 is essential for transcriptional support activity of VP30. To analyze the spatio/temporal dynamics of VP30 phosphorylation, we generated a peptide antibody recognizing specifically VP30 phosphorylated at serine 29. Using this antibody we could demonstrate that (i) the majority of VP30 molecules in EBOV-infected cells is dephosphorylated at the crucial position serine 29, (ii) both, VP30 phosphorylation and dephosphorylation take place in viral inclusion bodies that are induced by the nucleoprotein NP and (iii) NP influences the phosphorylation state of VP30.
Collapse
Affiliation(s)
- Clemens Lier
- Institute of Virology, Philipps-University Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany.
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany.
| |
Collapse
|
15
|
Whelan JN, Reddy KD, Uversky VN, Teng MN. Functional correlations of respiratory syncytial virus proteins to intrinsic disorder. MOLECULAR BIOSYSTEMS 2017; 12:1507-26. [PMID: 27062995 DOI: 10.1039/c6mb00122j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein intrinsic disorder is an important characteristic demonstrated by the absence of higher order structure, and is commonly detected in multifunctional proteins encoded by RNA viruses. Intrinsically disordered regions (IDRs) of proteins exhibit high flexibility and solvent accessibility, which permit several distinct protein functions, including but not limited to binding of multiple partners and accessibility for post-translational modifications. IDR-containing viral proteins can therefore execute various functional roles to enable productive viral replication. Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. In this study, we performed a comprehensive evaluation of predicted intrinsic disorder of the RSV proteome to better understand the functional role of RSV protein IDRs. We included 27 RSV strains to sample major RSV subtypes and genotypes, as well as geographic and temporal isolate differences. Several types of disorder predictions were applied to the RSV proteome, including per-residue (PONDR®-FIT and PONDR® VL-XT), binary (CH, CDF, CH-CDF), and disorder-based interactions (ANCHOR and MoRFpred). We classified RSV IDRs by size, frequency and function. Finally, we determined the functional implications of RSV IDRs by mapping predicted IDRs to known functional domains of each protein. Identification of RSV IDRs within functional domains improves our understanding of RSV pathogenesis in addition to providing potential therapeutic targets. Furthermore, this approach can be applied to other NNS viruses that encode essential multifunctional proteins for the elucidation of viral protein regions that can be manipulated for attenuation of viral replication.
Collapse
Affiliation(s)
- Jillian N Whelan
- Division of Allergy and Immunology, Department of Internal Medicine, and the Joy McCann Culverhouse Airway Diseases Research Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Krishna D Reddy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | - Michael N Teng
- Division of Allergy and Immunology, Department of Internal Medicine, and the Joy McCann Culverhouse Airway Diseases Research Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
16
|
Schmidt ME, Varga SM. Modulation of the host immune response by respiratory syncytial virus proteins. J Microbiol 2017; 55:161-171. [PMID: 28243940 DOI: 10.1007/s12275-017-7045-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 11/27/2022]
Abstract
Respiratory syncytial virus (RSV) causes severe respiratory disease in both the very young and the elderly. Nearly all individuals become infected in early childhood, and reinfections with the virus are common throughout life. Despite its clinical impact, there remains no licensed RSV vaccine. RSV infection in the respiratory tract induces an inflammatory response by the host to facilitate efficient clearance of the virus. However, the host immune response also contributes to the respiratory disease observed following an RSV infection. RSV has evolved several mechanisms to evade the host immune response and promote virus replication through interactions between RSV proteins and immune components. In contrast, some RSV proteins also play critical roles in activating, rather than suppressing, host immunity. In this review, we discuss the interactions between individual RSV proteins and host factors that modulate the immune response and the implications of these interactions for the course of an RSV infection.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
17
|
Bohmwald K, Espinoza JA, Rey-Jurado E, Gómez RS, González PA, Bueno SM, Riedel CA, Kalergis AM. Human Respiratory Syncytial Virus: Infection and Pathology. Semin Respir Crit Care Med 2016; 37:522-37. [PMID: 27486734 PMCID: PMC7171722 DOI: 10.1055/s-0036-1584799] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human respiratory syncytial virus (hRSV) is by far the major cause of acute lower respiratory tract infections (ALRTIs) worldwide in infants and children younger than 2 years. The overwhelming number of hospitalizations due to hRSV-induced ALRTI each year is due, at least in part, to the lack of licensed vaccines against this virus. Thus, hRSV infection is considered a major public health problem and economic burden in most countries. The lung pathology developed in hRSV-infected individuals is characterized by an exacerbated proinflammatory and unbalanced Th2-type immune response. In addition to the adverse effects in airway tissues, hRSV infection can also cause neurologic manifestations in the host, such as seizures and encephalopathy. Although the origins of these extrapulmonary symptoms remain unclear, studies with patients suffering from neurological alterations suggest an involvement of the inflammatory response against hRSV. Furthermore, hRSV has evolved numerous mechanisms to modulate and evade the immune response in the host. Several studies have focused on elucidating the interactions between hRSV virulence factors and the host immune system, to rationally design new vaccines and therapies against this virus. Here, we discuss about the infection, pathology, and immune response triggered by hRSV in the host.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janyra A Espinoza
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emma Rey-Jurado
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto S Gómez
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas y Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis. J Virol 2016; 90:7323-7338. [PMID: 27252537 DOI: 10.1128/jvi.00755-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo IMPORTANCE The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus replication and pathogenesis in vivo Recombinant hMPVs lacking phosphorylation in M2-1 exhibited limited replication in the upper and lower respiratory tract and triggered strong protective immunity in cotton rats. This work highlights the important role of M2-1 phosphorylation in viral replication and that inhibition of M2-1 phosphorylation may serve as a novel approach to develop live attenuated vaccines as well as antiviral drugs for pneumoviruses.
Collapse
|
19
|
Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle. J Virol 2016; 90:4914-4925. [PMID: 26937028 DOI: 10.1128/jvi.03257-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/21/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. IMPORTANCE The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that the situation is more complex and that primary transcription as well as the rescue of recombinant Ebola virus also requires the transient phosphorylation of VP30. VP30 encodes six N-proximal serine residues that serve as phosphorylation acceptor sites. The present study shows that the dynamic phosphorylation of serine at position 29 alone is sufficient to activate primary viral transcription. Our results indicate a series of phosphorylation/dephosphorylation events that trigger binding to and release from the nucleocapsid and transcription complex to be essential for the full activity of VP30.
Collapse
|
20
|
Cox R, Plemper RK. Structure-guided design of small-molecule therapeutics against RSV disease. Expert Opin Drug Discov 2016; 11:543-556. [PMID: 27046051 PMCID: PMC5074927 DOI: 10.1517/17460441.2016.1174212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the United States, respiratory syncytial virus (RSV) is responsible for the majority of infant hospitalizations resulting from viral infections, as well as a leading source of pneumonia and bronchiolitis in young children and the elderly. In the absence of vaccine prophylaxis or an effective antiviral for improved disease management, the development of novel anti-RSV therapeutics is critical. Several advanced drug development campaigns of the past decade have focused on blocking viral infection. These efforts have returned a chemically distinct panel of small-molecule RSV entry inhibitors, but binding sites and molecular mechanism of action appeared to share a common mechanism, resulting in comprehensive cross-resistance and calling for alternative druggable targets such as viral RNA-dependent RNA-polymerase complex. Areas Covered: In this review, the authors discuss the current status of the mechanism of action of RSV entry inhibitors. They also provide the recent structural insight into the organization of the polymerase complex that have revealed novel drug targets sites, and outline a path towards the discovery of next-generation RSV therapeutics. Expert opinion: Considering the tremendous progress experienced in our structural understanding of RSV biology in recent years and encouraging early results of a nucleoside analog inhibitor in clinical trials, there is high prospect that new generations of much needed effective anti-RSV therapeutics will become available for clinical use in the foreseeable future.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| |
Collapse
|
21
|
Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo. J Virol 2015; 89:6391-405. [PMID: 25855728 DOI: 10.1128/jvi.03488-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. IMPORTANCE The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Despite major efforts, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that the zinc binding activity of M2-1 is essential for virus replication and pathogenesis in vivo. Recombinant hMPVs that lacked zinc binding activity were not only defective in replication in the upper and lower respiratory tract but also triggered a strong protective immunity in cotton rats. Thus, inhibition of M2-1 zinc binding activity can lead to the development of novel, live attenuated vaccines, as well as antiviral drugs for pneumoviruses.
Collapse
|
22
|
Shapiro AB, Gao N, O'Connell N, Hu J, Thresher J, Gu RF, Overman R, Hardern IM, Sproat GG. Quantitative investigation of the affinity of human respiratory syncytial virus phosphoprotein C-terminus binding to nucleocapsid protein. Virol J 2014; 11:191. [PMID: 25407889 PMCID: PMC4239318 DOI: 10.1186/s12985-014-0191-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are no approved small molecule drug therapies for human respiratory syncytial virus (hRSV), a cause of morbidity and mortality in at-risk newborns, the immunocompromised, and the elderly. We have investigated as a potential novel hRSV drug target the protein-protein interaction between the C-terminus of the viral phosphoprotein (P) and the viral nucleocapsid protein (N), components of the ribonucleoprotein complex that contains, replicates, and transcribes the viral RNA genome. Earlier work by others established that the 9 C-terminal residues of P are necessary and sufficient for binding to N. METHODS We used a fluorescence anisotropy assay, surface plasmon resonance and 2-D NMR to quantify the affinities of peptides based on the C terminus of P for RNA-free, monomeric N-terminal-truncated N(13-391). We calculated the contributions to the free energies of binding of P to N(13-391) attributable to the C-terminal 11 residues, phosphorylation of the C-terminal 2 serine residues, the C-terminal Asp-Phe, and the phenyl ring of the C-terminal Phe. RESULTS Binding studies confirmed the crucial role of the phosphorylated C-terminal peptide D(pS)DNDL(pS)LEDF for binding of P to RNA-free, monomeric N(13-391), contributing over 90% of the binding free energy at low ionic strength. The phenyl ring of the C-terminal Phe residue contributed an estimated -2.7 kcal/mole of the free energy of binding, the C-terminal Asp-Phe residues contributed -3.8 kcal/mole, the sequence DSDNDLSLE contributed -3.1 kcal/mole, and phosphorylation of the 2 Ser residues contributed -1.8 kcal/mole. Due to the high negative charge of the C-terminal peptide, the affinity of the P C-terminus for N(13-391) decreased as the ionic strength increased. CONCLUSIONS The results support the idea that the interaction of the C-terminal residues of P with N constitutes a protein-protein interaction hotspot that may be a suitable target for small-molecule drugs that inhibit viral genome replication and transcription.
Collapse
Affiliation(s)
- Adam B Shapiro
- Biology Department, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tanner SJ, Ariza A, Richard CA, Kyle HF, Dods RL, Blondot ML, Wu W, Trincão J, Trinh CH, Hiscox JA, Carroll MW, Silman NJ, Eléouët JF, Edwards TA, Barr JN. Crystal structure of the essential transcription antiterminator M2-1 protein of human respiratory syncytial virus and implications of its phosphorylation. Proc Natl Acad Sci U S A 2014; 111:1580-5. [PMID: 24434552 PMCID: PMC3910626 DOI: 10.1073/pnas.1317262111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The M2-1 protein of the important pathogen human respiratory syncytial virus is a zinc-binding transcription antiterminator that is essential for viral gene expression. We present the crystal structure of full-length M2-1 protein in its native tetrameric form at a resolution of 2.5 Å. The structure reveals that M2-1 forms a disk-like assembly with tetramerization driven by a long helix forming a four-helix bundle at its center, further stabilized by contact between the zinc-binding domain and adjacent protomers. The tetramerization helix is linked to a core domain responsible for RNA binding activity by a flexible region on which lie two functionally critical serine residues that are phosphorylated during infection. The crystal structure of a phosphomimetic M2-1 variant revealed altered charge density surrounding this flexible region although its position was unaffected. Structure-guided mutagenesis identified residues that contributed to RNA binding and antitermination activity, revealing a strong correlation between these two activities, and further defining the role of phosphorylation in M2-1 antitermination activity. The data we present here identify surfaces critical for M2-1 function that may be targeted by antiviral compounds.
Collapse
Affiliation(s)
- Sian J. Tanner
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- Public Health England, Porton Down SP4 0JG, United Kingdom
| | - Antonio Ariza
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires (UR892), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Hannah F. Kyle
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rachel L. Dods
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Marie-Lise Blondot
- Unité de Virologie et Immunologie Moléculaires (UR892), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Weining Wu
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom; and
| | - José Trincão
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Chi H. Trinh
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Julian A. Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom; and
| | | | | | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Thomas A. Edwards
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John N. Barr
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
24
|
Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease. Curr Top Microbiol Immunol 2013; 372:3-38. [PMID: 24362682 DOI: 10.1007/978-3-642-38919-1_1] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human respiratory syncytial virus (RSV) is an enveloped, nonsegmented negative-strand RNA virus of family Paramyxoviridae. RSV is the most complex member of the family in terms of the number of genes and proteins. It is also relatively divergent and distinct from the prototype members of the family. In the past 30 years, we have seen a tremendous increase in our understanding of the molecular biology of RSV based on a succession of advances involving molecular cloning, reverse genetics, and detailed studies of protein function and structure. Much remains to be learned. RSV disease is complex and variable, and the host and viral factors that determine tropism and disease are poorly understood. RSV is notable for a historic vaccine failure in the 1960s involving a formalin-inactivated vaccine that primed for enhanced disease in RSV naïve recipients. Live vaccine candidates have been shown to be free of this complication. However, development of subunit or other protein-based vaccines for pediatric use is hampered by the possibility of enhanced disease and the difficulty of reliably demonstrating its absence in preclinical studies.
Collapse
|
25
|
p38 and OGT sequestration into viral inclusion bodies in cells infected with human respiratory syncytial virus suppresses MK2 activities and stress granule assembly. J Virol 2012; 87:1333-47. [PMID: 23152511 DOI: 10.1128/jvi.02263-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) forms cytoplasmic inclusion bodies (IBs) that are thought to be sites of nucleocapsid accumulation and viral RNA synthesis. The present study found that IBs also were the sites of major sequestration of two proteins involved in cellular signaling pathways. These are phosphorylated p38 mitogen-activated protein kinase (MAPK) (p38-P), a key regulator of cellular inflammatory and stress responses, and O-linked N-acetylglucosamine (OGN) transferase (OGT), an enzyme that catalyzes the posttranslational addition of OGN to protein targets to regulate cellular processes, including signal transduction, transcription, translation, and the stress response. The virus-induced sequestration of p38-P in IBs resulted in a substantial reduction in the accumulation of a downstream signaling substrate, MAPK-activated protein kinase 2 (MK2). Sequestration of OGT in IBs was associated with suppression of stress granule (SG) formation. Thus, while the RSV IBs are thought to play an essential role in viral replication, the present results show that they also play a role in suppressing the cellular response to viral infection. The sequestration of p38-P and OGT in IBs appeared to be reversible: oxidative stress resulting from arsenite treatment transformed large IBs into a scattering of smaller bodies, suggestive of partial disassembly, and this was associated with MK2 phosphorylation and OGN addition. Unexpectedly, the RSV M2-1 protein was found to localize in SGs that formed during oxidative stress. This protein was previously shown to be a viral transcription elongation factor, and the present findings provide the first evidence of possible involvement in SG activities during RSV infection.
Collapse
|
26
|
Blondot ML, Dubosclard V, Fix J, Lassoued S, Aumont-Nicaise M, Bontems F, Eléouët JF, Sizun C. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein. PLoS Pathog 2012; 8:e1002734. [PMID: 22675274 PMCID: PMC3364950 DOI: 10.1371/journal.ppat.1002734] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/20/2012] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-1(58-177) core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-1(58-177), as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Virginie Dubosclard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Jenna Fix
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Safa Lassoued
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | | | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
- * E-mail:
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| |
Collapse
|
27
|
Martinez MJ, Volchkova VA, Raoul H, Alazard-Dany N, Reynard O, Volchkov VE. Role of VP30 phosphorylation in the Ebola virus replication cycle. J Infect Dis 2011; 204 Suppl 3:S934-40. [PMID: 21987772 DOI: 10.1093/infdis/jir320] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ebola virus (EBOV) transcription is dependent on the phosphoprotein VP30, a component of the viral nucleocapsid. VP30 is phosphorylated at 2 serine residue clusters located at the N-terminal part of the protein. In this report, we have investigated the role of VP30 phosphorylation in EBOV replication using a reverse genetics approach. In effect, recombinant EBOVs with the VP30 serine clusters substituted either by nonphosphorylatable alanines or phosphorylation-mimicking aspartates were generated and characterized. We show that in comparison to the wild-type EBOV the mutated viruses possess reduced infectivity. This difference is explained by alterations in the balance between the transcription and replication processes and appear to be associated with the state of VP30 phosphorylation. Here we propose a model in which dynamic phosphorylation of VP30 is an important mechanism to regulate the EBOV replication cycle.
Collapse
Affiliation(s)
- Miguel J Martinez
- INSERM U758, Human Virology Department, Université de Lyon, Claude Bernard University Lyon-1, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | |
Collapse
|
28
|
Esperante SA, Chemes LB, Sánchez IE, de Prat-Gay G. The respiratory syncytial virus transcription antiterminator M(2-1) is a highly stable, zinc binding tetramer with strong pH-dependent dissociation and a monomeric unfolding intermediate. Biochemistry 2011; 50:8529-39. [PMID: 21877705 DOI: 10.1021/bi200661k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human respiratory syncytial virus M(2-1) transcription antiterminator is an essential elongation factor required by the RNA polymerase for effective transcription beyond the first two nonstructural genes. Its exclusive presence in pneumovirus among all paramyxovirus suggests a unique function within this small genus. With the aim of understanding its biochemical properties, we investigated this α-helical tetramer by making use of a biophysical approach. We found that the tetramer hydrodynamic radius is considerably extended at high ionic strengths and determined its zinc content to be one atom per monomer. Dissociation-unfolding experiments show a fully reversible and concentration-dependent cooperative transition, but secondary and tertiary structural changes are uncoupled at lower protein concentrations. We detect the presence of a monomeric intermediate, which can be classified as a "late molten globule" with substantial secondary and tertiary structure. Global fittings of experiments from three different probes at two M(2-1) concentrations provide a free energy of dissociation-unfolding of -36.8 ± 0.1 kcal mol(-1), corresponding to a tight dissociation constant of 10(-28) M(3) at pH 7.0. The tetramer affinity is strongly governed by pH, with a free energy change of 13 kcal mol(-1) when pH decreases from 7.0 to 5.0 (K(D) = 10(-18) M(3)). The drastic changes that take place within a pH range compatible with a cellular environment strongly suggest a regulatory effect of pH on M(2-1) structure and biochemical properties, likely affecting transcription and interaction with proteins and RNA.
Collapse
Affiliation(s)
- Sebastián A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBA-Conicet, Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
29
|
The respiratory syncytial virus M2-1 protein forms tetramers and interacts with RNA and P in a competitive manner. J Virol 2009; 83:6363-74. [PMID: 19386701 DOI: 10.1128/jvi.00335-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The respiratory syncytial virus (RSV) M2-1 protein is an essential cofactor of the viral RNA polymerase complex and functions as a transcriptional processivity and antitermination factor. M2-1, which exists in a phosphorylated or unphosphorylated form in infected cells, is an RNA-binding protein that also interacts with some of the other components of the viral polymerase complex. It contains a CCCH motif, a putative zinc-binding domain that is essential for M2-1 function, at the N terminus. To gain insight into its structural organization, M2-1 was produced as a recombinant protein in Escherichia coli and purified to >95% homogeneity by using a glutathione S-transferase (GST) tag. The GST-M2-1 fusion proteins were copurified with bacterial RNA, which could be eliminated by a high-salt wash. Circular dichroism analysis showed that M2-1 is largely alpha-helical. Chemical cross-linking, dynamic light scattering, sedimentation velocity, and electron microscopy analyses led to the conclusion that M2-1 forms a 5.4S tetramer of 89 kDa and approximately 7.6 nm in diameter at micromolar concentrations. By using a series of deletion mutants, the oligomerization domain of M2-1 was mapped to a putative alpha-helix consisting of amino acid residues 32 to 63. When tested in an RSV minigenome replicon system using a luciferase gene as a reporter, an M2-1 deletion mutant lacking this region showed a significant reduction in RNA transcription compared to wild-type M2-1, indicating that M2-1 oligomerization is essential for the activity of the protein. We also show that the region encompassing amino acid residues 59 to 178 binds to P and RNA in a competitive manner that is independent of the phosphorylation status of M2-1.
Collapse
|
30
|
Campagna M, Budini M, Arnoldi F, Desselberger U, Allende JE, Burrone OR. Impaired hyperphosphorylation of rotavirus NSP5 in cells depleted of casein kinase 1alpha is associated with the formation of viroplasms with altered morphology and a moderate decrease in virus replication. J Gen Virol 2007; 88:2800-2810. [PMID: 17872534 DOI: 10.1099/vir.0.82922-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The rotavirus (RV) non-structural protein 5, NSP5, is encoded by the smallest of the 11 genomic segments and localizes in 'viroplasms', cytoplasmic inclusion bodies in which viral RNA replication and packaging take place. NSP5 is essential for the replicative cycle of the virus because, in its absence, viroplasms are not formed and viral RNA replication and transcription do not occur. NSP5 is produced early in infection and undergoes a complex hyperphosphorylation process, leading to the formation of proteins differing in electrophoretic mobility. The role of hyperphosphorylation of NSP5 in the replicative cycle of rotavirus is unknown. Previous in vitro studies have suggested that the cellular kinase CK1alpha is responsible for the NSP5 hyperphosphorylation process. Here it is shown, by means of specific RNA interference, that in vivo, CK1alpha is the enzyme that initiates phosphorylation of NSP5. Lack of NSP5 hyperphosphorylation affected neither its interaction with the virus VP1 and NSP2 proteins normally found in viroplasms, nor the production of viral proteins. In contrast, the morphology of viroplasms was altered markedly in cells in which CK1alpha was depleted and a moderate decrease in the production of double-stranded RNA and infectious virus was observed. These data show that CK1alpha is the kinase that phosphorylates NSP5 in virus-infected cells and contribute to further understanding of the role of NSP5 in RV infection.
Collapse
Affiliation(s)
- Michela Campagna
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34011 Trieste, Italy
| | - Mauricio Budini
- Instituto de Ciencias Biomedicas, Programa de Biologia Celular y Molecular, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Francesca Arnoldi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34011 Trieste, Italy
| | - Ulrich Desselberger
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34011 Trieste, Italy
| | - Jorge E Allende
- Instituto de Ciencias Biomedicas, Programa de Biologia Celular y Molecular, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Oscar R Burrone
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34011 Trieste, Italy
| |
Collapse
|
31
|
Asenjo A, Calvo E, Villanueva N. Phosphorylation of human respiratory syncytial virus P protein at threonine 108 controls its interaction with the M2-1 protein in the viral RNA polymerase complex. J Gen Virol 2006; 87:3637-3642. [PMID: 17098979 DOI: 10.1099/vir.0.82165-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) P protein is phosphorylated, with different turnover rates, at several serine (S) and threonine (T) residues. The role of phosphothreonines in viral RNA synthesis was studied by using P protein substitution variants and the HRSV-based minigenome pM/SH. By using liquid chromatography coupled to ion-trap mass spectrometry, it was found that P protein T108 was phosphorylated by addition of a high-turnover phosphate group. This phosphorylation occurs in P protein expressed transiently and during HRSV infection. The results suggest that phosphorylation at P protein T108 affects M2-1 transcriptional activities, because this modification prevents interaction between the P and M2-1 proteins. Therefore, P protein phosphorylation-dephosphorylation at T108 could distinguish the role of the P protein in viral transcription and replication.
Collapse
Affiliation(s)
- Ana Asenjo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Crta Majadahonda-Pozuelo km 2, Majadahonda, 28220 Madrid, Spain
| | - Enrique Calvo
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández de Almagro 3, 28029 Madrid, Spain
| | - Nieves Villanueva
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Crta Majadahonda-Pozuelo km 2, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
32
|
Cowton VM, McGivern DR, Fearns R. Unravelling the complexities of respiratory syncytial virus RNA synthesis. J Gen Virol 2006; 87:1805-1821. [PMID: 16760383 DOI: 10.1099/vir.0.81786-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of paediatric respiratory disease and is the focus of antiviral- and vaccine-development programmes. These goals have been aided by an understanding of the virus genome architecture and the mechanisms by which it is expressed and replicated. RSV is a member of the order Mononegavirales and, as such, has a genome consisting of a single strand of negative-sense RNA. At first glance, transcription and genome replication appear straightforward, requiring self-contained promoter regions at the 3' ends of the genome and antigenome RNAs, short cis-acting elements flanking each of the genes and one polymerase. However, from these minimal elements, the virus is able to generate an array of capped, methylated and polyadenylated mRNAs and encapsidated antigenome and genome RNAs, all in the appropriate ratios to facilitate virus replication. The apparent simplicity of genome expression and replication is a consequence of considerable complexity in the polymerase structure and its cognate cis-acting sequences; here, our understanding of mechanisms by which the RSV polymerase proteins interact with signals in the RNA template to produce different RNA products is reviewed.
Collapse
MESH Headings
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Genome, Viral
- Humans
- Models, Biological
- Molecular Sequence Data
- Mononegavirales/genetics
- Mononegavirales/physiology
- Nucleocapsid/biosynthesis
- Nucleocapsid/genetics
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/pathogenicity
- Respiratory Syncytial Virus, Human/physiology
- Transcription, Genetic
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Vanessa M Cowton
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - David R McGivern
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - Rachel Fearns
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
33
|
Melero JA. Molecular Biology of Human Respiratory Syncytial Virus. RESPIRATORY SYNCYTIAL VIRUS 2006. [DOI: 10.1016/s0168-7069(06)14001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Buchholz UJ, Biacchesi S, Pham QN, Tran KC, Yang L, Luongo CL, Skiadopoulos MH, Murphy BR, Collins PL. Deletion of M2 gene open reading frames 1 and 2 of human metapneumovirus: effects on RNA synthesis, attenuation, and immunogenicity. J Virol 2005; 79:6588-97. [PMID: 15890897 PMCID: PMC1112115 DOI: 10.1128/jvi.79.11.6588-6597.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M2 gene of human metapneumovirus (HMPV) contains two overlapping open reading frames (ORFs), M2-1 and M2-2. The expression of separate M2-1 and M2-2 proteins from these ORFs was confirmed, and recombinant HMPVs were recovered in which expression of M2-1 and M2-2 was ablated individually or together [rdeltaM2-1, rdeltaM2-2, and rdeltaM2(1+2)]. Each M2 mutant virus directed efficient multicycle growth in Vero cells. The ability to recover HMPV lacking M2-1 contrasts with human respiratory syncytial virus, for which M2-1 is an essential transcription factor. Expression of the downstream HMPV M2-2 ORF was not reduced when translation of the upstream M2-1 ORF was silenced, indicating that it is initiated separately. The rdeltaM2-2 mutants exhibited a two- to fivefold increase in the accumulation of mRNA, normalized to the genome template, suggesting that M2-2 has a role in regulating RNA synthesis. Replication and immunogenicity were tested in hamsters. Animals infected intranasally with rdeltaM2-1 or rdeltaM2(1+2) did not have recoverable virus in the lungs or nasal turbinates on days 3 or 5 postinfection and did not develop HMPV-neutralizing serum antibodies or resistance to HMPV challenge. Thus, M2-1 appears to be essential for significant virus replication in vivo. In animals infected with rdeltaM2-2, virus was recovered from only 1 of 12 animals and only in the nasal turbinates on a single day. However, all of the animals developed a high titer of HMPV-neutralizing serum antibodies and were highly protected against challenge with wild-type HMPV. The HMPV rdeltaM2-2 virus is a promising and highly attenuated HMPV vaccine candidate.
Collapse
Affiliation(s)
- Ursula J Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
García-Barreno B, Steel J, Payá M, Martínez-Sobrido L, Delgado T, Yeo RP, Melero JA. Epitope mapping of human respiratory syncytial virus 22K transcription antitermination factor: role of N-terminal sequences in protein folding. J Gen Virol 2005; 86:1103-1107. [PMID: 15784904 DOI: 10.1099/vir.0.80712-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reactivity of a panel of 12 monoclonal antibodies raised against the human respiratory syncytial virus 22 kDa (22K) protein was tested by Western blotting with a set of 22K deletion mutants. The results obtained identified sequences in the C-terminal half of the 22K polypeptide required for integrity of most antibody epitopes, except for epitope 112, which was lost in mutants with short N-terminal deletions. This antibody, in contrast to the others, failed to immunoprecipitate the native 22K protein, indicating that the N terminus of this protein is buried in the native molecule and exposed only under the denaturing conditions of Western blotting. In addition, N-terminal deletions that abolished reactivity with monoclonal antibody 112 also inhibited phosphorylation of the 22K protein previously identified at Ser-58 and Ser-61, suggesting that the N terminus is important in regulating the 22K protein phosphorylation status, most likely as a result of its requirement for protein folding.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Blotting, Western
- Epitope Mapping
- Gene Deletion
- Gene Expression Regulation, Viral
- Humans
- Mutation
- Protein Folding
- Respiratory Syncytial Virus, Human/chemistry
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/metabolism
- Transcription, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Blanca García-Barreno
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - John Steel
- MRC Virology Unit, Institute for Virology, Church Street, Glasgow G11 5JR, UK
| | - Monica Payá
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Luis Martínez-Sobrido
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Teresa Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Robert P Yeo
- The Centre for Infectious Diseases, Wolfson Institute, University of Durham, Queen's Campus, Stockton-on-Tees TS17 6BH, UK
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
36
|
Easton AJ, Domachowske JB, Rosenberg HF. Animal pneumoviruses: molecular genetics and pathogenesis. Clin Microbiol Rev 2004; 17:390-412. [PMID: 15084507 PMCID: PMC387412 DOI: 10.1128/cmr.17.2.390-412.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumoviruses are single-stranded, negative-sense, nonsegmented RNA viruses of the family Paramyxoviridae, subfamily Pneumovirinae, and include pathogens that infect humans (respiratory syncytial virus and human metapneumovirus), domestic mammals (bovine, ovine, and caprine respiratory syncytial viruses), rodents (pneumonia virus of mice), and birds (avian metapneumovirus). Among the topics considered in this review are recent studies focused on the roles of the individual virus-encoded components in promoting virus replication as well as in altering and evading innate antiviral host defenses. Advances in the molecular technology of pneumoviruses and the emergence of recombinant pneumoviruses that are leading to improved virus-based vaccine formulations are also discussed. Since pneumovirus infection in natural hosts is associated with a profound inflammatory response that persists despite adequate antiviral therapy, we also review the recent experimental treatment strategies that have focused on combined antiviral, anti-inflammatory, and immunomodulatory approaches.
Collapse
|
37
|
Mason SW, Aberg E, Lawetz C, DeLong R, Whitehead P, Liuzzi M. Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity. J Virol 2003; 77:10670-6. [PMID: 12970453 PMCID: PMC228475 DOI: 10.1128/jvi.77.19.10670-10676.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated protein-protein interactions among the respiratory syncytial virus (RSV) RNA polymerase subunits using affinity chromatography. Here we demonstrate a novel interaction of P and M2-1 proteins. Phosphorylation of either M2-1 or P appears to be dispensable for this interaction. Internal deletions within P mapped the M2-1-binding domain to a region between residues 100 and 120. Alanine-scanning mutagenesis within this region of P revealed that substitution of any one of the three residues, L101, Y102, and F109, prevented both M2-1 and P binding and expression of an M2-1-dependent luciferase reporter gene. However, these same mutations did not prevent the activity of an M2-1-independent chloramphenicol acetyltransferase minigenome, suggesting that these residues of P specifically affect M2-1-P interaction. On the basis of these observations, it is possible that the interaction between RSV M2-1 and P proteins is important for viral replication.
Collapse
Affiliation(s)
- Stephen W Mason
- Biological Sciences Department, Boehringer Ingelheim (Canada) Ltd, Laval, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
38
|
Zhou H, Cheng X, Jin H. Identification of amino acids that are critical to the processivity function of respiratory syncytial virus M2-1 protein. J Virol 2003; 77:5046-53. [PMID: 12692207 PMCID: PMC153968 DOI: 10.1128/jvi.77.9.5046-5053.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M2-1 protein of respiratory syncytial virus (RSV) is a transcription processivity factor that is essential for virus replication. The function of RSV M2-1 protein can be examined by using an RSVlacZ minigenome assay in vitro since the expression of the lacZ gene is dependent on M2-1. The M2-1 protein of pneumonia virus of mice (PVM), also a member of the Pneumovirus genus, functions poorly in the RSVlacZ minigenome assay despite conservation of the Cys(3)-His(1) motif at its N terminus and an overall 40% amino acid identity with RSV M2-1. To identify the amino acids responsible for the differences between these two proteins, two chimeric proteins were constructed. The RSV/PVM (RP) M2-1 chimera that contains the N-terminal 30 amino acids from RSV and the remaining C-terminal 148 amino acids from PVM maintained a level of activity at an ca. 36% of RSV M2-1. However, the PVM/RSV (PR) M2-1 chimera with the N-terminal 29 amino acids from PVM and 164 amino acids from RSV had an activity of <5% of RSV M2-1, indicating that the functional determinants are mainly located in the N terminus of M2-1. Mutagenesis of the N terminus of PR M2-1 and RSV M2-1 identified that Leu-16 and Asn-17 of RSV M2-1 are critical to the M2-1 function. In addition, several charged residues in the N terminus of RSV M2-1 also contributed to the functional integrity of M2-1.
Collapse
Affiliation(s)
- Helen Zhou
- MedImmune Vaccines, Inc., Mountain View, California 94043, USA
| | | | | |
Collapse
|
39
|
Modrof J, Becker S, Mühlberger E. Ebola virus transcription activator VP30 is a zinc-binding protein. J Virol 2003; 77:3334-8. [PMID: 12584359 PMCID: PMC149768 DOI: 10.1128/jvi.77.5.3334-3338.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Accepted: 11/20/2002] [Indexed: 11/20/2022] Open
Abstract
Ebola virus VP30 is an essential activator of viral transcription. In viral particles, VP30 is closely associated with the nucleocapsid complex. A conspicuous structural feature of VP30 is an unconventional zinc-binding Cys(3)-His motif comprising amino acids 68 to 95. By using a colorimetric zinc-binding assay we found that the VP30-specific Cys(3)-His motif stoichiometrically binds zinc ions in a one-to-one relationship. Substitution of the conserved cysteines and the histidine within the motif led to a complete loss of the capacity for zinc binding. Functional analyses revealed that none of the tested mutations of the proposed zinc-coordinating residues influenced binding of VP30 to nucleocapsid-like particles but, concerning its role in activating viral transcription, all resulted in a protein that was inactive.
Collapse
Affiliation(s)
- Jens Modrof
- Institut für Virologie der Philipps-Universität Marburg, 35037 Marburg, Germany
| | | | | |
Collapse
|
40
|
Modrof J, Mühlberger E, Klenk HD, Becker S. Phosphorylation of VP30 impairs ebola virus transcription. J Biol Chem 2002; 277:33099-104. [PMID: 12052831 DOI: 10.1074/jbc.m203775200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the highly pathogenic Ebola virus (EBOV) is dependent on VP30, a constituent of the viral nucleocapsid complex. Here we present evidence that phosphorylation of VP30, which takes place at six N-terminal serine residues and one threonine residue, is of functional significance. Replacement of the phosphoserines by alanines resulted in an only slightly phosphorylated VP30 (VP30(6A)) that is still able to activate EBOV-specific transcription in a plasmid-based minigenome system. VP30(6A), however, did not bind to inclusions that are induced by the major nucleocapsid protein NP. Three intracellular phosphatases (PP1, PP2A, and PP2C) have been determined to dephosphorylate VP30. The presence of okadaic acid (OA), an inhibitor of PP1 and PP2A, had the same negative effect on transcription activation by VP30 as the substitution of the six phosphoserines for aspartate residues. OA, however, did not impair transcription when VP30 was replaced by VP30(6A). In EBOV-infected cells, OA blocked virus growth dose-dependently. The block was mediated by the extensive phosphorylation of VP30, which is evidenced by the result that expression of VP30(6A), in trans, led to the progression of EBOV infection in the presence of OA. In conclusion, phosphorylation of VP30 was shown to regulate negatively transcription activation and positively binding to the NP inclusions.
Collapse
Affiliation(s)
- Jens Modrof
- Institut für Virologie der Philipps-Universität Marburg, Robert-Koch-Strasse 17, Marburg 35037, Germany
| | | | | | | |
Collapse
|
41
|
Weik M, Modrof J, Klenk HD, Becker S, Mühlberger E. Ebola virus VP30-mediated transcription is regulated by RNA secondary structure formation. J Virol 2002; 76:8532-9. [PMID: 12163572 PMCID: PMC136988 DOI: 10.1128/jvi.76.17.8532-8539.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nucleocapsid protein VP30 of Ebola virus (EBOV), a member of the Filovirus family, is known to act as a transcription activator. By using a reconstituted minigenome system, the role of VP30 during transcription was investigated. We could show that VP30-mediated transcription activation is dependent on formation of a stem-loop structure at the first gene start site. Destruction of this secondary structure led to VP30-independent transcription. Analysis of the transcription products of bicistronic minigenomes with and without the ability to form the secondary structure at the first transcription start signal revealed that transcription initiation at the first gene start site is a prerequisite for transcription of the second gene, independent of the presence of VP30. When the transcription start signal of the second gene was exchanged with the transcription start signal of the first gene, transcription of the second gene also was regulated by VP30, indicating that the stem-loop structure of the first transcription start site acts autonomously and independently of its localization on the RNA genome. Our results suggest that VP30 regulates a very early step of EBOV transcription, most likely by inhibiting pausing of the transcription complex at the RNA structure of the first transcription start site.
Collapse
Affiliation(s)
- Michael Weik
- Institut für Virologie der Philipps-Universität Marburg, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Harmon SB, Wertz GW. Transcriptional termination modulated by nucleotides outside the characterized gene end sequence of respiratory syncytial virus. Virology 2002; 300:304-15. [PMID: 12350361 DOI: 10.1006/viro.2002.1541] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The genes of respiratory syncytial (RS) virus are transcribed sequentially by the viral RNA polymerase from a single 3'-proximal promoter. Polyadenylation and termination are directed by a sequence at the end of each gene, after which the polymerase crosses an intergenic region and reinitiates at the start sequence of the next gene. The 10 viral genes have different gene end sequences and different termination efficiencies, which allow for regulation of gene expression, since termination of each gene is required for initiation of the downstream gene. RNA sequences within the previously characterized 13 nucleotide gene end, including a conserved sequence 3'-UCAAU-5' and a tract of U residues, are important for termination. In this study, two additional sequence elements outside of the 13 nucleotide gene end were found to modulate termination efficiency: the A residue upstream of the 3'-UCAAU-5' sequence, and the first nucleotide of the intergenic region when it follows a U(4) tract.
Collapse
Affiliation(s)
- Shawn B Harmon
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|