1
|
Williams LD, Shen X, Sawant SS, Akapirat S, Dahora LC, Tay MZ, Stanfield-Oakley S, Wills S, Goodman D, Tenney D, Spreng RL, Zhang L, Yates NL, Montefiori DC, Eller MA, Easterhoff D, Hope TJ, Rerks-Ngarm S, Pittisuttithum P, Nitayaphan S, Excler JL, Kim JH, Michael NL, Robb ML, O’Connell RJ, Karasavvas N, Vasan S, Ferrari G, Tomaras GD. Viral vector delivered immunogen focuses HIV-1 antibody specificity and increases durability of the circulating antibody recall response. PLoS Pathog 2023; 19:e1011359. [PMID: 37256916 PMCID: PMC10284421 DOI: 10.1371/journal.ppat.1011359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/21/2023] [Accepted: 04/14/2023] [Indexed: 06/02/2023] Open
Abstract
The modestly efficacious HIV-1 vaccine regimen (RV144) conferred 31% vaccine efficacy at 3 years following the four-shot immunization series, coupled with rapid waning of putative immune correlates of decreased infection risk. New strategies to increase magnitude and durability of protective immunity are critically needed. The RV305 HIV-1 clinical trial evaluated the immunological impact of a follow-up boost of HIV-1-uninfected RV144 recipients after 6-8 years with RV144 immunogens (ALVAC-HIV alone, AIDSVAX B/E gp120 alone, or ALVAC-HIV + AIDSVAX B/E gp120). Previous reports demonstrated that this regimen elicited higher binding, antibody Fc function, and cellular responses than the primary RV144 regimen. However, the impact of the canarypox viral vector in driving antibody specificity, breadth, durability and function is unknown. We performed a follow-up analysis of humoral responses elicited in RV305 to determine the impact of the different booster immunogens on HIV-1 epitope specificity, antibody subclass, isotype, and Fc effector functions. Importantly, we observed that the ALVAC vaccine component directly contributed to improved breadth, function, and durability of vaccine-elicited antibody responses. Extended boosts in RV305 increased circulating antibody concentration and coverage of heterologous HIV-1 strains by V1V2-specific antibodies above estimated protective levels observed in RV144. Antibody Fc effector functions, specifically antibody-dependent cellular cytotoxicity and phagocytosis, were boosted to higher levels than was achieved in RV144. V1V2 Env IgG3, a correlate of lower HIV-1 risk, was not increased; plasma Env IgA (specifically IgA1), a correlate of increased HIV-1 risk, was elevated. The quality of the circulating polyclonal antibody response changed with each booster immunization. Remarkably, the ALVAC-HIV booster immunogen induced antibody responses post-second boost, indicating that the viral vector immunogen can be utilized to selectively enhance immune correlates of decreased HIV-1 risk. These results reveal a complex dynamic of HIV-1 immunity post-vaccination that may require careful balancing to achieve protective immunity in the vaccinated population. Trial registration: RV305 clinical trial (ClinicalTrials.gov number, NCT01435135). ClinicalTrials.gov Identifier: NCT00223080.
Collapse
Affiliation(s)
- LaTonya D. Williams
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sheetal S. Sawant
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Siriwat Akapirat
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Lindsay C. Dahora
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Matthew Zirui Tay
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sherry Stanfield-Oakley
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Saintedym Wills
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Derrick Goodman
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - DeAnna Tenney
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rachel L. Spreng
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lu Zhang
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicole L. Yates
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Michael A. Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - David Easterhoff
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | | | - Punnee Pittisuttithum
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jean-Louis Excler
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Robert J. O’Connell
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nicos Karasavvas
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Guido Ferrari
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | | |
Collapse
|
2
|
Ao Z, Wang L, Mendoza EJ, Cheng K, Zhu W, Cohen EA, Fowke K, Qiu X, Kobinger G, Yao X. Incorporation of Ebola glycoprotein into HIV particles facilitates dendritic cell and macrophage targeting and enhances HIV-specific immune responses. PLoS One 2019; 14:e0216949. [PMID: 31100082 PMCID: PMC6524799 DOI: 10.1371/journal.pone.0216949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023] Open
Abstract
The development of an effective vaccine against HIV infection remains a global priority. Dendritic cell (DC)-based HIV immunotherapeutic vaccine is a promising approach which aims at optimizing the HIV-specific immune response using primed DCs to promote and enhance both the cellular and humoral arms of immunity. Since the Ebola virus envelope glycoprotein (EboGP) has strong DC-targeting ability, we investigated whether EboGP is able to direct HIV particles towards DCs efficiently and promote potent HIV-specific immune responses. Our results indicate that the incorporation of EboGP into non-replicating virus-like particles (VLPs) enhances their ability to target human monocyte-derived dendritic cells (MDDCs) and monocyte-derived macrophages (MDMs). Also, a mucin-like domain deleted EboGP (EboGPΔM) can further enhanced the MDDCs and MDMs-targeting ability. Furthermore, we investigated the effect of EboGP on HIV immunogenicity in mice, and the results revealed a significantly stronger HIV-specific humoral immune response when immunized with EboGP-pseudotyped HIV VLPs compared with those immunized with HIV VLPs. Splenocytes harvested from mice immunized with EboGP-pseudotyped HIV VLPs secreted increased levels of macrophage inflammatory proteins-1α (MIP-1α) and IL-4 upon stimulation with HIV Env and/or Gag peptides compared with those harvested from mice immunized with HIV VLPs. Collectively, this study provides evidence for the first time that the incorporation of EboGP in HIV VLPs can facilitate DC and macrophage targeting and induce more potent immune responses against HIV.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Chemokine CCL3/genetics
- Chemokine CCL3/immunology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Ebolavirus/chemistry
- Female
- Gene Expression
- HEK293 Cells
- HIV Antibodies/biosynthesis
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/drug effects
- HIV-1/growth & development
- HIV-1/immunology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunization
- Immunogenicity, Vaccine
- Interleukin-4/genetics
- Interleukin-4/immunology
- Lymphocytes/cytology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/virology
- Mice
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Primary Cell Culture
- Spleen/cytology
- Spleen/drug effects
- Spleen/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lijun Wang
- Laboratory of Molecular Human Retrovirology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Histology and Embryology, Zunyi Medical College, Zunyi, Guizhou, China
| | - Emelissa J. Mendoza
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Keding Cheng
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Wenjun Zhu
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Eric A. Cohen
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Keith Fowke
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiangguo Qiu
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gary Kobinger
- Centre de Recherche en Infectiologie de l’Université Laval/Centre Hospitalier de l’Université Laval (CHUL), Québec, Quebec, Canada
- * E-mail: (XJY); (GK)
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (XJY); (GK)
| |
Collapse
|
3
|
|
4
|
Liu F, Niu Q, Fan X, Liu C, Zhang J, Wei Z, Hou W, Kanneganti TD, Robb ML, Kim JH, Michael NL, Sun J, Soong L, Hu H. Priming and Activation of Inflammasome by Canarypox Virus Vector ALVAC via the cGAS/IFI16-STING-Type I IFN Pathway and AIM2 Sensor. THE JOURNAL OF IMMUNOLOGY 2017; 199:3293-3305. [PMID: 28947539 DOI: 10.4049/jimmunol.1700698] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023]
Abstract
Viral vectors derived from different virus families, including poxvirus (canarypox virus vector ALVAC) and adenovirus (human Ad5 vector), have been widely used in vaccine development for a range of human diseases including HIV/AIDS. Less is known about the mechanisms underlying the host innate response to these vectors. Increasing evidence from clinical vaccine trials testing different viral vectors has suggested the importance of understanding basic elements of host-viral vector interactions. In this study, we investigated the innate interactions of APCs with two commonly used HIV vaccine vectors, ALVAC and Ad5, and identified AIM2 as an innate sensor for ALVAC, triggering strong inflammasome activation in both human and mouse APCs. Microarray and comprehensive gene-knockout analyses (CRISPR/Cas9) identified that ALVAC stimulated the cGAS/IFI16-STING-type I IFN pathway to prime AIM2, which was functionally required for ALVAC-induced inflammasome activation. We also provided evidence that, in contrast to ALVAC, the Ad5 vector itself was unable to induce inflammasome activation, which was related to its inability to stimulate the STING-type I IFN pathway and to provide inflammasome-priming signals. In preconditioned APCs, the Ad5 vector could stimulate inflammasome activation through an AIM2-independent mechanism. Therefore, our study identifies the AIM2 inflammasome and cGAS/IFI16-STING-type I IFN pathway as a novel mechanism for host innate immunity to the ALVAC vaccine vector.
Collapse
Affiliation(s)
- Fengliang Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Qingli Niu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Connie Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jie Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan 430070, China
| | | | - Merlin L Robb
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Jerome H Kim
- International Vaccine Institute, Seoul 08826, Republic of Korea; and
| | - Nelson L Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; .,Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
5
|
Zhao C, Ao Z, Yao X. Current Advances in Virus-Like Particles as a Vaccination Approach against HIV Infection. Vaccines (Basel) 2016; 4:vaccines4010002. [PMID: 26805898 PMCID: PMC4810054 DOI: 10.3390/vaccines4010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/31/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
HIV-1 virus-like particles (VLPs) are promising vaccine candidates against HIV-1 infection. They are capable of preserving the native conformation of HIV-1 antigens and priming CD4+ and CD8+ T cell responses efficiently via cross presentation by both major histocompatibility complex (MHC) class I and II molecules. Progress has been achieved in the preclinical research of HIV-1 VLPs as prophylactic vaccines that induce broadly neutralizing antibodies and potent T cell responses. Moreover, the progress in HIV-1 dendritic cells (DC)-based immunotherapy provides us with a new vision for HIV-1 vaccine development. In this review, we describe updates from the past 5 years on the development of HIV-1 VLPs as a vaccine candidate and on the combined use of HIV particles with HIV-1 DC-based immunotherapy as efficient prophylactic and therapeutic vaccination strategies.
Collapse
Affiliation(s)
- Chongbo Zhao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
6
|
Abstract
Dendritic cells (DCs) are a diverse subset of innate immune cells that are key regulators of the host response to human immunodeficiency virus-1 (HIV-1) infection. HIV-1 directly and indirectly modulates DC function to hinder the formation of effective antiviral immunity and fuel immune activation. This review focuses upon the differential dysregulation of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) at various stages of HIV-1 infection providing insights into pathogenesis. HIV-1 evades innate immune sensing by mDCs resulting in suboptimal maturation, lending to poor generation of antiviral adaptive responses and contributing to T-regulatory cell (Treg) development. Dependent upon the stage of HIV-1 infection, mDC function is altered in response to Toll-like receptor ligands, which further hinders adaptive immunity and limits feasibility of therapeutic vaccine strategies. pDC interactions with HIV-1 are pleotropic, modulating immune responses on an axis between immunostimulatory and immunosuppressive. pDCs promote immune activation through an altered phenotype of persistent type I interferon secretion and weak antigen presentation capacity. Conversely, HIV-1 stimulates secretion of indolemine 2,3 dioxygenase (IDO) by pDCs resulting in Treg induction. An improved understanding of the roles and underlying mechanisms of DC dysfunction will be valuable to the development of therapeutics to enhance HIV-specific adaptive responses and to dampen immune activation.
Collapse
Affiliation(s)
- Elizabeth Miller
- Division of Infectious Diseases, New York University School of Medicine, New York, NY, USA
| | - Nina Bhardwaj
- Cancer Institute, New York University School of Medicine, New York, NY, USA
- Division of Hematology and Oncology, Mount Sinai Medical Center, New York, NY, USA
| |
Collapse
|
7
|
The development of gene-based vectors for immunization. Vaccines (Basel) 2013. [PMCID: PMC7151937 DOI: 10.1016/b978-1-4557-0090-5.00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Lousberg EL, Diener KR, Brown MP, Hayball JD. Innate immune recognition of poxviral vaccine vectors. Expert Rev Vaccines 2012; 10:1435-49. [PMID: 21988308 DOI: 10.1586/erv.11.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The study of poxviruses pioneered the field of vaccinology after Jenner's remarkable discovery that 'vaccination' with the phylogenetically related cowpox virus conferred immunity to the devastating disease of smallpox. The study of poxviruses continues to enrich the field of virology because the global eradication of smallpox provides a unique example of the potency of effective immunization. Other poxviruses have since been developed as vaccine vectors for clinical and veterinary applications and include modified vaccinia virus strains such as modified vaccinia Ankara and NYVAC as well as the avipox viruses, fowlpox virus and canarypox virus. Despite the empirical development of poxvirus-based vectored vaccines, it is only now becoming apparent that we need to better understand how the innate arm of the immune system drives adaptive immunity to poxviruses, and how this information is relevant to vaccine design strategies, which are the topics addressed in this article.
Collapse
Affiliation(s)
- Erin L Lousberg
- Experimental Therapeutics Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | | | | | | |
Collapse
|
9
|
Costiniuk CT, Angel JB. ALVAC-HIV as a prophylactic and therapeutic vaccine: highlights from over a decade of clinical trials. Future Virol 2011. [DOI: 10.2217/fvl.11.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ALVAC-HIV vaccines (vCP125, vCP205, vCP300, vCP1433, vCP1452 and vCP1521) are preparations of a modified recombinant canarypox virus designed to induce or augment CD8+ immune responses. As the focus of several Phase I–III trials, they have been the most extensively studied live vector-based HIV vaccines. Overall, ALVAC-HIV induces modest CD8+ T-cell responses in approximately 20–50% of recipients. The addition of IL-2, recombinant glycoprotein 120 or 160, Remune or LIPO-6T to ALVAC-HIV does not appear to enhance overall CD8+ T-cell immune responses. The ability of ALVAC-HIV to induce interclade immunity and immunogenicity in newborns with perinatal exposure to HIV has important implications for the control of HIV worldwide. Experience from clinical trials in over 10,000 HIV-infected and noninfected individuals has shown that ALVAC constructs are safe, with reactogenicity profiles similar to those reported for currently licensed vaccines. Despite seemingly modest immunogenicity at the present time, studies to date have set the stage for further exploration of the potential of ALVAC-HIV vaccines. This report highlights findings from clinical trials using ALVAC-HIV, alone and in combination with other agents, as both a prophylactic and a therapeutic vaccine.
Collapse
Affiliation(s)
- Cecilia T Costiniuk
- Division of Infectious Diseases, Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
10
|
Martinez-Navio JM, Climent N, Gallart T, Lluis C, Franco R. An old enzyme for current needs: adenosine deaminase and a dendritic cell vaccine for HIV. Immunol Cell Biol 2011; 90:594-600. [PMID: 21931337 DOI: 10.1038/icb.2011.81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After nearly three decades of searching for a vaccine against HIV, a cure for this pandemic disease still remains elusive. The low immunogenicity of the surface proteins and the huge variability of the virus, together with the immunocompromised status of the host, have made developing an HIV vaccine an uphill battle. Over the past few years, both immunogen design and immunization strategies have improved, providing hope for future, although the anti-HIV responses achieved still remain modest. As developing a prophylactic vaccine seems unlikely nowadays, efforts have focused on alternative therapeutic immunization approaches, although these still need to be further optimized. Using an immunomodulator capable of restoring immune function in the context of infection, thereby boosting cell-mediated and humoral responses, could be critical in effectively improving current therapeutic approaches. Adenosine deaminase, a protein with a pivotal role in T-cell co-stimulation, has been shown to robustly enhance specific T-cell responses against HIV in vitro. Although its role in humoral responses has not yet been assessed, genetic defects in this enzyme are associated with impaired cellular and humoral responses. Importantly, this molecule is already commercially available pharmaceutically and, therefore, it fulfils all the requirements to be assayed as an anti-HIV vaccine adjuvant.
Collapse
Affiliation(s)
- Jose M Martinez-Navio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
11
|
García F, Routy JP. Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection Workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine 2011; 29:6454-63. [PMID: 21791232 DOI: 10.1016/j.vaccine.2011.07.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 12/21/2022]
Abstract
Therapeutic immunization has been proposed as an approach that might help limit the need for lifelong combined antiretroviral therapy (cART). One approach for therapeutic vaccination which has been explored during the last few years is the administration of autologous monocyte-derived DCs (MD-DCs) loaded ex vivo with a variety of antigens. It has been shown in experimental murine models as well as in cancer patients and in patients with chronic infections that this approach can induce and potentiate antigen-specific T-cell response (and to induce a potent protective immunity). Contrary to the wide experience with this strategy in cancer, in HIV-1 infection the experience is limited and the design of the clinical trials varies greatly between groups. This variability affects all the steps of the process, from preparation of immunogen and DCs to clinical trial design and immune monitoring. Although both the study designs and the DC preparation (the maturation stimuli and the identity and source of HIV-1 antigens used to pulse DCs) varied in most of the studies that were published so far, overall the results indicate that DC immunotherapy elicits some degree of immunological response. To address this situation and to allow comparison between trials a panel of experts working in DC-based clinical trials in HIV-1 infection met in Barcelona at the end of 2010. During this meeting, the participants shared the data of their current research activities in this field in order to unify criteria for the future. This report summarizes the present situation of the field and the discussions and conclusions of this meeting.
Collapse
Affiliation(s)
- Felipe García
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain.
| | | |
Collapse
|
12
|
Faber M, Dietzschold B, Li J. Immunogenicity and safety of recombinant rabies viruses used for oral vaccination of stray dogs and wildlife. Zoonoses Public Health 2011; 56:262-9. [PMID: 19486317 DOI: 10.1111/j.1863-2378.2008.01215.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rabies is a zoonotic disease and stray dogs, wild carnivores and bats are the natural reservoirs of rabies. Oral immunization with live vaccines is the only practical approach to eradicate rabies in free ranging terrestrial animals. We have developed the double glycoprotein (G) rabies virus (RV) variant SPBNGAS-GAS that has great promise to be used as a live-attenuated vaccine. Oral immunization of rodents and several target animal species with this double G RV variant resulted in the induction of protective immunity, superior to that induced by a single RV G variant (SPBNGAS). The high oral efficacy of SPBNGAS-GAS is likely because of its increased ability to infect monocytes or immature dendritic cells (DCs), thereby inducing their conversion into mature DCs. Furthermore, infection of DCs with the double G variant resulted in a strong up-regulation of the expression of genes related to the NFjB signalling pathway including IFN-α and IFN-β, which might underlie the protection conferred by this live RV vaccine. A potential problem associated with the use of live RVs for oral vaccination could rest in the possibility of reversion to the pathogenic phenotype because of the high mutation rate characteristic for all RNA viruses. In this respect, the presence of a second non-pathogenic G gene decreases considerably the risk of reversion to the pathogenic phenotype because a nonpathogenic G is dominant over a pathogenic G in determining the pathogenicity of the double G RV variant. Because of its excellent efficacy and safety, the SPBNGAS-GAS vaccine may provide a distinct advantage over other live RV vaccine in its ability to vaccinate a broad range of mammalian species.
Collapse
Affiliation(s)
- M Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Following the evidence that T-cell responses are crucial in the control of HIV-1 infection, vaccines targeting T-cell responses were tested in recent clinical trials. However, these vaccines showed a lack of efficacy. This review attempts to define the qualitative and quantitative features that are desirable for T-cell-induced responses by vaccines. We also describe strategies that could lead to achievement of this goal. RECENT FINDINGS Using the yellow fever vaccine as a benchmark of an efficient vaccine, recent studies identified factors of immune protection and more importantly innate immune pathways needed for the establishment of long-term protective adaptive immunity. SUMMARY To prevent or control HIV-1 infection, a vaccine must induce efficient and persistent antigen-specific T cells endowed with mucosal homing capacity. Such cells should have the capability to counteract HIV-1 diversity and its rapid spread from the initial site of infection. To achieve this goal, the activation of a diversified innate immune response is critical. New systems biology approaches will provide more precise correlates of immune protection that will pave the way for new approaches in T-cell-based vaccines.
Collapse
|
14
|
Wanjalla CN, Faul EJ, Gomme EA, Schnell MJ. Dendritic cells infected by recombinant rabies virus vaccine vector expressing HIV-1 Gag are immunogenic even in the presence of vector-specific immunity. Vaccine 2010; 29:130-40. [PMID: 20728525 DOI: 10.1016/j.vaccine.2010.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 11/28/2022]
Abstract
Dendritic cells (DC) are the most potent antigen presenting cells whose ability to interact with T cells, B cells and NK cells has led to their extensive use in vaccine design. Here, we designed a DC-based HIV-1 vaccine using an attenuated rabies virus vector expressing HIV-1 Gag (RIDC-Gag). To test this, BALB/c mice were immunized with RIDC-Gag, and the primary, secondary as well as humoral immune responses were monitored. Our results indicate that RIDC-Gag stimulated HIV-1 Gag-specific immune responses in mice. When challenged with vaccinia virus (VV) expressing HIV-1 Gag, they elicited a potent Gag-specific recall response characterized by CD8+ T cells expressing multiple cytokines that were capable of specifically lysing Gag-pulsed target cells. Moreover, RIDC-Gag also enhanced CD8+ T cell responses via a homologous prime-boost regimen. These results show that a DC-based vaccine using live RV is immunogenic and a potential candidate for a therapeutic HIV-1 vaccine.
Collapse
Affiliation(s)
- Celestine N Wanjalla
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
15
|
Oshiro TM, de Almeida A, da Silva Duarte AJ. Dendritic cell immunotherapy for HIV infection: from theory to reality. Immunotherapy 2009; 1:1039-51. [DOI: 10.2217/imt.09.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Knowledge concerning the immunology of dendritic cells (DCs) accumulated over the last few decades and the development of methodologies to generate and manipulate these cells in vitro has made their therapeutic application a reality. Currently, clinical protocols for DC-based therapeutic vaccine in HIV-infected individuals show that it is a safe and promising approach. Concomitantly, important advances continue to be made in the development of methodologies to optimize DC acquisition, as well as the selection of safe, immunogenic HIV antigens and the evaluation of immune response in treated individuals.
Collapse
Affiliation(s)
- Telma Miyuki Oshiro
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| | - Alexandre de Almeida
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| | - Alberto José da Silva Duarte
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| |
Collapse
|
16
|
Promkhatkaew D, Pinyosukhee N, Thongdeejaroen W, Teeka J, Wutthinantiwong P, Leangaramgul P, Sawanpanyalert P, Warachit P. Prime-Boost Immunization of Codon Optimized HIV-1 CRF01_AE Gag in BCG with Recombinant Vaccinia Virus Elicits MHC Class I and II Immune Responses in Mice. Immunol Invest 2009; 38:762-79. [PMID: 19860587 PMCID: PMC9491105 DOI: 10.3109/08820130903070544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The HIV-1 CRF01_AE gag gene was modified by codon restriction for Mycobacterium spp. and transformed into BCG; and it was designated as rBCG/codon optimized gagE. This produced 11 fold higher HIV-1 gag protein expression than the recombinant native gene rBCG/HIV-1gagE. In mice, CTL activity could be induced either by a single immunization of the codon optimized construct or by using it as a priming antigen in the prime-boost modality with recombinant Vaccinia virus expressing native HIV-1 gag. Specific secreted cytokine responses were also investigated. Only when rBCG gag was codon optimized did the prime-boost immunization produce significantly enhanced IFN-γ and IL-2 secretion indicating recognition via CD4+ and CD8+ T cells, and these responses seemed to be codon optimized immunogen dose-responsive. On contrary, the prime-boost vaccination using an equal amount of native rBCG/HIV-1gagE instead, or a single rBCG/codon optimized gagE immunization, had no similar effect on the cytokine secretion. These findings suggest that the use of recombinant codon BCG construct with recombinant Vaccinia virus encoding CRF01_AE gag as the prime-boost HIV vaccine candidate, will induce CD4+ Th1 and CD8+ T cell cytokine secretions in addition to enhancing CD8+ CTL response.
Collapse
|
17
|
Manuel SL, Schell TD, Acheampong E, Rahman S, Khan ZK, Jain P. Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: the underlying mechanism of HTLV-1-associated neuroinflammatory disease. J Leukoc Biol 2009; 86:1205-16. [PMID: 19656902 DOI: 10.1189/jlb.0309172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HTLV-1 is the etiologic agent of a debilitating neurologic disorder, HAM/TSP. This disease features a robust immune response including the oligoclonal expansion of CD8+ CTLs specific for the viral oncoprotein Tax. The key pathogenic process resulting in the proliferation of CTLs and the presentation of Tax peptide remains uncharacterized. We have investigated the role of APCs, particularly DCs, in priming of the anti-Tax CTL response under in vitro and in vivo conditions. We investigated two routes (direct vs. indirect) of Tax presentation using live virus, infected primary CD4+/CD25+ T cells, and the CD4+ T cell line (C8166, a HTLV-1-mutated line that only expresses Tax). Our results indicated that DCs are capable of priming a pronounced Tax-specific CTL response in cell cultures consisting of naïve PBLs as well as in HLA-A*0201 transgenic mice (line HHD II). DCs were able to direct the presentation of Tax successfully through infected T cells, live virus, and cell-free Tax. These observations were comparable with those made with a known stimulant of DC maturation, a combination of CD40L and IFN-gamma. Our studies clearly establish a role for this important immune cell component in HTLV-1 immuno/neuropathogenesis and suggest that modulation of DC functions could be an important tool for therapeutic interventions.
Collapse
Affiliation(s)
- Sharrón L Manuel
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | |
Collapse
|
18
|
Gandhi RT, O'Neill D, Bosch RJ, Chan ES, Bucy RP, Shopis J, Baglyos L, Adams E, Fox L, Purdue L, Marshak A, Flynn T, Masih R, Schock B, Mildvan D, Schlesinger SJ, Marovich MA, Bhardwaj N, Jacobson JM. A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy. Vaccine 2009; 27:6088-94. [PMID: 19450647 DOI: 10.1016/j.vaccine.2009.05.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 05/04/2009] [Accepted: 05/10/2009] [Indexed: 11/17/2022]
Abstract
Targeting canarypox (CP)-HIV vaccine to dendritic cells (DCs) elicits anti-HIV-1 immune responses in vitro. We conducted a phase I/II clinical trial to evaluate whether adding DC to a CP-HIV vaccine improved virologic control during analytic treatment interruption (ATI) in HIV-1-infected subjects. Twenty-nine subjects on suppressive antiretroviral therapy were randomized to vaccination with autologous DCs infected with CP-HIV+keyhole limpet hemocyanin (KLH) (arm A, n=14) or CP-HIV+KLH alone (arm B, n=15). The mean viral load (VL) setpoint during ATI did not differ between subjects in arms A and B. A higher percentage of subjects in the DC group had a VL setpoint < 5,000 c/mL during ATI (4/13 or 31% in arm A compared with 0/13 in arm B, p=0.096), but virologic control was transient. Subjects in arm A had a greater increase in KLH lymphoproliferative response than subjects in arm B; however, summed ELISPOT responses to HIV-1 antigens did not differ by treatment arm. We conclude that a DC-CP-HIV vaccine is well-tolerated in HIV-1-infected patients, but does not lower VL setpoint during ATI compared with CP-HIV alone. New methods to enhance the immunogenicity and antiviral efficacy of DC-based vaccines for HIV-1 infection are needed.
Collapse
Affiliation(s)
- Rajesh T Gandhi
- Massachusetts General Hospital, 55 Fruit St, GRJ 504, Boston, MA 02114, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Carulei O, Douglass N, Williamson AL. Phylogenetic analysis of three genes of Penguinpox virus corresponding to Vaccinia virus G8R (VLTF-1), A3L (P4b) and H3L reveals that it is most closely related to Turkeypox virus, Ostrichpox virus and Pigeonpox virus. Virol J 2009; 6:52. [PMID: 19426497 PMCID: PMC2688499 DOI: 10.1186/1743-422x-6-52] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/08/2009] [Indexed: 12/14/2022] Open
Abstract
Phylogenetic analysis of three genes of Penguinpox virus, a novel Avipoxvirus isolated from African penguins, reveals its relationship to other poxviruses. The genes corresponding to Vaccinia virus G8R (VLTF-1), A3L (P4b) and H3L were sequenced and phylogenetic trees (Neighbour-Joining and UPGMA) constructed from MUSCLE nucleotide and amino acid alignments of the equivalent sequences from several different poxviruses. Based on this analysis, PEPV was confirmed to belong to the genus Avipoxvirus, specifically, clade A, subclade A2 and to be most closely related to Turkeypox virus (TKPV), Ostrichpox virus (OSPV)and Pigeonpox virus (PGPV).
Collapse
Affiliation(s)
- Olivia Carulei
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | | | | |
Collapse
|
20
|
The role of host genetics in the susceptibility for HIV-associated neurocognitive disorders. AIDS Behav 2009; 13:118-32. [PMID: 18264751 DOI: 10.1007/s10461-008-9360-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 01/22/2008] [Indexed: 12/23/2022]
Abstract
Despite progress in the treatment of the Human Immunodeficiency virus (HIV), there continues to be a high prevalence of infected individuals who develop neurocognitive deficits and disorders. Our understanding of the potential cause of HIV-associated neurocognitive disorders (HAND) continues to develop on many fronts. Among them is the study of host genetics. Here, we review the most current information regarding the association between host genetics and risk for HIV infection, AIDS, and HAND. We focus on the role of dopamine dysfunction in the etiology of HAND, and propose a number of genetic polymorphisms within genes related to dopaminergic functioning and other neurobiological factors that may confer vulnerability or protection against HAND.
Collapse
|
21
|
Lubong Sabado R, Kavanagh DG, Kaufmann DE, Fru K, Babcock E, Rosenberg E, Walker B, Lifson J, Bhardwaj N, Larsson M. In vitro priming recapitulates in vivo HIV-1 specific T cell responses, revealing rapid loss of virus reactive CD4 T cells in acute HIV-1 infection. PLoS One 2009; 4:e4256. [PMID: 19165342 PMCID: PMC2626278 DOI: 10.1371/journal.pone.0004256] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/13/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The requirements for priming of HIV-specific T cell responses initially seen in infected individuals remain to be defined. Activation of T cell responses in lymph nodes requires cell-cell contact between T cells and DCs, which can give concurrent activation of T cells and HIV transmission. METHODOLOGY The study aim was to establish whether DCs pulsed with HIV-1 could prime HIV-specific T cell responses and to characterize these responses. Both infectious and aldrithiol-2 inactivated noninfectious HIV-1 were compared to establish efficiencies in priming and the type of responses elicited. FINDINGS Our findings show that both infectious and inactivated HIV-1 pulsed DCs can prime HIV-specific responses from naïve T cells. Responses included several CD4(+) and CD8(+) T cell epitopes shown to be recognized in vivo by acutely and chronically infected individuals and some CD4(+) T cell epitopes not identified previously. Follow up studies of acute and recent HIV infected samples revealed that these latter epitopes are among the earliest recognized in vivo, but the responses are lost rapidly, presumably through activation-induced general CD4(+) T cell depletion which renders the newly activated HIV-specific CD4(+) T cells prime targets for elimination. CONCLUSION Our studies highlight the ability of DCs to efficiently prime naïve T cells and induce a broad repertoire of HIV-specific responses and also provide valuable insights to the pathogenesis of HIV-1 infection in vivo.
Collapse
Affiliation(s)
- Rachel Lubong Sabado
- New York University School of Medicine, New York, New York, United States of America
| | - Daniel G. Kavanagh
- Partners AIDS Research Center (PARC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Daniel E. Kaufmann
- Partners AIDS Research Center (PARC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Karlhans Fru
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ethan Babcock
- New York University School of Medicine, New York, New York, United States of America
| | - Eric Rosenberg
- Partners AIDS Research Center (PARC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Bruce Walker
- Partners AIDS Research Center (PARC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Jeffrey Lifson
- SAIC Fredrick, Inc., National Cancer Institute, Fredrick, Frederick, Maryland, United States of America
| | - Nina Bhardwaj
- New York University School of Medicine, New York, New York, United States of America
| | - Marie Larsson
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
22
|
Harenberg A, Guillaume F, Ryan EJ, Burdin N, Spada F. Gene profiling analysis of ALVAC infected human monocyte derived dendritic cells. Vaccine 2008; 26:5004-13. [PMID: 18691624 PMCID: PMC7115550 DOI: 10.1016/j.vaccine.2008.07.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/13/2008] [Accepted: 07/20/2008] [Indexed: 02/06/2023]
Abstract
The recombinant canarypox virus ALVAC is being extensively studied as vaccine vector for the development of new vaccine strategies against chronic infectious diseases and cancer. However, the mechanisms by which ALVAC initiates the immune response have not been completely elucidated. In order to determine the type of innate immunity triggered by ALVAC, we characterized the gene expression profile of human monocyte derived dendritic cells (MDDCs) upon ALVAC infection. These cells are permissive to poxvirus infection and play a key role in the initiation of immune responses. The majority of the genes that were up-regulated by ALVAC belong to the type I interferon signaling pathway including IRF7, STAT1, RIG-1, and MDA-5. Genes involved in the NF-κB pathway were not up-regulated. The gene encoding for the chemokine CXCL10, a direct target of the transcription factor IRF3 was among those up-regulated and DC secretion of CXCL10 following exposure to ALVAC was confirmed by ELISA. Many downstream type I interferon activated genes with anti-viral activity (PKR, Mx, ISG15 and OAS among others) were also up-regulated in response to ALVAC. Among these, ISG15 expression in its unconjugated form by Western blot analysis was demonstrated. In view of these results we propose that ALVAC induces type I interferon anti-viral innate immunity via a cytosolic pattern-recognition-receptor (PRR) sensing double-stranded DNA, through activation of IRF3 and IRF7. These findings may aid in the design of more effective ALVAC-vectored vaccines.
Collapse
Affiliation(s)
- Anke Harenberg
- Sanofi-Pasteur, Campus Mérieux, 1541 Avenue Marcel Mérieux, 69280 Marcy l'Etoile, France.
| | | | | | | | | |
Collapse
|
23
|
O'Neill DW, Bhardwaj N. Differentiation of peripheral blood monocytes into dendritic cells. ACTA ACUST UNITED AC 2008; Chapter 22:Unit 22F.4. [PMID: 18432951 DOI: 10.1002/0471142735.im22f04s67] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APC) that are important in the initiation and control of cellular immune responses. Commonly used in T cell-stimulation experiments, DCs are typically "matured" in vitro with microbial products or proinflammatory cytokines, and then loaded with antigens from any number of sources, including peptides, whole proteins, cell lysates, RNA, microbes, or killed tumor cells. This unit presents a simple and commonly used method for the generation of mature human dendritic cells--differentiating them from peripheral blood monocytes.
Collapse
Affiliation(s)
- David W O'Neill
- New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
24
|
Efficient in vitro expansion of human immunodeficiency virus (HIV)-specific T-cell responses by gag mRNA-electroporated dendritic cells from treated and untreated HIV type 1-infected individuals. J Virol 2008; 82:3561-73. [PMID: 18234800 DOI: 10.1128/jvi.02080-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing an immunotherapy to keep human immunodeficiency virus type 1 (HIV-1) replication suppressed while discontinuing highly active antiretroviral therapy (HAART) is an important challenge. In the present work, we evaluated in vitro whether dendritic cells (DC) electroporated with gag mRNA can induce HIV-specific responses in T cells from chronically infected subjects. Monocyte-derived DC, from therapy-naïve and HAART-treated HIV-1-seropositive subjects, that were electroporated with consensus codon-optimized HxB2 gag mRNA efficiently expanded T cells, secreting gamma interferon (IFN-gamma) and interleukin 2 (IL-2), as well as other cytokines and perforin, upon restimulation with a pool of overlapping Gag peptides. The functional expansion levels after 1 week of stimulation were comparable in T cells from HAART-treated and treatment-naïve patients and involved both CD4(+) and CD8(+) T cells, with evidence of bifunctionality in T cells. Epitope mapping of p24 showed that stimulated T cells had a broadened response toward previously nondescribed epitopes. DC, from HAART-treated subjects, that were electroporated with autologous proviral gag mRNA equally efficiently expanded HIV-specific T cells. Regulatory T cells did not prevent the induction of effector T cells in this system, whereas the blocking of PD-L1 slightly increased the induction of T-cell responses. This paper shows that DC, loaded with consensus or autologous gag mRNA, expand HIV-specific T-cell responses in vitro.
Collapse
|
25
|
Nabel GJ. The development of gene-based vectors for immunization. Vaccines (Basel) 2008. [PMCID: PMC7310921 DOI: 10.1016/b978-1-4160-3611-1.50066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
26
|
Hosoya N, Miura T, Kawana-Tachikawa A, Koibuchi T, Shioda T, Odawara T, Nakamura T, Kitamura Y, Kano M, Kato A, Hasegawa M, Nagai Y, Iwamoto A. Comparison between Sendai virus and adenovirus vectors to transduce HIV-1 genes into human dendritic cells. J Med Virol 2008; 80:373-82. [DOI: 10.1002/jmv.21052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Li J, McGettigan JP, Faber M, Schnell MJ, Dietzschold B. Infection of monocytes or immature dendritic cells (DCs) with an attenuated rabies virus results in DC maturation and a strong activation of the NFkappaB signaling pathway. Vaccine 2007; 26:419-26. [PMID: 18082293 DOI: 10.1016/j.vaccine.2007.10.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 10/18/2007] [Accepted: 10/29/2007] [Indexed: 01/15/2023]
Abstract
To assess the potential role of dendritic cells (DCs) or monocytes in the development of a protective immune response, we infected human immature DCs or monocytes with a live rabies virus (RV) vaccine strain (SPBNGAS-GAS) and a pathogenic RV (DOG4). Both cell types were infected with SPBNGAS-GAS and DOG4 and both RVs were similarly potent in inducing maturation of immature DCs or monocytes. However, in contrast to DOG4, SPBNGAS-GAS induced very high levels of IFN-alpha1 mRNA in monocytes and DCs. Furthermore, at least 26 other genes related to the NFkappaB signaling pathway were strongly upregulated in SPBNGAS-GAS-infected DCs, but only somewhat increased in DOG4-infected cells. Thus, the extent of upregulation of NFkappaB pathway-related genes in DCs infected with the live RV vaccine strain might explain the strong protective activity of SPBNGAS-GAS.
Collapse
Affiliation(s)
- Jianwei Li
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
28
|
Melhem NM, Liu XD, Boczkowski D, Gilboa E, Barratt-Boyes SM. Robust CD4+ and CD8+ T cell responses to SIV using mRNA-transfected DC expressing autologous viral Ag. Eur J Immunol 2007; 37:2164-73. [PMID: 17615585 DOI: 10.1002/eji.200636782] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A potentially powerful strategy for therapeutic HIV vaccination is the use of DC transfected with mRNA encoding autologous viral Ag, as epitopes presented by transfected DC would exactly reflect those expressed by infected cells in the individual. Using human and rhesus macaque monocyte-derived DC, we show that nucleofection is a superior method for mRNA transfection, resulting in high-level protein expression and DC maturation. DC transfected with SIV gag isolated from an infected monkey stimulated robust Ag-specific recall T cell responses of similar magnitude to those induced by peptide-pulsed PBMC that were predominantly CD8+ T cell mediated. Enhanced CD4+ T cell responses were stimulated when Gag was redirected into the lysosomal pathway via the targeting signal derived from lysosome-associated membrane protein-1 (LAMP-1). Rhesus DC transfected with lysosome-targeted gag encoding an escape mutation in an immunodominant CTL epitope stimulated CD4+ and CD8+ T cell responses of almost equivalent magnitude directed towards undefined epitopes outside of the mutated region. Finally, gag-transfected DC from SIV-infected monkeys stimulated significant Ag-specific recall T cell responses in an entirely autologous system. These findings demonstrate that mRNA-transfected DC expressing SIV Ag derived from infected monkeys stimulate broad and relevant T cell responses, supporting this approach for therapeutic HIV vaccine development.
Collapse
Affiliation(s)
- Nada M Melhem
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The primary focus of our work is the initiation of an antiviral immune response. While we employ many experimental systems to address this fundamental issue, much of our work revolves around the use of vaccinia virus. Concerns over the negative effects of vaccination have prevented the return of the smallpox immunization program to the general population and underscored the importance of understanding the primary immune response to vaccinia virus. This response is comprised of a complex symphony of immune system components employing a variety of different mechanisms. In this review, we will both highlight the roles of many of these components and touch on the applications of vaccinia virus in the laboratory and the clinic.
Collapse
Affiliation(s)
- Matthew A Fischer
- Department of Microbiology and Immunology, Pennsylvania State University, Milton S. Hershey College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
30
|
O'Neill DW, Bhardwaj N. Exploiting dendritic cells for active immunotherapy of cancer and chronic infections. Mol Biotechnol 2007; 36:131-41. [PMID: 17914192 DOI: 10.1007/s12033-007-0020-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/25/2022]
Abstract
Dendritic cells (DCs) are important antigen-presenting cells (APCs) that can prime naive T cells and control adaptive immune responses with respect to magnitude, memory and self-tolerance. Understanding the biology of these cells is central to the development of new generation immunotherapies for cancer and chronic infections. This review presents a brief overview of DC biology and of the preparation and use of DC-based vaccines.
Collapse
Affiliation(s)
- David W O'Neill
- Pathology, New York University School of Medicine, Rusk Research Bldg., Room 718, 400 East 34th Street, NewYork, NY 10016, USA. david.o'
| | | |
Collapse
|
31
|
Yang JY, Cao DY, Liu WC, Zhang HM, Teng ZH, Ren J. Dendritic cell generated from CD34+ hematopoietic progenitors can be transfected with adenovirus containing gene of HBsAg and induce antigen-specific cytotoxic T cell responses. Cell Immunol 2006; 240:14-21. [PMID: 16875681 DOI: 10.1016/j.cellimm.2006.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/17/2006] [Accepted: 06/01/2006] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells that are being considered as potential immunotherapeutic agents to promote host immune responses against tumor antigens. The use of such modified antigen-presenting cells for research or therapeutic have been limited by several factors, including maintaining DCs in a highly activated state, efficient transduction and expression, stable expression, identification of appropriate tumor-associated antigens, and absence of unintended functional changes or cytotoxicity. In this study, the feasibility of using CD34-DCs for tumor immunotherapy after transduction with a recombinant adenovirus containing HBsAg gene (AdVHBsAg), an HCC-associated antigen, was investigated. The gene transfer with recombinant adenovirus vectors (AdV) can obtained high levels of stable expression of HBsAg and its efficiency was increased in a multiplicity of infection (MOI)-dependent manner. Moreover, the AdVHBsAg infection had no appreciable effect on apoptosis of DCs compared with that of mock-infected DCs. The T cell lines, primed by the recombinant AdVHBsAg-infected DCs in vitro, recognized HBsAg-expressing tumor cell lines in a human leukocyte antigen (HLA) class I-restricted manner, and evoked a higher CTL response, which indicated that high potent and specific antitumor immune response could be induced by AdVHBsAg DC vaccine. It may be a promising the therapeutic modality for the treatment of HBsAg-expressing tumors, and will be a foundation for further study on DC vaccines and gene therapy for HCC.
Collapse
Affiliation(s)
- Jing-Yue Yang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province 710032, China
| | | | | | | | | | | |
Collapse
|
32
|
Trakatelli M, Toungouz M, Lambermont M, Heenen M, Velu T, Bruyns C. Immune characterization of clinical grade-dendritic cells generated from cancer patients and genetically modified by an ALVAC vector carrying MAGE minigenes. Cancer Gene Ther 2005; 12:552-9. [PMID: 15665821 DOI: 10.1038/sj.cgt.7700804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene delivery into dendritic cells (DC) is most efficiently achieved by viral vectors. Recombinant canarypox viruses (ALVAC) were validated safe and efficient in humans. We aimed firstly to evaluate DC transduction by ALVAC vectors, then to investigate if such infection induced or not the maturation of the DC, and finally to assess the efficiency of ALVAC-MAGE-transduced DC to activate specific CTL clones. Clinical grade DC from melanoma patients were generated from blood monocytes and infected with a recombinant ALVAC virus encoding either a marker gene (EGFP) or the MAGE-1-MAGE-3 minigenes. According to the patient-donor, 22+/-16% of immature DC were successfully transduced. Flow cytometry analysis of surface markers expressed on DC after ALVAC infection did not reveal a mature phenotype. Moreover, ALVAC transduction did not interfere with the capacity of the DC to further mature under poly:IC stimulation. But most importantly, our results demonstrated that DC from HLA-A1 patient-donors infected with the recombinant ALVAC MAGE-1-MAGE-3 minigenes virus were capable of activating a MAGE 3/A1 CTL clone more efficiently than same DC loaded with MAGE 3/A1 peptide, as shown by increased IFN-gamma secretion. These results could be the basis for the development of a new clinical strategy in melanoma patient's immunotherapy.
Collapse
Affiliation(s)
- Myrto Trakatelli
- Interdisciplinary Research Institute (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Despite the success of the WHO-led smallpox eradication programme a quarter of a century ago, there remains considerable fear that variola virus, or other related pathogenic poxviruses such as monkeypox, could re-emerge and spread disease in the human population. Even today, we are still mostly ignorant about why most poxvirus infections of vertebrate hosts show strict species specificity, or how zoonotic poxvirus infections occur when poxviruses occasionally leap into novel host species. Poxvirus tropism at the cellular level seems to be regulated by intracellular events downstream of virus binding and entry, rather than at the level of specific host receptors as is the case for many other viruses. This review summarizes our current understanding of poxvirus tropism and host range, and discusses the prospects of exploiting host-restricted poxvirus vectors for vaccines, gene therapy or tissue-targeted oncolytic viral therapies for the treatment of human cancers. Poxvirus host range varies markedly ? some viruses, such as variola and molluscum contagiosum virus (both of which are human-specific), exhibit strict species tropism, whereas others such as cowpox virus are able to infect multiple host species. Members of four of the eight genera of chordopoxviruses can zoonotically infect man. For example, monkeypox virus can cause severe smallpox-like disease in humans that clinically resembles variola virus. The species tropism that is exhibited by many poxviruses in terms of causing disease is frequently quite different from the range of cultured cells that can be infected by these viruses. Specific host-cell receptors do not mediate the distinction between cells that are permissive as opposed to non-permissive for poxvirus infection. Rather, restrictive host cells fail to support the full replication cycle of the infecting poxvirus at a point downstream of binding and entry. A variety of poxviral host-range genes have been identified that contribute to the control of permissive versus non-permissive infection of cultured mammalian cells. The gene products of these host-range genes regulate the ability of the virus to complete its cytoplasmic replication cycle. The development of host-restricted vaccines, like modified vaccinia Ankara (MVA), that do not replicate in humans but that retain potent immunogenicity, will provide safer platforms for recombinant vaccines. Another advance has been the development of poxvirus-based oncolytic vectors that replicate preferentially in human tumour cells.
Collapse
Affiliation(s)
- Grant McFadden
- Department of Microbiology and Immunology, University of Western Ontario, and Robarts Research Institute, Siebens-Drake Building, Room 133, 1400 Western Road, London, Ontario N6G 2V4, Canada.
| |
Collapse
|
34
|
de Gruijl TD, Pinedo HM, Scheper RJ. Immunotherapy of Cancer by Dendritic Cell-Targeted Gene Transfer. Cancer Gene Ther 2005. [DOI: 10.1007/978-1-59259-785-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Abstract
Dendritic cells are critical for host immunity and are involved both in the innate and adaptive immune responses. They are among the first cells targeted by HIV-1 in vivo at mucosal sites. Dendritic cells can sequester HIV-1 in endosomal compartments for several days and transmit infectious HIV-1 to interacting T cells in the lymph node, which is the most important site for viral replication and spread. Initially, the cellular immune response developed against HIV-1 is strong, but eventually it fails to control and resolve the infection. The most dramatic effect seen on the immune system during untreated HIV-1 infection is the destruction of helper CD4(+) T cells, which leads to subsequent immune deficiency. However, the immunomodulatory effects of HIV-1 on different dendritic cell subpopulations may also play an important role in the pathogenesis of HIV-1. This review discusses the effects HIV-1 exerts on dendritic cells in vivo and in vitro, including the binding and uptake of HIV by dendritic cells, the formation of infectious synapses, infection, and the role of dendritic cells in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Marie Larsson
- New York University, School of Medicine, 550 First Avenue, MSB 507, New York, NY 10016, USA.
| |
Collapse
|
36
|
Abstract
The poxviridae have a long history of causing disease in society, and their biological effects in humans and other mammals have been extensively studied. In the 1980s, genetic engineering techniques were applied to vaccinia in order to create replicating recombinant vectors that could express inserted genes encoding influenza virus proteins. In animal models, these recombinant viruses were able to deliver their foreign antigens to the immune system and elicit a specific adaptive immune response. Since then, improvements in our understanding of immunobiology, as well as technical advances in bioengineering, have led to the creation and clinical testing of a large number of recombinant poxviruses as candidate vaccines. Poxviruses can infect a broad range of cells, replicate with high efficiency and elicit strong immune responses - factors that make them especially well-suited as vaccines for the prevention and treatment of human immunodeficiency virus (HIV) and cancer. Both of these diseases are characterised by chronic antigen expression in the setting of focal or global deficits in the immune system that hamper the generation of protective immunity. This review traces the history of poxviruses as pathogens and immunogens, examines some of the approaches that have been taken to design poxviral vaccines for HIV and cancer and summarises the results of existing clinical trials of these vectors. In addition, the review aims to identify some of the factors that may shape the development of future therapies based on recombinant poxviruses.
Collapse
Affiliation(s)
- Shaffiq Essajee
- Department of Surgery and Pathology, Columbia University, New York, NY, USA
| | | |
Collapse
|
37
|
Villamide-Herrera L, Ignatius R, Eller MA, Wilkinson K, Griffin C, Mehlhop E, Jones J, Han SY, Lewis MG, Parrish S, Vancott TC, Lifson JD, Schlesinger S, Mascola JR, Pope M. Macaque dendritic cells infected with SIV-recombinant canarypox ex vivo induce SIV-specific immune responses in vivo. AIDS Res Hum Retroviruses 2004; 20:871-84. [PMID: 15320991 DOI: 10.1089/0889222041725136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) infected with recombinant avipox vectors express the introduced genes and activate antigen-specific T cells. DCs exhibit distinct differentiation-dependent immune functions. Moreover, immature DCs are readily infected by canarypox vectors, but undergo tumor necrosis factor (TNF)-alpha-dependent death, while fewer mature DCs get infected and resist dying. A pilot study was performed using the rhesus macaque system to explore whether immature and mature DCs infected with SIV-recombinant canarypox (vCP180) ex vivo could induce primary virus-specific immune responses in vivo. After subcutaneous (sc) reinjection, functional monocyte-derived DCs migrated to lymph nodes (LNs) within 1-2 days and primed T cells in vivo. This was observed by monitoring dye-labeled DCs in the draining LNs and tetanus toxoid (TT)-specific T cell responses after injection of TT-loaded DCs. DCs from simian immunodeficiency virus (SIV)-naïve rhesus macaques were infected with vCP180 (SIVmac142 gag, pol, and env genes), and sc reinjected into donor animals. Low-level SIV-specific T cell proliferation, but little if any interferon (IFN)-gamma production was detected. DCs pulsed with vCP180 in combination with TT and keyhole limpet hemocyanin (KLH) (to activate additional T cells and provide "helper" cytokines) induced SIV-, TT-, and KLH-specific T cell responses, including IFN-gamma responses not seen when vCP180-carrying DCs were used alone. Interleukin (IL)-10 and low-level antibody responses were also observed. This pilot study provides the proof of principle that sc injected ex vivo SIV-recombinant canarypox-infected DCs safely induce low-level SIV-specific immune responses in vivo.
Collapse
Affiliation(s)
- L Villamide-Herrera
- Center for Biomedical Research, Population Council, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
O'Neill DW, Adams S, Bhardwaj N. Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 2004; 104:2235-46. [PMID: 15231572 DOI: 10.1182/blood-2003-12-4392] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have an unequaled capacity to initiate primary immune responses, including tolerogenic responses. Because of the importance of DCs in the induction and control of immunity, an understanding of their biology is central to the development of potent immunotherapies for cancer, chronic infections, autoimmune disease, and induction of transplantation tolerance. This review discusses recent advances in DC research and the application of this knowledge toward new strategies for the clinical manipulation of DCs for cancer immunotherapy.
Collapse
Affiliation(s)
- David W O'Neill
- New York University School of Medicine, 550 1st Ave, MSB 507, New York, NY 10016, USA
| | | | | |
Collapse
|
39
|
Tulman ER, Afonso CL, Lu Z, Zsak L, Kutish GF, Rock DL. The genome of canarypox virus. J Virol 2004; 78:353-66. [PMID: 14671117 PMCID: PMC303417 DOI: 10.1128/jvi.78.1.353-366.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 09/16/2003] [Indexed: 12/12/2022] Open
Abstract
Here we present the genomic sequence, with analysis, of a canarypox virus (CNPV). The 365-kbp CNPV genome contains 328 potential genes in a central region and in 6.5-kbp inverted terminal repeats. Comparison with the previously characterized fowlpox virus (FWPV) genome revealed avipoxvirus-specific genomic features, including large genomic rearrangements relative to other chordopoxviruses and novel cellular homologues and gene families. CNPV also contains many genomic differences with FWPV, including over 75 kbp of additional sequence, 39 genes lacking FWPV homologues, and an average of 47% amino acid divergence between homologues. Differences occur primarily in terminal and, notably, localized internal genomic regions and suggest significant genomic diversity among avipoxviruses. Divergent regions contain gene families, which overall comprise over 49% of the CNPV genome and include genes encoding 51 proteins containing ankyrin repeats, 26 N1R/p28-like proteins, and potential immunomodulatory proteins, including those similar to transforming growth factor beta and beta-nerve growth factor. CNPV genes lacking homologues in FWPV encode proteins similar to ubiquitin, interleukin-10-like proteins, tumor necrosis factor receptor, PIR1 RNA phosphatase, thioredoxin binding protein, MyD116 domain proteins, circovirus Rep proteins, and the nucleotide metabolism proteins thymidylate kinase and ribonucleotide reductase small subunit. These data reveal genomic differences likely affecting differences in avipoxvirus virulence and host range, and they will likely be useful for the design of improved vaccine vectors.
Collapse
Affiliation(s)
- E R Tulman
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hsieh SM, Pan SC, Hung CC, Chen MY, Chang SC. Differential impact of late-stage HIV-1 infection on in vitro and in vivo maturation of myeloid dendritic cells. J Acquir Immune Defic Syndr 2003; 33:413-9. [PMID: 12869829 DOI: 10.1097/00126334-200308010-00001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The functional and phenotypic maturation of myeloid dendritic cells (DCs), circulating and monocyte-derived, from subjects at different stages of HIV-1 infection was evaluated. The results showed that the capacity of circulating DCs was significantly impaired in subjects with CD4+ T cell counts of <200/microL, correlated with the potential of CD40 ligand expression on CD4+ T cells (R = 0.84; P = 0.002), and improved with successful antiretroviral therapy. However, the function and phenotype of monocyte-derived DCs generated by in vitro culture from subjects at any stage of HIV-1 infection were similar to those in uninfected healthy subjects. Our findings suggest that although the potential of myeloid DC precursors to achieve full maturation is preserved in subjects with late-stage HIV-1 infection, in vivo maturation of myeloid DCs was impaired in these subjects, which may be due to decreased potential of CD40 ligand expression on CD4+ T cells. That myeloid DCs fail to achieve full maturation in vivo in late-stage HIV-1 infection may contribute to the failure to induce effective cellular immunity against HIV-1 and opportunistic pathogens.
Collapse
Affiliation(s)
- Szu-Min Hsieh
- Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
41
|
Radaelli A, Nacsa J, Tsai WP, Edghill-Smith Y, Zanotto C, Elli V, Venzon D, Tryniszewska E, Markham P, Mazzara GP, Panicali D, De Giuli Morghen C, Franchini G. Prior DNA immunization enhances immune response to dominant and subdominant viral epitopes induced by a fowlpox-based SIVmac vaccine in long-term slow-progressor macaques infected with SIVmac251. Virology 2003; 312:181-95. [PMID: 12890631 DOI: 10.1016/s0042-6822(03)00184-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A therapeutic vaccine for individuals infected with HIV-1 and treated with antiretroviral therapy (ART) should be able to replenish virus-specific CD4+ T-cells and broaden the virus-specific CD8+ T-cell response in order to maintain CD8+ T-cell function and minimize viral immune escape after ART cessation. Because a combination of DNA and recombinant poxvirus vaccine modalities induces high levels of virus-specific CD4+ T-cell response and broadens the cytolytic activity in naive macaques, we investigated whether the same results could be obtained in SIVmac251-infected macaques. The macaques studied here were long-term nonprogressors that naturally contained viremia but were nevertheless treated with a combination of antiviral drugs to assess more carefully the effect of vaccination in the context of ART. The combination of a DNA expressing the gag and pol genes (DNA-SIV-gp) of SIVmac239 followed by a recombinant fowlpox expressing the same SIVmac genes (FP-SIV-gp) was significantly more immunogenic than two immunizations of FP-SIV-gp in SIVmac251-infected macaques treated with ART. The DNA/FP combination significantly expanded and broadened Gag-specific T-cell responses measured by tetramer staining, ELISPOT, and intracellular cytokine staining and measurement of ex vivo cytolytic function. Importantly, the combination of these vaccine modalities also induced a sizeable expansion in most macaques of Gag-specific CD8-(CD4+) T-cells able to produce TNF-alpha. Hopefully, this modality of vaccine combination may be useful in the clinical management of HIV-1-infected individuals.
Collapse
Affiliation(s)
- Antonia Radaelli
- National Cancer Institute, Basic Research Laboratory, 41/D804, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Dendritic cell (DC)-based vaccinations represent a promising approach for the immunotherapy of cancer and infectious diseases as DCs play an essential role in initiating cellular immune responses. A number of clinical trials using ex vivo-generated DCs have been performed so far and only minor toxicity has been reported. Both the induction of antigen-specific T cells and clinical responses have been observed in vaccinated cancer patients. Nevertheless, DC-based immunotherapy is still in its infancy and there are many issues to be addressed such as antigen loading procedures, DC source and maturational state, migration properties, route, frequency, and dosage of DC vaccination. The increasing knowledge of DC biology should be used to improve the efficacy of this new therapy.
Collapse
Affiliation(s)
- T G Berger
- Department of Dermatology, University of Erlangen, Hartmannstrasse 14, 91052 Erlangen, Germany
| | | |
Collapse
|
43
|
Steinman RM, Granelli-Piperno A, Pope M, Trumpfheller C, Ignatius R, Arrode G, Racz P, Tenner-Racz K. The interaction of immunodeficiency viruses with dendritic cells. Curr Top Microbiol Immunol 2003; 276:1-30. [PMID: 12797441 DOI: 10.1007/978-3-662-06508-2_1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dendritic cells (DCs) can influence HIV-1 and SIV pathogenesis and protective mechanisms at several levels. First, HIV-1 productively infects select populations of DCs in culture, particularly immature DCs derived from blood monocytes and skin (Langerhans cells). However, there exist only a few instances in which HIV-1- or SIV-infected DCs have been identified in vivo in tissue sections. Second, different types of DCs reliably sequester and transmit infectious HIV-1 and SIV in culture, setting up a productive infection in T cells interacting with the DCs. This stimulation of infection in T cells may explain the observation that CD4+ T lymphocytes are the principal cell type observed to be infected with HIV-1 in lymphoid tissues in vivo. DCs express a C-type lectin, DC-SIGN/CD209, that functions to bind HIV-1 (and other infectious agents) and transmit virus to T cells. When transfected into the THP-1 cell line, the cytosolic domain of DC-SIGN is needed for HIV-1 sequestration and transmission. However, DCs lacking DC-SIGN (Langerhans cells) or expressing very low levels of DC-SIGN (rhesus macaque monocyte-derived DCs) may use additional molecules to bind and transmit immunodeficiency viruses to T cells. Third, DCs are efficient antigen-presenting cells for HIV-1 and SIV antigens. Infection with several recombinant viral vectors as well as attenuated virus is followed by antigen presentation to CD4+ and CD8+ T cells. An intriguing pathway that is well developed in DCs is the exogenous pathway for nonreplicating viral antigens to be presented on class I MHC products. This should allow DCs to stimulate CD8+ T cells after uptake of antibody-coated HIV-1 and dying infected T cells. It has been proposed that DCs, in addition to expanding effector helper and killer T cells, induce tolerance through T cell deletion and suppressor T cell formation, but this must be evaluated directly. Fourth, DCs are likely to be valuable in improving vaccine design. Increasing DC uptake of a vaccine, as well as increasing their numbers and maturation, should enhance efficacy. However, DCs can also capture antigens from other cells that are initially transduced with a DNA vaccine or a recombinant viral vector. The interaction of HIV-1 and SIV with DCs is therefore intricate but pertinent to understanding how these viruses disrupt immune function and elicit immune responses.
Collapse
Affiliation(s)
- R M Steinman
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Dendritic cells are professional antigen-presenting cells required for generation of adaptive immunity. These cells are one of the initial target cells for HIV-1 infection or capture of virions at site of transmission in the mucosa. DCs carrying HIV-1 will migrate to the lymphoid tissue where they can contribute to the dissemination of the virus to adjacent CD4+ T cells. In addition, HIV-1-exposed DCs may have impaired antigen-presenting capacity resulting in inadequate expansion of HIV-1-specific T cell responses. Here, we review the infection of different subtypes of DCs by HIV-1 and the relevance of these cells in the transmission and establishment of HIV-1 disease. In addition, we discuss the mechanisms through which HIV-1-DC interactions could be exploited to optimise the generation and maintenance of HIV-1-specific T cell immunity.
Collapse
Affiliation(s)
- Karin Lore
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3022, USA.
| | | |
Collapse
|
45
|
Matsui M, Moriya O, Abdel-Aziz N, Matsuura Y, Miyamura T, Akatsuka T. Induction of hepatitis C virus-specific cytotoxic T lymphocytes in mice by immunization with dendritic cells transduced with replication-defective recombinant adenovirus. Vaccine 2002; 21:211-20. [PMID: 12450696 DOI: 10.1016/s0264-410x(02)00460-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We studied the potential of dendritic cells (DCs) in priming hepatitis C virus (HCV)-specific cytotoxic T lymphocytes (CTLs) in mice. Recombinant adenovirus expressing HCV core (Adex1SR3ST) was employed to express core in DCs. Core-specific CTLs are effectively elicited by injecting Adex1SR3ST-transduced DCs, whereas injection of Adex1SR3ST does not result in effective priming. Further, Adex1SR3ST-transduced DCs more efficiently prime core-specific CTLs than Adex1SR3ST-transduced macrophages, or DCs treated with an anthrax toxin fusion protein reported previously. Upon challenge with recombinant HCV-core-expressing vaccinia virus, vaccinia titers are significantly reduced in mice immunized with Adex1SR3ST-transduced DCs. Thus, adenovirus-transduced DCs may be a promising candidate for a CTL-based vaccine against HCV.
Collapse
Affiliation(s)
- Masanori Matsui
- Department of Microbiology, Saitama Medical School, Moroyama-Cho, Iruma-Gun, Saitama 350-0495, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Spetz AL, Sörensen AS, Walther-Jallow L, Wahren B, Andersson J, Holmgren L, Hinkula J. Induction of HIV-1-specific immunity after vaccination with apoptotic HIV-1/murine leukemia virus-infected cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5771-9. [PMID: 12421957 DOI: 10.4049/jimmunol.169.10.5771] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag-presenting dendritic cells present viral Ags to T cells after uptake of apoptotic bodies derived from virus-infected cells in vitro. However, it is unclear whether apoptotic virus-infected cells are capable of generating immunity in vivo. In this study, we show that inoculation of mice with apoptotic HIV-1/murine leukemia virus (MuLV)-infected cells induces HIV-1-specific immunity. Immunization with apoptotic HIV-1/MuLV-infected syngeneic splenocytes resulted in strong Nef-specific CD8(+) T cell proliferation and p24-induced CD4(+) and CD8(+) T cell proliferation as well as IFN-gamma production. In addition, systemic IgG and IgA as well as mucosa-associated IgA responses were generated. Moreover, mice vaccinated with apoptotic HIV-1/MuLV cells were protected against challenge with live HIV-1/MuLV-infected cells, whereas mice vaccinated with apoptotic noninfected or MuLV-infected splenocytes remained susceptible to HIV-1/MuLV. These data show that i.p. immunization with apoptotic HIV-1-infected cells induces high levels of HIV-1-specific systemic immunity, primes for mucosal immunity, and induces protection against challenge with live HIV-1-infected cells in mice. These findings may have implications for the development of therapeutic and prophylactic HIV-1 vaccines.
Collapse
Affiliation(s)
- Anna-Lena Spetz
- Department of Medicine, Center for Infectious Medicine, Huddinge University Hospital, F82 Karolinska Institutet, S-141 86 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
47
|
Piguet V, Blauvelt A. Essential roles for dendritic cells in the pathogenesis and potential treatment of HIV disease. J Invest Dermatol 2002; 119:365-9. [PMID: 12190858 DOI: 10.1046/j.1523-1747.2002.01840.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During sexual transmission of HIV, virus crosses mucosal epithelium and eventually reaches lymphoid tissue where it establishes a permanent infection. Evidence has accumulated that infection of Langerhans cells, which are resident dendritic cells in pluristratified epithelia, plays a crucial role in the early events of HIV transmission. HIV infection of Langerhans cells is regulated by surface expression of CD4 and CCR5. Thus, topical microbicides that interfere with HIV infection of Langerhans cells represent an attractive strategy for blocking sexual transmission of virus. Capture and uptake of HIV virions is another major pathway by which HIV interacts with dendritic cells. By contrast, this process is mediated by a newly described C-type lectin, DC-SIGN. It is well established that HIV-exposed dendritic cells transmit virus efficiently to cocultured T cells. Indeed, dendritic cell-T cell interaction, critical in the generation of immune responses, is a rich microenvironment for HIV replication both in vitro and in vivo. Dendritic cells that have captured virus via DC-SIGN, and not HIV-infected dendritic cells, probably facilitate most infection of T cells in chronically infected individuals. Therefore, blocking DC-SIGN-mediated capture of HIV represents a potential therapeutic antiviral strategy for HIV disease. Lastly, dendritic cells have been targeted both ex vivo and in vivo to initiate and enhance HIV-specific immunity. Although these approaches are promising for both therapeutic and prophylactic vaccines, much additional work is needed in order to optimize dendritic-cell-based immunization strategies.
Collapse
Affiliation(s)
- Vincent Piguet
- Department of Dermatology, University Hospital of Geneva, Switzerland; Dermatology Branch, National Cancer Institute, Bethesda, Maryland , USA.
| | | |
Collapse
|
48
|
Larsson M, Fonteneau JF, Lirvall M, Haslett P, Lifson JD, Bhardwaj N. Activation of HIV-1 specific CD4 and CD8 T cells by human dendritic cells: roles for cross-presentation and non-infectious HIV-1 virus. AIDS 2002; 16:1319-29. [PMID: 12131208 DOI: 10.1097/00002030-200207050-00003] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The CD4 T cells in mucosal subepithelia are the first cells to become infected during sexual transmission of HIV-1. Dendritic cells (DC) are located in the same area and are known to play a central role in antiviral immune responses. However, extensive viral replication, syncytia formation and cell death follows the interaction between T cells and DC previously exposed to HIV-1. Despite this, anti-HIV responses are generated that control viremia following acute infection. OBJECTIVE The anti-HIV-1 cellular immune responses observed may be activated by sources other than productively infected DC. HIV-1 induces apoptosis both in cells it infects and in bystander cells. Furthermore, retroviral replication typically generates a predominance of defective particles. We tested whether DC exposed to antigen from either of these sources could elicit anti-HIV specific immune responses. DESIGN AND METHODS Apoptotic or necrotic monocytes infected with vaccinia virus vectors encoding HIV antigens, a cell line with integrated HIV-1 and apoptotic CD4 T cells pulsed with non-infectious or infectious HIV-1 virus were used as sources of antigens to assess cross presentation by DC. Furthermore, direct DC presentation of antigen from non-infectious and infectious HIV-1 was examined. RESULTS We find that dead cells expressing HIV-1 antigens as well as non-infectious HIV-1 particles can be acquired and processed by DC, leading to the activation, differentiation and expansion of viral antigen-specific CD4 and CD8 T cells from seropositive individuals. CONCLUSIONS These sources of antigens may be critical for the generation and maintenance of anti-HIV-1 immunity by DC.
Collapse
Affiliation(s)
- Marie Larsson
- The Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- G Sutter
- GSF-Institut für Molekulare Virologie, Institut für Virologie, TU München, Trogerstrasse 4b, 81675 München, Germany.
| | | |
Collapse
|
50
|
Vacheron S, Luther SA, Acha-Orbea H. Preferential infection of immature dendritic cells and B cells by mouse mammary tumor virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3470-6. [PMID: 11907107 DOI: 10.4049/jimmunol.168.7.3470] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Until now it was thought that the retrovirus mouse mammary tumor virus preferentially infects B cells, which thereafter proliferate and differentiate due to superantigen-mediated T cell help. We describe in this study that dendritic cells are infectable at levels comparable to B cells in the first days after virus injection. Moreover, IgM knockout mice have chronically deleted superantigen-reactive T cells after MMTV injection, indicating that superantigen presentation by dendritic cells is sufficient for T cell deletion. In both subsets initially only few cells were infected, but there was an exponential increase in numbers of infected B cells due to superantigen-mediated T cell help, explaining that at the peak of the response infection is almost exclusively found in B cells. The level of infection in vivo was below 1 in 1000 dendritic cells or B cells. Infection levels in freshly isolated dendritic cells from spleen, Langerhans cells from skin, or bone marrow-derived dendritic cells were compared in an in vitro infection assay. Immature dendritic cells such as Langerhans cells or bone marrow-derived dendritic cells were infected 10- to 30-fold more efficiently than mature splenic dendritic cells. Bone marrow-derived dendritic cells carrying an endogenous mouse mammary tumor virus superantigen were highly efficient at inducing a superantigen response in vivo. These results highlight the importance of professional APC and efficient T cell priming for the establishment of a persistent infection by mouse mammary tumor virus.
Collapse
Affiliation(s)
- Sonia Vacheron
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|