1
|
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus that establishes lifelong infection in its host and can cause severe comorbidities in individuals with suppressed or compromised immune systems. The lifecycle of HCMV consists of lytic and latent phases, largely dependent upon the cell type infected and whether transcription from the major immediate early locus can ensue. Control of this locus, which acts as a critical "switch" region from where the lytic gene expression cascade originates, as well as regulation of the additional ~235 kilobases of virus genome, occurs through chromatinization with cellular histone proteins after infection. Upon infection of a host cell, an initial intrinsic antiviral response represses gene expression from the incoming genome, which is relieved in permissive cells by viral and host factors in concert. Latency is established in a subset of hematopoietic cells, during which viral transcription is largely repressed while the genome is maintained. As these latently infected cells differentiate, the cellular milieu and epigenetic modifications change, giving rise to the initial stages of virus reactivation from latency. Thus, throughout the cycle of infection, chromatinization, chromatin modifiers, and the recruitment of specific transcription factors influence the expression of genes from the HCMV genome. In this review, we discuss epigenetic regulation of the HCMV genome during the different phases of infection, with an emphasis on recent reports that add to our current perspective.
Collapse
Affiliation(s)
- Stephen M. Matthews
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ian J. Groves
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine M. O'Connor
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Dong J, Paszkowski P, Kocincova D, Ingham RJ. Complete deletion of Ectromelia virus p28 impairs virus genome replication in a mouse strain, cell type, and multiplicity of infection-dependent manner. Virus Res 2023; 323:198968. [PMID: 36244618 PMCID: PMC10194247 DOI: 10.1016/j.virusres.2022.198968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
p28 is a poxvirus-encoded E3 ubiquitin ligase that possesses an N-terminal KilA-N domain and a C-terminal RING domain. In Ectromelia virus (ECTV), disruption of the p28 RING domain severely attenuated virulence in A strain mice, which normally succumb to ECTV infection. Moreover, this mutant virus exhibited dramatically reduced genome replication and impaired factory formation in A strain mice peritoneal macrophages (PMs) infected at high multiplicity of infection (MOI) These defects were not observed in PMs isolated from C57BL/6 mice which survive ECTV infection, demonstrating that p28 functions in a context-specific manner. To further investigate p28 function, we completely deleted the p28 gene from ECTV (ECTV-Δp28). In contrast to previous findings, we found that the ECTV-Δp28 virus exhibited severely compromised virus production and genome replication in PMs isolated from A strain mice only when infected at low MOI. This defect was minimal in bone marrow-derived macrophages and two cell lines derived from A strain mice. Furthermore, this low MOI defect in virus production was also observed in PMs isolated from the susceptible BALB/c mouse strain, but not PMs isolated from C57BL/6 mice. Taken together, our data demonstrate that the requirement for ECTV p28 to establish a productive infection depends on the MOI, the cell type, as well as the mouse strain.
Collapse
Affiliation(s)
- Jianing Dong
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Patrick Paszkowski
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Robert J Ingham
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
3
|
Alonso-Álvarez S, Colado E, Moro-García MA, Alonso-Arias R. Cytomegalovirus in Haematological Tumours. Front Immunol 2021; 12:703256. [PMID: 34733270 PMCID: PMC8558552 DOI: 10.3389/fimmu.2021.703256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
The exquisite coupling between herpesvirus and human beings is the result of millions of years of relationship, coexistence, adaptation, and divergence. It is probably based on the ability to generate a latency that keeps viral activity at a very low level, thereby apparently minimising harm to its host. However, this evolutionary success disappears in immunosuppressed patients, especially in haematological patients. The relevance of infection and reactivation in haematological patients has been a matter of interest, although one fundamentally focused on reactivation in the post-allogeneic stem cell transplant (SCT) patient cohort. Newer transplant modalities have been progressively introduced in clinical settings, with successively more drugs being used to manipulate graft composition and functionality. In addition, new antiviral drugs are available to treat CMV infection. We review the immunological architecture that is key to a favourable outcome in this subset of patients. Less is known about the effects of herpesvirus in terms of mortality or disease progression in patients with other malignant haematological diseases who are treated with immuno-chemotherapy or new molecules, or in patients who receive autologous SCT. The absence of serious consequences in these groups has probably limited the motivation to deepen our knowledge of this aspect. However, the introduction of new therapeutic agents for haematological malignancies has led to a better understanding of how natural killer (NK) cells, CD4+ and CD8+ T lymphocytes, and B lymphocytes interact, and of the role of CMV infection in the context of recently introduced drugs such as Bruton tyrosine kinase (BTK) inhibitors, phosphoinosytol-3-kinase inhibitors, anti-BCL2 drugs, and even CAR-T cells. We analyse the immunological basis and recommendations regarding these scenarios.
Collapse
Affiliation(s)
- Sara Alonso-Álvarez
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Hematologic Malignancies, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Enrique Colado
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Hematologic Malignancies, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Marco A Moro-García
- Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
4
|
A BMPR2/YY1 Signaling Axis Is Required for Human Cytomegalovirus Latency in Undifferentiated Myeloid Cells. mBio 2021; 12:e0022721. [PMID: 34061599 PMCID: PMC8262994 DOI: 10.1128/mbio.00227-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human cytomegalovirus (HCMV) presents a major health burden in the immunocompromised and in stem cell transplant medicine. A lack of understanding about the mechanisms of HCMV latency in undifferentiated CD34+ stem cells, and how latency is broken for the virus to enter the lytic phase of its infective cycle, has hampered the development of essential therapeutics. Using a human induced pluripotent stem cell (iPSC) model of HCMV latency and patient-derived myeloid cell progenitors, we demonstrate that bone morphogenetic protein receptor type 2 (BMPR2) is necessary for HCMV latency. In addition, we define a crucial role for the transcription factor Yin Yang 1 (YY1) in HCMV latency; high levels of YY1 are maintained in latently infected cells as a result of BMPR2 signaling through the SMAD4/SMAD6 axis. Activation of SMAD4/6, through BMPR2, inhibits TGFbeta receptor signaling, which leads to the degradation of YY1 via induction of a cellular microRNA (miRNA), hsa-miR-29a. Pharmacological targeting of BMPR2 in progenitor cells results in the degradation of YY1 and an inability to maintain latency and renders cells susceptible to T cell killing. These data argue that BMPR2 plays a role in HCMV latency and is a new potential therapeutic target for maintaining or disrupting HCMV latency in myeloid progenitors.
Collapse
|
5
|
Regulation of the MIE Locus During HCMV Latency and Reactivation. Pathogens 2020; 9:pathogens9110869. [PMID: 33113934 PMCID: PMC7690695 DOI: 10.3390/pathogens9110869] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesviral pathogen that results in life-long infection. HCMV maintains a latent or quiescent infection in hematopoietic cells, which is broadly defined by transcriptional silencing and the absence of de novo virion production. However, upon cell differentiation coupled with immune dysfunction, the virus can reactivate, which leads to lytic replication in a variety of cell and tissue types. One of the mechanisms controlling the balance between latency and reactivation/lytic replication is the regulation of the major immediate-early (MIE) locus. This enhancer/promoter region is complex, and it is regulated by chromatinization and associated factors, as well as a variety of transcription factors. Herein, we discuss these factors and how they influence the MIE locus, which ultimately impacts the phase of HCMV infection.
Collapse
|
6
|
Watson Levings RS, Broome TA, Smith AD, Rice BL, Gibbs EP, Myara DA, Hyddmark EV, Nasri E, Zarezadeh A, Levings PP, Lu Y, White ME, Dacanay EA, Foremny GB, Evans CH, Morton AJ, Winter M, Dark MJ, Nickerson DM, Colahan PT, Ghivizzani SC. Gene Therapy for Osteoarthritis: Pharmacokinetics of Intra-Articular Self-Complementary Adeno-Associated Virus Interleukin-1 Receptor Antagonist Delivery in an Equine Model. HUM GENE THER CL DEV 2019; 29:90-100. [PMID: 29869540 DOI: 10.1089/humc.2017.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toward the treatment of osteoarthritis (OA), the authors have been investigating self-complementary adeno-associated virus (scAAV) for intra-articular delivery of therapeutic gene products. As OA frequently affects weight-bearing joints, pharmacokinetic studies of scAAV gene delivery were performed in the joints of the equine forelimb to identify parameters relevant to clinical translation in humans. Using interleukin-1 receptor antagonist (IL-1Ra) as a secreted therapeutic reporter, scAAV vector plasmids containing codon-optimized cDNA for equine IL-1Ra (eqIL-1Ra) were generated, which produced eqIL-1Ra at levels 30- to 50-fold higher than the native sequence. The most efficient cDNA was packaged in AAV2.5 capsid, and following characterization in vitro, the virus was injected into the carpal and metacarpophalangeal joints of horses over a 100-fold dose range. A putative ceiling dose of 5 × 1012 viral genomes was identified that elevated the steady-state eqIL-1Ra in the synovial fluids of injected joints by >40-fold over endogenous levels and was sustained for at least 6 months. No adverse effects were seen, and eqIL-1Ra in serum and urine remained at background levels throughout. Using the 5 × 1012 viral genome dose of scAAV, and green fluorescent protein as a cytologic marker, the local and systemic distribution of vector and transduced cells following intra-articular injection scAAV.GFP were compared in healthy equine joints and in those with late-stage, naturally occurring OA. In both cases, 99.7% of the vector remained within the injected joint. Strikingly, the pathologies characteristic of OA (synovitis, osteophyte formation, and cartilage erosion) were associated with a substantial increase in transgenic expression relative to tissues in healthy joints. This was most notable in regions of articular cartilage with visible damage, where foci of brilliantly fluorescent chondrocytes were observed. Overall, these data suggest that AAV-mediated gene transfer can provide relatively safe, sustained protein drug delivery to joints of human proportions.
Collapse
Affiliation(s)
| | - Ted A Broome
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Andrew D Smith
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Brett L Rice
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Eric P Gibbs
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - David A Myara
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - E Viktoria Hyddmark
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Elham Nasri
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Ali Zarezadeh
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Padraic P Levings
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Yuan Lu
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Margaret E White
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - E Anthony Dacanay
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Gregory B Foremny
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Christopher H Evans
- 3 Rehabilitation Medicine Research Center, Mayo Clinic , Rochester, Minnesota
| | - Alison J Morton
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Mathew Winter
- 4 Department of Small Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Michael J Dark
- 5 Department of Infectious Diseases and Pathology, University of Florida , Gainesville, Florida
| | - David M Nickerson
- 6 Department of Statistics and Actuarial Science, University of Central Florida , Orlando, Florida
| | - Patrick T Colahan
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Steven C Ghivizzani
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| |
Collapse
|
7
|
The 5' Untranslated Region of the Major Immediate Early mRNA Is Necessary for Efficient Human Cytomegalovirus Replication. J Virol 2018; 92:JVI.02128-17. [PMID: 29343581 DOI: 10.1128/jvi.02128-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human cytomegalovirus (HCMV) immediate early 1 (IE1) and IE2 proteins are critical regulators of virus replication. Both proteins are needed to efficiently establish lytic infection, and nascent expression of IE1 and IE2 is critical for reactivation from latency. The regulation of IE1 and IE2 protein expression is thus a central event in the outcome of HCMV infection. Transcription of the primary transcript encoding both IE1 and IE2 is well studied, but relatively little is known about the posttranscriptional mechanisms that control IE1 and IE2 protein synthesis. The mRNA 5' untranslated region (5' UTR) plays an important role in regulating mRNA translation. Therefore, to better understand the control of IE1 and IE2 mRNA translation, we examined the role of the shared 5' UTR of the IE1 and IE2 mRNAs (MIE 5' UTR) in regulating translation. In a cell-free system, the MIE 5' UTR repressed translation, as predicted based on its length and sequence composition. However, in transfected cells we found that the MIE 5' UTR increased the expression of a reporter gene and enhanced its association with polysomes, demonstrating that the MIE 5' UTR has a positive role in translation control. We also found that the MIE 5' UTR was necessary for efficient IE1 and IE2 translation during infection. Replacing the MIE 5' UTR with an unstructured sequence of the same length decreased IE1 and IE2 protein expression despite similar levels of IE1 and IE2 mRNA and reduced the association of the IE1 and IE2 mRNAs with polysomes. The wild-type MIE 5'-UTR sequence was also necessary for efficient HCMV replication. Together these data identify the shared 5' UTR of the IE1 and IE2 mRNAs as an important regulator of HCMV lytic replication.IMPORTANCE The HCMV IE1 and IE2 proteins are critical regulators of HCMV replication, both during primary infection and during reactivation from viral latency. Thus, defining factors that regulate IE1 and IE2 expression is important for understanding the molecular events controlling the HCMV replicative cycle. Here we identify a positive role for the MIE 5' UTR in mediating the efficient translation of the IE1 and IE2 mRNAs. This result is an important advance for several reasons. To date, most studies of IE1 and IE2 regulation have focused on defining events that regulate IE1 and IE2 transcription. Our work reveals that in addition to the regulation of transcription, IE1 and IE2 are also regulated at the level of translation. Therefore, this study is important in that it identifies an additional layer of regulation controlling IE1 and IE2 expression and thus HCMV pathogenesis. These translational regulatory events could potentially be targeted by novel antiviral therapeutics that limit IE1 and IE2 mRNA translation and thus inhibit lytic replication or prevent HCMV reactivation.
Collapse
|
8
|
Kim JE, Kim YE, Stinski MF, Ahn JH, Song YJ. Human Cytomegalovirus IE2 86 kDa Protein Induces STING Degradation and Inhibits cGAMP-Mediated IFN-β Induction. Front Microbiol 2017; 8:1854. [PMID: 29018427 PMCID: PMC5622937 DOI: 10.3389/fmicb.2017.01854] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022] Open
Abstract
Stimulator of interferon genes (STING) is a critical signaling molecule in the innate immune response against DNA viruses by either directly sensing intracellular DNA or functioning as an adaptor molecule to activate the type I interferon (IFN) signaling pathway. We determined the functional interaction between STING and human cytomegalovirus (HCMV). A cDNA library containing 133 HCMV ORFs was screened to identify viral genes that inhibit STING-induced IFN-β promoter activation. Among the screened ORFs, UL122, which encodes the immediate-early 2 86 kDa (IE86) protein, strongly abolished STING-induced IFN-β promoter activation. Interestingly, IE86 protein facilitated the proteasome-dependent degradation of STING and inhibited 2′3′-cGAMP-mediated induction of IFNB1 and CXCL10. Taken together, this study demonstrates the existence of a post-translational regulation of STING by HCMV IE86 protein.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Life Science, Gachon University, Seongnam, South Korea
| | - Young-Eui Kim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mark F Stinski
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam, South Korea
| |
Collapse
|
9
|
Khan AS, Murray MJ, Ho CMK, Zuercher WJ, Reeves MB, Strang BL. High-throughput screening of a GlaxoSmithKline protein kinase inhibitor set identifies an inhibitor of human cytomegalovirus replication that prevents CREB and histone H3 post-translational modification. J Gen Virol 2017; 98:754-768. [PMID: 28100301 DOI: 10.1099/jgv.0.000713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To identify new compounds with anti-human cytomegalovirus (HCMV) activity and new anti-HCMV targets, we developed a high-throughput strategy to screen a GlaxoSmithKline Published Kinase Inhibitor Set. This collection contains a range of extensively characterized compounds grouped into chemical families (chemotypes). From our screen, we identified compounds within chemotypes that impede HCMV protein production and identified kinase proteins associated with inhibition of HCMV protein production that are potential novel anti-HCMV targets. We focused our study on a top 'hit' in our screen, SB-734117, which we found inhibits productive replication of several HCMV strains. Kinase selectivity data indicated that SB-734117 exhibited polypharmacology and was an inhibitor of several proteins from the AGC and CMCG kinase groups. Using Western blotting, we found that SB-734711 inhibited accumulation of HCMV immediate-early proteins, phosphorylation of cellular proteins involved in immediate-early protein production (cAMP response element-binding protein and histone H3) and histone H3 lysine 36 trimethylation (H3K36me3). Therefore, we identified SB-734117 as a novel anti-HCMV compound and found that inhibition of AGC and CMCG kinase proteins during productive HCMV replication was associated with inhibition of viral protein production and prevented post-translational modification of cellular factors associated with viral protein production.
Collapse
Affiliation(s)
- Amina S Khan
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Matthew J Murray
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Catherine M K Ho
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - William J Zuercher
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew B Reeves
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Blair L Strang
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.,Institute of Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
10
|
Multiple Transcripts Encode Full-Length Human Cytomegalovirus IE1 and IE2 Proteins during Lytic Infection. J Virol 2016; 90:8855-65. [PMID: 27466417 DOI: 10.1128/jvi.00741-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/18/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Expression of the human cytomegalovirus (HCMV) IE1 and IE2 proteins is critical for the establishment of lytic infection and reactivation from viral latency. Defining the mechanisms controlling IE1 and IE2 expression is therefore important for understanding how HCMV regulates its replicative cycle. Here we identify several novel transcripts encoding full-length IE1 and IE2 proteins during HCMV lytic replication. Two of the alternative major immediate early (MIE) transcripts initiate in the first intron, intron A, of the previously defined MIE transcript, while others extend the 5' untranslated region. Each of the MIE transcripts associates with polyribosomes in infected cells and therefore contributes to IE1 and IE2 protein levels. Surprisingly, deletion of the core promoter region of the major immediate early promoter (MIEP) from a plasmid containing the MIE genomic locus did not completely abrogate IE1 and IE2 expression. Instead, deletion of the MIEP core promoter resulted in increased expression of alternative MIE transcripts, suggesting that the MIEP suppresses the activity of the alternative MIE promoters. While the canonical MIE mRNA was the most abundant transcript at immediate early times, the novel MIE transcripts accumulated to levels equivalent to that of the known MIE transcript later in infection. Using two HCMV recombinants, we found that sequences in intron A of the previously defined MIE transcript are required for efficient IE1 and IE2 expression and viral replication. Together, our results identify new regulatory sequences controlling IE1 and IE2 expression and suggest that multiple transcription units act in concert to regulate IE1 and IE2 expression during lytic infection. IMPORTANCE The HCMV IE1 and IE2 proteins are critical regulators of HCMV replication, both during primary infection and reactivation from viral latency. This study expands our understanding of the sequences controlling IE1 and IE2 expression by defining novel transcriptional units controlling the expression of full-length IE1 and IE2 proteins. Our results suggest that alternative promoters may allow for IE1 and IE2 expression when MIEP activity is limiting, as occurs in latently infected cells.
Collapse
|
11
|
Yuan J, Li M, Torres YR, Galle CS, Meier JL. Differentiation-Coupled Induction of Human Cytomegalovirus Replication by Union of the Major Enhancer Retinoic Acid, Cyclic AMP, and NF-κB Response Elements. J Virol 2015; 89:12284-98. [PMID: 26423948 PMCID: PMC4665231 DOI: 10.1128/jvi.00965-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Triggers and regulatory pathways that effectively link human cytomegalovirus (HCMV) major immediate early (MIE) latent-lytic switch activation with progeny production are incompletely understood. In the quiescently infected human NTera2 cell model of primitive neural stem cells, we found that costimulation with vasoactive intestinal peptide (V) and phorbol ester (P) synergistically activated viral infection, but this effect waned over time. Coupling retinoic acid (R), an inducer of neuronal differentiation, to VP pulse stimulation attenuated the decline in viral activity and promoted the spread of the active infection through concentric layers of neighboring cells as cellular differentiation progressed. R stimulation alone was unable to activate the infection. The MIE enhancer cis-regulatory mechanisms responsible for this result were characterized by a strategy of combinatorial mutagenesis of five cis-acting element types (retinoic acid receptor binding elements [RARE], cyclic AMP [cAMP] response elements [CRE], NF-κB binding sites [kB], serum response element, and ETS/ELK-1 binding site) and multiple methods of assessment. We found that the CRE and kB combination sets the preinduction enhancer tone, is the major initiator and amplifier of RVP-induced MIE gene expression, and cooperates with RARE during cellular differentiation to enhance viral spread. In predifferentiated NTera2, we also found that the CRE-kB combination functions as initiator and amplifier of unstimulated HCMV MIE gene expression and cooperatively interacts with RARE to enhance viral spread. We conclude that RVP-stimulated signaling cascades and cellular differentiation operate through the enhancer CRE-kB-RARE core in strengthening induction of HCMV MIE gene expression in linkage with viral propagation. IMPORTANCE Cytomegalovirus-seropositive persons commonly lack detectable levels of cytomegalovirus replication, even when profoundly immunocompromised. In a human NTera2 cell model of primitive neural stem cells carrying resting cytomegalovirus genomes, we show that costimulation of protein kinase A and C-delta signaling cascades in conjunction with retinoic acid-induced neuronal differentiation brings about progeny virus propagation. Iterated DNA binding sites for retinoic acid receptor, CREB, and NF-κB family members in the cytomegalovirus major enhancer are at the crux in the pathway to HCMV activation. The stimulated CREB and NF-κB binding site combination vigorously initiates and amplifies the active cytomegalovirus infection and cooperates with activated retinoic acid receptor binding sites to further promote viral proliferation and spread between differentiated cells. These results support a paradigm in which a specific combination of stimuli coupled with cellular differentiation satisfies a core cis-activating code that unlocks enhancer silence to repower the cycle of cytomegalovirus propagation.
Collapse
Affiliation(s)
- Jinxiang Yuan
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ming Li
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Courtney S Galle
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jeffery L Meier
- Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Dutta N, Lashmit P, Yuan J, Meier J, Stinski MF. The human cytomegalovirus UL133-138 gene locus attenuates the lytic viral cycle in fibroblasts. PLoS One 2015; 10:e0120946. [PMID: 25799165 PMCID: PMC4370700 DOI: 10.1371/journal.pone.0120946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/12/2015] [Indexed: 12/22/2022] Open
Abstract
The genomes of HCMV clinical strains (e.g. FIX, TR, PH, etc) contain a 15 kb region that encodes 20 putative ORFs. The region, termed ULb’, is lost after serial passage of virus in human foreskin fibroblast (HFF) cell culture. Compared to clinical strains, laboratory strains replicate faster and to higher titers of infectious virus. We made recombinant viruses with 22, 14, or 7 ORFs deleted from the ULb’ region using FIX and TR as model clinical strains. We also introduced a stop codon into single ORFs between UL133 and UL138 to prevent protein expression. All deletions within ULb’ and all stop codon mutants within the UL133 to UL138 region increased to varying degrees, viral major immediate early RNA and protein, DNA, and cell-free infectious virus compared to the wild type viruses. The wild type viral proteins slowed down the viral replication process along with cell-free infectious virus release from human fibroblast cells.
Collapse
Affiliation(s)
- Nirmal Dutta
- Department of Internal Medicine, University of Iowa, Iowa City, United States of America
| | - Philip Lashmit
- Center for Biocatalysis and Bioprocessing, University of Iowa, Iowa City, United States of America
| | - Jinxiang Yuan
- Department of Internal Medicine, University of Iowa, Iowa City, United States of America
| | - Jeffery Meier
- Department of Internal Medicine, University of Iowa, Iowa City, United States of America
- Iowa Veterans Affairs Healthcare System, Iowa City, United States of America
| | - Mark F. Stinski
- Department of Microbiology, University of Iowa, Iowa City, United States of America
- * E-mail:
| |
Collapse
|
13
|
Seto E, Inoue T, Nakatani Y, Yamada M, Isomura H. Processing bodies accumulate in human cytomegalovirus-infected cells and do not affect viral replication at high multiplicity of infection. Virology 2014; 458-459:151-61. [PMID: 24928047 DOI: 10.1016/j.virol.2014.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/04/2014] [Accepted: 04/17/2014] [Indexed: 01/14/2023]
Abstract
Translationally silenced mRNAs are recruited to two major classes of RNA granules in the cytoplasm, processing bodies (PBs) and stress granules (SGs). We show that PBs accumulated after human cytomegalovirus (HCMV) infection. PB assembly after HCMV infection was also detected in the presence of the protein synthesis inhibitor, cycloheximide, but required active RNA synthesis. UV-inactivated HCMV virions were sufficient to induce PB accumulation in HFF cells treated with cycloheximide. Viral IE1 RNA did not colocalize with PBs, and we could not detect an effect of PB accumulation on viral growth. These results may indicate that HCMV inhibits the colocalization of IE1 mRNA with PBs, preventing IE1 mRNA decay and translational inhibition.
Collapse
Affiliation(s)
- Eri Seto
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Teruki Inoue
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoko Nakatani
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Masanobu Yamada
- Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hiroki Isomura
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
14
|
Isomura H, Stinski MF. Coordination of late gene transcription of human cytomegalovirus with viral DNA synthesis: recombinant viruses as potential therapeutic vaccine candidates. Expert Opin Ther Targets 2012; 17:157-66. [PMID: 23231449 DOI: 10.1517/14728222.2013.740460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION During productive infection, human cytomegalovirus (HCMV) genes are expressed in a temporal cascade, with temporal phases designated as immediate-early (IE), early, and late. The major IE (MIE) genes, UL123 and UL122 (IE1/IE2), play a critical role in subsequent viral gene expression and the efficiency of viral replication. The early viral genes encode proteins necessary for viral DNA replication. Following viral DNA replication, delayed-early and late viral genes are expressed which encode structural proteins for the virion. The late genes can be divided into two broad classes. At early times the gamma-1 or leaky-late class are expressed at low levels after infection and are dramatically upregulated at late times. In contrast, the gamma-2 or 'true' late genes are expressed exclusively after viral DNA replication. Expression of true late (gamma-2 class) viral genes is completely prevented by inhibition of viral DNA synthesis. AREAS COVERED This review addresses the viral genes required for HCMV late gene transcription. Recombinant viruses that are defective for late gene transcription allow for early viral gene expression and viral DNA synthesis, but not infectious virus production. Since current HCMV prophylaxis is limited by several shortcomings, the use of defective recombinant viruses to induce HCMV cell-mediated and humoral immunity is discussed. EXPERT OPINION HCMV DNA replication and late gene transcription are not completely linked. Viral-encoded trans-acting factors are required. Recombinant viruses proficient in MIE and early viral gene expression and defective in late gene expression may be an alternative therapeutic vaccine candidates for the induction of cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Hiroki Isomura
- Gunma University Graduate School of Medicine, Department of Virology and Preventive Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | |
Collapse
|
15
|
Mercorelli B, Lembo D, Palù G, Loregian A. Early inhibitors of human cytomegalovirus: state-of-art and therapeutic perspectives. Pharmacol Ther 2011; 131:309-29. [PMID: 21570424 PMCID: PMC7112563 DOI: 10.1016/j.pharmthera.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, mainly transplant recipients and AIDS patients, and is the most frequent cause of congenital malformations in newborn children. To date, few drugs are licensed for the treatment of HCMV infections, most of which target the viral DNA polymerase and suffer from many drawbacks, including long-term toxicity, low potency, and poor bioavailability. In addition, the emergence of drug-resistant viral strains is becoming an increasing problem for disease management. Finally, none of the current anti-HCMV drugs have been approved for the treatment of congenital infections. For all these reasons, there is still a strong need for new anti-HCMV drugs with novel mechanisms of action. The first events of the virus replication cycle, including attachment, entry, immediate-early gene expression, and immediate-early functions—in particular that of Immediate-Early 2 protein—represent attractive targets for the development of novel antiviral compounds. Such inhibitors would block not only the expression of viral immediate-early proteins, which play a key role in the pathogenesis of HCMV infection, but also the host immunomodulation and the changes to cell physiology induced by the first events of virus infection. This review describes the current knowledge on the initial phases of HCMV replication, their validation as potential novel antiviral targets, and the development of compounds that block such processes.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | | | |
Collapse
|
16
|
The human cytomegalovirus gene products essential for late viral gene expression assemble into prereplication complexes before viral DNA replication. J Virol 2011; 85:6629-44. [PMID: 21507978 DOI: 10.1128/jvi.00384-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of human cytomegalovirus (HCMV) late gene expression by viral proteins is poorly understood, and these viral proteins could be targets for novel antivirals. HCMV open reading frames (ORFs) UL79, -87, and -95 encode proteins with homology to late gene transcription factors of murine gammaherpesvirus 68 ORFs 18, 24, and 34, respectively. To determine whether these HCMV proteins are also essential for late gene transcription of a betaherpesvirus, we mutated HCMV ORFs UL79, -87, and -95. Cells were infected with the recombinant viruses at high and low multiplicities of infection (MOIs). While viral DNA was detected with the recombinant viruses, infectious virus was not detected unless the wild-type viral proteins were expressed in trans. At a high MOI, mutation of ORF UL79, -87, or -95 had no effect on the level of major immediate-early (MIE) gene expression or viral DNA replication, but late viral gene expression from the UL44, -75, and -99 ORFs was not detected. At a low MOI, preexpression of UL79 or -87, but not UL95, in human fibroblast cells negatively affected the level of MIE viral gene expression and viral DNA replication. The products of ORFs UL79, -87, and -95 were expressed as early viral proteins and recruited to prereplication complexes (pre-RCs), along with UL44, before the initiation of viral DNA replication. All three HCMV ORFs are indispensable for late viral gene expression and viral growth. The roles of UL79, -87, and -95 in pre-RCs for late viral gene expression are discussed.
Collapse
|
17
|
The human cytomegalovirus gene UL79 is required for the accumulation of late viral transcripts. J Virol 2011; 85:4841-52. [PMID: 21367901 DOI: 10.1128/jvi.02344-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we adopted a conditional protein genetic approach to characterize the role of the human cytomegalovirus (HCMV) gene UL79 during virus infection. We constructed ADddUL79, a recombinant HCMV in which the annotated UL79 open reading frame (ORF) was tagged with the destabilization domain of a highly unstable variant of the human FKBP12 protein (ddFKBP). The ddFKBP domain targets the tagged protein for rapid proteasomal degradation, but the synthetic ligand Shield-1 can stabilize ddFKBP, allowing accumulation of the tagged protein. ADddUL79 failed to replicate without Shield-1, but it grew at wild-type levels with Shield-1 or in human foreskin fibroblasts overexpressing hemagglutinin (HA)-tagged UL79 (HF-UL79HA cells), indicating an essential role of UL79 and the effectiveness of this approach. Without Shield-1, representative immediate-early and early viral proteins as well as viral DNA accumulated normally, but late transcripts and proteins were markedly reduced. UL79 was transcribed with early-late kinetics, which was also regulated via a positive-feedback loop. Using HF-UL79HA cells, we found that the UL79 protein localized to viral replication compartments during HCMV infection. Finally, we created a second UL79 mutant virus (ADinUL79(stop)) in which the UL79 ORF was disrupted by a stop codon mutation and found that ADinUL79(stop) phenocopied ADddUL79 under the destabilizing condition. Taking these results together, we conclude that UL79 acts after viral DNA replication to promote the accumulation of late viral transcripts. Importantly, the comparative analysis of ADddUL79 and ADinUL79(stop) viruses provide additional proof for the power of the protein stability-based conditional approach to dissect the role of viral factors in HCMV biology.
Collapse
|
18
|
Isern E, Gustems M, Messerle M, Borst E, Ghazal P, Angulo A. The activator protein 1 binding motifs within the human cytomegalovirus major immediate-early enhancer are functionally redundant and act in a cooperative manner with the NF-{kappa}B sites during acute infection. J Virol 2011; 85:1732-46. [PMID: 21106746 PMCID: PMC3028895 DOI: 10.1128/jvi.01713-10] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/10/2010] [Indexed: 02/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection causes a rapid induction of c-Fos and c-Jun, the major subunits of activator protein 1 (AP-1), which in turn have been postulated to activate the viral immediate-early (IE) genes. Accordingly, the major IE promoter (MIEP) enhancer, a critical control region for initiating lytic HCMV infection and reactivation from the latent state, contains one well-characterized AP-1 site and a second candidate interaction site. In this study we explored the role of these AP-1 elements in the context of the infection. We first show that the distal candidate AP-1 motif binds c-Fos/c-Jun heterodimers (AP-1 complex) and confers c-Fos/c-Jun-mediated activity to a core promoter. Site-directed mutagenesis studies indicate that both AP-1 response elements are critical for 12-O-tetradecanoylphorbol-13-acetate (TPA)-enhanced MIEP activity in transient-transfection assays. In marked contrast to the results obtained with the isolated promoter, disruption of the AP-1 recognition sites of the MIEP in the context of the infectious HCMV genome has no significant influence on the expression of the MIE protein IE1 or viral replication in different cell types. Moreover, a chimeric murine CMV driven by the HCMV MIEP (hMCMV-ES) with the two AP-1 binding sites mutated is not compromised in virulence, is able to grow and disseminate to different organs of the newborn mice as efficiently as the parental virus, and is competent in reactivation. We show, however, that combined inactivation of the enhancer AP-1 and NF-κB recognition sites leads to an attenuation of the hMCMV-ES in the neonatal murine infection model, not observed when each single element is abolished. Altogether, these results underline the functional redundancy of the MIEP elements, highlighting the plasticity of this region, which probably evolved to ensure maximal transcriptional performance across many diverse environments.
Collapse
Affiliation(s)
- Elena Isern
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Montse Gustems
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Martin Messerle
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Eva Borst
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Peter Ghazal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Ana Angulo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, Department of Virology, Hannover Medical School, 30625 Hannover, Germany, Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
19
|
Liu X, Yuan J, Wu AW, McGonagill PW, Galle CS, Meier JL. Phorbol ester-induced human cytomegalovirus major immediate-early (MIE) enhancer activation through PKC-delta, CREB, and NF-kappaB desilences MIE gene expression in quiescently infected human pluripotent NTera2 cells. J Virol 2010; 84:8495-508. [PMID: 20504934 PMCID: PMC2919020 DOI: 10.1128/jvi.00416-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/14/2010] [Indexed: 01/02/2023] Open
Abstract
The ways in which human cytomegalovirus (HCMV) major immediate-early (MIE) gene expression breaks silence from latency to initiate the viral replicative cycle are poorly understood. A delineation of the signaling cascades that desilence the HCMV MIE genes during viral quiescence in the human pluripotent N-Tera2 (NT2) cell model provides insight into the molecular mechanisms underlying HCMV reactivation. In this model, we show that phorbol 12-myristate 13-acetate (PMA) immediately activates the expression of HCMV MIE RNA and protein and greatly increases the MIE-positive (MIE(+)) NT2 cell population density; levels of Oct4 (pluripotent cell marker) and HCMV genome penetration are unchanged. Decreasing PKC-delta activity (pharmacological, dominant-negative, or RNA interference [RNAi] method) attenuates PMA-activated MIE gene expression. MIE gene activation coincides with PKC-delta Thr505 phosphorylation. Mutations in MIE enhancer binding sites for either CREB (cyclic AMP [cAMP] response element [CRE]) or NF-kappaB (kappaB) partially block PMA-activated MIE gene expression; the ETS binding site is negligibly involved, and kappaB does not confer MIE gene activation by vasoactive intestinal peptide (VIP). The PMA response is also partially attenuated by the RNAi-mediated depletion of the CREB or NF-kappaB subunit RelA or p50; it is not diminished by TORC2 knockdown or accompanied by TORC2 dephosphorylation. Mutations in both CRE and kappaB fully abolish PMA-activated MIE gene expression. Thus, PMA stimulates a PKC-delta-dependent, TORC2-independent signaling cascade that acts through cellular CREB and NF-kappaB, as well as their cognate binding sites in the MIE enhancer, to immediately desilence HCMV MIE genes. This signaling cascade is distinctly different from that elicited by VIP.
Collapse
Affiliation(s)
- Xiaoqiu Liu
- Veterans Affairs Medical Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Jinxiang Yuan
- Veterans Affairs Medical Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Allen W. Wu
- Veterans Affairs Medical Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Patrick W. McGonagill
- Veterans Affairs Medical Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Courtney S. Galle
- Veterans Affairs Medical Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Jeffery L. Meier
- Veterans Affairs Medical Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
20
|
Isomura H, Stinski MF, Murata T, Nakayama S, Chiba S, Akatsuka Y, Kanda T, Tsurumi T. The human cytomegalovirus UL76 gene regulates the level of expression of the UL77 gene. PLoS One 2010; 5:e11901. [PMID: 20689582 PMCID: PMC2912765 DOI: 10.1371/journal.pone.0011901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 07/07/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs) have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture. In contrast, the majority of the predicted ORFs are nonessential for viral replication in cell culture. However, it is also possible that these ORFs are required for the efficient viral replication in the host. The UL77 gene of HCMV is essential for viral replication and has a role in viral DNA packaging. The function of the upstream UL76 gene in the HCMV-infected cells is not understood. UL76 and UL77 are cistons on the same viral mRNA and a conventional 5' mRNA for UL77 has not been detected. The vast majority of eukaryotic mRNAs are monocistronic, i.e., they encode only a single protein. METHODOLOGY/PRINCIPAL FINDINGS To determine whether the UL76 ORF affects UL77 gene expression, we mutated UL76 by ORF frame-shifts, stop codons or deletion of the viral gene. The effect on UL77 protein expression was determined by either transfection of expression plasmids or infection with recombinant viruses. Mutation of UL76 ORF significantly increased the level of UL77 protein expression. However, deletion of UL76 upstream of the UL77 ORF had only marginal effects on viral growth. CONCLUSIONS/SIGNIFICANCE While UL76 is not essential for viral replication, the UL76 ORF is involved in regulation of the level of UL77 protein expression in a manner dependent on the translation re-initiation. UL76 may fine-tune the UL77 expression for the efficient viral replication in the HCMV- infected cells.
Collapse
Affiliation(s)
- Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, Kanokoden, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
AKUZAWA K, YAMADA R, BI C, SADANARI H, MATSUBARA K, TSUCHIDA Y, WATANABE K, NINOMIYA M, KOKETSU M, MURAYAMA T. Anti-Human Cytomegalovirus Activity of Chemical Constituents from Kumazasa Hot Water Extract. ACTA ACUST UNITED AC 2010. [DOI: 10.1625/jcam.7.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kazuhiko AKUZAWA
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University
| | - Rie YAMADA
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University
| | - Changxiao BI
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University
| | - Hidetaka SADANARI
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University
| | - Keiko MATSUBARA
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University
| | | | | | - Masayuki NINOMIYA
- Department of Materials Science and Technology, Faculty of Engineering, Gifu University
| | - Mamoru KOKETSU
- Department of Materials Science and Technology, Faculty of Engineering, Gifu University
| | - Tsugiya MURAYAMA
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Hokuriku University
| |
Collapse
|
22
|
Kaposi sarcoma-associated herpes virus (KSHV) G protein-coupled receptor (vGPCR) activates the ORF50 lytic switch promoter: a potential positive feedback loop for sustained ORF50 gene expression. Virology 2009; 392:34-51. [PMID: 19640558 DOI: 10.1016/j.virol.2009.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/15/2009] [Accepted: 07/03/2009] [Indexed: 11/23/2022]
Abstract
KSHV vGPCR, a lytic cycle associated protein, induces several signaling pathways leading to the activation of various transcription factors and consequently the expression of cellular and viral genes. Though the role of vGPCR in KSHV tumorigenicity has been well studied, its function related to the viral life cycle is poorly understood. Reduction in vGPCR by RNA interference also resulted in the reduction in KSHV lytic switch ORF50 gene and protein expression. Induction of vGPCR by doxycycline in BC3.14 cells also resulted in more KSHV production. When this was explored, induction of the ORF50 promoter by vGPCR expression was observed. Further examination of the molecular mechanisms by which vGPCR regulates the ORF50 promoter, using various ORF50 promoter constructs, revealed that induction of ORF50 promoter by vGPCR did not involve AP1 but was dependent on Sp1 and Sp3 transcription factors. vGPCR signaling led to an increase in Sp1 and Sp3 DNA binding activity and a decrease in histone deacetylase (HDAC) activity. These activities were pertussis toxin independent, did not involve Rho and Rac-GTPases and involved the heterotrimeric G protein subunits Galpha12 and Galphaq. Studies using pharmacologic inhibitors and dominant-negative proteins identified phospholipase C, the novel protein kinase C (novel PKC) family and protein kinase D (PKD) as part of the signaling initiated by vGPCR leading to ORF50 promoter activation. Taken together, this study suggests a role for vGPCR in the sustained expression of ORF50 which could lead to a continued activation of lytic cycle genes and ultimately to successful viral progeny formation.
Collapse
|
23
|
Yuan J, Liu X, Wu AW, McGonagill PW, Keller MJ, Galle CS, Meier JL. Breaking human cytomegalovirus major immediate-early gene silence by vasoactive intestinal peptide stimulation of the protein kinase A-CREB-TORC2 signaling cascade in human pluripotent embryonal NTera2 cells. J Virol 2009; 83:6391-403. [PMID: 19369332 PMCID: PMC2698552 DOI: 10.1128/jvi.00061-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 04/07/2009] [Indexed: 12/31/2022] Open
Abstract
The triggering mechanisms underlying reactivation of human cytomegalovirus (HCMV) in latently infected persons are unclear. During latency, HCMV major immediate-early (MIE) gene expression breaks silence to initiate viral reactivation. Using quiescently HCMV-infected human pluripotent embryonal NTera2 cells (NT2) to model HCMV reactivation, we show that vasoactive intestinal peptide (VIP), an immunomodulatory neuropeptide, immediately and dose-dependently (1 to 500 nM) activates HCMV MIE gene expression. This response requires the MIE enhancer cyclic AMP response elements (CRE). VIP quickly elevates CREB Ser133 and ATF-1 Ser63 phosphorylation levels, although the CREB Ser133 phosphorylation level is substantial at baseline. VIP does not change the level of HCMV genomes in nuclei, Oct4 (pluripotent cell marker), or hDaxx (cellular repressor of HCMV gene expression). VIP-activated MIE gene expression is mediated by cellular protein kinase A (PKA), CREB, and TORC2. VIP induces PKA-dependent TORC2 Ser171 dephosphorylation and nuclear entry, which likely enables MIE gene activation, as TORC2 S171A (devoid of Ser171 phosphorylation) exhibits enhanced nuclear entry and desilences the MIE genes in the absence of VIP stimulation. In conclusion, VIP stimulation of the PKA-CREB-TORC2 signaling cascade activates HCMV CRE-dependent MIE gene expression in quiescently infected NT2 cells. We speculate that neurohormonal stimulation via this signaling cascade is a possible means for reversing HCMV silence in vivo.
Collapse
Affiliation(s)
- Jinxiang Yuan
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Gustems M, Busche A, Messerle M, Ghazal P, Angulo A. In vivo competence of murine cytomegalovirus under the control of the human cytomegalovirus major immediate-early enhancer in the establishment of latency and reactivation. J Virol 2008; 82:10302-7. [PMID: 18684819 PMCID: PMC2566294 DOI: 10.1128/jvi.01255-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) major immediate-early enhancer has been postulated to play a pivotal role in the control of latency and reactivation. However, the absence of an animal model has obstructed a direct test of this hypothesis. Here we report on the establishment of an in vivo, experimentally tractable system for quantitatively investigating physiological functions of the HCMV enhancer. Using a neonate BALB/c mouse model, we show that a chimeric murine CMV under the control of the HCMV enhancer is competent in vivo, replicating in key organs of mice with acute CMV infection and exhibiting latency/reactivation features comparable for the most part to those of the parental and revertant viruses.
Collapse
Affiliation(s)
- Montse Gustems
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, C/Villarroel 170, Barcelona 08036, Spain.
| | | | | | | | | |
Collapse
|
25
|
Stinski MF, Isomura H. Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol 2008; 197:223-231. [PMID: 18097687 DOI: 10.1007/s00430-007-0069-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Indexed: 01/19/2023]
Abstract
The cytomegalovirus (CMV) major immediate early (MIE) enhancer-containing promoter regulates the expression of the downstream MIE genes, which have critical roles in reactivation from latency and acute infection. The enhancer consists of binding sites for cellular transcription factors that are repeated multiple times. The primate and nonprimate CMV enhancers can substitute for one another. The enhancers are not functionally equivalent, but they do have overlapping activities. The CMV MIE enhancers are located between divergent promoters where the leftward genes are critical and essential for reactivation from latency and acute infection and the rightward gene is nonessential. The rightward transcription unit is controlled by an enhancer for murine CMV. In contrast, human CMV has a set of repressor elements that prevents enhancer effects on the rightward viral promoter. The human CMV enhancer that controls the leftward transcription unit has a distal component that is nonessential at high multiplicity of infection (MOI), but has a significant impact on the MIE gene expression at low MOI. The proximal enhancer influences directly the level of transcription of the MIE genes and contains an essential Sp-1 site. The MIE promoter has a site adjacent to the transcription start site that is essential at the earliest stage of infection. The MIE enhancer-containing promoter responds to signal transduction events and to cellular differentiation. The role of the CMV MIE enhancer-containing promoter in acute infection and reactivation from latency are reviewed.
Collapse
Affiliation(s)
- Mark F Stinski
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
26
|
Tavalai N, Papior P, Rechter S, Stamminger T. Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection. J Virol 2008; 82:126-37. [PMID: 17942542 PMCID: PMC2224380 DOI: 10.1128/jvi.01685-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 10/10/2007] [Indexed: 12/28/2022] Open
Abstract
Infection with DNA viruses commonly results in the association of viral genomes with a cellular subnuclear structure known as nuclear domain 10 (ND10). Recent studies demonstrated that individual ND10 components, like hDaxx or promyelocytic leukemia protein (PML), mediate an intrinsic immune response against human cytomegalovirus (HCMV) infection, strengthening the assumption that ND10 components are part of a cellular antiviral defense mechanism. In order to further define the role of hDaxx and PML for HCMV replication, we generated either primary human fibroblasts with a stable, individual knockdown of PML or hDaxx (PML-kd and hDaxx-kd, respectively) or cells exhibiting a double knockdown. Comparative analysis of HCMV replication in PML-kd or hDaxx-kd cells revealed that immediate-early (IE) gene expression increased to a similar extent, regardless of which ND10 constituent was depleted. Since a loss of PML, the defining component of ND10, results in a dispersal of the entire nuclear substructure, the increased replication efficacy of HCMV in PML-kd cells could be a consequence of the dissociation of the repressor protein hDaxx from its optimal subnuclear localization. However, experiments using three different recombinant HCMVs revealed a differential growth complementation in PML-kd versus hDaxx-kd cells, strongly arguing for an independent involvement in suppressing HCMV replication. Furthermore, infection experiments using double-knockdown cells devoid of both PML and hDaxx illustrated an additional enhancement in the replication efficacy of HCMV compared to the single-knockdown cells. Taken together, our data indicate that both proteins, PML and hDaxx, mediate an intrinsic immune response against HCMV infection by contributing independently to the silencing of HCMV IE gene expression.
Collapse
Affiliation(s)
- Nina Tavalai
- Institut für Klinische und Molekulare Virologie, University Hospital Erlangen, Schlossgarten 4, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
27
|
Noncanonical TATA sequence in the UL44 late promoter of human cytomegalovirus is required for the accumulation of late viral transcripts. J Virol 2007; 82:1638-46. [PMID: 18057245 DOI: 10.1128/jvi.01917-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During productive infection, human cytomegalovirus (HCMV) UL44 transcription initiates at three distinct start sites that are differentially regulated. Two of the start sites, the distal and the proximal, are active at early times, whereas the middle start site is active only at late times after infection. The UL44 early viral gene product is essential for viral DNA synthesis. The UL44 gene product from the late viral promoter affects primarily viral gene expression at late times after infection rather than viral DNA synthesis (H. Isomura, M. F. Stinski, A. Kudoh, S. Nakayama, S. Iwahori, Y. Sato, and T. Tsurumi, J. Virol. 81:6197, 2007). The UL44 early viral promoters have a canonical TATA sequence, "TATAA." In contrast, the UL44 late viral promoter has a noncanonical TATA sequence. Using recombinant viruses, we found that the noncanonical TATA sequence is required for the accumulation of late viral transcripts. The GC boxes that surround the middle TATA element did not affect the kinetics or the start site of UL44 late transcription. Replacement of the distal TATA element with a noncanonical TATA sequence did not affect the kinetics of transcription or the transcription start site, but it did induce an alternative transcript at late times after infection. The data indicate that a noncanonical TATA box is used at late times after HCMV infection.
Collapse
|
28
|
Andrews JI, Griffith TS, Meier JL. Cytomegalovirus and the role of interferon in the expression of tumor necrosis factor-related apoptosis-inducing ligand in the placenta. Am J Obstet Gynecol 2007; 197:608.e1-6. [PMID: 18060949 DOI: 10.1016/j.ajog.2007.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/20/2007] [Accepted: 04/18/2007] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Cytomegalovirus infection causes adverse outcomes during pregnancy. Our objective was to determine the role of cytomegalovirus in modulating tumor necrosis factor (TNF)-related apoptosis-inducing ligand expression in the placenta. STUDY DESIGN TNF-related apoptosis-inducing ligand messenger RNA and protein were quantified in cytomegalovirus-infected placental fibroblasts by polymerase chain reaction and enzyme-linked immunosorbent assays, respectively. Blocking antibodies against interferon and type I interferon receptor were applied to culture medium to characterize the role of type I interferon in cytomegalovirus-induced TNF-related apoptosis-inducing ligand upregulation. RESULTS Expression of TNF-related apoptosis-inducing ligand messenger RNA and protein was increased in cytomegalovirus-infected placental fibroblasts, compared with uninfected controls. The cytomegalovirus-induced TNF-related apoptosis-inducing ligand messenger RNA upregulation was demonstrated across gestation, occurred in the absence of viral gene expression, and required cellular protein synthesis. TNF-related apoptosis-inducing ligand messenger RNA upregulation was markedly attenuated by inactivation of either type I interferon or its receptor. CONCLUSION One mechanism by which cytomegalovirus infection causes unfavorable pregnancy outcomes may involve placental upregulation of TNF-related apoptosis-inducing ligand via an interferon-mediated pathway.
Collapse
Affiliation(s)
- Janet I Andrews
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
29
|
A cis element between the TATA Box and the transcription start site of the major immediate-early promoter of human cytomegalovirus determines efficiency of viral replication. J Virol 2007; 82:849-58. [PMID: 17989180 DOI: 10.1128/jvi.01593-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The promoter of the major immediate-early (MIE) genes of human cytomegalovirus (HCMV), also referred to as the CMV promoter, possesses a cis-acting element positioned downstream of the TATA box between positions -14 and -1 relative to the transcription start site (+1). We determined the role of the cis-acting element in viral replication by comparing recombinant viruses with the cis-acting element replaced with other sequences. Recombinant virus with the simian CMV counterpart replicated efficiently in human foreskin fibroblasts, as well as wild-type virus. In contrast, replacement with the murine CMV counterpart caused inefficient MIE gene transcription, RNA splicing, MIE and early viral gene expression, and viral DNA replication. To determine which nucleotides in the cis-acting element are required for efficient MIE gene transcription and splicing, we constructed mutations within the cis-acting element in the context of a recombinant virus. While mutations in the cis-acting element have only a minor effect on in vitro transcription, the effects on viral replication are major. The nucleotides at -10 and -9 in the cis-acting element relative to the transcription start site (+1) affect efficient MIE gene transcription and splicing at early times after infection. The cis-acting element also acts as a cis-repression sequence when the viral IE86 protein accumulates in the infected cell. We demonstrate that the cis-acting element has an essential role in viral replication.
Collapse
|
30
|
Keller MJ, Wu AW, Andrews JI, McGonagill PW, Tibesar EE, Meier JL. Reversal of human cytomegalovirus major immediate-early enhancer/promoter silencing in quiescently infected cells via the cyclic AMP signaling pathway. J Virol 2007; 81:6669-81. [PMID: 17301150 PMCID: PMC1900132 DOI: 10.1128/jvi.01524-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 02/02/2007] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) major immediate-early (MIE) enhancer contains five functional cyclic AMP (cAMP) response elements (CRE). Because the CRE in their native context do not contribute appreciably to MIE enhancer/promoter activity in lytically infected human fibroblasts and NTera2 (NT2)-derived neurons, we postulated that they might have a role in MIE enhancer/promoter reactivation in quiescently infected cells. Here, we show that stimulation of the cAMP signaling pathway by treatment with forskolin (FSK), an adenylyl cyclase activator, greatly alleviates MIE enhancer/promoter silencing in quiescently infected NT2 neuronal precursors. The effect is immediate, independent of de novo protein synthesis, associated with the phosphorylation of ATF-1 serine 63 and CREB serine 133, dependent on protein kinase A (PKA) and the enhancer's CRE, and linked to viral-lytic-cycle advancement. Coupling of FSK treatment with the inhibition of either histone deacetylases or protein synthesis synergistically activates MIE gene expression in a manner suggesting that MIE enhancer/promoter silencing is optimally relieved by an interplay of multiple regulatory mechanisms. In contrast, MIE enhancer/promoter silence is not overcome by stimulation of the gamma interferon (IFN-gamma) signaling pathway, despite the enhancer having two IFN-gamma-activated-site-like elements. We conclude that stimulation of the cAMP/PKA signaling pathway drives CRE-dependent MIE enhancer/promoter activation in quiescently infected cells, thus exposing a potential mode of regulation in HCMV reactivation.
Collapse
Affiliation(s)
- Michael J Keller
- Department of Internal Medicine, University of Iowa Carver College of Medicine, and Veterans Affairs Medical Center, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
31
|
Simon CO, Kühnapfel B, Reddehase MJ, Grzimek NKA. Murine cytomegalovirus major immediate-early enhancer region operating as a genetic switch in bidirectional gene pair transcription. J Virol 2007; 81:7805-10. [PMID: 17494084 PMCID: PMC1933345 DOI: 10.1128/jvi.02388-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enhancers are defined as DNA elements that increase transcription when placed in any orientation relative to a promoter. The major immediate-early (MIE) enhancer region of murine cytomegalovirus is flanked by transcription units ie1/3 and ie2, which are transcribed in opposite directions. We have addressed the fundamental mechanistic question of whether the enhancer synchronizes transcription of the bidirectional gene pair (synchronizer model) or whether it operates as a genetic switch, enhancing transcription of either gene in a stochastic alternation (switch model). Clonal analysis of cytokine-triggered, transcription factor-mediated MIE gene expression from latent viral genomes provided evidence in support of the switch model.
Collapse
Affiliation(s)
- Christian O Simon
- Institute for Virology, Johannes Gutenberg-University, Hochhaus am Augustusplatz, 55101 Mainz, Germany
| | | | | | | |
Collapse
|
32
|
Isomura H, Stinski MF, Kudoh A, Nakayama S, Iwahori S, Sato Y, Tsurumi T. The late promoter of the human cytomegalovirus viral DNA polymerase processivity factor has an impact on delayed early and late viral gene products but not on viral DNA synthesis. J Virol 2007; 81:6197-206. [PMID: 17409154 PMCID: PMC1900103 DOI: 10.1128/jvi.00089-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transcription of the DNA polymerase processivity factor gene (UL44) of human cytomegalovirus initiates at three distinct start sites, which are differentially regulated during productive infection. Two of these start sites, the distal and proximal sites, are active at early times, and the middle start site is active at only late times after infection (F. Leach and E. S. Mocarski, J. Virol. 63:1783-1791, 1989). Compared to the wild type, UL44 gene expression was lower for recombinant viruses with the distal or the middle TATA element mutated. The transcripts initiating from the distal or middle start site facilitated late viral gene expression. The level of viral DNA synthesis was affected by mutation of the distal TATA element. In contrast, mutation of the middle TATA element did not affect the level of viral DNA synthesis, but it did affect significantly the level of late viral gene expression. Recombinant viruses with the distal or middle TATA element mutated grew more slowly than the wild type at both low and high multiplicities of infection. Reduced expression of the UL44 gene from the late middle viral promoter correlated with decreased late viral protein expression and decreased viral growth.
Collapse
Affiliation(s)
- Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Petrik DT, Schmitt KP, Stinski MF. The autoregulatory and transactivating functions of the human cytomegalovirus IE86 protein use independent mechanisms for promoter binding. J Virol 2007; 81:5807-18. [PMID: 17376893 PMCID: PMC1900308 DOI: 10.1128/jvi.02437-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The functions of the human cytomegalovirus (HCMV) IE86 protein are paradoxical, as it can both activate and repress viral gene expression through interaction with the promoter region. Although the mechanism for these functions is not clearly defined, it appears that a combination of direct DNA binding and protein-protein interactions is involved. Multiple sequence alignment of several HCMV IE86 homologs reveals that the amino acids (534)LPIYE(538) are conserved between all primate and nonprimate CMVs. In the context of a bacterial artificial chromosome (BAC), mutation of both P535 and Y537 to alanines (P535A/Y537A) results in a nonviable BAC. The defective HCMV BAC does not undergo DNA replication, although the P535A/Y537A mutant IE86 protein appears to be stably expressed. The P535A/Y537A mutant IE86 protein is able to negatively autoregulate transcription from the major immediate-early (MIE) promoter and was recruited to the MIE promoter in a chromatin immunoprecipitation (ChIP) assay. However, the P535A/Y537A mutant IE86 protein was unable to transactivate early viral genes and was not recruited to the early viral UL4 and UL112 promoters in a ChIP assay. From these data, we conclude that the transactivation and repressive functions of the HCMV IE86 protein can be separated and must occur through independent mechanisms.
Collapse
Affiliation(s)
- Dustin T Petrik
- Interdisciplinary Program in Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
34
|
Yee LF, Lin PL, Stinski MF. Ectopic expression of HCMV IE72 and IE86 proteins is sufficient to induce early gene expression but not production of infectious virus in undifferentiated promonocytic THP-1 cells. Virology 2007; 363:174-88. [PMID: 17331553 DOI: 10.1016/j.virol.2007.01.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/09/2007] [Accepted: 01/30/2007] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (HCMV) reactivation from latency causes disease in individuals who are immunocompromised or immunosuppressed. Activation of the major immediate-early (MIE) promoter is thought to be an initial step for reactivation. We determined whether expression of the MIE gene products in trans was sufficient to circumvent an HCMV latent-like state in an undifferentiated transformed human promonocytic (THP)-1 cell model system. Expression of the functional MIE proteins was achieved with a replication-defective adenovirus vector, Ad-IE1/2, which contains the MIE gene locus. Expression of the MIE proteins by Ad-IE1/2 prior to HCMV infection induced viral early gene expression accompanied by an increase in active chromatin signals. Expression of the anti-apoptotic protein encoded by UL37x1 increased viral early gene expression. However, viral DNA replication and production of infectious virus was not detected. As expected, cellular differentiation with phorbol 12-myristate 13-acetate and hydrocortisone induced virus production. Cellular differentiation is required for efficient viral reactivation.
Collapse
Affiliation(s)
- Lian-Fai Yee
- 3-701 BSB, 51 Newton Road, Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
35
|
Chen J, Chen L, Li G, Cheng L, Huang Y, Zhang JX, Fan WW, Lu DR. Amino acid 1-209 is essential for PDX-1-mediated repression of human CMV IE promoter activity. Acta Pharmacol Sin 2006; 27:1495-503. [PMID: 17049127 DOI: 10.1111/j.1745-7254.2006.00420.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To explore the different roles of pancreatic duodenal homeobox factors-1 (PDX-1) domains in PDX-1 mediated repression of human cytomegalovirus immediately early (CMV IE) promoter. METHODS A series of truncated PDX-1 mutants were constructed. The binding of PDX-1 and CMV IE promoter was identified by electrophoretic mobility shift assay (EMSA). The dual-reporter assay was applied to examine the repression activities of PDX-1 mutants on CMV IE promoter. In addition, RNAi technology was used to specifically knock down the endogenous PDX-1 expression. RESULTS The reporter assay indicated that compared to the mock controls (pEGFP-N2), overexpression of PDX-1 resulted in a 41% decrease of CMV IE promoter activity in the 293 cells (P< 0.05) and 43% decrease in HeLa cells (P< 0.05), and the repression levels of various truncated mutants played on CMV IE promoter were different. Specific knock down of the endogenous PDX-1 expression significantly restored the activity of CMV IE promoter. EMSA demonstrated that domain 3 is necessary for nuclear localization and DNA binding activity of PDX-1. However, binding of PDX-1 alone to CMV IE promoter was not sufficient to inhibit its transcriptional activity, and other domains of PDX-1 presented were also required. CONCLUSION Our data suggested that the DNA binding activity of PDX-1 domain 3 and the cooperative binding of PDX-1 domain 1/2 with other proteins were required for PDX-1 mediated repression of CMV IE promoter.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Petrik DT, Schmitt KP, Stinski MF. Inhibition of cellular DNA synthesis by the human cytomegalovirus IE86 protein is necessary for efficient virus replication. J Virol 2006; 80:3872-83. [PMID: 16571804 PMCID: PMC1440472 DOI: 10.1128/jvi.80.8.3872-3883.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) expresses several proteins that manipulate normal cellular functions, including cellular transcription, apoptosis, immune response, and cell cycle control. The IE2 gene, which is expressed from the HCMV major immediate-early (MIE) promoter, encodes the IE86 protein. IE86 is a multifunctional protein that is essential for viral replication. The functions of IE86 include transactivation of cellular and viral early genes, negative autoregulation of the MIE promoter, induction of cell cycle progression from G0/G1 to G1/S, and arresting cell cycle progression at the G1/S transition in p53-positive human foreskin fibroblast (HFF) cells. Mutations were introduced into the IE2 gene in the context of the viral genome using bacterial artificial chromosomes (BACs). From these HCMV BACs, a recombinant virus (RV) with a single amino acid substitution in the IE86 protein was isolated that replicates slower and to lower titers than wild-type HCMV. HFF cells infected with the Q548R RV undergo cellular DNA synthesis and do not arrest at any point in the cell cycle. The Q548R RV is able to negatively autoregulate the MIE promoter, transactivate viral early genes, activate cellular E2F-responsive genes, and produce infectious virus. This is the first report of a viable recombinant HCMV that is unable to inhibit cellular DNA synthesis in infected HFF cells.
Collapse
Affiliation(s)
- Dustin T Petrik
- Interdisciplinary Graduate Program in Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
37
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as novel targets for cancer therapy (part III): transcription factors. ACTA ACUST UNITED AC 2005; 5:327-38. [PMID: 16196502 DOI: 10.2165/00129785-200505050-00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This is the third paper in a four-part serial review on potential therapeutic targeting of oncogenes. The previous parts described the involvement of oncogenes in different aspects of cancer growth and development, and considered the new technologies responsible for the advancement of oncogene identification, target validation, and drug design. Because of such advances, new specific and more efficient therapeutic agents can be developed for cancer. This part of the review continues the exploration of various oncogenes that we have grouped within seven categories: growth factors, tyrosine kinases, intermediate signaling molecules, transcription factors, cell cycle regulators, DNA damage repair genes, and genes involved in apoptosis. Part one discussed growth factors and tyrosine kinases and part two discussed intermediate signaling molecules. This portion of the review covers transcription factors and the various strategies being used to inhibit their expression or decrease their activities.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pharmacology and Toxicology and Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
38
|
Isomura H, Stinski MF, Kudoh A, Daikoku T, Shirata N, Tsurumi T. Two Sp1/Sp3 binding sites in the major immediate-early proximal enhancer of human cytomegalovirus have a significant role in viral replication. J Virol 2005; 79:9597-607. [PMID: 16014922 PMCID: PMC1181558 DOI: 10.1128/jvi.79.15.9597-9607.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 04/06/2005] [Indexed: 01/29/2023] Open
Abstract
We previously demonstrated that the major immediate early (MIE) proximal enhancer containing one GC box and the TATA box containing promoter are minimal elements required for transcription and viral replication in human fibroblast cells (H. Isomura, T. Tsurumi, M. F. Stinski, J. Virol. 78:12788-12799, 2004). After infection, the level of Sp1 increased while Sp3 remained constant. Here we report that either Sp1 or Sp3 transcription factors bind to the GC boxes located at approximately positions -55 and -75 relative to the transcription start site (+1). Both the Sp1 and Sp3 binding sites have a positive and synergistic effect on the human cytomegalovirus (HCMV) major immediate-early (MIE) promoter. There was little to no change in MIE transcription or viral replication for recombinant viruses with one or the other Sp1 or Sp3 binding site mutated. In contrast, mutation of both the Sp1 and Sp3 binding sites caused inefficient MIE transcription and viral replication. These data indicate that the Sp1 and Sp3 binding sites have a significant role in HCMV replication in human fibroblast cells.
Collapse
Affiliation(s)
- Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Kim SJ, Varghese TK, Zhang Z, Zhao LC, Thomas G, Hummel M, Abecassis M. Renal ischemia/reperfusion injury activates the enhancer domain of the human cytomegalovirus major immediate early promoter. Am J Transplant 2005; 5:1606-13. [PMID: 15943618 DOI: 10.1111/j.1600-6143.2005.00912.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reactivation of latent human cytomegalovirus is of significant concern in immunocompromised transplant patients and is likely to occur through transcriptional activation of immediate early (ie) gene expression through mechanisms that are not well understood. TNF-mediated activation of NF-kappaB has been proposed to be one pathway leading to transcriptional activation of CMV ie gene expression. Using transgenic mice carrying a lacZ reporter gene under the control of the HCMV major ie promoter/enhancer (MIEP-lacZ mice) and MIEP-lacZ mice deficient in TNF receptor 1 and TNF receptor 2 (MIEP-lac Z TNFR DKO mice), we demonstrate that renal ischemia/reperfusion (I/R) injury activates the HCMV enhancer independently of TNF. Induction of MIEP-lacZ expression was preceded by TNFR-independent formation of reactive oxygen species (ROS), weak and transient activation of NF-kappaB and strong and sustained activation of AP-1. Our studies show that, in addition to TNF-mediated signaling, TNF-independent signaling induced by I/R injury can contribute to the activation of the HCMV enhancer. This likely occurs through ROS-mediated activation of AP-1. Targeting MAP kinase signaling pathways as well as NF-kappaB may be of therapeutic value in patients with CMV infection.
Collapse
Affiliation(s)
- Soo Jung Kim
- Department of Surgery, Transplant Lab, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Hanson LK, Dalton BL, Cageao LF, Brock RE, Slater JS, Kerry JA, Campbell AE. Characterization and regulation of essential murine cytomegalovirus genes m142 and m143. Virology 2005; 334:166-77. [PMID: 15780867 DOI: 10.1016/j.virol.2005.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/13/2004] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
US22 gene family members m142 and m143 are essential for replication of murine cytomegalovirus (MCMV). Their transcripts are produced with immediate-early kinetics, but little else is known about these viral genes. Unlike their transcripts, the m142 and m143 gene products (pm142, pm143) were not expressed until early times post-infection, with levels increasing over the course of infection. Both pm142 and pm143 were predominantly cytoplasmic, but cellular fractionation studies confirmed that the proteins were present in the nucleus as well. In addition, pm142 was detected within the virion. Both the m142 and m143 promoters were strongly upregulated by viral infection or by MCMV IE1. However, UV-inactivated virus and IE3 upregulated only the m142 promoter. When tested for transcriptional transactivating activity, neither m142 nor m143 demonstrated significant activity, either alone or in combination with the major immediate-early gene products. This failure to transactivate, along with their essential nature, makes m142 and m143 unique among the immediate-early genes of the US22 gene family.
Collapse
Affiliation(s)
- Laura K Hanson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Wright E, Bain M, Teague L, Murphy J, Sinclair J. Ets-2 repressor factor recruits histone deacetylase to silence human cytomegalovirus immediate-early gene expression in non-permissive cells. J Gen Virol 2005; 86:535-544. [PMID: 15722512 DOI: 10.1099/vir.0.80352-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous work from this laboratory has shown that expression of human cytomegalovirus (HCMV) immediate-early (IE) genes from the major immediate-early promoter (MIEP) is likely to be regulated by chromatin remodelling around the promoter affecting the acetylation state of core histone tails. The HCMV MIEP contains sequences that bind cellular transcription factors responsible for its negative regulation in undifferentiated, non-permissive cells. Ets-2 repressor factor (ERF) is one such factor that binds to such sequences and represses IE gene expression. Although it is not known how cellular transcription factors such as ERF mediate transcriptional repression of the MIEP, it is likely to involve differentiation-specific co-factors. In this study, the mechanism by which ERF represses HCMV IE gene expression was analysed. ERF physically interacts with the histone deacetylase, HDAC1, both in vitro and in vivo and this physical interaction between ERF and HDAC1 mediates repression of the MIEP. This suggests that silencing of viral IE gene expression, associated with histone deacetylation events around the MIEP, is mediated by differentiation-dependent cellular factors such as ERF, which specifically recruit chromatin remodellers to the MIEP in non-permissive cells.
Collapse
Affiliation(s)
- Edward Wright
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Mark Bain
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Linda Teague
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Jane Murphy
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
42
|
Schierling K, Buser C, Mertens T, Winkler M. Human cytomegalovirus tegument protein ppUL35 is important for viral replication and particle formation. J Virol 2005; 79:3084-96. [PMID: 15709028 PMCID: PMC548451 DOI: 10.1128/jvi.79.5.3084-3096.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tegument proteins ppUL35 and ppUL82 (pp71) of human cytomegalovirus (HCMV) physically interact and cooperatively activate the major immediate-early transcription. While an HCMV mutant lacking UL82 displayed a multiplicity of infection (MOI)-dependent growth, the biological significance of ppUL35 has not been addressed so far. We generated a mutant virus with a deletion of the UL35 gene. Using an MOI of 0.1, the progeny virus yield of this mutant was reduced by a factor of 1,000; however, when infected at a low MOI (0.01), the gene was essential. Characterization of the replication cycle showed that the mutant virus had two defects: when virus inoculum was standardized by the amount of viral DNA, a reduced immediate-early gene expression was observed, leading to a strongly delayed expression of lytic genes. A second defect was apparent in the virus assembly, as fewer enveloped particles and no dense bodies were present in cells infected with the mutant virus. However, the particles produced by wild-type and mutant viruses did not show significant ultrastructural differences. These results suggest an important role for ppUL35 in immediate-early gene expression and virus assembly.
Collapse
Affiliation(s)
- Karina Schierling
- Abteilung Virologie, Universitätsklinikum Ulm, Albert Einstein Allee 11, D-89081 Ulm, Germany.
| | | | | | | |
Collapse
|
43
|
Isomura H, Tsurumi T, Stinski MF. Role of the proximal enhancer of the major immediate-early promoter in human cytomegalovirus replication. J Virol 2004; 78:12788-99. [PMID: 15542631 PMCID: PMC525030 DOI: 10.1128/jvi.78.23.12788-12799.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 07/19/2004] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (CMV) enhancer has a distal component (positions -550 to -300) and a proximal component (-300 to -39) relative to the transcription start site (+1) of the major immediate-early (MIE) promoter. Without the distal enhancer, human CMV replicates slower and has a small-plaque phenotype. We determined the sequence requirements of the proximal enhancer by making 5'-end deletions to positions -223, -173, -116, -67, and -39. Even though recombinant virus with the proximal enhancer deleted to -39 has the minimal TATA box-containing MIE promoter element, it cannot replicate independently in human fibroblast cells. Recombinant virus with a deletion to -67 has an Sp-1 transcription factor binding site which may represent a minimal enhancer element for recombinant virus replication in human fibroblast cells. Although recombinant virus with a deletion to -223 replicates to titers at least 100-fold less than that of the wild-type virus, it replicates to titers 8-fold higher than that of recombinant virus with a deletion to -173 and 20-fold higher than that of virus with a deletion to -67. Recombinant virus with a deletion to -173 replicates more efficiently than that with a deletion to -116. There was a direct correlation between the level of infectious virus replication and time after infection, amount of MIE gene transcription, MIE and early viral protein synthesis, and viral DNA synthesis. The extent of the proximal enhancer determines the efficiency of viral replication.
Collapse
Affiliation(s)
- Hiroki Isomura
- Department of Microbiology, Carver College of Medicine, 3-772 BSB, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
44
|
Chang CC, Heller JD, Kuo J, Huang RCC. Tetra-O-methyl nordihydroguaiaretic acid induces growth arrest and cellular apoptosis by inhibiting Cdc2 and survivin expression. Proc Natl Acad Sci U S A 2004; 101:13239-44. [PMID: 15329416 PMCID: PMC516554 DOI: 10.1073/pnas.0405407101] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We previously reported that Sp1-dependent Cdc2 gene expression is inhibited by tetra-O-methyl nordihydroguaiaretic acid (M(4)N) and that M(4)N is likely responsible for causing growth arrest in M(4)N-treated transformed C3 cells. Here, we show that after M(4)N treatment and cell-cycle arrest, expression of the Sp1-dependent survivin gene, a member of the inhibitor of apoptosis family, is also suppressed, and the mitochondrial apoptotic pathway is activated. To confirm that inhibition of Cdc2 and survivin gene expression is necessary for M(4)N-induced growth arrest and apoptosis, we tested the effect of adding Cdc2 and survivin back to M(4)N-treated cells. Cell division was transiently restored in the presence of M(4)N after transfection of an exogenous Cdc2 gene copy under the control of the Sp1-independent cytomegalovirus promoter. Caspase-3 activation was also reduced by 50% and 75% in transiently and stably survivin-transfected C3 cells, respectively. The results suggest that M(4)N induces growth arrest and apoptosis by suppressing Cdc2 and survivin expression, which constitutes the cellular basis of its antitumoric action.
Collapse
Affiliation(s)
- Chih-Chuan Chang
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
45
|
Lee Y, Sohn WJ, Kim DS, Kwon HJ. NF-kappaB- and c-Jun-dependent regulation of human cytomegalovirus immediate-early gene enhancer/promoter in response to lipopolysaccharide and bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW 264.7. ACTA ACUST UNITED AC 2004; 271:1094-105. [PMID: 15009188 DOI: 10.1111/j.1432-1033.2004.04011.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cytomegalovirus immediate-early (CMV IE) gene enhancer/promoter regulates the expression of immediate-early gene products and initiation of CMV replication. TNF-alpha and lipopolysaccharide (LPS) strongly activate the promoter, possibly involving NF-kappaB. CpG-oligodeoxynucleotides (CpG-ODNs), which contain unmethylated CpG dinucleotides in the context of particular base sequences, have gained attention because of their stimulating effects, via NF-kappaB, which have a strong innate immune response. To study the effects of LPS and CpG-ODNs, as well as the mechanisms of their actions regarding CMV IE enhancer/promoter activation, we used a macrophage cell line, RAW 264.7. Stimulation of the cells with LPS or CpG-ODNs resulted in the activation of the CMV IE enhancer/promoter. We examined the involvement of NF-kappaB and c-Jun transcription factors by promoter deletion/site-specific mutation analysis and ectopic expression, and found them to have additive effects. Involvement of myeloid differentiation protein, an upstream regulator of NF-kappaB and c-Jun, was also investigated. Experimental results indicate that both LPS-induced and CpG-ODN-induced activations of CMV IE enhancer/promoter are mediated by Toll-like receptor signaling molecules. Several lines of evidence suggest the potential contribution of bacterial infection in CMV reactivation along with the potential application of CpG-ODNs in gene therapy as a stimulator for the optimal expression of target genes under the control of the CMV IE enhancer/promoter.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Cell Line
- Cytomegalovirus/drug effects
- Cytomegalovirus/genetics
- Enhancer Elements, Genetic/drug effects
- Enhancer Elements, Genetic/genetics
- Genes, Immediate-Early/drug effects
- Genes, Immediate-Early/genetics
- Humans
- I-kappa B Proteins/metabolism
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Macrophages/metabolism
- Mice
- Myeloid Differentiation Factor 88
- NF-KappaB Inhibitor alpha
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oligodeoxyribonucleotides/pharmacology
- Plasmids/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Sequence Deletion/genetics
- Transcription Factor RelA
- Transfection
Collapse
Affiliation(s)
- Younghee Lee
- Cell Biology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejon, Korea
| | | | | | | |
Collapse
|
46
|
Chao SH, Harada JN, Hyndman F, Gao X, Nelson CG, Chanda SK, Caldwell JS. PDX1, a Cellular Homeoprotein, Binds to and Regulates the Activity of Human Cytomegalovirus Immediate Early Promoter. J Biol Chem 2004; 279:16111-20. [PMID: 14764605 DOI: 10.1074/jbc.m312304200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular homeoproteins have been shown to regulate the transcription of several viruses, including herpes simplex viruses, human papillomaviruses, and mouse mammary tumor viruses. Previous studies investigating the anti-viral mechanisms of several cyclin-dependent kinase inhibitors showed that the homeoproteins, pre B-cell leukemia transcription factor 1 (PBX1) and PBX-regulating protein-1 (PREP1), function as transcriptional activators of Moloney murine leukemia virus. Here, we examined the involvement of cellular homeoproteins in regulating the activity of the human cytomegalovirus immediate early (CMV IE) promoter. We identified a 45-bp element located at position -593 to -549 upstream of the transcription start site of the CMV IE gene, which contains multiple putative homeoprotein binding motifs. Gel shift assays demonstrated the physical association between a homeodomain protein, pancreatic-duodenal homeobox factor-1 (PDX1) and the 45-bp cytomegalovirus (CMV) region. We further determined that PDX1 represses the CMV IE promoter activity in 293 cells. Overexpression of PDX1 resulted in a decrease in transcription of the CMV IE gene. Conversely, blocking PDX1 protein synthesis and mutating the PDX1 binding sites enhanced CMV IE-dependent transcription. Collectively, our results represent the first work demonstrating that a cellular homeoprotein, PDX1, may be a repressor involved in regulation of human CMV gene expression.
Collapse
Affiliation(s)
- Sheng-Hao Chao
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Benedict CA, Angulo A, Patterson G, Ha S, Huang H, Messerle M, Ware CF, Ghazal P. Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro. J Virol 2004; 78:741-50. [PMID: 14694106 PMCID: PMC368812 DOI: 10.1128/jvi.78.2.741-750.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 09/26/2003] [Indexed: 02/08/2023] Open
Abstract
Cytomegalovirus (CMV) is known to rapidly induce activation of nuclear factor kappaB (NF-kappaB) after infection of fibroblast and macrophage cells. NF-kappaB response elements are present in the enhancer region of the CMV major immediate-early promoter (MIEP), and activity of the MIEP is strongly upregulated by NF-kappaB in transient-transfection assays. Here we investigate whether the NF-kappaB-dependent pathway is required for initiating or potentiating human and murine CMV replication in vitro. We show that expression of a dominant negative mutant of the inhibitor of NF-kappaB-alpha (IkappaBalphaM) does not alter the replication kinetics of human or mouse CMV in cultured cells. In addition, mouse embryo fibroblasts genetically deficient for p65/RelA actually showed elevated levels of MCMV replication. Mutation of all NF-kappaB response elements within the enhancer of the MIEP in a recombinant mouse CMV containing the human MIEP (hMCMV-ES), which we have previously shown to replicate in murine fibroblasts with kinetics equivalent to that of wild-type mouse CMV, did not negatively affect replication in fibroblasts. Taken together, these data show that, for CMV replication in cultured fibroblasts activation of the canonical NF-kappaB pathway and binding of NF-kappaB to the MIEP are dispensable, and in the case of p65 may even interfere, thus uncovering a previously unrecognized level of complexity in the host regulatory network governing MIE gene expression in the context of a viral infection.
Collapse
Affiliation(s)
- Chris A Benedict
- La Jolla Institute of Allergy and Immunology, San Diego, California 92007, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Keller MJ, Wheeler DG, Cooper E, Meier JL. Role of the human cytomegalovirus major immediate-early promoter's 19-base-pair-repeat cyclic AMP-response element in acutely infected cells. J Virol 2003; 77:6666-75. [PMID: 12767986 PMCID: PMC156166 DOI: 10.1128/jvi.77.12.6666-6675.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Accepted: 03/18/2003] [Indexed: 01/08/2023] Open
Abstract
Prior studies have suggested a role of the five copies of the 19-bp-repeat cyclic AMP (cAMP)-response element (CRE) in major immediate-early (MIE) promoter activation, the rate-limiting step in human cytomegalovirus (HCMV) replication. We used two different HCMV genome modification strategies to test this hypothesis in acutely infected cells. We report the following: (i) the CREs do not govern basal levels of MIE promoter activity at a high or low multiplicity of infection (MOI) in human foreskin fibroblast (HFF)- or NTera2-derived neuronal cells; (ii) serum and virion components markedly increase MIE promoter-dependent transcription at a low multiplicity of infection (MOI), but this increase is not mediated by the CREs; (iii) forskolin stimulation of the cAMP signaling pathway induces a two- to threefold increase in MIE RNA levels in a CRE-specific manner at a low MOI in both HFF- and NTera2-derived neuronal cells; and (iv) the CREs do not regulate basal levels of HCMV DNA replication at a high or low MOI in HFF. Their presence does impart a forskolin-induced increase in viral DNA replication at a low MOI but only when basal levels of MIE promoter activity are experimentally diminished. In conclusion, the 19-bp-repeat CREs add to the robust MIE promoter activity that occurs in the acutely infected stimulated cells, although the CREs' greater role may be in other settings.
Collapse
Affiliation(s)
- M J Keller
- Department of Internal Medicine and the Helen C. Levitt Center for Viral Pathogenesis and Disease, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
49
|
Ghazal P, Messerle M, Osborn K, Angulo A. An essential role of the enhancer for murine cytomegalovirus in vivo growth and pathogenesis. J Virol 2003; 77:3217-28. [PMID: 12584345 PMCID: PMC149741 DOI: 10.1128/jvi.77.5.3217-3228.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription of cytomegalovirus (CMV) immediate-early (IE) genes is regulated by a large and complex enhancer containing an array of binding sites for a variety of cellular transcription factors. Previously, using bacterial artificial chromosome recombinants of the virus genome, it was reported that the enhancer region of murine CMV (MCMV) is dispensable but performs a key function for viral multiplication (A. Angulo, M. Messerle, U. H. Koszinowski, and P. Ghazal, J. Virol. 72:8502-8509, 1998). In the present study, we defined, through the reconstitution of infectious enhancerless MCMVs, the growth requirement for the enhancer in tissue culture and explored its significance for steering a productive infection in vivo. A comparison of cis and trans complementation systems for infection of enhancerless virus in permissive fibroblasts revealed a multiplicity-dependent growth phenotype that is severely compromised in the rate of infectious-virus multiplication. The in vivo impact of viruses that have an amputated enhancer was investigated in an extremely sensitive model of MCMV infection, the SCID mouse. Histological examination of spleens, livers, lungs, and salivary glands from animals infected with enhancer-deficient MCMV demonstrated an absence of tissue damage associated with CMV infection. The lack of pathogenic lesions correlated with a defect in replication competence. Enhancerless viruses were not detectable in major target organs harvested from SCID mice. The pathogenesis and growth defect reverted upon restoration of the enhancer. Markedly, while SCID mice infected with 5 PFU of parental MCMV died within 50 days postinfection, all mice infected with enhancerless virus survived for the duration of the experiment (1 year) after infection with 5 x 10(5) PFU. Together, these results clarify the importance of the enhancer for MCMV growth in cell culture and underscore the in vivo significance of this region for MCMV virulence and pathogenesis.
Collapse
Affiliation(s)
- Peter Ghazal
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
50
|
Isomura H, Stinski MF. The human cytomegalovirus major immediate-early enhancer determines the efficiency of immediate-early gene transcription and viral replication in permissive cells at low multiplicity of infection. J Virol 2003; 77:3602-14. [PMID: 12610136 PMCID: PMC149520 DOI: 10.1128/jvi.77.6.3602-3614.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine the effect of the human cytomegalovirus (CMV) major immediate-early (MIE) enhancer or promoter on the efficiency of viral replication in permissive human cells, we constructed recombinant viruses with their human MIE promoter, enhancer, and promoter plus enhancer replaced with the murine CMV components. After a low multiplicity of infection (MOI) (0.01 PFU/cell), recombinant human CMV with the murine CMV promoter replicated like the wild type but recombinant virus with the murine enhancer replicated less efficiently. Immediate-early (IE) viral protein pIE72 (UL123), early viral protein (UL44), and viral DNA synthesis were significantly decreased. The effect of the human CMV enhancer substitution with the murine CMV enhancer was also demonstrated in different cell types by using recombinant virus with the UL127 promoter, driving the expression of green fluorescent protein (GFP). After an MOI of 1, GFP expression was high with the human CMV enhancer and significantly lower with the murine CMV enhancer. Even though at a high MOI (10 PFU/cell), the murine CMV enhancer was as efficient as the human CMV enhancer for the transcription of IE genes in human foreskin fibroblast cells, at lower MOIs, the murine CMV enhancer was less efficient. Proximal and distal chimeras of the human and murine enhancers also replicated less efficiently at a low MOI and expressed lower levels of GFP from the UL127 promoter. These experiments demonstrate that the entire human CMV enhancer has evolved for the efficient expression of the viral IE and early genes in human cells. Possible functions of the human CMV enhancer and promoter at a low MOI are discussed.
Collapse
Affiliation(s)
- Hiroki Isomura
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|