1
|
Zhang X, Hou Y, Huang Y, Chen W, Zhang H. Interplay between zinc and cell proliferation and implications for the growth of livestock. J Anim Physiol Anim Nutr (Berl) 2023; 107:1402-1418. [PMID: 37391879 DOI: 10.1111/jpn.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
3
|
Ding B, Qin Y, Chen M. Nucleocapsid proteins: roles beyond viral RNA packaging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:213-26. [PMID: 26749541 PMCID: PMC7169677 DOI: 10.1002/wrna.1326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Viral nucleocapsid proteins (NCs) enwrap the RNA genomes of viruses to form NC–RNA complexes, which act as a template and are essential for viral replication and transcription. Beyond packaging viral RNA, NCs also play important roles in virus replication, transcription, assembly, and budding by interacting with viral and host cellular proteins. Additionally, NCs can inhibit interferon signaling response and function in cell stress response, such as inducing apoptosis. Finally, NCs can be the target of vaccines, benefiting from their conserved gene sequences. Here, we summarize important findings regarding the additional functions of NCs as much more than structural RNA‐binding proteins, with specific emphasis on (1) their association with the viral life cycle, (2) their association with host cells, and (3) as ideal candidates for vaccine development. WIREs RNA 2016, 7:213–226. doi: 10.1002/wrna.1326 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications Translation > Translation Regulation
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yali Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
4
|
Chamontin C, Yu B, Racine PJ, Darlix JL, Mougel M. MoMuLV and HIV-1 nucleocapsid proteins have a common role in genomic RNA packaging but different in late reverse transcription. PLoS One 2012; 7:e51534. [PMID: 23236513 PMCID: PMC3517543 DOI: 10.1371/journal.pone.0051534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022] Open
Abstract
Retroviral nucleocapsid proteins harbor nucleic acid chaperoning activities that mostly rely on the N-terminal basic residues and the CCHC zinc finger motif. Such chaperoning is essential for virus replication, notably for genomic RNA selection and packaging in virions, and for reverse transcription of genomic RNA into DNA. Recent data revealed that HIV-1 nucleocapsid restricts reverse transcription during virus assembly--a process called late reverse transcription--suggesting a regulation between RNA packaging and late reverse transcription. Indeed, mutating the HIV-1 nucleocapsid basic residues or the two zinc fingers caused a reduction in RNA incorporated and an increase in newly made viral DNA in the mutant virions. MoMuLV nucleocapsid has an N-terminal basic region similar to HIV-1 nucleocapsid but a unique zinc finger. This prompted us to investigate whether the N-terminal basic residues and the zinc finger of MoMuLV and HIV-1 nucleocapsids play a similar role in genomic RNA packaging and late reverse transcription. To this end, we analyzed the genomic RNA and viral DNA contents of virions produced by cells transfected with MoMuLV molecular clones where the zinc finger was mutated or completely deleted or with a deletion of the N-terminal basic residues of nucleocapsid. All mutant virions showed a strong defect in genomic RNA content indicating that the basic residues and zinc finger are important for genomic RNA packaging. In contrast to HIV-1 nucleocapsid-mutants, the level of viral DNA in mutant MoMuLV virions was only slightly increased. These results confirm that the N-terminal basic residues and zinc finger of MoMuLV nucleocapsid are critical for genomic RNA packaging but, in contrast to HIV-1 nucleocapsid, they most probably do not play a role in the control of late reverse transcription. In addition, these results suggest that virus formation and late reverse transcription proceed according to distinct mechanisms for MuLV and HIV-1.
Collapse
Affiliation(s)
| | - Bing Yu
- UMR5236 CNRS, UM1,UM2, CPBS, Montpellier, France
| | | | - Jena-Luc Darlix
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Illkirch, France
| | | |
Collapse
|
5
|
Abstract
Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.
Collapse
Affiliation(s)
- Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
6
|
Johnson SF, Garcia EL, Summers MF, Telesnitsky A. Moloney murine leukemia virus genomic RNA packaged in the absence of a full complement of wild type nucleocapsid protein. Virology 2012; 430:100-9. [PMID: 22633243 DOI: 10.1016/j.virol.2012.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/26/2012] [Accepted: 05/07/2012] [Indexed: 11/17/2022]
Abstract
The current model for MLV genomic RNA (gRNA) packaging predicts that of the thousands of Gag proteins in a budding virion, only a small number (≤1%) may be necessary to recruit gRNA. Here, we examined the threshold limits of functional Gag required to package gRNA using wild-type (WT) and packaging deficient mutant nucleocapsid (NC) phenotypically mixed virions. Although gRNA packaging was severely diminished for the NC mutant, the residual encapsidated RNA dimer displayed motility on gels, thermostability, and integrity that was indistinguishable from that of WT. In phenotypically mixed virions, gRNA encapsidation recovered to within approximately two-fold of WT levels when the amount of WT NC was 5-10% of the total. Our results demonstrate that NC's roles in gRNA dimerization and packaging are genetically separable. Additionally, MLV gRNA packaging does not require 100% WT NC, but the amount of functional NC required is greater than the predicted minimum.
Collapse
Affiliation(s)
- Silas F Johnson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
7
|
Delviks-Frankenberry K, Galli A, Nikolaitchik O, Mens H, Pathak VK, Hu WS. Mechanisms and factors that influence high frequency retroviral recombination. Viruses 2011; 3:1650-1680. [PMID: 21994801 PMCID: PMC3187697 DOI: 10.3390/v3091650] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 01/25/2023] Open
Abstract
With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development.
Collapse
Affiliation(s)
- Krista Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Andrea Galli
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Olga Nikolaitchik
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
| | - Helene Mens
- Department of Epidemic Diseases, Rigshospitalet, København 2100, Denmark; E-Mail:
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-846-1250; Fax: +1-301-846-6013
| |
Collapse
|
8
|
The arginine clusters of the carboxy-terminal domain of the core protein of hepatitis B virus make pleiotropic contributions to genome replication. J Virol 2010; 85:1298-309. [PMID: 21084467 DOI: 10.1128/jvi.01957-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The carboxy-terminal domain (CTD) of the core protein of hepatitis B virus is not necessary for capsid assembly. However, the CTD does contribute to encapsidation of pregenomic RNA (pgRNA). The contribution of the CTD to DNA synthesis is less clear. This is the case because some mutations within the CTD increase the proportion of spliced RNA to pgRNA that are encapsidated and reverse transcribed. The CTD contains four clusters of consecutive arginine residues. The contributions of the individual arginine clusters to genome replication are unknown. We analyzed core protein variants in which the individual arginine clusters were substituted with either alanine or lysine residues. We developed assays to analyze these variants at specific steps throughout genome replication. We used a replication template that was not spliced in order to study the replication of only pgRNA. We found that alanine substitutions caused defects at both early and late steps in genome replication. Lysine substitutions also caused defects, but primarily during later steps. These findings demonstrate that the CTD contributes to DNA synthesis pleiotropically and that preserving the charge within the CTD is not sufficient to preserve function.
Collapse
|
9
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
10
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
11
|
Zúñiga S, Sola I, Cruz JLG, Enjuanes L. Role of RNA chaperones in virus replication. Virus Res 2008; 139:253-66. [PMID: 18675859 PMCID: PMC7114511 DOI: 10.1016/j.virusres.2008.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
RNA molecules are functionally diverse in part due to their extreme structural flexibility that allows rapid regulation by refolding. RNA folding could be a difficult process as often molecules adopt a spatial conformation that is very stable but not biologically functional, named a kinetic trap. RNA chaperones are non-specific RNA binding proteins that help RNA folding by resolving misfolded structures or preventing their formation. There is a large number of viruses whose genome is RNA that allows some evolutionary advantages, such as rapid genome mutation. On the other hand, regions of the viral RNA genomes can adopt different structural conformations, some of them lacking functional relevance and acting as misfolded intermediates. In fact, for an efficient replication, they often require RNA chaperone activities. There is a growing list of RNA chaperones encoded by viruses involved in different steps of the viral cycle. Also, cellular RNA chaperones have been involved in replication of RNA viruses. This review briefly describes RNA chaperone activities and is focused in the roles that viral or cellular nucleic acid chaperones have in RNA virus replication, particularly in those viruses that require discontinuous RNA synthesis.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universitario de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Quantitative analysis of clinically relevant mutations occurring in lymphoid cells harboring gamma-retrovirus-encoded hsvtk suicide genes. Gene Ther 2008; 15:1454-9. [PMID: 18563185 DOI: 10.1038/gt.2008.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The in vivo regulation of T lymphocyte activity by the activation of a suicide mechanism is an essential paradigm for the safety of adoptive cell therapies. In light of reports showing that gamma-retroviral vector-encoded herpes simplex virus thymidine kinase (hsvtk) undergoes recombination, we undertook a thorough investigation of the genomic stability of SFG-based vectors using two variants of the wild-type hsvtk gene. In a large panel of independent clones, we demonstrate that both hsvtk genes undergo recombination with molecular signatures indicative of template switching in GC-rich regions displaying homology at the deletion junctions or RNA splicing. In the absence of ganciclovir selection, the frequency of recombination is 3% per retroviral replication cycle. Our results underscore the importance of the five nucleotide difference between the two hsvtk genes that account for the presence of recombinogenic hot spots in one variant and not the other, indicating that the probability of RNA splicing is influenced by minute nucleotide changes in sequences adjacent to the splice donor and acceptor sites. Furthermore, our mutational analysis in an unbiased panel of human lymphoid cells (that is, without immune or ganciclovir-mediated selective pressure) provides a robust in vitro assay to predict and quantify clinically relevant mutations in hsvtk suicide genes, which can be applied to studying and improving the stability of any transgene expressed in gamma-retroviral or lentiviral vectors.
Collapse
|
13
|
Nikolaitchik OA, Gorelick RJ, Leavitt MG, Pathak VK, Hu WS. Functional complementation of nucleocapsid and late domain PTAP mutants of human immunodeficiency virus type 1 during replication. Virology 2008; 375:539-49. [PMID: 18353416 DOI: 10.1016/j.virol.2008.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/02/2008] [Accepted: 02/21/2008] [Indexed: 01/16/2023]
Abstract
During human immunodeficiency virus type 1 (HIV-1) assembly, the nucleocapsid (NC) and the PTAP motif in p6 of Gag play important roles in RNA encapsidation and virus release, respectively. We have previously demonstrated that functional complementation occurs between an NC mutant and a PTAP mutant to rescue viral replication. In this report, we examined the amounts of functional NC and PTAP motif that are required during virus replication. When NC and PTAP mutants were coexpressed at 5:1, 5:5, and 1:5 ratios, virus titers were rescued at 5%, 51%, and 86% of the wild-type level, respectively. These results indicate that HIV-1 requires a small amount of functional PTAP motif but far more functional NC to complete efficient replication. Further analyses reveal that RNA packaging can be significantly rescued in viruses containing a small amount of functional NC. However, most of the NC proteins must be functional to generate the wild-type level of R-U5 DNA product. Once the R-U5 product is generated, viruses containing half of the functional NC can complete reverse transcription and DNA integration at near-wild-type efficiency. These results define the quantitative requirements of NC and p6 during HIV-1 replication and provide insights into the requirement for the development of anti-HIV strategies using NC and p6 as targets.
Collapse
|
14
|
Nucleocapsid protein function in early infection processes. Virus Res 2008; 134:39-63. [PMID: 18279991 DOI: 10.1016/j.virusres.2007.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/15/2023]
Abstract
The role of nucleocapsid protein (NC) in the early steps of retroviral replication appears largely that of a facilitator for reverse transcription and integration. Using a wide variety of cell-free assay systems, the properties of mature NC proteins (e.g. HIV-1 p7(NC) or MLV p10(NC)) as nucleic acid chaperones have been extensively investigated. The effect of NC on tRNA annealing, reverse transcription initiation, minus-strand-transfer, processivity of reverse transcription, plus-strand-transfer, strand-displacement synthesis, 3' processing of viral DNA by integrase, and integrase-mediated strand-transfer has been determined by a large number of laboratories. Interestingly, these reactions can all be accomplished to varying degrees in the absence of NC; some are facilitated by both viral and non-viral proteins and peptides that may or may not be involved in vivo. What is one to conclude from the observation that NC is not strictly required for these necessary reactions to occur? NC likely enhances the efficiency of each of these steps, thereby vastly improving the productivity of infection. In other words, one of the major roles of NC is to enhance the effectiveness of early infection, thereby increasing the probability of productive replication and ultimately of retrovirus survival.
Collapse
|
15
|
Strand transfer events during HIV-1 reverse transcription. Virus Res 2008; 134:19-38. [PMID: 18279992 DOI: 10.1016/j.virusres.2007.12.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses replicate through reverse transcription, a process in which the single stranded RNA of the viral genome is converted to a double stranded DNA. The virally encoded reverse transcriptase (RT) mediates reverse transcription through DNA polymerase and RNase H activities. Conversion of the plus strand RNA to plus/minus strand RNA/DNA hybrid involves a transfer of the growing DNA strand from one site on the genomic RNA to another. This is called minus strong-stop DNA transfer. Later synthesis of the second or plus DNA strand involves a second strand transfer, involving a similar mechanism as the minus strand transfer. A basic feature of the strand transfer mechanism is the use of the RT RNase H to remove segments of the RNA template strand from the growing DNA strand, freeing a single stranded region to anneal to the second site. Viral nucleocapsid protein (NC) functions to promote transfer by facilitating this strand exchange process. Two copies of the RNA genomes, sometimes non-identical, are co-packaged in the genomes of retroviruses. The properties of the reverse transcriptase allow a transfer of the growing DNA strand between these genomes to occur occasionally at any point during reverse transcription, producing recombinant viral progeny. Recombination promotes structural diversity of the virus that helps it to survive host immunity and drug therapy. Recombination strand transfer can be forced by a break in the template, or can occur at sites where folding structure of the template pauses the RT, allowing a concentration of RNase H cleavages that promote transfers. Transfer can be a simple one-step process, or can proceed by a complex multi-step invasion mechanism. In this latter process, the second RNA template interacts with the growing DNA strand well behind the DNA 3'-terminus. The newly formed RNA-DNA hybrid expands by branch migration and eventually catches the elongating DNA primer 3'-terminus to complete the transfer. Transfers are also promoted by interactions between the two RNA templates, which accelerate transfer by a proximity effect. Other details of the role of strand transfers in reverse transcription and the biochemical features of the transfer reaction are discussed.
Collapse
|
16
|
Carmo M, Panet A, Carrondo MJT, Alves PM, Cruz PE. From retroviral vector production to gene transfer: spontaneous inactivation is caused by loss of reverse transcription capacity. J Gene Med 2008; 10:383-91. [DOI: 10.1002/jgm.1163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
17
|
Abstract
Expression of the budding yeast retrotransposon Ty3 results in production of viruslike particles (VLPs) and retrotransposition. The Ty3 major structural protein, Gag3, similar to retrovirus Gag, is processed into capsid, spacer, and nucleocapsid (NC) during VLP maturation. The 57-amino-acid Ty3 NC protein has 17 basic amino acids and contains one copy of the CX(2)CX(4)HX(4)C zinc-binding motif found in retrovirus NC proteins. Ty3 RNA, protein, and VLPs accumulate in clusters associated with RNA processing bodies (P bodies). This study investigated the role of the NC domain in Ty3-P body clustering and VLP assembly. Fifteen Ty3 NC Ala substitution and deletion mutants were examined using transposition, immunoblot, RNA protection, cDNA synthesis, and multimerization assays. Localization of Ty3 proteins and VLPs was characterized microscopically. Substitutions of each of the conserved residues of the zinc-binding motif resulted in the loss of Ty3 RNA packaging. Substitution of the first two of four conserved residues in this motif caused the loss of Ty3 RNA and protein clustering with P bodies and disrupted particle formation. NC was shown to be a mediator of formation of Ty3 RNA foci and association of Ty3 RNA and protein with P bodies. Mutations that disrupted these NC functions resulted in various degrees of Gag3 nuclear localization and a spectrum of different particle states. Our findings are consistent with the model that Ty3 assembly is associated with P-body components. We hypothesize that the NC domain acts as a molecular switch to control Gag3 conformational states that affect both assembly and localization.
Collapse
|
18
|
Wu T, Heilman-Miller SL, Levin JG. Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res 2007; 35:3974-87. [PMID: 17553835 PMCID: PMC1919501 DOI: 10.1093/nar/gkm375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (−) strong-stop DNA followed by reverse transcriptase (RT)-catalyzed DNA extension). In our system, destabilization of a stem-loop structure at the 5′ end of the transactivation response element (TAR) in a 70-nt RNA acceptor (RNA 70) appears to be the major nucleation pathway. Using a mutational approach, we show that when the acceptor has a weak local structure, NC has little or no effect. In this case, the efficiencies of both annealing and strand transfer reactions are similar. However, when NC is required to destabilize local structure in acceptor RNA, the efficiency of annealing is significantly higher than that of strand transfer. Consistent with this result, we find that Mg2+ (required for RT activity) inhibits NC-catalyzed annealing. This suggests that Mg2+ competes with NC for binding to the nucleic acid substrates. Collectively, our findings provide new insights into the mechanism of NC-dependent and -independent minus-strand transfer.
Collapse
Affiliation(s)
| | | | - Judith G. Levin
- *To whom correspondence should be addressed. +1 301 496 1970+1 301 496 0243
| |
Collapse
|
19
|
Purohit V, Roques BP, Kim B, Bambara RA. Mechanisms that prevent template inactivation by HIV-1 reverse transcriptase RNase H cleavages. J Biol Chem 2007; 282:12598-609. [PMID: 17337733 DOI: 10.1074/jbc.m700043200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNase H activity of human immunodeficiency virus, type 1 (HIV-1) reverse transcriptase (RT) cleaves the viral genome concomitant with minus strand synthesis. We previously analyzed RT-mediated pausing and RNase H cleavage on a hairpin-containing RNA template system and reported that RT generated 3' end-directed primary and secondary cuts while paused at the base of the hairpin during synthesis. Here, we report that all of the prominent cleavage products observed during primer extension on this template correlated with pause induced cuts. Products that persisted throughout the reaction corresponded to secondary cuts, about eight nucleotides in from the DNA primer terminus. This distance allows little overlap of intact template with the primer terminus. We considered whether secondary cuts could inactivate further synthesis by promoting dissociation of the primer from the template. As anticipated, 3' end-directed secondary cuts decreased primer extendibility. This provides a plausible mechanism to explain the persistence of secondary cut products in our hairpin template system. Improving the efficiency of synthesis by increasing the concentration of dNTPs or addition of nucleocapsid protein (NC) reduced pausing and the generation of pause related secondary cuts on this template. Further studies reveal that 3' end-directed primary and secondary cleavages were also generated when synthesis was stalled by the presence of 3'-azido-3'-deoxythymidine at the primer terminus, possibly contributing to 3'-azido-3'-deoxythymidine inhibition. Considered together, the data reveal a role for NC and other factors that enhance DNA synthesis in the prevention of RNase H cleavages that could be detrimental to viral replication.
Collapse
Affiliation(s)
- Vandana Purohit
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
20
|
Gao L, Balakrishnan M, Roques BP, Bambara RA. Insights into the multiple roles of pausing in HIV-1 reverse transcriptase-promoted strand transfers. J Biol Chem 2007; 282:6222-31. [PMID: 17204480 DOI: 10.1074/jbc.m610056200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously analyzed the role of pausing induced by hairpin structures within RNA templates in facilitating strand transfer by HIV-1 RT (reverse transcriptase). We proposed a multistep transfer mechanism in which pause-induced RNase H cuts within the initial RNA template (donor) expose regions of cDNA. A second homologous RNA template (acceptor) can interact with the cDNA at such sites, initiating transfer. The acceptor-cDNA hybrid is thought to then propagate by branch-migration, eventually catching up with the primer terminus and completing the transfer. The prominent pause site in the template system facilitated acceptor invasion; however, very few of the transfers terminated at this pause. To examine the effects of homology on pause-promoted transfer, we increased template homology before the pause site, from 19 nucleotides (nt) in the initial template system to 52 nt in the new system. Significantly, the increased homology enhanced transfers 3-fold, with 32% of the transfers now terminating at the pause site. Additionally, the acceptor cleavage profile indicated the creation of a new invasion site in the added region of homology. NC (nucleocapsid) increased the strand transfer throughout the whole template. However, the prominent hot spot for internal transfer remained, which was still at the pause site. We interpret the new results to mean that pause sites can also serve to stall DNA synthesis, allowing acceptor invasions initiated earlier in the template to catch up with the primer terminus.
Collapse
Affiliation(s)
- Lu Gao
- Department of Biochemistry and Biophysics, University of Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
21
|
Lee SK, Boyko V, Hu WS. Capsid is an important determinant for functional complementation of murine leukemia virus and spleen necrosis virus Gag proteins. Virology 2006; 360:388-97. [PMID: 17156810 PMCID: PMC2706498 DOI: 10.1016/j.virol.2006.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/14/2006] [Accepted: 10/26/2006] [Indexed: 01/20/2023]
Abstract
In this report, we examined the abilities and requirements of heterologous Gag proteins to functionally complement each other to support viral replication. Two distantly related gammaretroviruses, murine leukemia virus (MLV) and spleen necrosis virus (SNV), were used as a model system because SNV proteins can support MLV vector replication. Using chimeric or mutant Gag proteins that could not efficiently support MLV vector replication, we determined that a homologous capsid (CA) domain was necessary for the functional complementation of MLV and SNV Gag proteins. Findings from the bimolecular fluorescence complementation assay revealed that MLV and SNV Gag proteins were capable of colocalizing and interacting in cells. Taken together, our results indicated that MLV and SNV Gag proteins can interact in cells; however, a homologous CA domain is needed for functional complementation of MLV and SNV Gag proteins to complete virus replication. This requirement of homologous Gag most likely occurs at a postassembly step(s) of the viral replication.
Collapse
Affiliation(s)
| | | | - Wei-Shau Hu
- Corresponding author. Fax: +1 301 846 6013., E-mail address: (W.-S. Hu)
| |
Collapse
|
22
|
Lanciault C, Champoux JJ. Pausing during reverse transcription increases the rate of retroviral recombination. J Virol 2006; 80:2483-94. [PMID: 16474155 PMCID: PMC1369041 DOI: 10.1128/jvi.80.5.2483-2494.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses package two copies of genomic RNA into viral particles. During the minus-sense DNA synthesis step of reverse transcription, the nascent DNA can transfer multiple times between the two copies of the genome, resulting in recombination. The mechanism for this process is similar to the process of obligate strand transfers mediated by the repeat and primer binding site sequences. The location at which the DNA 3' terminus completely transfers to the second RNA strand defines the point of crossover. Previous work in vitro demonstrated that reverse transcriptase pausing has a significant impact on the location of the crossover, with a proportion of complete transfer events occurring very close to pause sites. The role of pausing in vivo, however, is not clearly understood. By employing a murine leukemia virus-based single-cycle infection assay, strong pausing was shown to increase the probability of recombination, as reflected in the reconstitution of green fluorescent protein expression. The infection assay results were directly correlated with the presence of strong pause sites in reverse transcriptase primer extension assays in vitro. Conversely, when pausing was diminished in vitro, without changing the sequence of the RNA template involved in recombination, there was a significant reduction in recombination in vivo. Together, these data demonstrate that reverse transcriptase pausing, as observed in vitro, directly correlates with recombination during minus-sense DNA synthesis in vivo.
Collapse
Affiliation(s)
- Christian Lanciault
- Department of Microbiology, University of Washington, Seattle, 98195-7242, USA
| | | |
Collapse
|
23
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
24
|
Alamgir ASM, Owens N, Lavignon M, Malik F, Evans LH. Precise identification of endogenous proviruses of NFS/N mice participating in recombination with moloney ecotropic murine leukemia virus (MuLV) to generate polytropic MuLVs. J Virol 2005; 79:4664-71. [PMID: 15795252 PMCID: PMC1069548 DOI: 10.1128/jvi.79.8.4664-4671.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polytropic murine leukemia viruses (MuLVs) are generated by recombination of ecotropic MuLVs with env genes of a family of endogenous proviruses in mice, resulting in viruses with an expanded host range and greater virulence. Inbred mouse strains contain numerous endogenous proviruses that are potential donors of the env gene sequences of polytropic MuLVs; however, the precise identification of those proviruses that participate in recombination has been elusive. Three different structural groups of proviruses in NFS/N mice have been described and different ecotropic MuLVs preferentially recombine with different groups of proviruses. In contrast to other ecotropic MuLVs such as Friend MuLV or Akv that recombine predominantly with a single group of proviruses, Moloney MuLV (M-MuLV) recombines with at least two distinct groups. In this study, we determined that only three endogenous proviruses, two of one group and one of another group, are major participants in recombination with M-MuLV. Furthermore, the distinction between the polytropic MuLVs generated by M-MuLV and other ecotropic MuLVs is the result of recombination with a single endogenous provirus. This provirus exhibits a frameshift mutation in the 3' region of the surface glycoprotein-encoding sequences that is excluded in recombinants with M-MuLV. The sites of recombination between the env genes of M-MuLV and endogenous proviruses were confined to a short region exhibiting maximum homology between the ecotropic and polytropic env sequences and maximum stability of predicted RNA secondary structure. These observations suggest a possible mechanism for the specificity of recombination observed for different ecotropic MuLVs.
Collapse
Affiliation(s)
- A S M Alamgir
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
25
|
Lee SK, Nagashima K, Hu WS. Cooperative effect of gag proteins p12 and capsid during early events of murine leukemia virus replication. J Virol 2005; 79:4159-69. [PMID: 15767417 PMCID: PMC1061564 DOI: 10.1128/jvi.79.7.4159-4169.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Gag polyprotein of murine leukemia virus (MLV) is processed into matrix (MA), p12, capsid (CA), and nucleocapsid (NC) proteins. p12 affects early events of virus replication and contains a PPPY motif important for virus release. To probe the functions of p12 in the early steps of MLV replication, we tested whether p12 can be replaced by spleen necrosis virus (SNV) p18, human immunodeficiency virus type 1 p6, or Rous sarcoma virus p2b. Analyses revealed that all chimeras generated virions at levels similar to that of MLV gag-pol; however, none of them could support MLV vector replication, and all of them exhibited severely reduced DNA synthesis upon virus infection. Because a previously reported SNV gag-MLV pol chimera, but not the MLV hybrid with SNV p18, can support replication of an MLV vector, we hypothesized that other Gag proteins act cooperatively with p12 during the early phase of virus replication. To test this hypothesis, we generated three more MLV-based chimeras containing SNV CA, p18-CA, or p18-CA-NC. We found that the MLV chimera containing SNV p18-CA or p18-CA-NC could support MLV vector replication, but the chimera containing SNV CA could not. Furthermore, viruses derived from the MLV chimera with SNV CA could synthesize viral DNA upon infection but were blocked at a post-reverse-transcription step and generated very little two long terminal repeat circle DNA, thereby producing a phenotype similar to that of the provirus formation-defective p12 mutants. Taken together, our data indicate that when p12/p18 or CA was from different viruses, despite abundant virus production and proper Gag processing, the resulting viruses were not infectious. However, when p12/p18 and CA were from the same virus, even though they were from SNV and not MLV, the resulting viruses were infectious. Therefore, these results suggest a cooperative effect of p12 and CA during the early events of MLV replication.
Collapse
MESH Headings
- Capsid Proteins/genetics
- Capsid Proteins/physiology
- DNA, Circular/biosynthesis
- DNA, Viral/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/physiology
- Genes, Viral
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/physiology
- Leukemia Virus, Murine/ultrastructure
- Microscopy, Electron
- Mutation
- RNA, Viral/metabolism
- Recombination, Genetic
- Reverse Transcription
- Viral Proteins/genetics
- Viral Proteins/physiology
- Virion/physiology
- Virion/ultrastructure
- Virus Assembly/genetics
- Virus Replication
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Sook-Kyung Lee
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
26
|
Lanciault C, Champoux JJ. Effects of unpaired nucleotides within HIV-1 genomic secondary structures on pausing and strand transfer. J Biol Chem 2004; 280:2413-23. [PMID: 15542863 DOI: 10.1074/jbc.m410718200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse transcriptase-mediated RNA displacement synthesis is required for DNA polymerization through the base-paired stem portions of secondary structures present in retroviral genomes. These regions of RNA duplex often possess single unpaired nucleotides, or "bulges," that disrupt contiguous base pairing. By using well defined secondary structures from the human immunodeficiency virus, type 1 (HIV-1), genome, we demonstrate that removal of these bulges either by deletion or by introducing a complementary base on the opposing strand results in increased pausing at specific positions within the RNA duplex. We also show that the HIV-1 nucleocapsid protein can increase synthesis through the pause sites but not as efficiently as when a bulge residue is present. Finally, we demonstrate that removing a bulge increases the proportion of strand transfer events to an acceptor template that occur prior to complete replication of a donor template secondary structure. Together our data suggest a role for bulge nucleotides in enhancing synthesis through stable secondary structures and reducing strand transfer.
Collapse
Affiliation(s)
- Christian Lanciault
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
27
|
Nikolenko GN, Svarovskaia ES, Delviks KA, Pathak VK. Antiretroviral drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase increase template-switching frequency. J Virol 2004; 78:8761-70. [PMID: 15280484 PMCID: PMC479068 DOI: 10.1128/jvi.78.16.8761-8770.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Template-switching events during reverse transcription are necessary for completion of retroviral replication and recombination. Structural determinants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) that influence its template-switching frequency are not known. To identify determinants of HIV-1 RT that affect the frequency of template switching, we developed an in vivo assay in which RT template-switching events during viral replication resulted in functional reconstitution of the green fluorescent protein gene. A survey of single amino acid substitutions near the polymerase active site or deoxynucleoside triphosphate-binding site of HIV-1 RT indicated that several substitutions increased the rate of RT template switching. Several mutations associated with resistance to antiviral nucleoside analogs (K65R, L74V, E89G, Q151N, and M184I) dramatically increased RT template-switching frequencies by two- to sixfold in a single replication cycle. In contrast, substitutions in the RNase H domain (H539N, D549N) decreased the frequency of RT template switching by twofold. Depletion of intracellular nucleotide pools by hydroxyurea treatment of cells used as targets for infection resulted in a 1.8-fold increase in the frequency of RT template switching. These results indicate that the dynamic steady state between polymerase and RNase H activities is an important determinant of HIV-1 RT template switching and establish that HIV-1 recombination occurs by the previously described dynamic copy choice mechanism. These results also indicate that mutations conferring resistance to antiviral drugs can increase the frequency of RT template switching and may influence the rate of retroviral recombination and viral evolution.
Collapse
Affiliation(s)
- Galina N Nikolenko
- HIV Drug Resistance Program, NCI-Frederick, Bldg. 535, Rm. 334, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
28
|
Heilman-Miller SL, Wu T, Levin JG. Alteration of nucleic acid structure and stability modulates the efficiency of minus-strand transfer mediated by the HIV-1 nucleocapsid protein. J Biol Chem 2004; 279:44154-65. [PMID: 15271979 DOI: 10.1074/jbc.m401646200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During human immunodeficiency virus type 1 minus-strand transfer, the nucleocapsid protein (NC) facilitates annealing of the complementary repeat regions at the 3'-ends of acceptor RNA and minus-strand strong-stop DNA ((-) SSDNA). In addition, NC destabilizes the highly structured complementary trans-activation response element (TAR) stem-loop (TAR DNA) at the 3'-end of (-) SSDNA and inhibits TAR-induced self-priming, a dead-end reaction that competes with minus-strand transfer. To investigate the relationship between nucleic acid secondary structure and NC function, a series of truncated (-) SSDNA and acceptor RNA constructs were used to assay minus-strand transfer and self-priming in vitro. The results were correlated with extensive enzymatic probing and mFold analysis. As the length of (-) SSDNA was decreased, self-priming increased and was highest when the DNA contained little more than TAR DNA, even if NC and acceptor were both present; in contrast, truncations within TAR DNA led to a striking reduction or elimination of self-priming. However, destabilization of TAR DNA was not sufficient for successful strand transfer: the stability of acceptor RNA was also crucial, and little or no strand transfer occurred if the RNA was highly stable. Significantly, NC may not be required for in vitro strand transfer if (-) SSDNA and acceptor RNA are small, relatively unstructured molecules with low thermodynamic stabilities. Collectively, these findings demonstrate that for efficient NC-mediated minus-strand transfer, a delicate thermodynamic balance between the RNA and DNA reactants must be maintained.
Collapse
Affiliation(s)
- Susan L Heilman-Miller
- Laboratory of Molecular Genetics, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2780, USA
| | | | | |
Collapse
|
29
|
Voronin YA, Pathak VK. Frequent dual initiation in human immunodeficiency virus-based vectors containing two primer-binding sites: a quantitative in vivo assay for function of initiation complexes. J Virol 2004; 78:5402-13. [PMID: 15113919 PMCID: PMC400373 DOI: 10.1128/jvi.78.10.5402-5413.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We previously demonstrated that murine leukemia virus (MLV)-based vectors containing two primer-binding sites (PBSs) have the capacity to initiate reverse transcription more than once (Y. A. Voronin and V. K. Pathak, Virology 312:281-294, 2003). To determine whether human immunodeficiency virus (HIV)-based vectors also have the capacity to initiate reverse transcription twice, we constructed an HIV type 1 (HIV-1)-based vector containing the HIV-1 PBS, a green fluorescent protein reporter gene (GFP), and a second PBS derived from HIV-2 3' of GFP. Simultaneous initiation of reverse transcription at both the 5' HIV-1 PBS and 3' HIV-2 PBS was predicted to result in deletion of GFP. As in the MLV-based vectors, GFP was deleted in approximately 25% of all proviruses, indicating frequent dual initiation in HIV-based vectors containing two PBSs. Quantitative real-time PCR analysis of early reverse transcription products indicated that HIV-1 reverse transcriptase efficiently used the HIV-2 PBS. To investigate tRNA primer-RNA template interactions in vivo, we introduced several mutations in the HIV-2 U5 region. The effects of these mutations on the efficiency of reverse transcription initiation were measured by quantitative real-time PCR analysis of early reverse transcription products, with initiation at the HIV-1 PBS used as an internal control. Disruption of the lower and upper parts of the U5-inverted repeat stem reduced the efficiency of initiation 20- and 6-fold, respectively. In addition, disruption of the proposed interactions between viral RNA and tRNA(Lys3) thymidine-pseudouridine-cytidine and anticodon loops decreased the efficiency of initiation seven- and sixfold, respectively. These results demonstrate the relative influence of various RNA-RNA interactions on the efficiency of initiation in vivo. Furthermore, the two-PBS vector system provides a sensitive and quantitative in vivo assay for analysis of RNA-RNA and protein-RNA interactions that can influence the efficiency of reverse transcription initiation.
Collapse
Affiliation(s)
- Yegor A Voronin
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Building 535, Frederick, MD 21702, USA
| | | |
Collapse
|
30
|
Chen MH, Icenogle JP. Rubella virus capsid protein modulates viral genome replication and virus infectivity. J Virol 2004; 78:4314-22. [PMID: 15047844 PMCID: PMC374250 DOI: 10.1128/jvi.78.8.4314-4322.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The structural proteins (SP) of the Togaviridae can be deleted in defective interfering RNAs. The dispensability of viral SP has allowed construction of noninfectious viral expression vectors and replicons from viruses of the Alphavirus and Rubivirus genera. Nevertheless, in this study, we found that the SP of rubella virus (RUB) could enhance expression of reporter genes from RUB replicons in trans. SP enhancement required capsid protein (CP) expression and was not due to RNA-RNA recombination. Accumulation of minus- and plus-strand RNAs from replicons was observed in the presence of SP, suggesting that SP specifically affects RNA synthesis. By using replicons containing an antibiotic resistance gene, we found 2- to 50-fold increases in the number of cells surviving selection in the presence of SP. The increases depended significantly on the amount of transfected RNA. Small amounts of RNA or templates that replicated inefficiently showed more enhancement. The infectivity of infectious RNA was increased by at least 10-fold in cells expressing CP. Moreover, virus infectivity was greatly enhanced in such cells. In other cells that expressed higher levels of CP, RNA replication of replicons was inhibited. Thus, depending on conditions, CP can markedly enhance or inhibit RUB RNA replication.
Collapse
Affiliation(s)
- Min-Hsin Chen
- Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | |
Collapse
|
31
|
Cheslock SR, Poon DTK, Fu W, Rhodes TD, Henderson LE, Nagashima K, McGrath CF, Hu WS. Charged assembly helix motif in murine leukemia virus capsid: an important region for virus assembly and particle size determination. J Virol 2003; 77:7058-66. [PMID: 12768025 PMCID: PMC156152 DOI: 10.1128/jvi.77.12.7058-7066.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a region near the C terminus of capsid (CA) of murine leukemia virus (MLV) that contains many charged residues. This motif is conserved in various lengths in most MLV-like viruses. One exception is that spleen necrosis virus (SNV) does not contain a well-defined domain of charged residues. When 33 amino acids of the MLV motif were deleted to mimic SNV CA, the resulting mutant produced drastically reduced amounts of virions and the virions were noninfectious. Furthermore, these viruses had abnormal sizes, often contained punctate structures resembling those in the cell cytoplasm, and packaged both ribosomal and viral RNA. When 11 or 15 amino acids were deleted to modify the MLV CA to resemble those from other gammaretroviruses, the deletion mutants produced virions at levels comparable to those of the wild-type virus and were able to complete one round of virus replication without detectable defects. We generated 10 more mutants that displayed either the wild-type or mutant phenotype. The distribution of the wild-type or mutant phenotype did not directly correlate with the number of amino acids deleted, suggesting that the function of the motif is determined not simply by its length but also by its structure. Structural modeling of the wild-type and mutant proteins suggested that this region forms alpha-helices; thus, we termed this motif the "charged assembly helix." This is the first description of the charged assembly helix motif in MLV CA and demonstration of its role in virus budding and assembly.
Collapse
|
32
|
Roda RH, Balakrishnan M, Kim JK, Roques BP, Fay PJ, Bambara RA. Strand transfer occurs in retroviruses by a pause-initiated two-step mechanism. J Biol Chem 2002; 277:46900-11. [PMID: 12370183 DOI: 10.1074/jbc.m208638200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombination promotes retrovirus evolution. It involves transferring a growing DNA primer from one genomic RNA template in the virus to the other. Strand transfer results in vitro suggested that pausing of the reverse transcriptase during synthesis allows enhanced RNase H cleavage of the initial, or donor, RNA template that facilitates primer interaction with the acceptor template. Hairpins are common structures in retrovirus RNAs that induce pausing. Analyzing primer transfers in hairpins by base substitution markers showed transfer sites well beyond the site of pausing. We developed methods to distinguish the initial site of primer-acceptor template interaction from the site of primer terminus transfer. The strand transfer mechanism was confirmed to involve two steps. In the first, the acceptor template invades the primer-donor complex. However, the primer terminus continues elongation on the donor RNA. The interacting primer and acceptor strands then propagate by branch migration to catch the advancing primer terminus. Some distance downstream of the invasion site the primer terminus transfers, marking the genetic shift from donor to acceptor. Nucleocapsid protein (NC) is known to influence primer elongation and strand exchange. The presence of NC increased the efficiency of transfers but did not appear to alter the fundamental transfer mechanism.
Collapse
Affiliation(s)
- Ricardo H Roda
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|