1
|
Schey GL, Hildebrandt ER, Wang Y, Diwan S, Passetti HA, Potts GW, Sprague-Getsy AM, Leoni ER, Kuebler TS, Sham YY, Hougland JL, Beese LS, Schmidt WK, Distefano MD. Library Screening, In Vivo Confirmation, and Structural and Bioinformatic Analysis of Pentapeptide Sequences as Substrates for Protein Farnesyltransferase. Int J Mol Sci 2024; 25:5324. [PMID: 38791363 PMCID: PMC11121372 DOI: 10.3390/ijms25105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.
Collapse
Affiliation(s)
- Garrett L. Schey
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (E.R.L.); (W.K.S.)
| | - You Wang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; (Y.W.); (L.S.B.)
| | - Safwan Diwan
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| | - Holly A. Passetti
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| | - Gavin W. Potts
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| | - Andrea M. Sprague-Getsy
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.M.S.-G.); (J.L.H.)
| | - Ethan R. Leoni
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (E.R.L.); (W.K.S.)
| | - Taylor S. Kuebler
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.K.); (Y.Y.S.)
| | - Yuk Y. Sham
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA; (T.S.K.); (Y.Y.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.M.S.-G.); (J.L.H.)
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Lorena S. Beese
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; (Y.W.); (L.S.B.)
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (E.R.L.); (W.K.S.)
| | - Mark D. Distefano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (S.D.); (H.A.P.); (G.W.P.)
| |
Collapse
|
2
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
3
|
El Safadi D, Paulo-Ramos A, Hoareau M, Roche M, Krejbich-Trotot P, Viranaicken W, Lebeau G. The Influence of Metabolism on Immune Response: A Journey to Understand Immunometabolism in the Context of Viral Infection. Viruses 2023; 15:2399. [PMID: 38140640 PMCID: PMC10748259 DOI: 10.3390/v15122399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the emergence of the concept of immunometabolism has shed light on the pivotal role that cellular metabolism plays in both the activation of immune cells and the development of immune programs. The antiviral response, a widely distributed defense mechanism used by infected cells, serves to not only control infections but also to attenuate their deleterious effects. The exploration of the role of metabolism in orchestrating the antiviral response represents a burgeoning area of research, especially considering the escalating incidence of viral outbreaks coupled with the increasing prevalence of metabolic diseases. Here, we present a review of current knowledge regarding immunometabolism and the antiviral response during viral infections. Initially, we delve into the concept of immunometabolism by examining its application in the field of cancer-a domain that has long spearheaded inquiries into this fascinating intersection of disciplines. Subsequently, we explore examples of immune cells whose activation is intricately regulated by metabolic processes. Progressing with a systematic and cellular approach, our aim is to unravel the potential role of metabolism in antiviral defense, placing significant emphasis on the innate and canonical interferon response.
Collapse
Affiliation(s)
- Daed El Safadi
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Aurélie Paulo-Ramos
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Mathilde Hoareau
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Marjolaine Roche
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Pascale Krejbich-Trotot
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Wildriss Viranaicken
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Grégorie Lebeau
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| |
Collapse
|
4
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
5
|
Roca Suarez AA, Batbold E, Bartosch B, Dashdorj N, Testoni B, Zoulim F. Emerging anti-HDV drugs and HBV cure strategies with anti-HDV activity. Liver Int 2023; 43 Suppl 1:87-95. [PMID: 37017060 DOI: 10.1111/liv.15417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 04/06/2023]
Abstract
Hepatitis delta virus (HDV) is a satellite RNA virus that requires the presence of hepatitis B virus (HBV) for its replication. HDV/HBV co-infection is often associated with a faster disease progression of chronic hepatitis in comparison to HBV mono-infection. Therefore, the development of novel antiviral therapies targeting HDV represents a high priority and an urgent medical need. In this review, we summarize the ongoing efforts to evaluate promising HDV-specific drugs, such as lonafarnib (LNF), pegylated interferon lambda (PEG-IFN-λ) and their use as a combination therapy. Furthermore, we review the most recent developments in the area of anti-HBV drugs with potential effects against HDV, including therapeutic agents targeting hepatitis B surface antigen (HBsAg) expression, secretion and function. Finally, we consider the important insights that have emerged from the development of these potential antiviral strategies, as well as the intriguing questions that remain to be elucidated in this rapidly changing field.
Collapse
Affiliation(s)
- Armando A Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | | | - Birke Bartosch
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | | | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hospices Civils de Lyon (HCL), Lyon, France
| |
Collapse
|
6
|
Jung D, Bachmann HS. Regulation of protein prenylation. Biomed Pharmacother 2023; 164:114915. [PMID: 37236024 DOI: 10.1016/j.biopha.2023.114915] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Prenyltransferases (PTases) are known to play a role in embryonic development, normal tissue homeostasis and cancer by posttranslationally modifying proteins involved in these processes. They are being discussed as potential drug targets in an increasing number of diseases, ranging from Alzheimer's disease to malaria. Protein prenylation and the development of specific PTase inhibitors (PTIs) have been subject to intense research in recent decades. Recently, the FDA approved lonafarnib, a specific farnesyltransferase inhibitor that acts directly on protein prenylation; and bempedoic acid, an ATP citrate lyase inhibitor that might alter intracellular isoprenoid composition, the relative concentrations of which can exert a decisive influence on protein prenylation. Both drugs represent the first approved agent in their respective substance class. Furthermore, an overwhelming number of processes and proteins that regulate protein prenylation have been identified over the years, many of which have been proposed as molecular targets for pharmacotherapy in their own right. However, certain aspects of protein prenylation, such as the regulation of PTase gene expression or the modulation of PTase activity by phosphorylation, have attracted less attention, despite their reported influence on tumor cell proliferation. Here, we want to summarize the advances regarding our understanding of the regulation of protein prenylation and the potential implications for drug development. Additionally, we want to suggest new lines of investigation that encompass the search for regulatory elements for PTases, especially at the genetic and epigenetic levels.
Collapse
Affiliation(s)
- Dominik Jung
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Hagen S Bachmann
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
7
|
Keskin O, Yurdaydin C. Emerging drugs for hepatitis D. Expert Opin Emerg Drugs 2023:1-12. [PMID: 37096555 DOI: 10.1080/14728214.2023.2205639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Chronic hepatitis delta (CHD) is the most severe form of chronic viral hepatitis. Until recently, its treatment consisted of pegylated interferon alfa (pegIFN) use. AREAS COVERED Current and new drugs for treating CHD. Virus entry inhibitor bulevirtide has received conditional approval by the European Medicines Agency. Prenylation inhibitor lonafarnib and pegIFN lambda are in phase 3 and nucleic acid polymers in phase 2 of drug development. EXPERT OPINION Bulevirtide appears to be safe. Its antiviral efficacy increases with treatment duration. Combining bulevirtide with pegIFN has the highest antiviral efficacy short-term. The prenylation inhibitor lonafarnib prevents hepatitis D virus assembly. It is associated with dose dependent gastrointestinal toxicity and is better used with ritonavir which increases liver lonafarnib concentrations. Lonafarnib also possesses immune modulatory properties which explains some post-treatment beneficial flare cases. Combining lonafarnib/ritonavir with pegIFN has superior antiviral efficacy. Nucleic acid polymers are amphipathic oligonucleotides whose effect appears to be a consequence of phosphorothioate modification of internucleotide linkages. These compounds led to HBsAg clearance in a sizeable proportion of patients. PegIFN lambda is associated with less IFN typical side effects. In a phase 2 study it led to 6 months off treatment viral response in one third of patients.
Collapse
Affiliation(s)
- Onur Keskin
- Department of Gastroenterology, Hacettepe University Medical School, Ankara, Turkey
| | - Cihan Yurdaydin
- Department of Gastroenterology & Hepatology, Koc University Medical School, Istanbul, Turkey
| |
Collapse
|
8
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
9
|
Khalfi P, Kennedy PT, Majzoub K, Asselah T. Hepatitis D virus: Improving virological knowledge to develop new treatments. Antiviral Res 2023; 209:105461. [PMID: 36396025 DOI: 10.1016/j.antiviral.2022.105461] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis delta virus (HDV), a satellite of hepatitis B virus (HBV), possesses the smallest viral genome known to infect animals. HDV needs HBV surface protein for secretion and entry into target liver cells. However, HBV is dispensable for HDV genome amplification, as it relies almost exclusively on cellular host factors for replication. HBV/HDV co-infections affect over 12 million people worldwide and constitute the most severe form of viral hepatitis. Co-infected individuals are at higher risk of developing liver cirrhosis and hepatocellular carcinoma compared to HBV mono-infected patients. Bulevirtide, an entry inhibitor, was conditionally approved in July 2020 in the European Union for adult patients with chronic hepatitis delta (CHD) and compensated liver disease. There are several drugs in development, including lonafarnib and interferon lambda, with different modes of action. In this review, we detail our current fundamental knowledge of HDV lifecycle and review antiviral treatments under development against this virus, outlining their respective mechanisms-of-action. Finally, we describe the antiviral effect these compounds are showing in ongoing clinical trials, discussing their promise and potential pitfalls for managing HDV infected patients.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France
| | - Patrick T Kennedy
- The Blizard Institute, Queen Mary University of London, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France.
| | - Tarik Asselah
- Université de Paris, Cité CRI, INSERM UMR 1149, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France.
| |
Collapse
|
10
|
Asif B, Koh C. Hepatitis D virus (HDV): investigational therapeutic agents in clinical trials. Expert Opin Investig Drugs 2022; 31:905-920. [PMID: 34482769 PMCID: PMC11391510 DOI: 10.1080/13543784.2021.1977795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chronic Hepatitis D virus (HDV) infection is a global disease leading to rapidly progressive liver disease with increased liver-related mortality and hepatocellular carcinoma. Therapies are minimally effective; however, an increased understanding of the HDV lifecycle has provided new potential drug targets. Thus, there is a growing number of investigational therapeutics under exploration for HDV with the potential for successful viral eradication. AREAS COVERED This review discusses the clinical impact of HDV infection and offers an in-depth look at the HDV life cycle. The authors examine current and new drug targets and the investigational therapies in clinical trials. The search strategy was based on PubMed database and clinicaltrials.gov which highlight the most up-to-date aspects of investigational therapies for chronic HDV infection.
Collapse
Affiliation(s)
- Bilal Asif
- Digestive Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
11
|
A Review of HDV Infection. Viruses 2022; 14:v14081749. [PMID: 36016371 PMCID: PMC9414459 DOI: 10.3390/v14081749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 01/04/2023] Open
Abstract
Hepatitis D is the most severe viral hepatitis. Hepatitis D virus (HDV) has a very small RNA genome with unique biological properties. It requires for infection the presence of hepatitis B virus (HBV) and is transmitted parenterally, mainly by superinfection of HBsAg carriers who then develop chronic hepatitis D. HDV has been brought under control in high-income countries by the implementation of HBV vaccination, and the clinical pattern has changed to a chronic hepatitis D seen in ageing patients with advanced fibrotic disease; the disease remains a major health concern in developing countries of Africa and Asia. Every HBsAg-positive subject should be tested for HDV serum markers by reflex testing, independently of clinical status. Vaccination against HBV provides the best prophylaxis against hepatitis D. The only therapy available so far has been the poorly performing Interferon alfa; however, several new and promising therapeutic approaches are under study.
Collapse
|
12
|
Tan YC, Lee GH, Huang DQ, Lim SG. Future anti-HDV treatment strategies, including those aimed at HBV functional cure. Liver Int 2022; 43:1157-1169. [PMID: 35946084 DOI: 10.1111/liv.15387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 02/13/2023]
Abstract
HDV is a defective virus that uses the HBV surface antigen to enter hepatocytes. It is associated with an accelerated course of liver fibrosis progression and an increased risk of hepatocellular carcinoma. Negative HDV RNA 24 weeks after the end of therapy has been proposed as an endpoint but late relapses make this endpoint suboptimal, hence HBsAg loss appears to be more appropriate. Current HBV antiviral agents have poor activity against HDV hence the search for improved therapy. Drugs only active against HDV, such as lonafarnib, have shown efficacy in combination with nucleoside analogues and peginterferon, but do not lead to HBsAg loss. HBsAg loss sustained 24 weeks after the end of therapy with negative HBV DNA is termed functional cure. Agents that are being investigated for functional cure include those that inhibit replication such as entry inhibitors, polymerase inhibitors and capsid assembly modulators but seldom lead to functional cure. Agents that reduce HBV antigen load such as RNA interference and inhibitors of HBsAg secretion are promising. Immunomodulators on their own seldom achieve functional cure, hence these agents in combination to assess the optimal combination are being investigated. Consequently, agents leading to functional cure of HBV are ideal for both HBV and HDV.
Collapse
Affiliation(s)
- Yong Chuan Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Guan Huei Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Seng Gee Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| |
Collapse
|
13
|
Yurdaydin C, Keskin O, Yurdcu E, Çalişkan A, Önem S, Karakaya F, Kalkan Ç, Karatayli E, Karatayli S, Choong I, Apelian D, Koh C, Heller T, Idilman R, Bozdayi AM, Glenn JS. A phase 2 dose-finding study of lonafarnib and ritonavir with or without interferon alpha for chronic delta hepatitis. Hepatology 2022; 75:1551-1565. [PMID: 34860418 DOI: 10.1002/hep.32259] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/04/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Proof-of-concept studies demonstrated lonafarnib (LNF), a first-in-class oral prenylation inhibitor, efficacy in patients infected with HDV. The lonafarnib with ritonavir for HDV-2 (LOWR-2) study's aim was to identify optimal combination regimens of LNF + ritonavir (RTV) ± pegylated interferon alpha (PEG-IFNα) with efficacy and tolerability for longer-term dosing. Here we report the safety and efficacy at end of treatment for up to 24 weeks. APPROACH AND RESULTS Fifty-five patients with chronic HDV were consecutively enrolled in an open-label, single-center, phase 2 dose-finding study. There were three main treatment groups: high-dose LNF (LNF ≥ 75 mg by mouth [po] twice daily [bid] + RTV) (n = 19, 12 weeks); all-oral low-dose LNF (LNF 25 or 50 mg po bid + RTV) (n = 24, 24 weeks), and combination low-dose LNF with PEG-IFNα (LNF 25 or 50 mg po bid + RTV + PEG-IFNα) (n = 12, 24 weeks). The primary endpoint, ≥2 log10 decline or < lower limit of quantification of HDV-RNA from baseline at end of treatment, was reached in 46% (6 of 13) and 89% (8 of 9) of patients receiving the all-oral regimen of LNF 50 mg bid + RTV, and combination regimens of LNF (25 or 50 mg bid) + RTV + PEG-IFNα, respectively. In addition, multiple patients experienced well-tolerated transient posttreatment alanine aminotransferase increases, resulting in HDV-RNA negativity and alanine aminotransferase normalization. The proportions of grade 2 and 3 gastrointestinal adverse events in the high-dose versus low-dose groups were 49% (37 of 76) and only 22% (18 of 81), respectively. CONCLUSIONS LNF, boosted with low-dose RTV, is a promising all-oral therapy, and maximal efficacy is achieved with PEG-IFNα addition. The identified optimal regimens support a phase 3 study of LNF for the treatment of HDV.
Collapse
Affiliation(s)
- Cihan Yurdaydin
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
- Hepatology InstituteUniversity of AnkaraAnkaraTurkey
- Department of Gastroenterology and HepatologyKoç University Medical SchoolIstanbulTurkey
| | - Onur Keskin
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | - Esra Yurdcu
- Hepatology InstituteUniversity of AnkaraAnkaraTurkey
| | - Aysun Çalişkan
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | - Soner Önem
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | - Fatih Karakaya
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | - Çağdaş Kalkan
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | - Ersin Karatayli
- Hepatology InstituteUniversity of AnkaraAnkaraTurkey
- Department of Medicine IISaarland University Medical CenterSaarland UniversityHomburgGermany
| | - Senem Karatayli
- Hepatology InstituteUniversity of AnkaraAnkaraTurkey
- Department of Medicine IISaarland University Medical CenterSaarland UniversityHomburgGermany
| | - Ingrid Choong
- Eiger BioPharmaceuticals, Inc.Palo AltoCaliforniaUSA
| | - David Apelian
- Eiger BioPharmaceuticals, Inc.Palo AltoCaliforniaUSA
| | - Christopher Koh
- Translational Hepatology SectionLiver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Theo Heller
- Translational Hepatology SectionLiver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Ramazan Idilman
- Department of GastroenterologyUniversity of Ankara Medical SchoolAnkaraTurkey
| | | | - Jeffrey S Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & ImmunologyStanford School of MedicineStanfordCaliforniaUSA
- Palo Alto Veterans AdministrationPalo AltoCaliforniaUSA
| |
Collapse
|
14
|
Brancaccio G, Gaeta L, Vitale A, Gaeta GB. Recent breakthroughs in the treatment of chronic hepatitis Delta. LE INFEZIONI IN MEDICINA 2022; 30:204-210. [PMID: 35693059 PMCID: PMC9177179 DOI: 10.53854/liim-3002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Hepatitis Delta virus (HDV) is responsible for the most aggressive form of chronic hepatitis, which may evolve towards cirrhosis, hepatocellular carcinoma and death within few years. During the last 30 years the only available therapy was interferon or peg-IFN, which was characterized by poor tolerability and modest results. The detailed knowledge of the HDV replication cycle and its interaction with HBV allowed the introduction of new drugs which are currently in phase II or III of experimentation. Basically, bulevirtide, to date the only one approved by EMA, inhibits the entry of the virus into the hepatocytes and hence its intrahepatic spread; lonafarnib inhibits the pharnesylation process of the L-HDAg, which is critical for the assembly of the HDV virion; the nucleic acid polymers (NAPs) mainly block the production/release of HBsAg. The available clinical trials with these compounds showed an excellent anti-viral activity against HDV.
Collapse
Affiliation(s)
| | - Laura Gaeta
- Gastroenterology and Endoscopy Unit, Hospital San Paolo, Naples, Italy
| | - Alessandro Vitale
- Hepatobiliary Surgery and Liver Transplant Unit, University Hospital, Padua, Italy
| | | |
Collapse
|
15
|
Xie D, He S, Han L, Wu L, Huang H, Tao H, Zhou P, Shi X, Bai H, Bo X. Systematic optimization of host-directed therapeutic targets and preclinical validation of repositioned antiviral drugs. Brief Bioinform 2022; 23:bbac047. [PMID: 35238349 PMCID: PMC9116211 DOI: 10.1093/bib/bbac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
Abstract
Inhibition of host protein functions using established drugs produces a promising antiviral effect with excellent safety profiles, decreased incidence of resistant variants and favorable balance of costs and risks. Genomic methods have produced a large number of robust host factors, providing candidates for identification of antiviral drug targets. However, there is a lack of global perspectives and systematic prioritization of known virus-targeted host proteins (VTHPs) and drug targets. There is also a need for host-directed repositioned antivirals. Here, we integrated 6140 VTHPs and grouped viral infection modes from a new perspective of enriched pathways of VTHPs. Clarifying the superiority of nonessential membrane and hub VTHPs as potential ideal targets for repositioned antivirals, we proposed 543 candidate VTHPs. We then presented a large-scale drug-virus network (DVN) based on matching these VTHPs and drug targets. We predicted possible indications for 703 approved drugs against 35 viruses and explored their potential as broad-spectrum antivirals. In vitro and in vivo tests validated the efficacy of bosutinib, maraviroc and dextromethorphan against human herpesvirus 1 (HHV-1), hepatitis B virus (HBV) and influenza A virus (IAV). Their drug synergy with clinically used antivirals was evaluated and confirmed. The results proved that low-dose dextromethorphan is better than high-dose in both single and combined treatments. This study provides a comprehensive landscape and optimization strategy for druggable VTHPs, constructing an innovative and potent pipeline to discover novel antiviral host proteins and repositioned drugs, which may facilitate their delivery to clinical application in translational medicine to combat fatal and spreading viral infections.
Collapse
Affiliation(s)
- Dafei Xie
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Song He
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Lu Han
- Beijing Institute of Pharmacology and Toxicology, Beijing, China, 100850
| | - Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China, 300072
| | - Hai Huang
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Huan Tao
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Pingkun Zhou
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Xunlong Shi
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Hui Bai
- BioMap (Beijing) Intelligence Technology Limited, Beijing, China, 100005
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| |
Collapse
|
16
|
Saracco GM, Marzano A, Rizzetto M. Therapy of Chronic Viral Hepatitis: The Light at the End of the Tunnel? Biomedicines 2022; 10:534. [PMID: 35327336 PMCID: PMC8945793 DOI: 10.3390/biomedicines10030534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic viral hepatitis determines significant morbidity and mortality globally and is caused by three main etiological actors (Hepatitis B Virus, Hepatitis C Virus, and Hepatitis D Virus) with different replicative cycles and biological behaviors. Thus, therapies change according to the different characteristics of the viruses. In chronic hepatitis B, long term suppressive treatments with nucleoside/nucleotide analogues have had a dramatic impact on the evolution of liver disease and liver-related complications. However, a conclusive clearance of the virus is difficult to obtain; new strategies that are able to eradicate the infection are currently objects of research. The therapy for Hepatitis D Virus infection is challenging due to the unique virology of the virus, which uses the synthetic machinery of the infected hepatocyte for its own replication and cannot be targeted by conventional antivirals that are active against virus-coded proteins. Recently introduced antivirals, such as bulevertide and lonafarnib, display definite but only partial efficacy in reducing serum HDV-RNA. However, in combination with pegylated interferon, they provide a synergistic therapeutic effect and appear to represent the current best therapy for HDV-positive patients. With the advent of Direct Acting Antiviral Agents (DAAs), a dramatic breakthrough has occurred in the therapeutic scenario of chronic hepatitis C. Cure of HCV infection is achieved in more than 95% of treated patients, irrespective of their baseline liver fibrosis status. Potentially, the goal of global HCV elimination by 2030 as endorsed by the World Health Organization can be obtained if more global subsidised supplies of DAAs are provided.
Collapse
Affiliation(s)
- Giorgio Maria Saracco
- Gastro-Hepatoloy Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.M.); (M.R.)
| | | | | |
Collapse
|
17
|
Verhasselt H, Stelmach P, Domin M, Jung D, Hagemann A, Manthey I, Bachmann HS. Characterization of the promoter of the human farnesyltransferase beta subunit and the impact of the transcription factor OCT-1 on its expression. Genomics 2022; 114:110314. [DOI: 10.1016/j.ygeno.2022.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/14/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022]
|
18
|
Elazar M, Glenn JS. Combination of Novel Therapies for HDV. Viruses 2022; 14:v14020268. [PMID: 35215860 PMCID: PMC8877160 DOI: 10.3390/v14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment options for HDV have been limited to interferon alfa-based therapies with its poor efficacy to side effects ratio. Several novel therapies have now advanced into the clinic. As they each have a different mechanism of action, there is the potential for combination therapy. Here we review how studying the HDV life cycle has led to the development of these novel therapies, the key developments leading to, and the details of, the first combination study of novel anti-HDV therapies, and suggest what additional combinations of novel therapies can be anticipated as we enter this exciting new area of HDV treatments.
Collapse
Affiliation(s)
- Menashe Elazar
- Division of Gastroenterology and Hepatology, Department of Medicine-Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine-Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Palo Alto Veterans Administration, Palo Alto, CA 94305, USA
- Correspondence:
| |
Collapse
|
19
|
Schey GL, Buttery PH, Hildebrandt ER, Novak SX, Schmidt WK, Hougland JL, Distefano MD. MALDI-MS Analysis of Peptide Libraries Expands the Scope of Substrates for Farnesyltransferase. Int J Mol Sci 2021; 22:ijms222112042. [PMID: 34769472 PMCID: PMC8584866 DOI: 10.3390/ijms222112042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This modification typically causes proteins to associate with the membrane and allows them to participate in signaling pathways. In the canonical understanding of FTase, the isoprenoids are attached to the cysteine residue of a four-amino-acid CaaX box sequence. However, recent work has shown that five-amino-acid sequences can be recognized, including the pentapeptide CMIIM. This paper describes a new systematic approach to discover novel peptide substrates for FTase by combining the combinatorial power of solid-phase peptide synthesis (SPPS) with the ease of matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). The workflow consists of synthesizing focused libraries containing 10-20 sequences obtained by randomizing a synthetic peptide at a single position. Incubation of the library with FTase and farnesyl pyrophosphate (FPP) followed by mass spectrometric analysis allows the enzymatic products to be clearly resolved from starting peptides due to the increase in mass that occurs upon farnesylation. Using this method, 30 hits were obtained from a series of libraries containing a total of 80 members. Eight of the above peptides were selected for further evaluation, reflecting a mixture that represented a sampling of diverse substrate space. Six of these sequences were found to be bona fide substrates for FTase, with several meeting or surpassing the in vitro efficiency of the benchmark sequence CMIIM. Experiments in yeast demonstrated that proteins bearing these sequences can be efficiently farnesylated within live cells. Additionally, a bioinformatics search showed that a variety of pentapeptide CaaaX sequences can be found in the mammalian genome, and several of these sequences display excellent farnesylation in vitro and in yeast cells, suggesting that the number of farnesylated proteins within mammalian cells may be larger than previously thought.
Collapse
Affiliation(s)
- Garrett L. Schey
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Peter H. Buttery
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (W.K.S.)
| | - Sadie X. Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (S.X.N.); (J.L.H.)
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (W.K.S.)
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (S.X.N.); (J.L.H.)
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Mark D. Distefano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
20
|
Papatheodoridi M, Papatheodoridis GV. Current status of hepatitis delta. Curr Opin Pharmacol 2021; 58:62-67. [PMID: 33895531 DOI: 10.1016/j.coph.2021.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Hepatitis D virus (HDV) infection in patients chronically infected with hepatitis B virus (HBV) causes the most severe form of chronic viral hepatitis and continues to represent a major health problem. The latest data show that the global prevalence is much higher than previously considered. Therefore, screening with the detection of anti-HDV antibodies is mandatory for all chronic HBV patients. In spite of the severity of liver disease, the only recommended treatment today is pegylated interferon-alpha, which has limited efficacy. Novel host-targeting molecules are now under investigation. The current phase 2 clinical trials include pegylated interferon-lambda, bulevirtide, lonafarnib, and REP-2139. This review focuses on the current status of epidemiology, diagnosis, and treatment of HDV infection.
Collapse
Affiliation(s)
- Margarita Papatheodoridi
- University College of London, Institute of Liver and Digestive Health, Royal Free Campus, London, UK
| | - George V Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece.
| |
Collapse
|
21
|
Abstract
RAS was identified as a human oncogene in the early 1980s and subsequently found to be mutated in nearly 30% of all human cancers. More importantly, RAS plays a central role in driving tumor development and maintenance. Despite decades of effort, there remain no FDA approved drugs that directly inhibit RAS. The prevalence of RAS mutations in cancer and the lack of effective anti-RAS therapies stem from RAS' core role in growth factor signaling, unique structural features, and biochemistry. However, recent advances have brought promising new drugs to clinical trials and shone a ray of hope in the field. Here, we will exposit the details of RAS biology that illustrate its key role in cell signaling and shed light on the difficulties in therapeutically targeting RAS. Furthermore, past and current efforts to develop RAS inhibitors will be discussed in depth.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
22
|
Statin inhibits large hepatitis delta antigen-Smad3 -twist-mediated epithelial-to-mesenchymal transition and hepatitis D virus secretion. J Biomed Sci 2020; 27:65. [PMID: 32434501 PMCID: PMC7240974 DOI: 10.1186/s12929-020-00659-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Background Hepatitis D virus (HDV) infection may induce fulminant hepatitis in chronic hepatitis B patients (CHB) or rapid progression of CHB to cirrhosis or hepatocellular carcinoma. There is no effective treatment for HDV infection. HDV encodes small delta antigens (S-HDAg) and large delta antigens (L-HDAg). S-HDAg is essential for HDV replication. Prenylated L-HDAg plays a key role in HDV assembly. Previous studies indicate that L-HDAg transactivates transforming growth factor beta (TGF-β) and induces epithelial-mesenchymal transition (EMT), possibly leading to liver fibrosis. However, the mechanism is unclear. Methods The mechanisms of the activation of Twist promoter by L-HDAg were investigated by luciferase reporter assay, chromatin immunoprecipitation, and co-immunoprecipitation analysis. ELISA and Western blotting were used to analyze L-HDAg prenylation, TGF-β secretion, expression of EMT markers, and to evaluate efficacy of statins for HDV treatment. Results We found that L-HDAg activated Twist expression, TGF-β expression and consequently induced EMT, based on its interaction with Smad3 on Twist promoter. The treatment of statin, a prenylation inhibitor, resulted in reduction of Twist promoter activity, TGF-β expression, and EMT, and reduces the release of HDV virions into the culture medium. Conclusions We demonstrate that L-HDAg activates EMT via Twist and TGF-β activation. Treatment with statins suppressed Twist expression, and TGF-β secretion, leading to downregulation of EMT. Our findings clarify the mechanism of HDV-induced EMT, and provide a basis for possible novel therapeutic strategies against HDV infection.
Collapse
|
23
|
Brancaccio G, Gaeta GB. Treatment of chronic hepatitis due to hepatitis B and hepatitis delta virus coinfection. Int J Antimicrob Agents 2019; 54:697-701. [PMID: 31541699 DOI: 10.1016/j.ijantimicag.2019.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023]
Abstract
An estimated 20-40 million individuals worldwide are infected with hepatitis delta virus (HDV), mostly with rapidly evolving liver disease. Therapy of chronic HDV infection remains an unmet need. To date, only interferon (IFN)-based therapy is recommended for HDV infection and response rates are unsatisfactory; in addition, many patients are intolerant to or ineligible for IFN treatment. In recent years, innovative approaches have been in development, including the following: targeting virus entry into hepatocytes; inhibition of the host enzyme farnesyltransferase by prenylation inhibitors, leading to inhibition of complete virion formation and release; blockade of hepatitis B surface antigen (HBsAg) secretion, inhibiting virus release; and IFN-lambda, which causes fewer adverse effects than IFN-alfa. Clinical trials are ongoing with encouraging preliminary results.
Collapse
Affiliation(s)
- Giuseppina Brancaccio
- Infectious Diseases, Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Giovanni B Gaeta
- Infectious Diseases, Department of Mental and Physical Health, Campania University, Naples, Italy.
| |
Collapse
|
24
|
Gilman C, Heller T, Koh C. Chronic hepatitis delta: A state-of-the-art review and new therapies. World J Gastroenterol 2019; 25:4580-4597. [PMID: 31528088 PMCID: PMC6718034 DOI: 10.3748/wjg.v25.i32.4580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic delta hepatitis is the most severe form of viral hepatitis affecting nearly 65 million people worldwide. Individuals with this devastating illness are at higher risk for developing cirrhosis and hepatocellular carcinoma. Delta virus is a defective RNA virus that requires hepatitis B surface antigen for propagation in humans. Infection can occur in the form of a co-infection with hepatitis B, which can be self-limiting, vs superinfection in a patient with established hepatitis B infection, which often leads to chronicity in majority of cases. Current noninvasive tools to assess for advanced liver disease have limited utility in delta hepatitis. Guidelines recommend treatment with pegylated interferon, but this is limited to patients with compensated disease and is efficacious in about 30% of those treated. Due to limited treatment options, novel agents are being investigated and include entry, assembly and export inhibitors of viral particles in addition to stimulators of the host immune response. Future clinical trials should take into consideration the interaction of hepatitis B and hepatitis D as suppression of one virus can lead to the activation of the other. Also, surrogate markers of treatment efficacy have been proposed.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Coinfection/drug therapy
- Coinfection/epidemiology
- Coinfection/virology
- Drug Therapy, Combination/methods
- Global Burden of Disease
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/epidemiology
- Hepatitis B, Chronic/virology
- Hepatitis D, Chronic/drug therapy
- Hepatitis D, Chronic/epidemiology
- Hepatitis D, Chronic/virology
- Hepatitis Delta Virus/immunology
- Hepatitis Delta Virus/pathogenicity
- Humans
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Lipopeptides/pharmacology
- Lipopeptides/therapeutic use
- Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Randomized Controlled Trials as Topic
- Review Literature as Topic
- Superinfection/drug therapy
- Superinfection/epidemiology
- Superinfection/virology
- Symporters/antagonists & inhibitors
- Symporters/metabolism
- Therapies, Investigational/methods
- Treatment Outcome
- Virus Assembly/drug effects
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Christy Gilman
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
25
|
Abstract
Chronic hepatitis D (CHD) results from an infection with the hepatitis B virus and hepatitis D virus (HDV). CHD is the most severe form of human viral hepatitis. Current treatment options consist of interferon alfa, which is effective only in a minority of patients. Study of HDV molecular virology has resulted in new approaches entering clinical trials, with phase-3 studies the most advanced. These include the entry inhibitor bulevirtide, the nucleic acid polymer REP 2139-Ca, the farnesyltransferase inhibitor lonafarnib, and pegylated interferon lambda. This article summarizes the available data on these emerging therapeutics.
Collapse
Affiliation(s)
- Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ben L. Da
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey S. Glenn
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
26
|
Da BL, Heller T, Koh C. Hepatitis D infection: from initial discovery to current investigational therapies. Gastroenterol Rep (Oxf) 2019; 7:231-245. [PMID: 32477569 DOI: 10.1093/gastro/goz023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/15/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D is the most severe form of viral hepatitis associated with a more rapid progression to cirrhosis and an increased risk of hepatocellular carcinoma and mortality compared with hepatitis B mono-infection. Although once thought of as a disappearing disease, hepatitis D is now becoming recognized as a serious worldwide issue due to improvement in diagnostic testing and immigration from endemic countries. Despite these concerns, there is currently only one accepted medical therapy (pegylated-interferon-α) for the treatment of hepatitis D with less than desirable efficacy and significant side effects. Due to these reasons, many patients never undergo treatment. However, increasing knowledge about the virus and its life cycle has led to the clinical development of multiple promising new therapies that hope to alter the natural history of this disease and improve patient outcome. In this article, we will review the literature from discovery to the current investigational therapies.
Collapse
Affiliation(s)
- Ben L Da
- Digestive Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Yurdaydin C. New treatment options for delta virus: Is a cure in sight? J Viral Hepat 2019; 26:618-626. [PMID: 30771261 DOI: 10.1111/jvh.13081] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
Current treatment of chronic hepatitis D viral infection with interferons is poorly tolerated and effective only in a minority of patients. Despite delta virus causing the most severe form of chronic viral hepatitis, no other treatments are available. After many years of inactivity, there is now hope for new treatment approaches for delta virus and some are likely to enter clinical practice in the near future. Four new treatment approaches are currently being evaluated in phase 2 studies. These involve the hepatocyte entry inhibitor myrcludex B, the farnesyl transferase inhibitor lonafarnib, the nucleic acid inhibitor REP 2139 Ca and pegylated interferon lambda. Results obtained so far are promising, and phase 3 studies are expected shortly. This review summarizes the available data on the efficacy and safety of these new drugs.
Collapse
Affiliation(s)
- Cihan Yurdaydin
- Department of Gastroenterology, Ankara University Medical School, Ankara, Turkey.,Department of Gastroenterology and Hepatology, Koc University, Istanbul, Turkey
| |
Collapse
|
28
|
Mentha N, Clément S, Negro F, Alfaiate D. A review on hepatitis D: From virology to new therapies. J Adv Res 2019; 17:3-15. [PMID: 31193285 PMCID: PMC6526199 DOI: 10.1016/j.jare.2019.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective virus that requires the hepatitis B virus (HBV) to complete its life cycle in human hepatocytes. HDV virions contain an envelope incorporating HBV surface antigen protein and a ribonucleoprotein containing the viral circular single-stranded RNA genome associated with both forms of hepatitis delta antigen, the only viral encoded protein. Replication is mediated by the host cell DNA-dependent RNA polymerases. HDV infects up to72 million people worldwide and is associated with an increased risk of severe and rapidly progressive liver disease. Pegylated interferon-alpha is still the only available treatment for chronic hepatitis D, with poor tolerance and dismal success rate. Although the development of antivirals inhibiting the viral replication is challenging, as HDV does not possess its own polymerase, several antiviral molecules targeting other steps of the viral life cycle are currently under clinical development: Myrcludex B, which blocks HDV entry into hepatocytes, lonafarnib, a prenylation inhibitor that prevents virion assembly, and finally REP 2139, which is thought to inhibit HBsAg release from hepatocytes and interact with hepatitis delta antigen. This review updates the epidemiology, virology and management of HDV infection.
Collapse
Affiliation(s)
- Nathalie Mentha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Sophie Clément
- Division of Clinical Pathology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Francesco Negro
- Division of Clinical Pathology, Geneva University Hospitals, 1211 Geneva, Switzerland
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Dulce Alfaiate
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
29
|
Koh C, Heller T, Glenn JS. Pathogenesis of and New Therapies for Hepatitis D. Gastroenterology 2019; 156:461-476.e1. [PMID: 30342879 PMCID: PMC6340762 DOI: 10.1053/j.gastro.2018.09.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis delta virus (HDV) infection of humans was first reported in 1977, and now it is now estimated that 15-20 million people are infected worldwide. Infection with HDV can be an acute or chronic process that occurs only in patients with an hepatitis B virus infection. Chronic HDV infection commonly results in the most rapidly progressive form of viral hepatitis; it is the chronic viral infection that is most likely to lead to cirrhosis, and it is associated with an increased risk of hepatocellular carcinoma. HDV infection is the only chronic human hepatitis virus infection without a therapy approved by the US Food and Drug Administration. Peginterferon alfa is the only recommended therapy, but it produces unsatisfactory results. We review therapeutic agents in development, designed to disrupt the HDV life cycle, that might benefit patients with this devastating disease.
Collapse
Affiliation(s)
- Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
30
|
Tabernero D, Cortese MF, Buti M, Rodriguez-Frias F. HDV evolution-will viral resistance be an issue in HDV infection? Curr Opin Virol 2018; 32:100-107. [PMID: 30415162 DOI: 10.1016/j.coviro.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
Hepatitis D virus (HDV) is a hepatotropic subviral infectious agent, obligate satellite of the Hepatitis B virus (HBV) and is highly related to viroids. HDV affects around 5% of the 257 million chronic HBV-carriers worldwide, leading to the most severe form of chronic viral hepatitis. Interferon alpha is the only approved treatment for chronic hepatitis D, albeit with low response rates (around 20%-30%). New antiviral strategies are currently under study. Due to the high viral evolution rates (10-3 to 10-4 substitutions/site/year) HDV forms an extremely complex viral population (quasispecies) that can be studied by Next-Generation Sequencing. Therefore, although specific viral resistance in HDV infection has not been reported, it cannot be completely discarded.
Collapse
Affiliation(s)
- David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Maria Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Francisco Rodriguez-Frias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| |
Collapse
|
31
|
Abstract
Hepatitis delta virus (HDV) is a defective RNA virus that depends on the presence of hepatitis B virus (HBV) for the creation of new virions and propagation of the infection to hepatocytes. Chronic infection with HDV is usually associated with a worsening of HBV infection, leading more frequently to cirrhosis, increased risk of liver decompensation and hepatocellular carcinoma (HCC) occurrence. In spite of a progressive declining prevalence of both acute and chronic HDV infection observed over several years, mainly due to increased global health policies and mass vaccination against HBV, several European countries have more recently observed stable HDV prevalence mainly due to migrants from non-European countries. Persistent HDV replication has been widely demonstrated as associated with cirrhosis development and, as a consequence, development of liver decompensation and occurrence of HCC. Several treatment options have been attempted with poor results in terms of HDV eradication and improvement of long-term prognosis. A global effort is deemed urgent to enhance the models already existing as well as to learn more about HDV infection and correlated tumourigenesis mechanisms.
Collapse
|
32
|
Colagrossi L, Salpini R, Scutari R, Carioti L, Battisti A, Piermatteo L, Bertoli A, Fabeni L, Minichini C, Trimoulet P, Fleury H, Nebuloso E, De Cristofaro M, Cappiello G, Spanò A, Malagnino V, Mari T, Barlattani A, Iapadre N, Lichtner M, Mastroianni C, Lenci I, Pasquazzi C, De Sanctis GM, Galeota Lanza A, Stanzione M, Stornaiuolo G, Marignani M, Sarmati L, Andreoni M, Angelico M, Ceccherini-Silberstein F, Perno CF, Coppola N, Svicher V. HDV Can Constrain HBV Genetic Evolution in HBsAg: Implications for the Identification of Innovative Pharmacological Targets. Viruses 2018; 10:v10070363. [PMID: 29987240 PMCID: PMC6071122 DOI: 10.3390/v10070363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic HBV + HDV infection is associated with greater risk of liver fibrosis, earlier hepatic decompensation, and liver cirrhosis hepatocellular carcinoma compared to HBV mono-infection. However, to-date no direct anti-HDV drugs are available in clinical practice. Here, we identified conserved and variable regions in HBsAg and HDAg domains in HBV + HDV infection, a critical finding for the design of innovative therapeutic agents. The extent of amino-acid variability was measured by Shannon-Entropy (Sn) in HBsAg genotype-d sequences from 31 HBV + HDV infected and 62 HBV mono-infected patients (comparable for demographics and virological-parameters), and in 47 HDAg genotype-1 sequences. Positions with Sn = 0 were defined as conserved. The percentage of conserved HBsAg-positions was significantly higher in HBV + HDV infection than HBV mono-infection (p = 0.001). Results were confirmed after stratification for HBeAg-status and patients’ age. A Sn = 0 at specific positions in the C-terminus HBsAg were correlated with higher HDV-RNA, suggesting that conservation of these positions can preserve HDV-fitness. Conversely, HDAg was characterized by a lower percentage of conserved-residues than HBsAg (p < 0.001), indicating higher functional plasticity. Furthermore, specific HDAg-mutations were significantly correlated with higher HDV-RNA, suggesting a role in conferring HDV replicative-advantage. Among HDAg-domains, only the virus-assembly signal exhibited a high genetic conservation (75% of conserved-residues). In conclusion, HDV can constrain HBsAg genetic evolution to preserve its fitness. The identification of conserved regions in HDAg poses the basis for designing innovative targets against HDV-infection.
Collapse
Affiliation(s)
- Luna Colagrossi
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Romina Salpini
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Rossana Scutari
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Luca Carioti
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Arianna Battisti
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Lorenzo Piermatteo
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Ada Bertoli
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Lavinia Fabeni
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Carmine Minichini
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania L. Vanvitelli, 81100 Naples, Italy.
| | - Pascale Trimoulet
- Laboratoire de Virologie, Hôpital Pellegrin tripode, 33076 Bordeaux, France.
| | - Hervé Fleury
- Laboratoire de Virologie, Hôpital Pellegrin tripode, 33076 Bordeaux, France.
| | - Elena Nebuloso
- Unit of Microbiology, Sandro Pertini Hospital, 00157 Rome, Italy.
| | | | | | - Alberto Spanò
- Unit of Microbiology, Sandro Pertini Hospital, 00157 Rome, Italy.
| | - Vincenzo Malagnino
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy.
| | - Terenzio Mari
- Hepatology Unit, Nuovo Regina Margherita Hospital, 00153 Rome, Italy.
| | - Angelo Barlattani
- Hepatology Unit, Nuovo Regina Margherita Hospital, 00153 Rome, Italy.
| | - Nerio Iapadre
- Infectious Diseases Unit, San Salvatore Hospital, 67100 L'Aquila, Italy.
| | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy.
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy.
| | - Ilaria Lenci
- Hepatology Unit, Tor Vergata University Hospital, 00133 Rome, Italy.
| | | | | | | | - Maria Stanzione
- Department of Internal Medicine, University of Campania L. Vanvitelli, Viral Unit, 81100 Naples, Italy.
| | - Gianfranca Stornaiuolo
- Department of Internal Medicine, University of Campania L. Vanvitelli, Viral Unit, 81100 Naples, Italy.
| | | | - Loredana Sarmati
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy.
| | - Massimo Andreoni
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy.
| | - Mario Angelico
- Hepatology Unit, Tor Vergata University Hospital, 00133 Rome, Italy.
| | | | - Carlo-Federico Perno
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
- Haematology and Oncohematology, University of Milan, 20122 Milan, Italy.
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania L. Vanvitelli, 81100 Naples, Italy.
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| |
Collapse
|
33
|
Winer BY, Shirvani-Dastgerdi E, Bram Y, Sellau J, Low BE, Johnson H, Huang T, Hrebikova G, Heller B, Sharon Y, Giersch K, Gerges S, Seneca K, Pais MA, Frankel AS, Chiriboga L, Cullen J, Nahass RG, Lutgehetmann M, Toettcher JE, Wiles MV, Schwartz RE, Ploss A. Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med 2018; 10:eaap9328. [PMID: 29950446 PMCID: PMC6337727 DOI: 10.1126/scitranslmed.aap9328] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
Chronic delta hepatitis, caused by hepatitis delta virus (HDV), is the most severe form of viral hepatitis, affecting at least 20 million hepatitis B virus (HBV)-infected patients worldwide. HDV/HBV co- or superinfections are major drivers for hepatocarcinogenesis. Antiviral treatments exist only for HBV and can only suppress but not cure infection. Development of more effective therapies has been impeded by the scarcity of suitable small-animal models. We created a transgenic (tg) mouse model for HDV expressing the functional receptor for HBV and HDV, the human sodium taurocholate cotransporting peptide NTCP. Both HBV and HDV entered hepatocytes in these mice in a glycoprotein-dependent manner, but one or more postentry blocks prevented HBV replication. In contrast, HDV persistently infected hNTCP tg mice coexpressing the HBV envelope, consistent with HDV dependency on the HBV surface antigen (HBsAg) for packaging and spread. In immunocompromised mice lacking functional B, T, and natural killer cells, viremia lasted at least 80 days but resolved within 14 days in immunocompetent animals, demonstrating that lymphocytes are critical for controlling HDV infection. Although acute HDV infection did not cause overt liver damage in this model, cell-intrinsic and cellular innate immune responses were induced. We further demonstrated that single and dual treatment with myrcludex B and lonafarnib efficiently suppressed viremia but failed to cure HDV infection at the doses tested. This small-animal model with inheritable susceptibility to HDV opens opportunities for studying viral pathogenesis and immune responses and for testing novel HDV therapeutics.
Collapse
Affiliation(s)
- Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Elham Shirvani-Dastgerdi
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Julie Sellau
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Benjamin E Low
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Heath Johnson
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Tiffany Huang
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Yael Sharon
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Katja Giersch
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sherif Gerges
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Kathleen Seneca
- Infectious Disease Care, 105 Raider Boulevard, Hillsborough, NJ 08844, USA
| | - Mihai-Alexandru Pais
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Angela S Frankel
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA
| | - John Cullen
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Ronald G Nahass
- Infectious Disease Care, 105 Raider Boulevard, Hillsborough, NJ 08844, USA
| | - Marc Lutgehetmann
- Institute of Microbiology, Virology and Hygiene, University Medical Hospital, Hamburg-Eppendorf, Hamburg, Germany
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Michael V Wiles
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
34
|
Abstract
An estimated 240 million people worldwide are chronically infected with the hepatitis B virus (HBV). Despite readily available vaccination, HBV infections remain highly prevalent. As established HBV infections constitute a strong risk factor for developing hepatocellular carcinoma their treatment is a major task for the health system. Unfortunately, HBV is not curable with today's medicine. Approximately 15 million HBV patients have developed a hepatitis delta (HDV) infection on top of their HBV infection. The patients superinfected with this satellite virus suffer from a more severe disease development. The knowledge of the viruses, their classifications, clinical implications, treatment options and efforts to increase the drug variety are compiled in this review. The current standard therapies include nucleosidic reverse transcriptase inhibitors and interferon. As the known treatments fail to cure HBV and HDV, targeted treatment is highly warranted. The focus of this review is set on the drugs currently under clinical investigation. Furthermore, strategies for the development of targeted treatment, and compounds with novel mode of action are described.
Collapse
|
35
|
Farci P, Anna Niro G. Current and Future Management of Chronic Hepatitis D. Gastroenterol Hepatol (N Y) 2018; 14:342-351. [PMID: 30166948 PMCID: PMC6111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hepatitis D virus (HDV) is a defective RNA virus that requires the hepatitis B surface antigen (HBsAg) of the hepatitis B virus (HBV) for its assembly, release, and transmission. HDV is highly pathogenic, causing the least common, but most severe, form of chronic viral hepatitis at all ages. Although significant advances have been made in the treatment of chronic viral hepatitis, targeting HDV remains a major challenge because of the unconventional nature of this virus and the severity of its disease. The virus contains a ribonucleoprotein complex formed by the RNA genome with a single structural protein, delta antigen (HDAg), which exists in 2 forms (small and large HDAg) and is coated by HBsAg. Farnesylation of the large HDAg is essential for anchoring the ribonucleoprotein to HBsAg for the assembly of virion particles. HDV enters into hepatocytes by using the HBV receptor, the sodium taurocholate cotransporting polypeptide (NTCP). Unlike other RNA viruses, HDV does not encode its own polymerase but exploits the host RNA polymerase II for replication. Thus, in contrast to HBV and hepatitis C virus, which possess virus-specific enzymes that can be targeted by specific inhibitors, the lack of a virus-specific polymerase makes HDV a particularly challenging therapeutic target. Treatment of hepatitis D remains unsatisfactory, and interferon-α has been the only approved drug over the past 30 years. This article examines the unconventional nature of HDV, the current management of chronic hepatitis D, and how new insights from the HDV life cycle have led to the development of 3 novel classes of drugs (NTCP receptor inhibitors, farnesyltransferase inhibitors, and nucleic acid polymers) that are currently under clinical evaluation.
Collapse
Affiliation(s)
- Patrizia Farci
- Dr Farci is chief of the Hepatic Pathogenesis Section of the Laboratory of Infectious Diseases at the National Institute of Allergy and Infectious Diseases in the National Institutes of Health in Bethesda, Maryland
- Dr Niro is a senior staff clinician in the Gastroenterology Unit at IRCCS Casa Sollievo Sofferenza Hospital in San Giovanni Rotondo, Foggia, Italy
| | - Grazia Anna Niro
- Dr Farci is chief of the Hepatic Pathogenesis Section of the Laboratory of Infectious Diseases at the National Institute of Allergy and Infectious Diseases in the National Institutes of Health in Bethesda, Maryland
- Dr Niro is a senior staff clinician in the Gastroenterology Unit at IRCCS Casa Sollievo Sofferenza Hospital in San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
36
|
Shrivastava-Ranjan P, Flint M, Bergeron É, McElroy AK, Chatterjee P, Albariño CG, Nichol ST, Spiropoulou CF. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing. mBio 2018; 9:e00660-18. [PMID: 29717011 PMCID: PMC5930306 DOI: 10.1128/mbio.00660-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD.IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune system are characteristic features of EVD, statins could be explored as part of EVD therapeutics.
Collapse
Affiliation(s)
- Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anita K McElroy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Yurdaydin C, Keskin O, Kalkan Ç, Karakaya F, Çalişkan A, Karatayli E, Karatayli S, Bozdayi AM, Koh C, Heller T, Idilman R, Glenn JS. Optimizing lonafarnib treatment for the management of chronic delta hepatitis: The LOWR HDV-1 study. Hepatology 2018; 67:1224-1236. [PMID: 29152762 DOI: 10.1002/hep.29658] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/19/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED In a proof-of-concept (POC) study, the oral prenylation inhibitor, lonafarnib (LNF), decreased hepatitis D virus (HDV) RNA during 4 weeks of treatment. Here, we explored optimal LNF regimens. Fifteen patients (five groups; 3 per group) completed dosing as follows: (1) LNF 200 mg twice-daily (BID; 12 weeks); (2) LNF 300 mg BID (12 weeks); (3) LNF 100 mg thrice-daily (5 weeks); (4) LNF 100 mg BID + pegylated interferon alfa (PEG-IFNα) 180 μg once-weekly (QW; 8 weeks); and (5) LNF 100 mg BID + ritonavir (RTV) 100 mg once-daily (QD; 8 weeks). Tolerability and efficacy were assessed. Higher LNF monotherapy doses had greater decreases in HDV viral load than achieved in the original POC study. However, this was associated with increased gastrointestinal adverse events. Addition of RTV 100 mg QD to a LNF 100 mg BID regimen yielded better antiviral responses than LNF 300 mg BID monotherapy and with less side effects. A similar improvement was observed with LNF 100 mg BID + PEG-IFNα 180 μg QW. Two of 6 patients who received 12 weeks of LNF experienced transient posttreatment alanine aminotransferase (ALT) increases resulting in HDV-RNA negativity and ALT normalization. CONCLUSION The cytochrome P450 3A4 inhibitor, RTV, allows a lower LNF dose to be used while achieving higher levels of postabsorption LNF, yielding better antiviral responses and tolerability. In addition, combining LNF with PEG-IFNα achieved more substantial and rapid HDV-RNA reduction, compared to historical responses with PEG-IFNα alone. Twelve weeks of LNF can result in posttreatment HDV-RNA negativity in some patients, which we speculate results from restoring favorable immune responses. These results support further development of LNF with RTV boosting and exploration of the combination of LNF with PEG-IFN. (Hepatology 2018;67:1224-1236).
Collapse
Affiliation(s)
- Cihan Yurdaydin
- Department of Gastroenterology, University of Ankara Medical School, Ankara, Turkey.,Hepatology Institute, University of Ankara, Ankara, Turkey
| | - Onur Keskin
- Department of Gastroenterology, University of Ankara Medical School, Ankara, Turkey
| | - Çağdaş Kalkan
- Department of Gastroenterology, University of Ankara Medical School, Ankara, Turkey
| | - Fatih Karakaya
- Department of Gastroenterology, University of Ankara Medical School, Ankara, Turkey
| | - Aysun Çalişkan
- Department of Gastroenterology, University of Ankara Medical School, Ankara, Turkey
| | | | | | | | - Christopher Koh
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Theo Heller
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Ramazan Idilman
- Department of Gastroenterology, University of Ankara Medical School, Ankara, Turkey.,Hepatology Institute, University of Ankara, Ankara, Turkey
| | - Jeffrey S Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA
| |
Collapse
|
38
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
39
|
Abstract
Hepatitis D virus (HDV) infection leads to the most severe form of chronic viral hepatitis and requires the attention of a liver specialist. In this review, I will recapitulate recent advances in the management of HDV, present background information on HDV infection as well as current chronic hepatitis D treatment, briefly examine the HDV life cycle and discuss new management strategies.
Collapse
Affiliation(s)
- Cihan Yurdaydin
- Department of Gastroenterology, University of Ankara Medical School, Ankara, Turkey.,Hepatology Institute, University of Ankara, Ankara, Turkey
| |
Collapse
|
40
|
Abstract
INTRODUCTION Treatment of chronic hepatitis D still relies on Interferon. To improve efficacy, new therapeutic strategies are in development which aim to deprive the Hepatitis D Virus (HDV) of functions of the Hepatitis B Virus and of the host required for its life-cycle. Areas covered: The therapeutic options are; 1) The inhibition of the farnesylation of the large HD-protein permissive of virion assembly with Lonafarnib, 2) The blocking of HBsAg entry into cells with Myrcludex B via the inhibition of the Sodium Taurocholate Cotransporting Receptor, to prevent the spreading of HDV to uninfected hepatocytes, 3) The reduction of subviral HBsAg particles by REP 2139, leading to diminished virion morphogenesis . Expert opinion: Lonafarnib and Myrcludex reduced serum HVD-RNA; neither diminished serum HBsAg. NAP REP-2139 diminished both HDV-RNA and HBsAg in serum; a full report is awaited. In combination with Peg-Interferon, these new drugs may provide additional efficacy.
Collapse
Affiliation(s)
- Mario Rizzetto
- a Department of Medicine , University of Torino , Torino , Italy
| |
Collapse
|
41
|
Lempp FA, Urban S. Hepatitis Delta Virus: Replication Strategy and Upcoming Therapeutic Options for a Neglected Human Pathogen. Viruses 2017; 9:E172. [PMID: 28677645 PMCID: PMC5537664 DOI: 10.3390/v9070172] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
The human Hepatitis Delta Virus (HDV) is unique among all viral pathogens. Encoding only one protein (Hepatitis Delta Antigen; HDAg) within its viroid-like self-complementary RNA, HDV constitutes the smallest known virus in the animal kingdom. To disseminate in its host, HDV depends on a helper virus, the human Hepatitis B virus (HBV), which provides the envelope proteins required for HDV assembly. HDV affects an estimated 15-20 million out of the 240 million chronic HBV-carriers and disperses unequally in disparate geographical regions of the world. The disease it causes (chronic Hepatitis D) presents as the most severe form of viral hepatitis, leading to accelerated progression of liver dysfunction including cirrhosis and hepatocellular carcinoma and a high mortality rate. The lack of approved drugs interfering with specific steps of HDV replication poses a high burden for gaining insights into the molecular biology of the virus and, consequently, the development of specific novel medications that resiliently control HDV replication or, in the best case, functionally cure HDV infection or HBV/HDV co-infection. This review summarizes our current knowledge of HBV molecular biology, presents an update on novel cell culture and animal models to study the virus and provides updates on the clinical development of the three developmental drugs Lonafarnib, REP2139-Ca and Myrcludex B.
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
Elazar M, Koh C, Glenn JS. Hepatitis delta infection - Current and new treatment options. Best Pract Res Clin Gastroenterol 2017; 31:321-327. [PMID: 28774414 DOI: 10.1016/j.bpg.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/13/2017] [Indexed: 01/31/2023]
Abstract
In humans, hepatitis D virus (HDV) infection only occurs in the presence of a concomitant hepatitis B virus (HBV) infection, and induces the most severe form of human viral hepatitis. Even though HDV is spread worldwide and is endemic in some regions, screening and treatment has been often neglected in part due to the lack of an effective therapy. Moreover, HDV prevalence rates are increasing in many countries driven by immigration from areas of high endemicity. Currently, no FDA-approved anti-HDV therapy is available, although interferon (IFN) alpha therapy has demonstrated benefit in a minority of patients. In this review, we present a current view of our understanding of the epidemiology, molecular virology and management of HDV infection. We additionally discuss new treatment approaches in development and describe the most promising results of recent and ongoing clinical trials of these new potential agents.
Collapse
Affiliation(s)
- Menashe Elazar
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA.
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, 10 Center Drive, CRC, 5-2740 Bethesda, MD 20892 USA.
| | - Jeffrey S Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Administration Medical Center, Palo Alto, CA, USA.
| |
Collapse
|
43
|
Elazar M, Glenn JS. Emerging concepts for the treatment of hepatitis delta. Curr Opin Virol 2017; 24:55-59. [PMID: 28475945 DOI: 10.1016/j.coviro.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/31/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV) causes the most severe form of human viral hepatitis and is associated with a higher risk of cirrhosis, liver decompensation and liver cancer. Interferon alpha is the only agent that has demonstrated efficacy to date, although response rates are low and it is associated with significant side effects. A better understanding of the relevant molecular virology has resulted in the identification of new candidate targets. Future therapeutic options are rapidly evolving as several new agents have entered clinical development, including the entry inhibitor myrcludex-B, the nucleic acid polymer REP2139-Ca inhibiting HBV surface antigen secretion, the farnesyltransferase inhibitor lonafarnib that targets virus assembly, and a better tolerated interferon-interferon lambda.
Collapse
Affiliation(s)
- Menashe Elazar
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey S Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA; Veterans Administration Medical Center, Palo Alto, California.
| |
Collapse
|
44
|
Wang J, Yao X, Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. MEDCHEMCOMM 2017; 8:841-854. [PMID: 30108801 PMCID: PMC6072492 DOI: 10.1039/c7md00030h] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Human protein farnesyltransferase (FTase) catalyzes the addition of a C15-farnesyl lipid group to the cysteine residue located in the COOH-terminal tetrapeptide motif of a variety of important substrate proteins, including well-known Ras protein superfamily. The farnesylation of Ras protein is required both for its normal physiological function, and for the transforming capacity of its oncogenic mutants. Over the last several decades, FTase inhibitors (FTIs) were developed to disrupt the farnesylation of oncogenic Ras as anti-cancer agents, and some of them have entered cancer clinical investigation. On the other hand, some substrates of FTase were demonstrated to be related with other human diseases, including Hutchinson-Gilford progeria syndrome, chronic hepatitis D, and cardiovascular diseases. In this review, we summarize the roles of FTase in malignant transformation, proliferation, apoptosis, angiogenesis, and metastasis of tumor cells, and the recently anticancer clinical research advances of FTIs. The therapeutic prospect of FTIs on several other human diseases is also discussed.
Collapse
Affiliation(s)
- Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| |
Collapse
|
45
|
Alfaiate D, Miaglia C, Zoulim F. Hépatite delta : aspects cliniques et perspectives thérapeutiques. Presse Med 2017; 46:271-281. [DOI: 10.1016/j.lpm.2016.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022] Open
|
46
|
Durand F, Francoz C. The future of liver transplantation for viral hepatitis. Liver Int 2017; 37 Suppl 1:130-135. [PMID: 28052618 DOI: 10.1111/liv.13310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 02/13/2023]
Abstract
In hepatitis C virus (HCV)-infected patients, transplantation can be justified by decompensated cirrhosis, hepatocellular carcinoma (HCC) or both. During the last decade, HCV infection accounted for about 30% of the indications for transplantation in Europe and North America. Direct antiviral agents (DAAs) are highly effective at curing HCV, even in patients with end-stage cirrhosis. In the future, the incidence of HCV-related decompensated cirrhosis will continue to decrease. The incidence of HCC will also decrease, but a large cohort of patients with cirrhosis will still be at risk of developing HCC even after HCV has been cured. They will continue to represent potential candidates for transplantation. Overall, HCV will account for a significantly lower proportion of indications for transplantation in the future. However, generalization of DAAs is unlikely to affect the total transplantation volume as the gap between donors and potential recipients markedly exceeds 30%. In addition, non-alcoholic steatohepatitis (NASH) is a rapidly growing indication for transplantation. The high barrier to resistance nucleos(t)ide analogues (NUCs) have been used for several years to treat hepatitis B virus (HBV) infection. Decompensated HBV cirrhosis now represents a very uncommon indication for transplantation. HCC remains the leading indication in HBV-infected patients awaiting transplantation. NUCs plus anti-HBs immune globulins or NUCs alone are highly effective at preventing post-transplant HBV recurrence. However, continuous prophylaxis is still needed as extrahepatic HBV particles persist with a potential for recurrence. Post-transplant immunosuppression facilitates recurrence. In the future, an important challenge will be to cure HBV by eliminating residual HBV particles.
Collapse
Affiliation(s)
- François Durand
- Hepatology and Liver Intensive Care, Hospital Beaujon, INSERM U1149, University Paris Diderot, Clichy, France
| | - Claire Francoz
- Hepatology and Liver Intensive Care, Hospital Beaujon, INSERM U1149, University Paris Diderot, Clichy, France
| |
Collapse
|
47
|
|
48
|
Wranke A, Wedemeyer H. Antiviral therapy of hepatitis delta virus infection - progress and challenges towards cure. Curr Opin Virol 2016; 20:112-118. [PMID: 27792905 DOI: 10.1016/j.coviro.2016.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis B-/D-virus co-infection causes the most severe form of viral hepatitis, frequently leading to liver cirrhosis, hepatic decompensation and consecutive liver-related mortality. Treatment options for hepatitis delta are limited. The only recommended therapy is pegylated interferon alpha which leads to virological responses in about 25-30% of patients. However, interferon therapy is associated with frequent side-effects and late HDV RNA relapses have been described during long-term follow even in patients who were HDV RNA negative 24 weeks after the end of therapy. Thus, alternative treatment options are urgently needed. Clinical studies have been performed exploring prenylation inhibitors, viral entry inhibitors and nucleic acid polymers to block particle release. We here summarize the progress and challenges towards cure of HDV infection.
Collapse
Affiliation(s)
- Anika Wranke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner Side HepNet Study-House, Hannover, Germany; HepNet Study-House, Hannover, Germany; Integrated Research and Treatment Center Transplantation, Hannover Medical School, Germany.
| |
Collapse
|
49
|
Palsuledesai CC, Ochocki JD, Kuhns MM, Wang YC, Warmka JK, Chernick DS, Wattenberg EV, Li L, Arriaga EA, Distefano MD. Metabolic Labeling with an Alkyne-modified Isoprenoid Analog Facilitates Imaging and Quantification of the Prenylome in Cells. ACS Chem Biol 2016; 11:2820-2828. [PMID: 27525511 PMCID: PMC5074897 DOI: 10.1021/acschembio.6b00421] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein prenylation is a post-translational modification that is responsible for membrane association and protein-protein interactions. The oncogenic protein Ras, which is prenylated, has been the subject of intense study in the past 20 years as a therapeutic target. Several studies have shown a correlation between neurodegenerative diseases including Alzheimer's disease and Parkinson's disease and protein prenylation. Here, a method for imaging and quantification of the prenylome using microscopy and flow cytometry is described. We show that metabolically incorporating an alkyne isoprenoid into mammalian cells, followed by a Cu(I)-catalyzed alkyne azide cycloaddition reaction to a fluorophore, allows for detection of prenylated proteins in several cell lines and that different cell types vary significantly in their levels of prenylated proteins. The addition of a prenyltransferase inhibitor or the precursors to the native isoprenoid substrates lowers the levels of labeled prenylated proteins. Finally, we demonstrate that there is a significantly higher (22%) level of prenylated proteins in a cellular model of compromised autophagy as compared to normal cells, supporting the hypothesis of a potential involvement of protein prenylation in abrogated autophagy. These results highlight the utility of total prenylome labeling for studies on the role of protein prenylation in various diseases including aging-related disorders.
Collapse
Affiliation(s)
- Charuta C. Palsuledesai
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joshua D. Ochocki
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michelle M. Kuhns
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yen-Chih Wang
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Janel K. Warmka
- Division
of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dustin S. Chernick
- Department
of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth V. Wattenberg
- Division
of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ling Li
- Department
of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Edgar A. Arriaga
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D. Distefano
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
50
|
Alfaiate D, Lucifora J, Abeywickrama-Samarakoon N, Michelet M, Testoni B, Cortay JC, Sureau C, Zoulim F, Dény P, Durantel D. HDV RNA replication is associated with HBV repression and interferon-stimulated genes induction in super-infected hepatocytes. Antiviral Res 2016; 136:19-31. [PMID: 27771387 DOI: 10.1016/j.antiviral.2016.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis D virus (HDV) super-infection of Hepatitis B virus (HBV)-infected patients is the most aggressive form of viral hepatitis. HDV infection is not susceptible to direct anti-HBV drugs, and only suboptimal antiviral responses are obtained with interferon (IFN)-alpha-based therapy. To get insights on HDV replication and interplay with HBV in physiologically relevant hepatocytes, differentiated HepaRG (dHepaRG) cells, previously infected or not with HBV, were infected with HDV, and viral markers were extensively analyzed. Innate and IFN responses to HDV were monitored by measuring pro-inflammatory and interferon-stimulated gene (ISG) expression. Both mono- and super-infected dHepaRG cells supported a strong HDV intracellular replication, which was accompanied by a strong secretion of infectious HDV virions only in the super-infection setting and despite the low number of co-infected cells. Upon HDV super-infection, HBV replication markers including HBeAg, total HBV-DNA and pregenomic RNA were significantly decreased, confirming the interference of HDV on HBV. Yet, no decrease of circular covalently closed HBV DNA (cccDNA) and HBsAg levels was evidenced. At the peak of HDV-RNA accumulation and onset of interference on HBV replication, a strong type-I IFN response was observed, with interferon stimulated genes, RSAD2 (Viperin) and IFI78 (MxA) being highly induced. We established a cellular model to characterize in more detail the direct interference of HBV and HDV, and the indirect interplay between the two viruses via innate immune responses. This model will be instrumental to assess molecular and immunological mechanisms of this viral interference.
Collapse
Affiliation(s)
- Dulce Alfaiate
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Julie Lucifora
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France.
| | - Natali Abeywickrama-Samarakoon
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Maud Michelet
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Jean-Claude Cortay
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Camille Sureau
- Institut National de Transfusion Sanguine, Laboratoire de Virologie Moléculaire, 75015 Paris, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France; Laboratoire d'excellence (LabEx), DEVweCAN, 69008 Lyon, France; Hospices Civils de Lyon (HCL), 69002 Lyon, France
| | - Paul Dény
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; Université Paris 13/SPC, UFR SMBH, Laboratoire de Bactériologie, Virologie - Hygiène, GHU Paris Seine Saint Denis, Assistance Publique - Hôpitaux de Paris, Bobigny, France.
| | - David Durantel
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France; Laboratoire d'excellence (LabEx), DEVweCAN, 69008 Lyon, France.
| |
Collapse
|