1
|
Wolff JH, Mikkelsen JG. Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25 years. J Biomed Sci 2022; 29:79. [PMID: 36209077 PMCID: PMC9548131 DOI: 10.1186/s12929-022-00865-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses are naturally endowed with the capacity to transfer genetic material between cells. Following early skepticism, engineered viruses have been used to transfer genetic information into thousands of patients, and genetic therapies are currently attracting large investments. Despite challenges and severe adverse effects along the way, optimized technologies and improved manufacturing processes are driving gene therapy toward clinical translation. Fueled by the outbreak of AIDS in the 1980s and the accompanying focus on human immunodeficiency virus (HIV), lentiviral vectors derived from HIV have grown to become one of the most successful and widely used vector technologies. In 2022, this vector technology has been around for more than 25 years. Here, we celebrate the anniversary by portraying the vector system and its intriguing properties. We dive into the technology itself and recapitulate the use of lentiviral vectors for ex vivo gene transfer to hematopoietic stem cells and for production of CAR T-cells. Furthermore, we describe the adaptation of lentiviral vectors for in vivo gene delivery and cover the important contribution of lentiviral vectors to basic molecular research including their role as carriers of CRISPR genome editing technologies. Last, we dwell on the emerging capacity of lentiviral particles to package and transfer foreign proteins.
Collapse
Affiliation(s)
- Jonas Holst Wolff
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
2
|
Müller TG, Zila V, Müller B, Kräusslich HG. Nuclear Capsid Uncoating and Reverse Transcription of HIV-1. Annu Rev Virol 2022; 9:261-284. [PMID: 35704745 DOI: 10.1146/annurev-virology-020922-110929] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After cell entry, human immunodeficiency virus type 1 (HIV-1) replication involves reverse transcription of the RNA genome, nuclear import of the subviral complex without nuclear envelope breakdown, and integration of the viral complementary DNA into the host genome. Here, we discuss recent evidence indicating that completion of reverse transcription and viral genome uncoating occur in the nucleus rather than in the cytoplasm, as previously thought, and suggest a testable model for nuclear import and uncoating. Multiple recent studies indicated that the cone-shaped capsid, which encases the genome and replication proteins, not only serves as a reaction container for reverse transcription and as a shield from innate immune sensors but also may constitute the elusive HIV-1 nuclear import factor. Rupture of the capsid may be triggered in the nucleus by completion of reverse transcription, by yet-unknown nuclear factors, or by physical damage, and it appears to occur in close temporal and spatial association with the integration process. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Thorsten G Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Vojtech Zila
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany;
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; .,German Center for Infection Research, Heidelberg, Germany
| |
Collapse
|
3
|
Bedwell GJ, Engelman AN. Factors that mold the nuclear landscape of HIV-1 integration. Nucleic Acids Res 2021; 49:621-635. [PMID: 33337475 PMCID: PMC7826272 DOI: 10.1093/nar/gkaa1207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Balasubramaniam M, Zhou J, Addai A, Martinez P, Pandhare J, Aiken C, Dash C. PF74 Inhibits HIV-1 Integration by Altering the Composition of the Preintegration Complex. J Virol 2019; 93:e01741-18. [PMID: 30567984 PMCID: PMC6401427 DOI: 10.1128/jvi.01741-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/06/2018] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 capsid protein (CA) facilitates reverse transcription and nuclear entry of the virus. However, CA's role in post-nuclear entry steps remains speculative. We describe a direct link between CA and integration by employing the capsid inhibitor PF74 as a probe coupled with the biochemical analysis of HIV-1 preintegration complexes (PICs) isolated from acutely infected cells. At a low micromolar concentration, PF74 potently inhibited HIV-1 infection without affecting reverse transcription. Surprisingly, PF74 markedly reduced proviral integration owing to inhibition of nuclear entry and/or integration. However, a 2-fold reduction in nuclear entry by PF74 did not quantitatively correlate with the level of antiviral activity. Titration of PF74 against the integrase inhibitor raltegravir showed an additive antiviral effect that is dependent on a block at the post-nuclear entry step. PF74's inhibitory effect was not due to the formation of defective viral DNA ends or a delay in integration, suggesting that the compound inhibits PIC-associated integration activity. Unexpectedly, PICs recovered from cells infected in the presence of PF74 exhibited elevated integration activity. PF74's effect on PIC activity is CA specific since the compound did not increase the integration activity of PICs of a PF74-resistant HIV-1 CA mutant. Sucrose gradient-based fractionation studies revealed that PICs assembled in the presence of PF74 contained lower levels of CA, suggesting a negative association between CA and PIC-associated integration activity. Finally, the addition of a CA-specific antibody or PF74 inhibited PIC-associated integration activity. Collectively, our results demonstrate that PF74's targeting of PIC-associated CA results in impaired HIV-1 integration.IMPORTANCE Antiretroviral therapy (ART) that uses various combinations of small molecule inhibitors has been highly effective in controlling HIV. However, the drugs used in the ART regimen are expensive, cause side effects, and face viral resistance. The HIV-1 CA plays critical roles in the virus life cycle and is an attractive therapeutic target. While currently there is no CA-based therapy, highly potent CA-specific inhibitors are being developed as a new class of antivirals. Efforts to develop a CA-targeted therapy can be aided through a clear understanding of the role of CA in HIV-1 infection. CA is well established to coordinate reverse transcription and nuclear entry of the virus. However, the role of CA in post-nuclear entry steps of HIV-1 infection is poorly understood. We show that a CA-specific drug PF74 inhibits HIV-1 integration revealing a novel role of this multifunctional viral protein in a post-nuclear entry step of HIV-1 infection.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jing Zhou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amma Addai
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Phillip Martinez
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Achuthan V, Perreira JM, Sowd GA, Puray-Chavez M, McDougall WM, Paulucci-Holthauzen A, Wu X, Fadel HJ, Poeschla EM, Multani AS, Hughes SH, Sarafianos SG, Brass AL, Engelman AN. Capsid-CPSF6 Interaction Licenses Nuclear HIV-1 Trafficking to Sites of Viral DNA Integration. Cell Host Microbe 2018; 24:392-404.e8. [PMID: 30173955 PMCID: PMC6368089 DOI: 10.1016/j.chom.2018.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/22/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
HIV-1 integration into the host genome favors actively transcribed genes. Prior work indicated that the nuclear periphery provides the architectural basis for integration site selection, with viral capsid-binding host cofactor CPSF6 and viral integrase-binding cofactor LEDGF/p75 contributing to selection of individual sites. Here, by investigating the early phase of infection, we determine that HIV-1 traffics throughout the nucleus for integration. CPSF6-capsid interactions allow the virus to bypass peripheral heterochromatin and penetrate the nuclear structure for integration. Loss of interaction with CPSF6 dramatically alters virus localization toward the nuclear periphery and integration into transcriptionally repressed lamina-associated heterochromatin, while loss of LEDGF/p75 does not significantly affect intranuclear HIV-1 localization. Thus, CPSF6 serves as a master regulator of HIV-1 intranuclear localization by trafficking viral preintegration complexes away from heterochromatin at the periphery toward gene-dense chromosomal regions within the nuclear interior.
Collapse
Affiliation(s)
- Vasudevan Achuthan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jill M Perreira
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gregory A Sowd
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - William M McDougall
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - Xiaolin Wu
- Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Hind J Fadel
- Division of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric M Poeschla
- Division of Infectious Diseases, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Stefan G Sarafianos
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Abraham L Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA; Gastroenterology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Bin Hamid F, Kim J, Shin CG. Cellular and viral determinants of retroviral nuclear entry. Can J Microbiol 2015; 62:1-15. [PMID: 26553381 DOI: 10.1139/cjm-2015-0350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviruses must integrate their cDNA into the host genome to generate proviruses. Viral DNA-protein complexes interact with cellular proteins and produce pre-integration complexes, which carry the viral genome and cross the nuclear pore channel to enter the nucleus and integrate viral DNA into host chromosomal DNA. If the reverse transcripts fail to integrate, linear or circular DNA species such as 1- and 2-long terminal repeats are generated. Such complexes encounter numerous cellular proteins in the cytoplasm, which restrict viral infection and protect the nucleus. To overcome host cell defenses, the pathogens have evolved several evasion strategies. Viral proteins often contain nuclear localization signals, allowing entry into the nucleus. Among more than 1000 proteins identified as required for HIV infection by RNA interference screening, karyopherins, cleavage and polyadenylation specific factor 6, and nucleoporins have been predominantly studied. This review discusses current opinions about the synergistic relationship between the viral and cellular factors involved in nuclear import, with focus on the unveiled mysteries of the host-pathogen interaction, and highlights novel approaches to pinpoint therapeutic targets.
Collapse
Affiliation(s)
- Faysal Bin Hamid
- Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea.,Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea
| | - Jinsun Kim
- Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea.,Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea.,Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea
| |
Collapse
|
7
|
Meehan AM, Saenz DT, Guevera R, Morrison JH, Peretz M, Fadel HJ, Hamada M, van Deursen J, Poeschla EM. A cyclophilin homology domain-independent role for Nup358 in HIV-1 infection. PLoS Pathog 2014; 10:e1003969. [PMID: 24586169 PMCID: PMC3930637 DOI: 10.1371/journal.ppat.1003969] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 01/15/2014] [Indexed: 12/05/2022] Open
Abstract
The large nucleoporin Nup358/RanBP2 forms eight filaments that project from the nuclear pore into the cytoplasm where they function as docking platforms for nucleocytoplasmic transport receptors. RNAi screens have implicated Nup358 in the HIV-1 life cycle. The 164 C-terminal amino acids of this 3,224 amino acid protein are a cyclophilin homology domain (Nup358Cyp), which has potential to bind the HIV-1 capsid and regulate viral progress to integration. Here we examined the virological role of Nup358 in conditional knockout mouse cells and in RNAi-depleted human CD4⁺ T cells. Cre-mediated gene knockout was toxic and diminished HIV-1 infectivity. However, cellular health and HIV-1 susceptibility were coordinately preserved if, prior to gene inactivation, a transposon was used to express all of Nup358 or only the N-terminal 1340 amino acids that contain three FG repeats and a Ran-binding domain. HIV-1, but not N74D capsid-mutant HIV-1, was markedly sensitive to TNPO3 depletion, but they infected 1-1340 segment-complemented Nup358 knockout cells equivalently. Human and mouse CypA both rescued HIV-1 in CypA gene⁻/⁻ Jurkat cells and TRIM-Nup358Cyp fusions derived from each species were equally antiviral; each also inhibited both WT and N74D virus. In the human CD4⁺T cell line SupT1, abrupt Nup358 depletion reduced viral replication but stable Nup358-depleted cells replicated HIV-1 normally. Thus, human CD4⁺ T cells can accommodate to loss of Nup358 and preserve HIV-1 susceptibility. Experiments with cylosporine, viruses with capsids that do not bind cyclophilins, and growth arrest did not uncover viral dependency on the C-terminal domains of Nup358. Our data reinforce the virological importance of TNPO3 and show that Nup358 supports nuclear transport functions important for cellular homeostasis and for HIV-1 nuclear import. However, the results do not suggest direct roles for the Nup358 cyclophilin or SUMO E3 ligase domains in engaging the HIV-1 capsid prior to nuclear translocation.
Collapse
Affiliation(s)
- Anne M. Meehan
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Dyana T. Saenz
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Rebekah Guevera
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - James H. Morrison
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Mary Peretz
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Hind J. Fadel
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Masakazu Hamada
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Jan van Deursen
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Eric M. Poeschla
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| |
Collapse
|
8
|
Haffar O, Bukrinsky M. Nuclear translocation as a novel target for anti-HIV drugs. Expert Rev Anti Infect Ther 2014; 3:41-50. [PMID: 15757456 DOI: 10.1586/14787210.3.1.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During recent years, remarkable progress has been achieved in the treatment of patients infected with HIV. This progress involves not only the improvement of previously known drugs but also the introduction of new classes of anti-HIV agents. Currently, drugs targeting virus entry, reverse transcription, integration and maturation are either in clinical use or in the late stages of clinical development. Nonetheless, the high mutation rate of the virus and toxicity of the drugs, which become problematic during prolonged treatment regimens characteristic of anti-HIV therapy, drive the necessity to produce new drugs that will allow physicians to keep the virus at bay in patients on lifelong anti-HIV therapy. Ideally, such drugs would target a new step in the HIV life cycle, thus avoiding crossresistance with older compounds. One such new target for anti-HIV therapy is nuclear translocation--a process critical for HIV replication. In this article, the authors will review recent literature on the mechanisms of HIV nuclear import and will describe compounds that inhibit this step of HIV replication.
Collapse
Affiliation(s)
- Omar Haffar
- International Therapeutics, Inc., 600 Broadway Medical Center, Suite 510, Seattle, WA 98122, USA.
| | | |
Collapse
|
9
|
Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 2013; 5:2483-511. [PMID: 24103892 PMCID: PMC3814599 DOI: 10.3390/v5102483] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 02/07/2023] Open
Abstract
Retroviruses integrate their reverse transcribed genomes into host cell chromosomes as an obligate step in virus replication. The nuclear envelope separates the chromosomes from the cell cytoplasm during interphase, and different retroviral groups deal with this physical barrier in different ways. Gammaretroviruses are dependent on the passage of target cells through mitosis, where they are believed to access chromosomes when the nuclear envelope dissolves for cell division. Contrastingly, lentiviruses such as HIV-1 infect non-dividing cells, and are believed to enter the nucleus by passing through the nuclear pore complex. While numerous virally encoded elements have been proposed to be involved in HIV-1 nuclear import, recent evidence has highlighted the importance of HIV-1 capsid. Furthermore, capsid was found to be responsible for the viral requirement of various nuclear transport proteins, including transportin 3 and nucleoporins NUP153 and NUP358, during infection. In this review, we describe our current understanding of retroviral nuclear import, with emphasis on recent developments on the role of the HIV-1 capsid protein.
Collapse
|
10
|
Kono K, Takeda E, Tsutsui H, Kuroishi A, Hulme AE, Hope TJ, Nakayama EE, Shioda T. Slower uncoating is associated with impaired replicative capability of simian-tropic HIV-1. PLoS One 2013; 8:e72531. [PMID: 23967315 PMCID: PMC3742594 DOI: 10.1371/journal.pone.0072531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) productively infects only humans and chimpanzees, but not Old World monkeys, such as rhesus and cynomolgus (CM) monkeys. To establish a monkey model of HIV-1/AIDS, several HIV-1 derivatives have been constructed. We previously generated a simian-tropic HIV-1 that replicates efficiently in CM cells. This virus encodes a capsid protein (CA) with SIVmac239-derived loops between α-helices 4 and 5 (L4/5) and between α-helices 6 and 7 (L6/7), along with the entire vif from SIVmac239 (NL-4/5S6/7SvifS). These SIVmac239-derived sequences were expected to protect the virus from HIV-1 restriction factors in monkey cells. However, the replicative capability of NL-4/5S6/7SvifS in human cells was severely impaired. By long-term cultivation of human CEM-SS cells infected with NL-4/5S6/7SvifS, we succeeded in partially rescuing the impaired replicative capability of the virus in human cells. This adapted virus encoded a G-to-E substitution at the 116th position of the CA (NL-4/5SG116E6/7SvifS). In the work described here, we explored the mechanism by which the replicative capability of NL-4/5S6/7SvifS was impaired in human cells. Quantitative analysis (by real-time PCR) of viral DNA synthesis from infected cells revealed that NL-4/5S6/7SvifS had a major defect in nuclear entry. Mutations in CA are known to affect viral core stability and result in deleterious effects in HIV-1 infection; therefore, we measured the kinetics of uncoating of these viruses. The uncoating of NL-4/5S6/7SvifS was significantly slower than that of wild type HIV-1 (WT), whereas the uncoating of NL-4/5SG116E6/7SvifS was similar to that of WT. Our results suggested that the lower replicative capability of NL-4/5S6/7SvifS in human cells was, at least in part, due to the slower uncoating of this virus.
Collapse
Affiliation(s)
- Ken Kono
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Eri Takeda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiromi Tsutsui
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ayumu Kuroishi
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Amy E. Hulme
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
11
|
Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle. Retrovirology 2013; 10:87. [PMID: 23938039 PMCID: PMC3766001 DOI: 10.1186/1742-4690-10-87] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/02/2013] [Indexed: 01/06/2023] Open
Abstract
Background HIV-1 DNA is found both integrated in the host chromosome and unintegrated in various forms: linear (DNAL) or circular (1-LTRc, 2-LTRc or products of auto-integration). Here, based on pre-established strategies, we extended and characterized in terms of sensitivity two methodologies for quantifying 1-LTRc and DNAL, respectively, the latter being able to discriminate between unprocessed or 3′-processed DNA. Results Quantifying different types of viral DNA genome individually provides new information about the dynamics of all viral DNA forms and their interplay. For DNAL, we found that the 3′-processing reaction was efficient during the early stage of the replication cycle. Moreover, strand-transfer inhibitors (Dolutegravir, Elvitegravir, Raltegravir) affected 3′-processing differently. The comparisons of 2-LTRc accumulation mediated by either strand-transfer inhibitors or catalytic mutation of integrase indicate that 3′-processing efficiency did not influence the total 2-LTRc accumulation although the nature of the LTR-LTR junction was qualitatively affected. Finally, a significant proportion of 1-LTRc was generated concomitantly with reverse transcription, although most of the 1-LTRc were produced in the nucleus. Conclusions We describe the fate of viral DNA forms during HIV-1 infection. Our study reveals the interplay between various forms of the viral DNA genome, the distribution of which can be affected by mutations and by inhibitors of HIV-1 viral proteins. In the latter case, the quantification of 3′-processed DNA in infected cells can be informative about the mechanisms of future integrase inhibitors directly in the cell context.
Collapse
|
12
|
Activity of the HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068, against CD4-independent viruses and HIV-1 envelopes resistant to other entry inhibitors. Antimicrob Agents Chemother 2013; 57:4172-80. [PMID: 23774428 DOI: 10.1128/aac.00513-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4(-) cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors.
Collapse
|
13
|
The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis. Virology 2013; 441:1-11. [PMID: 23561461 DOI: 10.1016/j.virol.2013.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/23/2022]
Abstract
Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient "central DNA flap" in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors.
Collapse
|
14
|
Schweitzer CJ, Jagadish T, Haverland N, Ciborowski P, Belshan M. Proteomic analysis of early HIV-1 nucleoprotein complexes. J Proteome Res 2013; 12:559-72. [PMID: 23282062 PMCID: PMC3564510 DOI: 10.1021/pr300869h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
After entry into the cell, the early steps of the human immunodeficiency virus type 1 (HIV-1) replication cycle are mediated by two functionally distinct nucleoprotein complexes, the reverse transcription complex (RTC) and preintegration complex (PIC). These two unique viral complexes are responsible for the conversion of the single-stranded RNA genome into double-stranded DNA, transport of the DNA into the nucleus, and integration of the viral DNA into the host cell chromosome. Prior biochemical analyses suggest that these complexes are large and contain multiple undiscovered host cell factors. In this study, functional HIV-1 RTCs and PICs were partially purified by velocity gradient centrifugation and fractionation, concentrated, trypsin digested, and analyzed by LC-MS/MS. A total of seven parallel infected and control biological replicates were completed. Database searches were performed with Proteome Discoverer and a comparison of the HIV-1 samples to parallel uninfected control samples was used to identify unique cellular factors. The analysis produced a total data set of 11055 proteins. Several previously characterized HIV-1 factors were identified, including XRCC6, TFRC, and HSP70. The presence of XRCC6 was confirmed in infected fractions and shown to be associated with HIV-1 DNA by immunoprecipitation-PCR experiments. Overall, the analysis identified 94 proteins unique in the infected fractions and 121 proteins unique to the control fractions with ≥ 2 protein assignments. An additional 54 and 52 were classified as enriched in the infected and control samples, respectively, based on a 3-fold difference in total Proteome Discoverer probability score. The differential expression of several candidate proteins was validated by Western blot analysis. This study contributes additional novel candidate proteins to the growing published bioinformatic data sets of proteins that contribute to HIV-1 replication.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Cell Line
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Centrifugation, Density Gradient
- Chromatography, Liquid
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Profiling
- HIV-1/genetics
- HIV-1/metabolism
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Host-Pathogen Interactions
- Humans
- Ku Autoantigen
- Lymphocytes/metabolism
- Lymphocytes/virology
- Nucleoproteins/genetics
- Nucleoproteins/metabolism
- Protein Binding
- Proteome/genetics
- Proteome/metabolism
- Receptors, Transferrin/genetics
- Receptors, Transferrin/metabolism
- Reverse Transcription
- Tandem Mass Spectrometry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Integration
Collapse
Affiliation(s)
| | - Teena Jagadish
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Nicole Haverland
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE
| |
Collapse
|
15
|
Kobiler O, Drayman N, Butin-Israeli V, Oppenheim A. Virus strategies for passing the nuclear envelope barrier. Nucleus 2012; 3:526-39. [PMID: 22929056 PMCID: PMC3515536 DOI: 10.4161/nucl.21979] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses that replicate in the nucleus need to pass the nuclear envelope barrier during infection. Research in recent years indicates that the nuclear envelope is a major hurdle for many viruses. This review describes strategies to overcome this obstacle developed by seven virus families: herpesviridae, adenoviridae, orthomyxoviridae, lentiviruses (which are part of retroviridae), Hepadnaviridae, parvoviridae and polyomaviridae. Most viruses use the canonical nuclear pore complex (NPC) in order to get their genome into the nucleus. Viral capsids that are larger than the nuclear pore disassemble before or during passing through the NPC, thus allowing genome nuclear entry. Surprisingly, increasing evidence suggest that parvoviruses and polyomaviruses may bypass the nuclear pore by trafficking directly through the nuclear membrane. Additional studies are required for better understanding these processes. Since nuclear entry emerges as the limiting step in infection for many viruses, it may serve as an ideal target for antiviral drug development.
Collapse
Affiliation(s)
- Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
16
|
Iglesias C, Ringeard M, Di Nunzio F, Fernandez J, Gaudin R, Souque P, Charneau P, Arhel N. Residual HIV-1 DNA Flap-independent nuclear import of cPPT/CTS double mutant viruses does not support spreading infection. Retrovirology 2011; 8:92. [PMID: 22074589 PMCID: PMC3227589 DOI: 10.1186/1742-4690-8-92] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 11/10/2011] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED BACKGROUND The human immunodeficiency virus type 1 (HIV-1) central DNA Flap is generated during reverse transcription as a result of (+) strand initiation at the central polypurine tract (cPPT) and termination after a ca. 100 bp strand displacement at the central termination sequence (CTS). The central DNA Flap is a determinant of HIV-1 nuclear import, however, neither cPPT nor CTS mutations entirely abolish nuclear import and infection. Therefore, to determine whether or not the DNA Flap is essential for HIV-1 nuclear import, we generated double mutant (DM) viruses, combining cPPT and CTS mutations to abolish DNA Flap formation. RESULTS The combination of cPPT and CTS mutations reduced the proportion of viruses forming the central DNA Flap at the end of reverse transcription and further decreased virus infectivity in one-cycle titration assays. The most affected DM viruses were unable to establish a spreading infection in the highly permissive MT4 cell line, nor in human primary peripheral blood mononuclear cells (PBMCs), indicating that the DNA Flap is required for virus replication. Surprisingly, we found that DM viruses still maintained residual nuclear import levels, amounting to 5-15% of wild-type virus, as assessed by viral DNA circle quantification. Alu-PCR quantification of integrated viral genome also indicated 5-10% residual integration levels compared to wild-type virus. CONCLUSION This work establishes that the central DNA Flap is required for HIV-1 spreading infection but points to a residual DNA Flap independent nuclear import, whose functional significance remains unclear since it is not sufficient to support viral replication.
Collapse
Affiliation(s)
- Candela Iglesias
- Molecular Virology and Vaccinology Unit, Department of Virology, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Identification of critical motifs within HIV-1 integrase required for importin α3 interaction and viral cDNA nuclear import. J Mol Biol 2011; 410:847-62. [PMID: 21763491 DOI: 10.1016/j.jmb.2011.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/29/2022]
Abstract
The viral cDNA nuclear import is an important requirement for human immunodeficiency virus type 1 (HIV-1) replication in dividing and nondividing cells. Our recent study identified a specific interaction of importin α3 (Impα3) with HIV-1 integrase (IN) and its involvement in viral cDNA nuclear import. In this study, we have performed a more detailed investigation on the molecular mechanism of how HIV-1 IN interacts with Impα3. Our results revealed a reduced interaction between the two IN mutants INKK215,9AA (IN215,9) and INRK263,4AA (IN263,4) with Impα3, while an IN double mutant, IN215,9/263,4, was severely impaired for its Impα3-binding ability, even though it was still found interacting with other cofactors, IN interactor I and Transportin3. Immunostaining and fractionation analysis have shown that YFP-IN215,9/263,4 failed to localize in the nucleus of transfected cells. Also, we found that both major and minor nuclear localization signal binding grooves of Impα3 are involved in interaction with IN. All of these results suggest a cargo protein-import receptor type of interaction. Finally, the effect of IN215,9/263,4 mutations on HIV-1 replication was evaluated, and real-time quantitative PCR analysis showed that, while mutant virus (v215,9/263,4) had a slightly lowered total viral DNA, the 2-long-terminal-repeat DNA, a marker for nuclear import, was greatly reduced during v215,9/263,4 infection in both dividing and nondividing cells. Also, by cell fractionation assay, we found that a significant proportion of viral cDNA was still retained in cytoplasmic fraction of v215,9/263,4-infected cells. Overall, our study provides strong evidence that (211)KELQKQITK and (262)RRKAK regions of IN C-terminal domain are required for Impα3 interaction and HIV-1 cDNA nuclear import.
Collapse
|
18
|
The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J Virol 2011; 85:7818-27. [PMID: 21593146 DOI: 10.1128/jvi.00325-11] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lentiviruses likely infect nondividing cells by commandeering host nuclear transport factors to facilitate the passage of their preintegration complexes (PICs) through nuclear pore complexes (NPCs) within nuclear envelopes. Genome-wide small interfering RNA screens previously identified karyopherin β transportin-3 (TNPO3) and NPC component nucleoporin 153 (NUP153) as being important for infection by human immunodeficiency virus type 1 (HIV-1). The knockdown of either protein significantly inhibited HIV-1 infectivity, while infection by the gammaretrovirus Moloney murine leukemia virus (MLV) was unaffected. Here, we establish that primate lentiviruses are particularly sensitive to NUP153 knockdown and investigate HIV-1-encoded elements that contribute to this dependency. Mutants lacking functional Vpr or the central DNA flap remained sensitive to NUP153 depletion, while MLV/HIV-1 chimera viruses carrying MLV matrix, capsid, or integrase became less sensitive when the latter two elements were substituted. Two capsid missense mutant viruses, N74D and P90A, were largely insensitive to NUP153 depletion, as was wild-type HIV-1 when cyclophilin A was depleted simultaneously or when infection was conducted in the presence of cyclosporine A. The codepletion of NUP153 and TNPO3 yielded synergistic effects that outweighed those calculated based on individual knockdowns, indicating potential interdependent roles for these factors during HIV-1 infection. Quantitative PCR revealed normal levels of late reverse transcripts, a moderate reduction of 2-long terminal repeat (2-LTR) circles, and a relatively large reduction in integrated proviruses upon NUP153 knockdown. These results suggest that capsid, likely by the qualities of its uncoating, determines whether HIV-1 requires cellular NUP153 for PIC nuclear import.
Collapse
|
19
|
The inside out of lentiviral vectors. Viruses 2011; 3:132-159. [PMID: 22049307 PMCID: PMC3206600 DOI: 10.3390/v3020132] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/25/2011] [Accepted: 02/08/2011] [Indexed: 11/30/2022] Open
Abstract
Lentiviruses induce a wide variety of pathologies in different animal species. A common feature of the replicative cycle of these viruses is their ability to target non-dividing cells, a property that constitutes an extremely attractive asset in gene therapy. In this review, we shall describe the main basic aspects of the virology of lentiviruses that were exploited to obtain efficient gene transfer vectors. In addition, we shall discuss some of the hurdles that oppose the efficient genetic modification mediated by lentiviral vectors and the strategies that are being developed to circumvent them.
Collapse
|
20
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
21
|
The HIV-1 central polypurine tract functions as a second line of defense against APOBEC3G/F. J Virol 2010; 84:11981-93. [PMID: 20844042 DOI: 10.1128/jvi.00723-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
HIV-1 and certain other retroviruses initiate plus-strand synthesis in the center of the genome as well as at the standard retroviral 3' polypurine tract. This peculiarity of reverse transcription results in a central DNA "flap" structure that has been of controversial functional significance. We mutated both HIV-1 flap-generating elements, the central polypurine tract (cPPT) and the central termination sequence (CTS). To avoid an ambiguity of previous studies, we did so without affecting integrase coding. DNA flap formation was disrupted but single-cycle infection was unaffected in all target cells tested, regardless of cell cycle status. Spreading HIV-1 infection was also normal in most T cell lines, and flap mutant viruses replicated equivalently to the wild type in nondividing cells, including macrophages. However, spreading infection of flap mutant HIV-1 was impaired in non-vif-permissive cells (HuT78, H9, and primary human peripheral blood mononuclear cells [PBMCs]), suggesting APOBEC3G (A3G) restriction. Single-cycle infections confirmed that vif-intact flap mutant HIV-1 is restricted by producer cell A3G/F. Combining the Δvif and cPPT-CTS mutations increased A3G restriction synergistically. Moreover, RNA interference knockdown of A3G in HuT78 cells released the block to flap mutant HIV-1 replication. Flap mutant HIV-1 also accrued markedly increased A3G-mediated G→A hypermutation compared to that of wild-type HIV-1 (a full log(10) in the 0.36 kb downstream of the mutant cPPT). We suggest that the triple-stranded DNA structure, the flap, is not the consequential outcome. The salient functional feature is central plus-strand initiation, which functions as a second line of defense against single-stranded DNA editing by A3 proteins that survive producer cell degradation by Vif.
Collapse
|
22
|
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci 2010; 67:2717-47. [PMID: 20358252 PMCID: PMC11115783 DOI: 10.1007/s00018-010-0346-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/22/2010] [Accepted: 03/08/2010] [Indexed: 12/22/2022]
Abstract
Reverse transcription is a critical step in the life cycle of all retroviruses and related retrotransposons. This complex process is performed exclusively by the retroviral reverse transcriptase (RT) enzyme that converts the viral single-stranded RNA into integration-competent double-stranded DNA. Although all RTs have similar catalytic activities, they significantly differ in several aspects of their catalytic properties, their structures and subunit composition. The RT of human immunodeficiency virus type-1 (HIV-1), the virus causing acquired immunodeficiency syndrome (AIDS), is a prime target for the development of antiretroviral drug therapy of HIV-1/AIDS carriers. Therefore, despite the fundamental contributions of other RTs to the understanding of RTs and retrovirology, most recent RT studies are related to HIV-1 RT. In this review we summarize the basic properties of different RTs. These include, among other topics, their structures, enzymatic activities, interactions with both viral and host proteins, RT inhibition and resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
23
|
Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, Julias JG, Vandegraaff N, Baumann JG, Wang R, Yuen W, Takemura T, Shelton K, Taniuchi I, Li Y, Sodroski J, Littman DR, Coffin JM, Hughes SH, Unutmaz D, Engelman A, KewalRamani VN. Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 2010; 7:221-33. [PMID: 20227665 DOI: 10.1016/j.chom.2010.02.007] [Citation(s) in RCA: 357] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 10/29/2009] [Accepted: 02/15/2010] [Indexed: 01/21/2023]
Abstract
HIV-1 replication requires transport of nascent viral DNA and associated virion proteins, the retroviral preintegration complex (PIC), into the nucleus. Too large for passive diffusion through nuclear pore complexes (NPCs), PICs use cellular nuclear transport mechanisms and nucleoporins (NUPs), the NPC components that permit selective nuclear-cytoplasmic exchange, but the details remain unclear. Here we identify a fragment of the cleavage and polyadenylation factor 6, CPSF6, as a potent inhibitor of HIV-1 infection. When enriched in the cytoplasm, CPSF6 prevents HIV-1 nuclear entry by targeting the viral capsid (CA). HIV-1 harboring the N74D mutation in CA fails to interact with CPSF6 and evades the nuclear import restriction. Interestingly, whereas wild-type HIV-1 requires NUP153, N74D HIV-1 mimics feline immunodeficiency virus nuclear import requirements and is more sensitive to NUP155 depletion. These findings reveal a remarkable flexibility in HIV-1 nuclear transport and highlight a single residue in CA as essential in regulating interactions with NUPs.
Collapse
Affiliation(s)
- KyeongEun Lee
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ayinde D, Maudet C, Transy C, Margottin-Goguet F. Limelight on two HIV/SIV accessory proteins in macrophage infection: is Vpx overshadowing Vpr? Retrovirology 2010; 7:35. [PMID: 20380700 PMCID: PMC2867959 DOI: 10.1186/1742-4690-7-35] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/09/2010] [Indexed: 01/16/2023] Open
Abstract
HIV viruses encode a set of accessory proteins, which are important determinants of virulence due to their ability to manipulate the host cell physiology for the benefit of the virus. Although these viral proteins are dispensable for viral growth in many in vitro cell culture systems, they influence the efficiency of viral replication in certain cell types. Macrophages are early targets of HIV infection which play a major role in viral dissemination and persistence in the organism. This review focuses on two HIV accessory proteins whose functions might be more specifically related to macrophage infection: Vpr, which is conserved across primate lentiviruses including HIV-1 and HIV-2, and Vpx, a protein genetically related to Vpr, which is unique to HIV-2 and a subset of simian lentiviruses. Recent studies suggest that both Vpr and Vpx exploit the host ubiquitination machinery in order to inactivate specific cellular proteins. We review here why it remains difficult to decipher the role of Vpr in macrophage infection by HIV-1 and how recent data underscore the ability of Vpx to antagonize a restriction factor which counteracts synthesis of viral DNA in monocytic cells.
Collapse
Affiliation(s)
- Diana Ayinde
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | |
Collapse
|
25
|
Abstract
HIV-1 possesses an exquisite ability to infect cells independently from their cycling status by undergoing an active phase of nuclear import through the nuclear pore. This property has been ascribed to the presence of karyophilic elements present in viral nucleoprotein complexes, such as the matrix protein (MA); Vpr; the integrase (IN); and a cis-acting structure present in the newly synthesized DNA, the DNA flap. However, their role in nuclear import remains controversial at best. In the present study, we carried out a comprehensive analysis of the role of these elements in nuclear import in a comparison between several primary cell types, including stimulated lymphocytes, macrophages, and dendritic cells. We show that despite the fact that none of these elements is absolutely required for nuclear import, disruption of the central polypurine tract-central termination sequence (cPPT-CTS) clearly affects the kinetics of viral DNA entry into the nucleus. This effect is independent of the cell cycle status of the target cells and is observed in cycling as well as in nondividing primary cells, suggesting that nuclear import of viral DNA may occur similarly under both conditions. Nonetheless, this study indicates that other components are utilized along with the cPPT-CTS for an efficient entry of viral DNA into the nucleus.
Collapse
|
26
|
|
27
|
Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J Virol 2009; 83:6522-33. [PMID: 19369352 DOI: 10.1128/jvi.02061-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to traverse an intact nuclear envelope and productively infect nondividing cells is a salient feature of human immunodeficiency virus type 1 (HIV-1) and other lentiviruses, but the viral factors and mechanism of nuclear entry have not been defined. HIV-1 integrase (IN) is implicated to play a role in the nuclear import of the virus, but the cellular pathway for IN trafficking and the role of IN in mediating the nuclear import of viral particles are unknown. Using a semipermeabilized cell assay, we observed that the nuclear import of IN was not the result of passive diffusion but occurred independently of cytosolic factors, metabolic energy, and the classical receptor-mediated, Ran-dependent import pathways. To determine if IN enters the nucleus by interacting with the nucleopore complex (NPC), we found that IN bound directly with the FxFG-rich C-terminal domain of nucleoporin 153 (NUP153C). When added in excess to the import assay, NUP153C inhibited the nuclear import of IN. Known binding partners of NUP153C competed with IN for binding with NUP153 and also inhibited the nuclear import of IN. In cultured cells, overexpression of NUP153C reduced the infectivity of an HIV-derived vector by interfering with the nuclear translocation of the viral cDNA. These results support a functional role for the IN-NUP153 interaction in HIV-1 replication and suggest that HIV-1 subviral particles gain access to the nucleus by interacting directly with the NPC via the binding of particle-associated IN to NUP153C.
Collapse
|
28
|
Wiktorowicz T, Peters K, Armbruster N, Steinert AF, Rethwilm A. Generation of an improved foamy virus vector by dissection of cis-acting sequences. J Gen Virol 2009; 90:481-487. [PMID: 19141459 DOI: 10.1099/vir.0.006312-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In contrast to other retroviruses, foamy viruses (FVs) generate their Pol protein precursor independently of the Gag protein from a spliced mRNA. The exact mechanism of Pol protein incorporation into the viral capsid is poorly understood. Previously, we showed that Pol encapsidation critically depends on the packaging of (pre-) genomic RNA and identified two distinct signals within the cis-acting sequences (CASI and CASII), Pol encapsidation sequences (PESI and PESII), which are required for Pol capsid incorporation. Here, we investigated whether the presence of PESI and PESII in an FV vector is sufficient for Pol encapsidation and whether the rather extended CASII element can be shortened without loss of functionality. Our results indicate that (i) the presence of PESI and II are not sufficient for Pol encapsidation, (ii) prototype FV vectors with a shortened CASII element retain Pol incorporation and full functionality, in particular upon transducing fibroblasts and primary human mesenchymal stem cells, (iii) the presence of the central poly purine tract significantly increased the transduction rates of FV vectors and (iv) Pol encapsidation and RNA packaging can be clearly separated. In essence, we designed a new FV vector that bears approximately 850 bp less of CAS than previously established vectors and is fully functional when analysed to transduce cell lines and primary human cells.
Collapse
Affiliation(s)
- Tatiana Wiktorowicz
- Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | - Katrin Peters
- University of California, International Laboratory of Molecular Biology for Tropical Disease Agents, School of Veterinary Medicine, Davis, USA.,Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | - Nicole Armbruster
- Universität Würzburg, Orthopaedic Center for Musculoskeletal Research, Orthopaedic Clinic König-Ludwig-Haus, Würzburg, Germany.,Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | - Andre F Steinert
- Universität Würzburg, Orthopaedic Center for Musculoskeletal Research, Orthopaedic Clinic König-Ludwig-Haus, Würzburg, Germany
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| |
Collapse
|
29
|
Zaitseva L, Cherepanov P, Leyens L, Wilson SJ, Rasaiyaah J, Fassati A. HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome. Retrovirology 2009; 6:11. [PMID: 19193229 PMCID: PMC2660290 DOI: 10.1186/1742-4690-6-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/04/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nuclear import of the HIV-1 reverse transcription complex (RTC) is critical for infection of non dividing cells, and importin 7 (imp7) has been implicated in this process. To further characterize the function of imp7 in HIV-1 replication we generated cell lines stably depleted for imp7 and used them in conjunction with infection, cellular fractionation and pull-down assays. RESULTS Imp7 depletion impaired HIV-1 infection but did not significantly affect HIV-2, simian immunodeficiency virus (SIVmac), or equine infectious anemia virus (EIAV). The lentiviral dependence on imp7 closely correlated with binding of the respective integrase proteins to imp7. HIV-1 RTC associated with nuclei of infected cells with remarkable speed and knock down of imp7 reduced HIV-1 DNA nuclear accumulation, delaying infection. Using an HIV-1 mutant deficient for reverse transcription, we found that viral RNA accumulated within nuclei of infected cells, indicating that reverse transcription is not absolutely required for nuclear import. Depletion of imp7 impacted on HIV-1 DNA but not RNA nuclear import and also inhibited DNA transfection efficiency. CONCLUSION Although imp7 may not be essential for HIV-1 infection, our results suggest that imp7 facilitates nuclear trafficking of DNA and that HIV-1 exploits imp7 to maximize nuclear import of its DNA genome. Lentiviruses other than HIV-1 may have evolved to use alternative nuclear import receptors to the same end.
Collapse
Affiliation(s)
- Lyubov Zaitseva
- Wohl Virion Centre, Division of Infection and Immunity, University College London (UCL), London, UK
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
| | - Peter Cherepanov
- Division of Medicine, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Lada Leyens
- Wohl Virion Centre, Division of Infection and Immunity, University College London (UCL), London, UK
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
| | - Sam J Wilson
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
- Centre for Post-genomic Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London, W1T 4JF, UK
| | - Jane Rasaiyaah
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
- Centre for Post-genomic Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London, W1T 4JF, UK
| | - Ariberto Fassati
- Wohl Virion Centre, Division of Infection and Immunity, University College London (UCL), London, UK
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
| |
Collapse
|
30
|
Cyclophilin A-dependent restriction of human immunodeficiency virus type 1 capsid mutants for infection of nondividing cells. J Virol 2008; 82:12001-8. [PMID: 18829762 DOI: 10.1128/jvi.01518-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Among retroviruses, lentiviruses are unusual in their ability to efficiently infect both dividing and nondividing cells, such as activated T cells and macrophages, respectively. Recent studies implicate the viral capsid protein (CA) as a key determinant of cell-cycle-independent infection by human immunodeficiency virus type 1 (HIV-1). We investigated the effects of the host cell protein cyclophilin A (CypA), which binds to HIV-1 CA, on HIV-1 infection of nondividing cells. The HIV-1 CA mutants A92E, T54A, and R132K were impaired for infection of aphidicolin-arrested HeLa cells, but not HOS cells. The mutants synthesized normal quantities of two-long-terminal-repeat circles in arrested HeLa cells, indicating that the mutant preintegration complexes can enter the nuclei of both dividing and nondividing cells. The impaired infectivity of the CA mutants on both dividing and nondividing HeLa cells was relieved by either pharmacological or genetic disruption of the CypA-CA interaction or by RNA interference-mediated depletion of CypA expression in target cells. A second-site suppressor of the CypA-restricted phenotype also restored the ability of CypA-restricted HIV-1 mutants to infect growth-arrested HeLa cells. These results indicate that CypA-restricted mutants are specifically impaired at a step between nuclear import and integration in nondividing HeLa cells. This study reveals a novel target cell-specific restriction of HIV-1 CA mutants in nondividing cells that is dependent on CypA-CA interactions.
Collapse
|
31
|
Peters K, Barg N, Gärtner K, Rethwilm A. Complex effects of foamy virus central purine-rich regions on viral replication. Virology 2008; 373:51-60. [PMID: 18078974 DOI: 10.1016/j.virol.2007.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/29/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Similar to the lentiviruses family of retroviruses, foamy viruses (FVs) contain purine-rich sequences located in the center of the genome. Their function on viral replication or vector transfer remains elusive, although dual initiation of plus-strand reverse transcription has been suggested. To elucidate the physical nature of the central region of the prototype FV (PFV) genome, we performed 3' and 5' RACE experiments. Our results revealed that the PFV genome contains a centrally located gap in the DNA plus-strand with no definite termination and start point and of variable length. We did not find evidence for a DNA flap region. The PFV isolate harbors four centrally located purine-rich elements (A-D). Only the D element is identical in sequence to the 3' poly purine tract (PPT). We mutated these elements while conserving or altering the overlapping pol reading frame and analyzed the mutants for transient replication in an infectious or for vector transfer in a replication-deficient background. In addition, we determined the protein composition of the respective viral particles. The A and B elements appeared to play a role in Pol protein encapsidation, the C element is likely involved in regulating gene expression, while mutation of the D element resulted in an insignificant reduction in transiently replicating virus and an approximately 50% reduction in vector titer. The reason for this deficit remains to be elucidated.
Collapse
Affiliation(s)
- Katrin Peters
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
32
|
Nucleocapsid protein function in early infection processes. Virus Res 2008; 134:39-63. [PMID: 18279991 DOI: 10.1016/j.virusres.2007.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/15/2023]
Abstract
The role of nucleocapsid protein (NC) in the early steps of retroviral replication appears largely that of a facilitator for reverse transcription and integration. Using a wide variety of cell-free assay systems, the properties of mature NC proteins (e.g. HIV-1 p7(NC) or MLV p10(NC)) as nucleic acid chaperones have been extensively investigated. The effect of NC on tRNA annealing, reverse transcription initiation, minus-strand-transfer, processivity of reverse transcription, plus-strand-transfer, strand-displacement synthesis, 3' processing of viral DNA by integrase, and integrase-mediated strand-transfer has been determined by a large number of laboratories. Interestingly, these reactions can all be accomplished to varying degrees in the absence of NC; some are facilitated by both viral and non-viral proteins and peptides that may or may not be involved in vivo. What is one to conclude from the observation that NC is not strictly required for these necessary reactions to occur? NC likely enhances the efficiency of each of these steps, thereby vastly improving the productivity of infection. In other words, one of the major roles of NC is to enhance the effectiveness of early infection, thereby increasing the probability of productive replication and ultimately of retrovirus survival.
Collapse
|
33
|
Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol 2007; 36:184-204. [PMID: 17873406 DOI: 10.1007/s12033-007-0010-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/28/2022]
Abstract
The capacity to efficiently transduce nondividing cells, shuttle large genetic payloads, and maintain stable long-term transgene expression are attributes that have brought lentiviral vectors to the forefront of gene delivery vehicles for research and therapeutic applications in a clinical setting. Our discussion initiates with advances in lentiviral vector development and how these sophisticated lentiviral vectors reflect improvements in safety, regarding the prevention of replication competent lentiviruses (RCLs), vector mobilization, and insertional mutagenesis. Additionally, we describe conventional molecular regulatory systems to manage gene expression levels in a spatial and temporal fashion in the context of a lentiviral vector. State of the art technology for lentiviral vector production by transient transfection and packaging cell lines are explicitly presented with current practices used for concentration, purification, titering, and determining the safety of a vector stock. We summarize lentiviral vector applications that have received a great deal of attention in recent years including the generation of transgenic animals and the stable delivery of RNA interference molecules. Concluding remarks address some of the successes in preclinical animals, and the recent transition of lentiviral vectors to human clinical trials as therapy for a variety of infectious and genetic diseases.
Collapse
Affiliation(s)
- Adam S Cockrell
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
34
|
Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherford S, Prévost MC, Allen TD, Charneau P. HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J 2007; 26:3025-37. [PMID: 17557080 PMCID: PMC1894778 DOI: 10.1038/sj.emboj.7601740] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/07/2007] [Indexed: 11/09/2022] Open
Abstract
The HIV-1 central DNA Flap acts as a cis-acting determinant of HIV-1 genome nuclear import. Indeed, DNA-Flap re-insertion within lentiviral-derived gene transfer vectors strongly stimulates gene transfer efficiencies. In this study, we sought to understand the mechanisms by which the central DNA Flap mediates HIV-1 nuclear import. Here, we show that reverse transcription (RT degrees) occurs within an intact capsid (CA) shell, independently of the routing process towards the nuclear membrane, and that uncoating is not an immediate post-fusion event, but rather occurs at the nuclear pore upon RT degrees completion. We provide the first observation with ultrastructural resolution of intact intracellular HIV-1 CA shells by scanning electron microscopy. In the absence of central DNA Flap formation, uncoating is impaired and linear DNA remains trapped within an integral CA shell precluding translocation through the nuclear pore. These data show that DNA Flap formation, the very last event of HIV-1 RT degrees, acts as a viral promoting element for the uncoating of HIV-1 at the nuclear pore.
Collapse
Affiliation(s)
- Nathalie J Arhel
- Groupe de Virologie Moléculaire et Vectorologie, CNRS-URA3015, Institut Pasteur, Paris, France
| | | | - Sandie Munier
- Groupe de Virologie Moléculaire et Vectorologie, CNRS-URA3015, Institut Pasteur, Paris, France
| | - Philippe Souque
- Groupe de Virologie Moléculaire et Vectorologie, CNRS-URA3015, Institut Pasteur, Paris, France
| | - Stéphanie Guadagnini
- Plateforme de Microscopie électronique, Institut Pasteur, 25-28 rue du Dr Roux, Paris, France
| | - Sandra Rutherford
- Paterson Institute for Cancer Research, CRC Department of Structural Cell Biology, Christie Hospital, Manchester, UK
| | - Marie-Christine Prévost
- Plateforme de Microscopie électronique, Institut Pasteur, 25-28 rue du Dr Roux, Paris, France
| | - Terry D Allen
- Paterson Institute for Cancer Research, CRC Department of Structural Cell Biology, Christie Hospital, Manchester, UK
| | - Pierre Charneau
- Groupe de Virologie Moléculaire et Vectorologie, CNRS-URA3015, Institut Pasteur, Paris, France
| |
Collapse
|
35
|
De Rijck J, Vandekerckhove L, Christ F, Debyser Z. Lentiviral nuclear import: a complex interplay between virus and host. Bioessays 2007; 29:441-51. [PMID: 17450594 DOI: 10.1002/bies.20561] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the capacity to infect non-dividing cells is a hallmark of lentiviruses, nuclear import is still barely understood. More than 100 research papers have been dedicated to this topic during the last 15 years, yet, more questions have been raised than answers. The signal-facilitating translocation of the viral preintegration complex (PIC) through the nuclear pore complex (NPC) remains unknown. It is clear, however, that nuclear import is the result of a complex interplay between viral and cellular components. In this review, we discuss the current knowledge on nuclear import. We focus on the controversies and pitfalls and discuss the interplay between virus and host.
Collapse
Affiliation(s)
- Jan De Rijck
- Laboratory for Molecular Virology and Gene Therapy, KULeuven and IRC KULAK, Leuven, Belgium
| | | | | | | |
Collapse
|
36
|
Greenberg KP, Lee ES, Schaffer DV, Flannery JG. Gene delivery to the retina using lentiviral vectors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:255-66. [PMID: 17249582 DOI: 10.1007/0-387-32442-9_36] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
37
|
Marsden MD, Zack JA. Human immunodeficiency virus bearing a disrupted central DNA flap is pathogenic in vivo. J Virol 2007; 81:6146-50. [PMID: 17392373 PMCID: PMC1900283 DOI: 10.1128/jvi.00203-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The central DNA flap is an important component of lentiviral vectors, but its significance in the context of wild-type human immunodeficiency virus (HIV) is currently unclear. To address this issue, we have compared the in vitro infection kinetics of NL4-3 with those of a flap-deficient mutant and evaluated the in vivo growth characteristics of these viruses by using the SCID-hu mouse model of HIV infection. Flap-deficient virus was only modestly attenuated in vitro, as assessed by single-round and spreading infection assays, and exhibited levels of replication and pathogenesis close to those of the wild-type in vivo. Hence, an intact central flap is not essential for HIV replication.
Collapse
Affiliation(s)
- Matthew D Marsden
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
38
|
Abstract
Human immunodeficiency virus 1 (HIV-1) and other retroviruses synthesize a DNA copy of their genome after entry into the host cell. Integration of this DNA into the host cell's genome is an essential step in the viral replication cycle. The viral DNA is synthesized in the cytoplasm and is associated with viral and cellular proteins in a large nucleoprotein complex. Before integration into the host genome can occur, this complex must be transported to the nucleus and must cross the nuclear envelope. This Review summarizes our current knowledge of how this journey is accomplished.
Collapse
Affiliation(s)
- Youichi Suzuki
- Laboratory for Host Factors, Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
39
|
Abstract
Retroviruses make a long and complex journey from outside the cell to the nucleus in the early stages of infection, and then an equally long journey back out again in the late stages of infection. Ongoing efforts are identifying an enormous array of cellular proteins that are used by the viruses in the course of their travels. These host factors are potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute HHSC 1310c, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
40
|
Arhel N, Munier S, Souque P, Mollier K, Charneau P. Nuclear import defect of human immunodeficiency virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type. J Virol 2006; 80:10262-9. [PMID: 17005705 PMCID: PMC1617309 DOI: 10.1128/jvi.00974-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously established, using human immunodeficiency virus type 1 (HIV-1) strain LAI, that the HIV-1 central DNA Flap acts as a cis determinant of viral genome nuclear import. Although the impact of the DNA Flap on nuclear import has already found numerous independent confirmations in the context of lentivirus vectors, it has been claimed that it may be nonessential for infectious virus strains LAI, YU-2 (J. D. Dvorin et al., J. Virol. 76:12087-12096, 2002), HXB2, and NL4-3 (A. Limon et al., J. Virol. 76:12078-12086, 2002). We conducted a detailed analysis of virus infectivity using the provirus clones provided by the authors and analogous target cells. In contrast to published data, our results show that all cPPT mutant viruses exhibit reduced infectivity corresponding to a nuclear import defect irrespective of the viral genetic background or target cell.
Collapse
Affiliation(s)
- Nathalie Arhel
- Groupe de Virologie Moléculaire et Vectorologie, Département de Virologie, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris, France
| | | | | | | | | |
Collapse
|
41
|
Fassati A. HIV infection of non-dividing cells: a divisive problem. Retrovirology 2006; 3:74. [PMID: 17067381 PMCID: PMC1635064 DOI: 10.1186/1742-4690-3-74] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 10/26/2006] [Indexed: 02/07/2023] Open
Abstract
Understanding how lentiviruses can infect terminally differentiated, non-dividing cells has proven a very complex and controversial problem. It is, however, a problem worth investigating, for it is central to HIV-1 transmission and AIDS pathogenesis. Here I shall attempt to summarise what is our current understanding for HIV-1 infection of non-dividing cells. In some cases I shall also attempt to make sense of controversies in the field and advance one or two modest proposals.
Collapse
Affiliation(s)
- Ariberto Fassati
- Wohl Virion Centre and MRC-UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK.
| |
Collapse
|
42
|
Shun MC, Daigle JE, Vandegraaff N, Engelman A. Wild-type levels of human immunodeficiency virus type 1 infectivity in the absence of cellular emerin protein. J Virol 2006; 81:166-72. [PMID: 17035312 PMCID: PMC1797258 DOI: 10.1128/jvi.01953-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Preintegration complexes (PICs) mediate retroviral integration, and recent results indicate an important role for the inner nuclear membrane protein emerin in orienting human immunodeficiency virus type 1 (HIV-1) PICs to chromatin for integration. Two other host cell proteins, the barrier-to-autointegration factor (BAF) and lamina-associated polypeptide 2alpha (LAP2alpha), seemed to play a similar preintegrative role for Moloney murine leukemia virus (MMLV) in addition to HIV-1. In contrast, we determined efficient HIV-1 and MMLV infection of HeLa-P4 cells following potent down-regulation of emerin, BAF, or LAP2alpha protein by using short interfering RNA. Mouse embryo fibroblasts ablated for emerin protein through gene knockout support the same level of HIV-1 infection as cells derived from wild-type littermate control animals. As the expression of human emerin in mouse knockout cells fails to affect the level of infectivity achieved in its absence, we conclude that HIV-1 efficiently infects cells in the absence of emerin protein and, by extension, that emerin is not a universally important regulator of HIV-1 infectivity.
Collapse
Affiliation(s)
- Ming-Chieh Shun
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
43
|
Garfinkel DJ, Stefanisko KM, Nyswaner KM, Moore SP, Oh J, Hughes SH. Retrotransposon suicide: formation of Ty1 circles and autointegration via a central DNA flap. J Virol 2006; 80:11920-34. [PMID: 17005648 PMCID: PMC1676259 DOI: 10.1128/jvi.01483-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite their evolutionary distance, the Saccharomyces cerevisiae retrotransposon Ty1 and retroviruses use similar strategies for replication, integration, and interactions with their hosts. Here we examine the formation of circular Ty1 DNA, which is comparable to the dead-end circular products that arise during retroviral infection. Appreciable levels of circular Ty1 DNA are present with one-long terminal repeat (LTR) circles and deleted circles comprising major classes, while two-LTR circles are enriched when integration is defective. One-LTR circles persist when homologous recombination pathways are blocked by mutation, suggesting that they result from reverse transcription. Ty1 autointegration events readily occur, and many are coincident with and dependent upon DNA flap structures that result from DNA synthesis initiated at the central polypurine tract. These results suggest that Ty1-specific mechanisms minimize copy number and raise the possibility that special DNA structures are a targeting determinant.
Collapse
Affiliation(s)
- David J Garfinkel
- National Cancer Institute, P.O. Box B, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | |
Collapse
|
44
|
De Rijck J, Debyser Z. The central DNA flap of the human immunodeficiency virus type 1 is important for viral replication. Biochem Biophys Res Commun 2006; 349:1100-10. [PMID: 16962998 DOI: 10.1016/j.bbrc.2006.08.141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 08/24/2006] [Accepted: 08/24/2006] [Indexed: 11/22/2022]
Abstract
Reverse transcription of the human immunodeficiency virus type 1 is characterized by the formation of a DNA flap at the center of the viral cDNA in between the central polypurine tract (cPPT) and the central termination sequence (CTS). The importance of the DNA flap for HIV-1 replication has been questioned, whereas its importance for lentiviral vector performance is well accepted. To investigate this controversy, we re-evaluated the importance of the DNA flap for HIV-1 replication. A flap negative HIV-1 virus showed a 10- to 100-fold replication defect in comparison with a WT strain. Further characterization of the DNA flap in the context of lentiviral vectors showed that mutations in the DNA-flap sequence did not affect the transduction efficiency. Finally, introduction of a second cPPT/CTS sequence resulted in the presence of two DNA flaps but no higher transduction efficiency.
Collapse
Affiliation(s)
- Jan De Rijck
- Laboratory for Molecular Virology and Gene Therapy, KULeuven and IRC KULAK, Leuven, Belgium
| | | |
Collapse
|
45
|
Arhel NJ, Souquere-Besse S, Charneau P. Wild-type and central DNA flap defective HIV-1 lentiviral vector genomes: intracellular visualization at ultrastructural resolution levels. Retrovirology 2006; 3:38. [PMID: 16800894 PMCID: PMC1538615 DOI: 10.1186/1742-4690-3-38] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/26/2006] [Indexed: 12/16/2022] Open
Abstract
HIV-1 and other lentiviruses have the unique ability among retroviruses to efficiently replicate in non-dividing cells as a result of the active nuclear import of their DNA genome across an interphasic nuclear membrane. Previous work has shown that a three-stranded DNA structure synthesized during HIV-1 reverse transcription, called the central DNA flap, acts as a cis-determinant of HIV-1 genome nuclear import. Concordantly, DNA Flap re-insertion in lentiviral-derived gene therapy vectors stimulates gene transfer efficiencies and complements the level of nuclear import to wild-type levels quantitatively indistinguishable from wild-type virus in all cell types and tissues examined so far. In order to define the precise nature of the replicative defect of DNA flap mutant viruses, we carried out in situ DNA hybridization experiments with electron microscopy to determine the subcellular localization of DNA flap mutant and wild-type HIV-1 genomes. We found that Flap defective DNA genomes accumulate at the cytoplasmic face of the nuclear membrane with no overlap across the nuclear membrane, whereas wild-type genomes localize throughout the nuclear compartment. These data provide an unequivocal confirmation of the role of the DNA flap in HIV-1 nuclear import and further establish that the DNA flap controls a step that immediately precedes translocation through the nuclear pore. Further, the widespread distribution of wild-type genomes within the open chromatin confirms the recent genome-wide mapping of HIV-1 cDNA integration sites and points to an as-yet poorly understood step of intranuclear transport of HIV-1 pre-integration complexes.
Collapse
Affiliation(s)
- Nathalie J Arhel
- Groupe de Virologie Moléculaire et Vectorologie, Institut Pasteur, 25–28 rue du Dr. Roux, 75724 Paris, France
| | | | - Pierre Charneau
- Groupe de Virologie Moléculaire et Vectorologie, Institut Pasteur, 25–28 rue du Dr. Roux, 75724 Paris, France
| |
Collapse
|
46
|
Dismuke DJ, Aiken C. Evidence for a functional link between uncoating of the human immunodeficiency virus type 1 core and nuclear import of the viral preintegration complex. J Virol 2006; 80:3712-20. [PMID: 16571788 PMCID: PMC1440469 DOI: 10.1128/jvi.80.8.3712-3720.2006] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) particles begin their replication upon fusion with the plasma membrane of target cells and release of the viral core into the host cell cytoplasm. Soon thereafter, the viral capsid, which is composed of a polymer of the CA protein, disassociates from the internal ribonucleoprotein complex. While this disassembly process remains poorly understood, the available evidence indicates that proper uncoating of the core is a key step in infection. Defects in uncoating most often lead to a failure of the virus to undergo reverse transcription, resulting in an inability to form a functional viral preintegration complex (PIC). In a previous study, we reported that an HIV-1 mutant containing two substitutions in CA (Q63A/67A) was unusual in that it was poorly infectious yet synthesized normal levels of viral DNA. Here we report that this mutant is impaired for nuclear entry. Quantitative analysis of viral DNA synthesis from infected cells by Southern blotting and real-time PCR revealed that the Q63A/Q67A mutant is impaired in the synthesis of one-long terminal repeat (1-LTR) and 2-LTR circles. Isolation of PICs from acutely infected cells revealed that the Q63A/Q67A mutant produces protein-DNA complexes similar to wild-type in yield and overall composition, but these PICs contained elevated levels of CA and were impaired for integration in vitro. These results demonstrate that mutations in CA can have deleterious effects on both nuclear targeting and integration, suggesting that these steps in the HIV-1 life cycle are dependent on proper uncoating of the viral core.
Collapse
Affiliation(s)
- David J Dismuke
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, Tennessee 37232-2363, USA
| | | |
Collapse
|
47
|
Wurtzer S, Goubard A, Mammano F, Saragosti S, Lecossier D, Hance AJ, Clavel F. Functional central polypurine tract provides downstream protection of the human immunodeficiency virus type 1 genome from editing by APOBEC3G and APOBEC3B. J Virol 2006; 80:3679-83. [PMID: 16537639 PMCID: PMC1440420 DOI: 10.1128/jvi.80.7.3679-3683.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lentiviruses utilize two polypurine tracts for initiation of plus-strand viral DNA synthesis. We have examined to what extent human immunodeficiency virus type 1 plus-strand initiation at the central polypurine tract (cPPT) could protect the viral genome from DNA editing by APOBEC3G and APOBEC3B. The presence of a functional cPPT, but not of a mutated cPPT, extensively reduced editing by both APOBEC3G and APOBEC3B of sequences downstream, but not upstream, of the cPPT, with significant protection observed as far as 400 bp downstream. Thus, in addition to other potential functions, the cPPT could help protect lentiviruses from editing by cytidine deaminases of the APOBEC family.
Collapse
|
48
|
Yamashita M, Emerman M. Retroviral infection of non-dividing cells: old and new perspectives. Virology 2006; 344:88-93. [PMID: 16364740 DOI: 10.1016/j.virol.2005.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/10/2005] [Indexed: 12/16/2022]
Abstract
The dependence of retroviral replication on cell proliferation was described as early as 1958, although different classes of retroviruses are able to infect non-dividing cells with different efficiencies. For example, the human immunodeficiency virus (HIV) and other lentiviruses infect most non-dividing cells nearly as well as dividing cells, while the gammaretroviruses such as the murine leukemia virus (MLV) cannot infect non-dividing cells, and other retroviruses have intermediate phenotypes. One exception to the ability of HIV to infect non-dividing cells involves resting CD4+ T cells in vitro where there are multiple restrictions. However, recent data show that there is massive infection of non-activated CD4+ T cell during acute infection which suggests that the situation is different in vivo. Finally, much work trying to explain the difference between HIV and MLV in non-dividing cells has focused on describing the ability of HIV to enter the nucleus during interphase. However, we suggest that events in the viral life-cycle other than nuclear import may be more important in determining the ability of a given retrovirus to infect non-dividing cells.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
49
|
Yamashita M, Emerman M. The cell cycle independence of HIV infections is not determined by known karyophilic viral elements. PLoS Pathog 2005; 1:e18. [PMID: 16292356 PMCID: PMC1283251 DOI: 10.1371/journal.ppat.0010018] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/19/2005] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus and other lentiviruses infect cells independent of cell cycle progression, but gammaretroviruses, such as the murine leukemia virus (MLV) require passage of cells through mitosis. This property is thought to be important for the ability of HIV to infect resting CD4+ T cells and terminally differentiated macrophages. Multiple and independent redundant nuclear localization signals encoded by HIV have been hypothesized to facilitate migration of viral genomes into the nucleus. The integrase (IN) protein of HIV is one of the HIV elements that targets to the nucleus; however, its role in nuclear entry of virus genomes has been difficult to describe because mutations in IN are pleiotropic. To investigate the importance of the HIV IN protein for infection of non-dividing cells, and to investigate whether or not IN was redundant with other viral signals for cell cycle-independent nuclear entry, we constructed an HIV-based chimeric virus in which the entire IN protein of HIV was replaced by that of MLV. This chimeric virus with a heterologous IN was infectious at a low level, and was able to integrate in an IN-dependent manner. Furthermore, this virus infected non-dividing cells as well as it infected dividing cells. Moreover, we used the chimeric HIV with MLV IN to further eliminate all of the other described nuclear localization signals from an HIV genome—matrix, IN, Viral Protein R, and the central polypurine tract—and show that no combination of the virally encoded NLS is essential for the ability of HIV to infect non-dividing cells. Human immunodeficiency virus can infect many cells irrespective of whether or not they are dividing, whereas some other retroviruses, such as the murine leukemia virus can only infect cells that are proliferating. This property is important for the ability of HIV to establish infections in critical cell types in infected people. Multiple and redundant signals encoded by HIV have been hypothesized to facilitate migration of viral genomes into the nucleus. However, here the authors eliminated all four described nuclear localizing signals from an HIV genome and show that no combination of these virally encoded signals is essential for the ability of HIV to infect non-dividing cells. They suggest that another step of the virus lifecycle, other than nuclear import, is the rate-limiting step that determines the cell cycle dependence/independence of retroviral infections.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Division of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Emerman
- Division of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Wilhelm FX, Wilhelm M, Gabriel A. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element. Cytogenet Genome Res 2005; 110:269-87. [PMID: 16093680 DOI: 10.1159/000084960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022] Open
Abstract
Integrase (IN) and reverse transcriptase (RT) play a central role in transposition of retroelements. The mechanism of integration by IN and the steps of the replication process mediated by RT are briefly described here. Recently, active recombinant forms of Ty1 IN and RT have been obtained. This has allowed a more detailed understanding of their biochemical and structural properties and has made possible combined in vitro and in vivo analyses of their functions. A focus of this review is to discuss some of the results obtained thus far with these two recombinant proteins and to propose future directions.
Collapse
Affiliation(s)
- F-X Wilhelm
- Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|