1
|
O’Donohue AK, Ginn SL, Burgio G, Berman Y, Dabscheck G, Schindeler A. The evolving landscape of NF gene therapy: Hurdles and opportunities. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102475. [PMID: 40034205 PMCID: PMC11872496 DOI: 10.1016/j.omtn.2025.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neurofibromatosis type 1 (NF1)- and NF2-related schwannomatosis are rare autosomal dominant monogenic disorders characterized by a predisposition for nerve-associated tumors. Current treatments focus on symptomatic management, but advancements in the gene therapy field present unique opportunities to treat the genetic underpinnings and develop curative therapies for NF. Approaches such as nonsense suppression agents and oligonucleotide therapies are becoming more mature and have emerging preclinical data in the context of NF. Furthermore, there has been progress in developing gene therapy vectors that can be delivered locally into tumors to ablate or shrink their size. While still a nascent research area, gene addition and gene repair strategies hold tremendous promise for the prevention and treatment of NF-related tumors. These technologies will also require parallel development of delivery vectors able to target the Schwann cells from which tumors most commonly arise. This review seeks to contextualize these advancements and which hurdles remain for their clinical adoption.
Collapse
Affiliation(s)
- Alexandra K. O’Donohue
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Chemical & Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
| | - Gaetan Burgio
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Yemima Berman
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gabriel Dabscheck
- Department of Neurology, Royal Children’s Hospital and Murdoch Children’s Research Institute, Melbourne, VIC 3050, Australia
| | - Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Chemical & Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
2
|
Jabbari K, Mietzsch M, Hsi J, Chipman P, Qiu J, McKenna R. The Structural, Biophysical, and Antigenic Characterization of the Goose Parvovirus Capsid. Microorganisms 2025; 13:80. [PMID: 39858848 PMCID: PMC11768072 DOI: 10.3390/microorganisms13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Goose parvovirus (GPV) is an etiological agent of Derzsy's disease, afflicting geese and Muscovy ducks worldwide. Its high mortality rate among goslings and ducklings causes large losses to the waterfowl industry. Toward molecular and structural characterization, virus-like particles (VLPs) of GPV were produced, and the capsid structure was determined by cryogenic electron microscopy (cryo-EM) at a resolution of 2.4 Å. The capsid exhibited structural features conserved among parvoviruses, including surface two-fold depressions, three-fold protrusions, and five-fold channels. A structural comparison of the GPV viral protein (VP) structure with other adeno-associated viruses (AAVs), including human AAV2, AAV5, and quail AAV (QAAV), revealed unique conformations of several surface-accessible variable regions (VRs). Furthermore, the GPV capsid was found to be thermally stable at physiological pH, but less so under lower pH conditions. As a member of the genus Dependoparvovirus, GPV could also be bound by cross-reactive anti-AAV capsid antibodies that bind to the five-fold region of the viruses, as shown by native immuno-dot blot analysis. Finally, the GPV VP structure was compared to those of other bird dependoparvoviruses, which revealed that VR-III may be important for GPV and Muscovy duck parvovirus (MDPV) infection.
Collapse
Affiliation(s)
- Korosh Jabbari
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.J.); (J.H.); (P.C.)
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.J.); (J.H.); (P.C.)
| | - Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.J.); (J.H.); (P.C.)
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.J.); (J.H.); (P.C.)
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.J.); (J.H.); (P.C.)
| |
Collapse
|
3
|
Scott S, Westhaus A, Nazareth D, Cabanes-Creus M, Navarro RG, Chandra D, Zhu E, Venkateswaran A, Alexander IE, Bauer DC, Wilson LO, Lisowski L. AAVolve: Concatenated long-read deep sequencing enables whole capsid tracking during shuffled AAV library selection. Mol Ther Methods Clin Dev 2024; 32:101351. [PMID: 39498467 PMCID: PMC11532298 DOI: 10.1016/j.omtm.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024]
Abstract
Gene therapies using recombinant adeno-associated virus (AAV) vectors have demonstrated considerable clinical success in the treatment of genetic disorders. Improved vectors with favorable tropism profiles, decreased immunogenicity, and enhanced manufacturability are poised to further improve the state of gene therapies. Such vectors can be identified through directed evolution, a process of subjecting a diverse capsid library to a selection pressure to identify individual variants with a desired trait. Currently, libraries that involve changes distributed throughout the AAV capsid coding region, such as DNA family shuffled libraries, are largely characterized using low-throughput Sanger sequencing of individual clones. However, improvements in long-read sequencing technologies have increased their applicability to capsid libraries and evaluation of the selection process. Here, we explore the application of Oxford Nanopore Technologies refined by a concatemeric consensus method for initial library characterization and monitoring selection of a shuffled AAV capsid library. Furthermore, we present AAVolve, a bioinformatic pipeline for processing long-read data from AAV-directed evolution experiments. Our approach allows high-throughput characterization of AAV capsids in a streamlined manner, facilitating deeper insights into library composition through multiple rounds of selection, and generalization through training of machine learning models.
Collapse
Affiliation(s)
- Suzanne Scott
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Deborah Nazareth
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Deborah Chandra
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children’s Medical Research Institute and The Children’s Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
| | - Aravind Venkateswaran
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute and The Children’s Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney Medical School, Faculty of Medicine and Health, Westmead, NSW 2145, Australia
| | - Denis C. Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University, Macquarie Park, NSW 2113, Australia
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, NSW 2113, Australia
| | - Laurence O.W. Wilson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Westmead, NSW 2145, Australia
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, NSW 2113, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine – National Research Institute, 04-141 Warsaw, Poland
| |
Collapse
|
4
|
Calton MA, Croze RH, Burns C, Beliakoff G, Vazin T, Szymanski P, Schmitt C, Klein A, Leong M, Quezada M, Holt J, Bolender G, Barglow K, Khoday D, Mason T, Delaria K, Hassanipour M, Kotterman M, Khanani AM, Schaffer D, Francis P, Kirn D. Design and Characterization of a Novel Intravitreal Dual-Transgene Genetic Medicine for Neovascular Retinopathies. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39620832 PMCID: PMC11614000 DOI: 10.1167/iovs.65.14.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Purpose Intravitreal delivery of therapeutic transgenes to the retina via engineered viral vectors can provide sustained local concentrations of therapeutic proteins and thus potentially reduce the treatment burden and improve long-term vision outcomes for patients with neovascular (wet) age-related macular degeneration (AMD), diabetic macular edema (DME), and diabetic retinopathy. Methods We performed directed evolution in nonhuman primates (NHP) to invent an adeno-associated viral (AAV) variant (R100) with the capacity to cross vitreoretinal barriers and transduce all regions and layers of the retina following intravitreal injection. We then engineered 4D-150, an R100-based genetic medicine carrying 2 therapeutic transgenes: a codon-optimized sequence encoding aflibercept, a recombinant protein that inhibits VEGF-A, VEGF-B, and PlGF, and a microRNA sequence that inhibits expression of VEGF-C. Transduction, transgene expression, and biological activity were characterized in human retinal cells in vitro and in NHPs. Results R100 demonstrated superior retinal cell transduction in vitro and in vivo compared to AAV2, a commonly used wild-type AAV serotype in retinal gene therapies. Transduction of human retinal pigment epithelial cells in vitro by 4D-150 resulted in dose-dependent transgene expression and corresponding reductions in VEGF-A and VEGF-C. Intravitreal administration of 4D-150 to NHPs was well tolerated and led to robust retinal expression of both transgenes. In a primate model of laser-induced choroidal neovascularization, 4D-150 completely prevented clinically relevant angiogenic lesions at all tested doses. Conclusions These findings support further development of 4D-150. Clinical trials are underway to establish the safety and efficacy of 4D-150 in individuals with wet AMD and DME.
Collapse
Affiliation(s)
| | - Roxanne H. Croze
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Christian Burns
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Ghezal Beliakoff
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Tandis Vazin
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Paul Szymanski
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | - Austin Klein
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Meredith Leong
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Melissa Quezada
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Jenny Holt
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Gabe Bolender
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | - Devi Khoday
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Thomas Mason
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | | | | | - Arshad M. Khanani
- Sierra Eye Associates, Reno, Nevada, United States
- University of Nevada, Reno School of Medicine, Reno, Nevada, United States
| | - David Schaffer
- University of California, Berkeley, California, United States
| | - Peter Francis
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - David Kirn
- 4D Molecular Therapeutics, Emeryville, California, United States
- University of California, Berkeley, California, United States
| |
Collapse
|
5
|
Alexander GM, He B, Leikvoll A, Jones S, Wine R, Kara P, Martin N, Dudek SM. Hippocampal CA2 neurons disproportionately express AAV-delivered genetic cargo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625768. [PMID: 39651273 PMCID: PMC11623684 DOI: 10.1101/2024.11.27.625768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hippocampal area CA2 is unique in many ways, largely based on the complement of genes expressed there. We and others have observed that CA2 neurons exhibit a uniquely robust tropism for adeno-associated viruses (AAVs) of multiple serotypes and variants. In this study, we aimed to systematically investigate the propensity for AAV tropism toward CA2 across a wide range of AAV serotypes and variants, injected either intrahippocampally or systemically, including AAV1, 2, 5, 6, 8, 9, DJ, PHP.B, PHP.eB, and CAP-B10. We found that most serotypes and variants produced disproportionally high expression of AAV-delivered genetic material in hippocampal area CA2, although two serotypes (AAV6 and DJ) did not. In an effort to understand the mechanism(s) behind this observation, we considered perineuronal nets (PNNs) that ensheathe CA2 pyramidal cells and, among other functions, buffer diffusion of ions and molecules. We hypothesized that PNNs might attract AAV particles and maintain them in close proximity to CA2 neurons, thereby increasing exposure to AAV particles. However, genetic deletion of PNNs from CA2 had no effect on AAV transduction. Next, we next considered the AAV binding factors and receptors known to contribute to AAV transduction. We found that the AAV receptor (AAVR), which is critical to transduction, is abundantly expressed in CA2, and knockout of AAVR nearly abolished expression of AAV-delivered material by all serotypes tested. Additionally, we found CA2 enrichment of several cell-surface glycan receptors that AAV particles attach to before interacting with AAVR, including heparan sulfate proteoglycans, N-linked sialic acid and N-linked galactose. Indeed, CA2 showed the highest expression of AAVR and the investigated glycan receptors within the hippocampus. We conclude that CA2 neurons are endowed with multiple factors that make it highly susceptible to AAV transduction, particularly to the systemically available PHP variants, including CAP-B10. Given the curved structure of hippocampus and the relatively small size of CA2, systemic delivery of engineered PHP or CAP variants could all but eliminate the need for intrahippocampal AAV injections, particularly when injecting recombinase-dependent AAVs into animals that express recombinases in CA2.
Collapse
|
6
|
Giacomoni J, Åkerblom M, Habekost M, Fiorenzano A, Kajtez J, Davidsson M, Parmar M, Björklund T. Identification and validation of novel engineered AAV capsid variants targeting human glia. Front Neurosci 2024; 18:1435212. [PMID: 39193523 PMCID: PMC11348808 DOI: 10.3389/fnins.2024.1435212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Direct neural conversion of endogenous non-neuronal cells, such as resident glia, into therapeutic neurons has emerged as a promising strategy for brain repair, aiming to restore lost or damaged neurons. Proof-of-concept has been obtained from animal studies, yet these models do not efficiently recapitulate the complexity of the human brain, and further refinement is necessary before clinical translation becomes viable. One important aspect is the need to achieve efficient and precise targeting of human glial cells using non-integrating viral vectors that exhibit a high degree of cell type specificity. While various naturally occurring or engineered adeno-associated virus (AAV) serotypes have been utilized to transduce glia, efficient targeting of human glial cell types remains an unsolved challenge. In this study, we employ AAV capsid library engineering to find AAV capsids that selectively target human glia in vitro and in vivo. We have identified two families of AAV capsids that induce efficient targeting of human glia both in glial spheroids and after glial progenitor cell transplantation into the rat forebrain. Furthermore, we show the robustness of this targeting by transferring the capsid peptide from the parent AAV2 serotype onto the AAV9 serotype, which facilitates future scalability for the larger human brain.
Collapse
Affiliation(s)
- Jessica Giacomoni
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Malin Åkerblom
- Molecular Neuromodulation, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Mette Habekost
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alessandro Fiorenzano
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Janko Kajtez
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Hoffmann M, Gallant J, LeBeau A, Schmidt D. Unlocking precision gene therapy: harnessing AAV tropism with nanobody swapping at capsid hotspots. NAR MOLECULAR MEDICINE 2024; 1:ugae008. [PMID: 39022346 PMCID: PMC11250487 DOI: 10.1093/narmme/ugae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Adeno-associated virus (AAV) has been remarkably successful in the clinic, but its broad tropism is a practical limitation of precision gene therapy. A promising path to engineer AAV tropism is the addition of binding domains to the AAV capsid that recognize cell surface markers present on a targeted cell type. We have recently identified two previously unexplored capsid regions near the 2/5-fold wall and 5-fold pore of the AAV capsid that are amenable to insertion of larger protein domains, including nanobodies. Here, we demonstrate that these hotspots facilitate AAV tropism switching through simple nanobody replacement without extensive optimization in both VP1 and VP2. Our data suggest that engineering VP2 is the preferred path for maintaining both virus production yield and infectivity. We demonstrate highly specific targeting of human cancer cells expressing fibroblast activating protein (FAP). Furthermore, we found that the combination of FAP nanobody insertion plus ablation of the heparin binding domain can reduce off-target infection to a minimum, while maintaining a strong infection of FAP receptor-positive cells. Taken together, our study shows that nanobody swapping at multiple capsid locations is a viable strategy for nanobody-directed cell-specific AAV targeting.
Collapse
Affiliation(s)
- Mareike D Hoffmann
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph P Gallant
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Aaron M LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Drouyer M, Chu TH, Labit E, Haase F, Navarro RG, Nazareth D, Rosin N, Merjane J, Scott S, Cabanes-Creus M, Westhaus A, Zhu E, Midha R, Alexander IE, Biernaskie J, Ginn SL, Lisowski L. Novel AAV variants with improved tropism for human Schwann cells. Mol Ther Methods Clin Dev 2024; 32:101234. [PMID: 38558569 PMCID: PMC10978538 DOI: 10.1016/j.omtm.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Gene therapies and associated technologies are transforming biomedical research and enabling novel therapeutic options for patients living with debilitating and incurable genetic disorders. The vector system based on recombinant adeno-associated viral vectors (AAVs) has shown great promise in recent clinical trials for genetic diseases of multiple organs, such as the liver and the nervous system. Despite recent successes toward the development of novel bioengineered AAV variants for improved transduction of primary human tissues and cells, vectors that can efficiently transduce human Schwann cells (hSCs) have yet to be identified. Here, we report the application of the functional transduction-RNA selection method in primary hSCs for the development of AAV variants for specific and efficient transgene delivery to hSCs. The two identified capsid variants, Pep2hSC1 and Pep2hSC2, show conserved potency for delivery across various in vitro, in vivo, and ex vivo models of hSCs. These novel AAV capsids will serve as valuable research tools, forming the basis for therapeutic solutions for both SC-related disorders or peripheral nervous system injury.
Collapse
Affiliation(s)
- Matthieu Drouyer
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Tak-Ho Chu
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Florencia Haase
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Deborah Nazareth
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Nicole Rosin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jessica Merjane
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jeff Biernaskie
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Australian Genome Therapeutics Centre, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| |
Collapse
|
9
|
Milagros S, de Erenchun PRR, Guembe M, Carte B, Méndez M, Uribarri A, Aldabe R. The infectivity of AAV9 is influenced by the specific location and extent of chemically modified capsid residues. J Biol Eng 2024; 18:34. [PMID: 38745236 PMCID: PMC11092203 DOI: 10.1186/s13036-024-00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Several treatments for genetic diseases utilizing recombinant adeno-associated viruses (AAVs) have recently gained approval. However, the development of a greater number of therapeutic AAVs is constrained by certain limitations. While extensive efforts have concentrated on screening AAV genetic libraries, an alternative strategy involves modifying the AAV capsid by attaching various moieties. The capsid of AAV plays a pivotal role in transducing target cells and evading immune responses, making modifications a key avenue for engineering improved variants. RESULTS In our study, we replaced specific AAV9 capsid residues with an unnatural amino acid bearing a bioorthogonal group, identifying four positions with no adverse impact on production. Utilizing click chemistry, we attached varying proportions of Cy5.5 to these positions, allowing us to assess the impact of these modifications on AAV9 infectivity in cultured cells. Our findings reveal that both the position and degree of capsid modification significantly affect AAV transduction. While higher amounts of attached molecules lead to an increased number of AAV genomes within cells, this does not positively impact transgene expression. Conversely, a negative impact on transgene expression is observed when the AAV capsid is highly modified, with the degree of this effect associated with the modified residue. CONCLUSION Careful control of both the degree and specific position of capsid modifications is crucial for optimizing transduction efficiency and minimizing undesired effects on transgene expression. These results underscore the importance of precision in AAV capsid modification to achieve optimal transduction efficiency while mitigating potential drawbacks on transgene expression.
Collapse
Affiliation(s)
- Sergio Milagros
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain
| | | | - Maite Guembe
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain
| | - Beatriz Carte
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain
| | - Miriam Méndez
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain
| | - Ander Uribarri
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain
| | - Rafael Aldabe
- DNA and RNA Medicine Division, CIMA Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
10
|
Körbelin J, Arrulo A, Schwaninger M. Gene therapy targeting the blood-brain barrier. VITAMINS AND HORMONES 2024; 126:191-217. [PMID: 39029973 DOI: 10.1016/bs.vh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.
Collapse
Affiliation(s)
- Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, UKE Hamburg-Eppendorf, Hamburg, Germany
| | - Adriana Arrulo
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
11
|
Lopez-Gordo E, Chamberlain K, Riyad JM, Kohlbrenner E, Weber T. Natural Adeno-Associated Virus Serotypes and Engineered Adeno-Associated Virus Capsid Variants: Tropism Differences and Mechanistic Insights. Viruses 2024; 16:442. [PMID: 38543807 PMCID: PMC10975205 DOI: 10.3390/v16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.
Collapse
|
12
|
Dai M, Yang N, Xu K, Zhang J, Li X, Zhang Y, Li W. Discovering human cell-compatible gene therapy virus variants via optimized screening in mouse models. Cell Prolif 2024; 57:e13565. [PMID: 37864397 PMCID: PMC10905335 DOI: 10.1111/cpr.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
In gene therapy, intravenous injection of viral vectors reigns as the primary administration route. These vectors include adeno-associated viruses, adenoviruses, herpes viruses, rhabdoviruses and others. However, these naturally occurring viruses lack inherent tissue or organ tropism for tailored disease treatment. To address this, we devised an optimized process involving directed viral capsid evolution, organ-specific humanized mouse models and in vitro-in vivo virus screening. Our approach allows for the rapid generation specifically modified adeno-associated virus variants, surpassing the time required for natural evolution, which spans millions of years. Notably, these variants exhibit robust targeting of the liver, favouring chimeric human liver cells over murine hepatocytes. Furthermore, certain variants achieve augmented targeting with reduced off-target organ infection, thereby mitigating dosage requirements and enhancing safety in gene therapy.
Collapse
Affiliation(s)
- Moyu Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ning Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
| | - Jingwen Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceNankai UniversityTianjinChina
| | - Xueke Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Singh S, Pandey AK, Malemnganba T, Prajapati VK. Technological advancements in viral vector designing and optimization for therapeutic applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:57-87. [PMID: 38448144 DOI: 10.1016/bs.apcsb.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Viral vector engineering is critical to the advancement of several sectors of biotechnology, gene therapy, and vaccine development. These vectors were produced from viruses, were employed to deliver therapeutic genes or to alter biological processes. The potential for viral vectors to improve the precision, safety, and efficiency of therapeutic interventions has boosted their demand. The dynamic interplay between technological advancements and computational tools in establishing the landscape of viral vector engineering and vector optimization for therapeutic reasons is discussed in this chapter. It also emphasizes the importance of in silico techniques in maximizing vector potential for therapeutics and many phases of viral vector engineering, from genomic analysis to computer modelling and advancements to improve precise gene delivery. High-throughput screening propels the expedited process of vector selection, and computational techniques to analyze complex omics data to further enhance vector capabilities have been discussed. As in silico models reveal insights into off-target effects and integration sites, vector safety (biodistribution and toxicity) remains a crucial part and bridges the gap between preclinical and clinical investigations. Despite the limitations, this chapter depicts a future in which technology and computing merge to catapult viral vector therapy into an era of boundless possibilities.
Collapse
Affiliation(s)
- Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Anurag Kumar Pandey
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | | | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
14
|
Lv YF, Zhang H, Cui Z, Ma CJ, Li YL, Lu H, Wu HY, Yang JL, Cao CY, Sun WZ, Huang XF. Gene delivery to breast cancer by incorporated EpCAM targeted DARPins into AAV2. BMC Cancer 2023; 23:1220. [PMID: 38082377 PMCID: PMC10712102 DOI: 10.1186/s12885-023-11705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE The aim of this study is to evaluate an AAV vector that can selectively target breast cancer cells and to investigate its specificity and anti-tumor effects on breast cancer cells both in vitro and in vivo, offering a new therapeutic approach for the treatment of EpCAM-positive breast cancer. METHODS In this study, a modified AAV2 viral vector was used, in which EpCAM-specific DARPin EC1 was fused to the VP2 protein of AAV2, creating a viral vector that can target breast cancer cells. The targeting ability and anti-tumor effects of this viral vector were evaluated through in vitro and in vivo experiments. RESULTS The experimental results showed that the AAV2MEC1 virus could specifically infect EpCAM-positive breast cancer cells and accurately deliver the suicide gene HSV-TK to tumor tissue in mice, significantly inhibiting tumor growth. Compared to the traditional AAV2 viral vector, the AAV2MEC1 virus exhibited reduced accumulation in liver tissue and had no impact on tumor growth. CONCLUSION This study demonstrates that AAV2MEC1 is a gene delivery vector capable of targeting breast cancer cells and achieving selective targeting in mice. The findings offer a potential gene delivery system and strategies for gene therapy targeting EpCAM-positive breast cancer and other tumor types.
Collapse
Affiliation(s)
- Ya-Feng Lv
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Hao Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Zhi Cui
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Cui-Jiao Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Yu-Ling Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Hua Lu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Hong-Yan Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Jian-Lin Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China
| | - Chun-Yu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China.
| | - Wen-Zheng Sun
- Department of Pathology, Qilu Hospital, Shandong University, Shandong, China.
| | - Xiao-Fei Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, No. 8 Da Xue Road, Yichang City, Hubei Province, China.
| |
Collapse
|
15
|
Kellish PC, Marsic D, Crosson SM, Choudhury S, Scalabrino ML, Strang CE, Hill J, McCullough KT, Peterson JJ, Fajardo D, Gupte S, Makal V, Kondratov O, Kondratova L, Iyer S, Witherspoon CD, Gamlin PD, Zolotukhin S, Boye SL, Boye SE. Intravitreal injection of a rationally designed AAV capsid library in non-human primate identifies variants with enhanced retinal transduction and neutralizing antibody evasion. Mol Ther 2023; 31:3441-3456. [PMID: 37814449 PMCID: PMC10727955 DOI: 10.1016/j.ymthe.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.
Collapse
Affiliation(s)
- Patrick C Kellish
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Damien Marsic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sean M Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Shreyasi Choudhury
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Miranda L Scalabrino
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Christianne E Strang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Julie Hill
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - K Tyler McCullough
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - James J Peterson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siddhant Gupte
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Victoria Makal
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Liudmyla Kondratova
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siva Iyer
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - C Douglas Witherspoon
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Paul D Gamlin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sanford L Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
16
|
Theuerkauf SA, Herrera-Carrillo E, John F, Zinser LJ, Molina MA, Riechert V, Thalheimer FB, Börner K, Grimm D, Chlanda P, Berkhout B, Buchholz CJ. AAV vectors displaying bispecific DARPins enable dual-control targeted gene delivery. Biomaterials 2023; 303:122399. [PMID: 37992599 PMCID: PMC10721713 DOI: 10.1016/j.biomaterials.2023.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Precise delivery of genes to therapy-relevant cells is crucial for in vivo gene therapy. Receptor-targeting as prime strategy for this purpose is limited to cell types defined by a single cell-surface marker. Many target cells are characterized by combinations of more than one marker, such as the HIV reservoir cells. Here, we explored the tropism of adeno-associated viral vectors (AAV2) displaying designed ankyrin repeat proteins (DARPins) mono- and bispecific for CD4 and CD32a. Cryo-electron tomography revealed an unaltered capsid structure in the presence of DARPins. Surprisingly, bispecific AAVs transduced CD4/CD32a double-positive cells at much higher efficiencies than single-positive cells, even if present in low amounts in cell mixtures or human blood. This preference was confirmed when vector particles were systemically administered into mice. Cell trafficking studies revealed an increased cell entry rate for bispecific over monospecific AAVs. When equipped with an HIV genome-targeting CRISPR/Cas cassette, the vectors prevented HIV replication in T cell cultures. The data provide proof-of-concept for high-precision gene delivery through tandem-binding regions on AAV. Reminiscent of biological products following Boolean logic AND gating, the data suggest a new option for receptor-targeted vectors to improve the specificity and safety of in vivo gene therapy.
Collapse
Affiliation(s)
- Samuel A Theuerkauf
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Fabian John
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Luca J Zinser
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Vanessa Riechert
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Frederic B Thalheimer
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Dirk Grimm
- BioQuant, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg, Germany; Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University Hospital, Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Petr Chlanda
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany; Schaller Research Groups, Heidelberg University, Heidelberg, Germany
| | | | - Christian J Buchholz
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.
| |
Collapse
|
17
|
Kwak G, Lee D, Suk JS. Advanced approaches to overcome biological barriers in respiratory and systemic routes of administration for enhanced nucleic acid delivery to the lung. Expert Opin Drug Deliv 2023; 20:1531-1552. [PMID: 37946533 PMCID: PMC10872418 DOI: 10.1080/17425247.2023.2282535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Numerous delivery strategies, primarily novel nucleic acid delivery carriers, have been developed and explored to enable therapeutically relevant lung gene therapy. However, its clinical translation is yet to be achieved despite over 30 years of efforts, which is attributed to the inability to overcome a series of biological barriers that hamper efficient nucleic acid transfer to target cells in the lung. AREAS COVERED This review is initiated with the fundamentals of nucleic acid therapy and a brief overview of previous and ongoing efforts on clinical translation of lung gene therapy. We then walk through the nature of biological barriers encountered by nucleic acid carriers administered via respiratory and/or systemic routes. Finally, we introduce advanced strategies developed to overcome those barriers to achieve therapeutically relevant nucleic acid delivery efficiency in the lung. EXPERT OPINION We are now stepping close to the clinical translation of lung gene therapy, thanks to the discovery of novel delivery strategies that overcome biological barriers via comprehensive preclinical studies. However, preclinical findings should be cautiously interpreted and validated to ultimately realize meaningful therapeutic outcomes with newly developed delivery strategies in humans. In particular, individual strategies should be selected, tailored, and implemented in a manner directly relevant to specific therapeutic applications and goals.
Collapse
Affiliation(s)
- Gijung Kwak
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daiheon Lee
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
19
|
Meumann N, Cabanes-Creus M, Ertelt M, Navarro RG, Lucifora J, Yuan Q, Nien-Huber K, Abdelrahman A, Vu XK, Zhang L, Franke AC, Schmithals C, Piiper A, Vogt A, Gonzalez-Carmona M, Frueh JT, Ullrich E, Meuleman P, Talbot SR, Odenthal M, Ott M, Seifried E, Schoeder CT, Schwäble J, Lisowski L, Büning H. Adeno-associated virus serotype 2 capsid variants for improved liver-directed gene therapy. Hepatology 2023; 77:802-815. [PMID: 35976053 PMCID: PMC9936986 DOI: 10.1002/hep.32733] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Current liver-directed gene therapies look for adeno-associated virus (AAV) vectors with improved efficacy. With this background, capsid engineering is explored. Whereas shuffled capsid library screenings have resulted in potent liver targeting variants with one first vector in human clinical trials, modifying natural serotypes by peptide insertion has so far been less successful. Here, we now report on two capsid variants, MLIV.K and MLIV.A, both derived from a high-throughput in vivo AAV peptide display selection screen in mice. APPROACH AND RESULTS The variants transduce primary murine and human hepatocytes at comparable efficiencies, a valuable feature in clinical development, and show significantly improved liver transduction efficacy, thereby allowing a dose reduction, and outperform parental AAV2 and AAV8 in targeting human hepatocytes in humanized mice. The natural heparan sulfate proteoglycan binding ability is markedly reduced, a feature that correlates with improved hepatocyte transduction. A further property that might contribute to the improved transduction efficacy is the lower capsid melting temperature. Peptide insertion also caused a moderate change in sensitivity to human sera containing anti-AAV2 neutralizing antibodies, revealing the impact of epitopes located at the basis of the AAV capsid protrusions. CONCLUSIONS In conclusion, MLIV.K and MLIV.A are AAV peptide display variants selected in immunocompetent mice with improved hepatocyte tropism and transduction efficiency. Because these features are maintained across species, MLIV variants provide remarkable potential for translation of therapeutic approaches from mice to men.
Collapse
Affiliation(s)
- Nadja Meumann
- Institute of Experimental Hematology , Hannover Medical School , Hannover , Germany.,Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit , Children's Medical Research Institute , The University of Sydney , Sydney , New South Wales , Australia
| | - Moritz Ertelt
- Institute for Drug Discovery , University Leipzig Medical School , Leipzig , Germany.,Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI , Dresden/Leipzig , Germany
| | - Renina Gale Navarro
- Translational Vectorology Research Unit , Children's Medical Research Institute , The University of Sydney , Sydney , New South Wales , Australia
| | - Julie Lucifora
- Cancer Research Center of Lyon , Institut National de la Santé et la Recherche Médicale , Lyon , France
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, and Endocrinology , Hannover Medical School , Hannover , Germany.,Twincore Centre for Experimental and Clinical Infection Research , Hannover , Germany
| | - Karin Nien-Huber
- Institute for Transfusion Medicine and Immunohematology , Goethe University Hospital Medical School , German Red Cross Blood Donor Service , Frankfurt , Germany
| | - Ahmed Abdelrahman
- Institute for Transfusion Medicine and Immunohematology , Goethe University Hospital Medical School , German Red Cross Blood Donor Service , Frankfurt , Germany
| | - Xuan-Khang Vu
- Institute of Experimental Hematology , Hannover Medical School , Hannover , Germany
| | - Liang Zhang
- Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,Institute of Pathology , University Hospital Cologne , Cologne , Germany
| | - Ann-Christin Franke
- Institute of Experimental Hematology , Hannover Medical School , Hannover , Germany
| | - Christian Schmithals
- Department of Internal Medicine I , University Hospital Frankfurt , Frankfurt , Germany
| | - Albrecht Piiper
- Department of Internal Medicine I , University Hospital Frankfurt , Frankfurt , Germany
| | - Annabelle Vogt
- Department of Internal Medicine I , University Hospital Bonn , Bonn , Germany
| | | | - Jochen T Frueh
- Experimental Immunology , Children's University Hospital , Goethe University Frankfurt , Frankfurt am Main , Germany
| | - Evelyn Ullrich
- Experimental Immunology , Children's University Hospital , Goethe University Frankfurt , Frankfurt am Main , Germany
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases , Faculty of Medicine and Health Sciences , Ghent University , Ghent , Belgium
| | - Steven R Talbot
- Institute for Laboratory Animal Science , Hannover Medical School , Hannover , Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,Institute of Pathology , University Hospital Cologne , Cologne , Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, and Endocrinology , Hannover Medical School , Hannover , Germany.,Twincore Centre for Experimental and Clinical Infection Research , Hannover , Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology , Goethe University Hospital Medical School , German Red Cross Blood Donor Service , Frankfurt , Germany
| | - Clara T Schoeder
- Institute for Drug Discovery , University Leipzig Medical School , Leipzig , Germany
| | - Joachim Schwäble
- Institute for Transfusion Medicine and Immunohematology , Goethe University Hospital Medical School , German Red Cross Blood Donor Service , Frankfurt , Germany
| | - Leszek Lisowski
- Translational Vectorology Research Unit , Children's Medical Research Institute , The University of Sydney , Sydney , New South Wales , Australia.,Military Institute of Medicine , Laboratory of Molecular Oncology and Innovative Therapies , Warsaw , Poland
| | - Hildegard Büning
- Institute of Experimental Hematology , Hannover Medical School , Hannover , Germany.,Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany
| |
Collapse
|
20
|
Ghauri MS, Ou L. AAV Engineering for Improving Tropism to the Central Nervous System. BIOLOGY 2023; 12:186. [PMID: 36829465 PMCID: PMC9953251 DOI: 10.3390/biology12020186] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Adeno-associated virus (AAV) is a non-pathogenic virus that mainly infects primates with the help of adenoviruses. AAV is being widely used as a delivery vector for in vivo gene therapy, as evidenced by five currently approved drugs and more than 255 clinical trials across the world. Due to its relatively low immunogenicity and toxicity, sustained efficacy, and broad tropism, AAV holds great promise for treating many indications, including central nervous system (CNS), ocular, muscular, and liver diseases. However, low delivery efficiency, especially for the CNS due to the blood-brain barrier (BBB), remains a significant challenge for more clinical application of AAV gene therapy. Thus, there is an urgent need for utilizing AAV engineering to discover next-generation capsids with improved properties, e.g., enhanced BBB penetrance, lower immunogenicity, and higher packaging efficiency. AAV engineering methods, including directed evolution, rational design, and in silico design, have been developed, resulting in the discovery of novel capsids (e.g., PhP.B, B10, PAL1A/B/C). In this review, we discuss key studies that identified engineered CNS capsids and/or established methodological improvements. Further, we also discussed important issues that need to be addressed, including cross-species translatability, cell specificity, and modular engineering to improve multiple properties simultaneously.
Collapse
Affiliation(s)
- Muhammad S. Ghauri
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA
| | - Li Ou
- Genemagic Biosciences, Media, PA 19086, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|
21
|
Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, Williams PA, Osborne A. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 2023:10.1038/s41434-022-00380-z. [PMID: 36635457 DOI: 10.1038/s41434-022-00380-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Elise Laperrousaz
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Prague, Czech Republic
| | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
22
|
Zinn E, Unzu C, Schmit PF, Turunen HT, Zabaleta N, Sanmiguel J, Fieldsend A, Bhatt U, Diop C, Merkel E, Gurrala R, Peacker B, Rios C, Messemer K, Santos J, Estelien R, Andres-Mateos E, Wagers AJ, Tipper C, Vandenberghe LH. Ancestral library identifies conserved reprogrammable liver motif on AAV capsid. Cell Rep Med 2022; 3:100803. [PMID: 36327973 PMCID: PMC9729830 DOI: 10.1016/j.xcrm.2022.100803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/18/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Gene therapy is emerging as a modality in 21st-century medicine. Adeno-associated viral (AAV) gene transfer is a leading technology to achieve efficient and durable expression of a therapeutic transgene. However, the structural complexity of the capsid has constrained efforts to engineer the particle toward improved clinical safety and efficacy. Here, we generate a curated library of barcoded AAVs with mutations across a variety of functionally relevant motifs. We then screen this library in vitro and in vivo in mice and nonhuman primates, enabling a broad, multiparametric assessment of every vector within the library. Among the results, we note a single residue that modulates liver transduction across all interrogated models while preserving transduction in heart and skeletal muscles. Moreover, we find that this mutation can be grafted into AAV9 and leads to profound liver detargeting while retaining muscle transduction-a finding potentially relevant to preventing hepatoxicities seen in clinical studies.
Collapse
Affiliation(s)
- Eric Zinn
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Carmen Unzu
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pauline F Schmit
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Heikki T Turunen
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Julio Sanmiguel
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Allegra Fieldsend
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Urja Bhatt
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Cheikh Diop
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Erin Merkel
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Rakesh Gurrala
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Bryan Peacker
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Rios
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Messemer
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Santos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reynette Estelien
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Amy J Wagers
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Joslin Diabetes Center, Boston, MA 02215, USA
| | - Christopher Tipper
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
23
|
Weinmann J, Söllner J, Abele S, Zimmermann G, Zuckschwerdt K, Mayer C, Danner-Liskus J, Peltzer A, Schuler M, Lamla T, Strobel B. Identification of Broadly Applicable Adeno-Associated Virus Vectors by Systematic Comparison of Commonly Used Capsid Variants In Vitro. Hum Gene Ther 2022; 33:1197-1212. [PMID: 36097758 PMCID: PMC9700356 DOI: 10.1089/hum.2022.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adeno-associated viruses (AAVs) represent highly attractive gene therapy vectors and potent research tools for the modulation of gene expression in animal models or difficult-to-transfect cell cultures. Engineered variants, comprising chimeric, mutated, or peptide-inserted capsids, have strongly broadened the utility of AAVs by altering cellular tropism, enabling immune evasion, or increasing transduction efficiency. In this work, the performance of 50 of the most used, predominantly published, AAVs was compared on several primary cells, cell lines, and induced pluripotent stem cell-derived models from different organs, including the adipose tissue, liver, lung, brain, and eyes. To identify the most efficient capsids for each cell type, self-complementary AAVs were standardized by digital polymerase chain reaction, arrayed on 96-well plates, and screened using high-content imaging. To enable best use of the data, all results are also provided in a web app. The utility of one selected AAV variant is further exemplified in a liver fibrosis assay based on primary hepatic stellate cells, where it successfully reversed a small interfering RNA (siRNA)-induced phenotype. Most importantly, our comparative analysis revealed that a subselection of only five AAV variants (AAV2.NN, AAV9-SLRSPPS, AAV6.2, AAV6TM, and AAV1P5) enabled efficient transduction of all tested cell types and markedly outperformed other well-established capsids, such as AAV2-7m8. These findings suggest that a core panel comprising these five capsid variants is a universally applicable and sufficient tool to identify potent AAVs for gene expression modulation in cellular systems.
Collapse
Affiliation(s)
- Jonas Weinmann
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Julia Söllner
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sarah Abele
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gudrun Zimmermann
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kai Zuckschwerdt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christine Mayer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jenny Danner-Liskus
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Alexander Peltzer
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Michael Schuler
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Thorsten Lamla
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benjamin Strobel
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany,Correspondence: Dr. Benjamin Strobel, Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riss, Germany.
| |
Collapse
|
24
|
Liang W, Chen Q, Cheng S, Wei R, Li Y, Yao C, Ouyang Z, Kang D, Chen A, Liu Z, Li K, Bai X, Li Q, Huang B. Skin chronological aging drives age-related bone loss via secretion of cystatin-A. NATURE AGING 2022; 2:906-922. [PMID: 37118283 DOI: 10.1038/s43587-022-00285-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/25/2022] [Indexed: 04/30/2023]
Abstract
Although clinical evidence has indicated an association between skin atrophy and bone loss during aging, their causal relationship and the underlying mechanisms are unknown. Here we show that premature skin aging drives bone loss in mice. We further identify that cystatin-A (Csta), a keratinocyte-enriched secreted factor, mediates the effect of skin on bone. Keratinocyte-derived Csta binds the receptor for activated C-kinase 1 in osteoblast and osteoclast progenitors, thus promoting their proliferation but inhibiting osteoclast differentiation. Csta secretion decreases with skin aging in both mice and humans, thereby causing senile osteoporosis by differentially decreasing the numbers of osteoblasts and osteoclasts. In contrast, topical application of calcipotriol stimulates Csta production in the epidermis and alleviates osteoporosis. These results reveal a mode of endocrine regulation of bone metabolism in the skin, and identify Csta as an epidermally derived hormone linking skin aging to age-related bone loss. Enhancers of skin Csta levels could serve as a potential topical drug for treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Wenquan Liang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingjing Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shasha Cheng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ruiming Wei
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuejun Li
- Department of Orthopedics, The Second People's Hospital of Panyu District, Guangzhou, China
| | - Chenfeng Yao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhicong Ouyang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dawei Kang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ajuan Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Becker J, Fakhiri J, Grimm D. Fantastic AAV Gene Therapy Vectors and How to Find Them—Random Diversification, Rational Design and Machine Learning. Pathogens 2022; 11:pathogens11070756. [PMID: 35890005 PMCID: PMC9318892 DOI: 10.3390/pathogens11070756] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Parvoviruses are a diverse family of small, non-enveloped DNA viruses that infect a wide variety of species, tissues and cell types. For over half a century, their intriguing biology and pathophysiology has fueled intensive research aimed at dissecting the underlying viral and cellular mechanisms. Concurrently, their broad host specificity (tropism) has motivated efforts to develop parvoviruses as gene delivery vectors for human cancer or gene therapy applications. While the sum of preclinical and clinical data consistently demonstrates the great potential of these vectors, these findings also illustrate the importance of enhancing and restricting in vivo transgene expression in desired cell types. To this end, major progress has been made especially with vectors based on Adeno-associated virus (AAV), whose capsid is highly amenable to bioengineering, repurposing and expansion of its natural tropism. Here, we provide an overview of the state-of-the-art approaches to create new AAV variants with higher specificity and efficiency of gene transfer in on-target cells. We first review traditional and novel directed evolution approaches, including high-throughput screening of AAV capsid libraries. Next, we discuss programmable receptor-mediated targeting with a focus on two recent technologies that utilize high-affinity binders. Finally, we highlight one of the latest stratagems for rational AAV vector characterization and optimization, namely, machine learning, which promises to facilitate and accelerate the identification of next-generation, safe and precise gene delivery vehicles.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), BioQuant, 69120 Heidelberg, Germany;
- Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Fakhiri
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
- Correspondence: (J.F.); (D.G.); Tel.: +49-174-3486203 (J.F.); +49-6221-5451331 (D.G.)
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), BioQuant, 69120 Heidelberg, Germany;
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (J.F.); (D.G.); Tel.: +49-174-3486203 (J.F.); +49-6221-5451331 (D.G.)
| |
Collapse
|
26
|
Meyer NL, Chapman MS. Adeno-associated virus (AAV) cell entry: structural insights. Trends Microbiol 2022; 30:432-451. [PMID: 34711462 PMCID: PMC11225776 DOI: 10.1016/j.tim.2021.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Adeno-associated virus (AAV) is the leading vector in emerging treatments of inherited diseases. Higher transduction efficiencies and cellular specificity are required for broader clinical application, motivating investigations of virus-host molecular interactions during cell entry. High-throughput methods are identifying host proteins more comprehensively, with subsequent molecular studies revealing unanticipated complexity and serotype specificity. Cryogenic electron microscopy (cryo-EM) provides a path towards structural details of these sometimes heterogeneous virus-host complexes, and is poised to illuminate more fully the steps in entry. Here presented, is progress in understanding the distinct steps of glycan attachment, and receptor-mediated entry/trafficking. Comparison with structures of antibody complexes provides new insights on immune neutralization with implications for the design of improved gene therapy vectors.
Collapse
Affiliation(s)
- Nancy L Meyer
- Pacific Northwest Cryo-EM Center, Oregon Health and Science University (OHSU) Center for Spatial Systems Biomedicine, Portland, OR, USA
| | - Michael S Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
27
|
Bauer A, Puglisi M, Nagl D, Schick JA, Werner T, Klingl A, El Andari J, Hornung V, Kessler H, Götz M, Grimm D, Brack‐Werner R. Molecular Signature of Astrocytes for Gene Delivery by the Synthetic Adeno-Associated Viral Vector rAAV9P1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104979. [PMID: 35398994 PMCID: PMC9165502 DOI: 10.1002/advs.202104979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/24/2022] [Indexed: 06/01/2023]
Abstract
Astrocytes have crucial functions in the central nervous system (CNS) and are major players in many CNS diseases. Research on astrocyte-centered diseases requires efficient and well-characterized gene transfer vectors. Vectors derived from the Adeno-associated virus serotype 9 (AAV9) target astrocytes in the brains of rodents and nonhuman primates. A recombinant (r) synthetic peptide-displaying AAV9 variant, rAAV9P1, that efficiently and selectively transduces cultured human astrocytes, has been described previously. Here, it is shown that rAAV9P1 retains astrocyte-targeting properties upon intravenous injection in mice. Detailed analysis of putative receptors on human astrocytes shows that rAAV9P1 utilizes integrin subunits αv, β8, and either β3 or β5 as well as the AAV receptor AAVR. This receptor pattern is distinct from that of vectors derived from wildtype AAV2 or AAV9. Furthermore, a CRISPR/Cas9 genome-wide knockout screening revealed the involvement of several astrocyte-associated intracellular signaling pathways in the transduction of human astrocytes by rAAV9P1. This study delineates the unique receptor and intracellular pathway signatures utilized by rAAV9P1 for targeting human astrocytes. These results enhance the understanding of the transduction biology of synthetic rAAV vectors for astrocytes and can promote the development of advanced astrocyte-selective gene delivery vehicles for research and clinical applications.
Collapse
Affiliation(s)
- Amelie Bauer
- Institute of VirologyHelmholtz Center MunichNeuherberg85764Germany
| | - Matteo Puglisi
- Physiological GenomicsBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
- Institute for Stem Cell ResearchHelmholtz Center MunichBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
| | - Dennis Nagl
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐UniversitätMunich81377Germany
| | - Joel A Schick
- Institute of Molecular Toxicology and PharmacologyGenetics and Cellular Engineering GroupHelmholtz Center MunichNeuherberg85764Germany
| | - Thomas Werner
- Department of Computational Medicine and Bioinformatics & Department of Internal MedicineUniversity of MichiganAnn ArborMI48109USA
| | - Andreas Klingl
- Plant Development and Electron MicroscopyDepartment Biology IBiocenterLudwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
| | - Jihad El Andari
- BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg UniversityHeidelberg69120Germany
- Department of Infectious DiseasesVirologyMedical FacultyHeidelberg UniversityHeidelberg69120Germany
| | - Veit Hornung
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐UniversitätMunich81377Germany
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM)Department ChemieTechnische Universität MünchenGarching85748Germany
| | - Magdalena Götz
- Physiological GenomicsBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
- Institute for Stem Cell ResearchHelmholtz Center MunichBiomedical Center (BMC)Ludwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
- Excellence Cluster of Systems Neurology (SYNERGY)Munich81377Germany
| | - Dirk Grimm
- BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg UniversityHeidelberg69120Germany
- Department of Infectious DiseasesVirologyMedical FacultyHeidelberg UniversityHeidelberg69120Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK)Partner site HeidelbergHeidelberg69120Germany
| | - Ruth Brack‐Werner
- Institute of VirologyHelmholtz Center MunichNeuherberg85764Germany
- Department of Biology IILudwig‐Maximilians‐Universität (LMU)Planegg‐Martinsried82152Germany
| |
Collapse
|
28
|
Belova L, Kochergin‐Nikitsky K, Erofeeva A, Lavrov A, Smirnikhina S. Approaches to purification and concentration of rAAV vectors for gene therapy. Bioessays 2022; 44:e2200019. [DOI: 10.1002/bies.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
|
29
|
Zolotukhin S, Vandenberghe L. AAV capsid design: A Goldilocks challenge. Trends Mol Med 2022; 28:183-193. [DOI: 10.1016/j.molmed.2022.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
|
30
|
Hamann MV, Beschorner N, Vu XK, Hauber I, Lange UC, Traenkle B, Kaiser PD, Foth D, Schneider C, Büning H, Rothbauer U, Hauber J. Improved targeting of human CD4+ T cells by nanobody-modified AAV2 gene therapy vectors. PLoS One 2021; 16:e0261269. [PMID: 34928979 PMCID: PMC8687595 DOI: 10.1371/journal.pone.0261269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) are considered non-pathogenic in humans, and thus have been developed into powerful vector platforms for in vivo gene therapy. Although the various AAV serotypes display broad tropism, frequently infecting multiple tissues and cell types, vectors for specific and efficient targeting of human CD4+ T lymphocytes are largely missing. In fact, a substantial translational bottleneck exists in the field of therapeutic gene transfer that would require in vivo delivery into peripheral disease-related lymphocytes for subsequent genome editing. To solve this issue, capsid modification for retargeting AAV tropism, and in turn improving vector potency, is considered a promising strategy. Here, we genetically modified the minor AAV2 capsid proteins, VP1 and VP2, with a set of novel nanobodies with high-affinity for the human CD4 receptor. These novel vector variants demonstrated improved targeting of human CD4+ cells, including primary human peripheral blood mononuclear cells (PBMC) and purified human CD4+ T lymphocytes. Thus, the technical approach presented here provides a promising strategy for developing specific gene therapy vectors, particularly targeting disease-related peripheral blood CD4+ leukocytes.
Collapse
Affiliation(s)
- Martin V. Hamann
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| | - Niklas Beschorner
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| | - Xuan-Khang Vu
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - Ilona Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Ulrike C. Lange
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bjoern Traenkle
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
| | - Philipp D. Kaiser
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
| | - Daniel Foth
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
| | - Hildegard Büning
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - Ulrich Rothbauer
- Natural and Medical Science Institute at the University Tübingen (NMI), Reutlingen, Germany
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Reutlingen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology (HPI), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg – Lübeck – Borstel – Riems, Hamburg, Germany
| |
Collapse
|
31
|
Bennett A, Hull J, Jolinon N, Tordo J, Moss K, Binns E, Mietzsch M, Hagemann C, Linden RM, Serio A, Chipman P, Sousa D, Broecker F, Seeberger P, Henckaerts E, McKenna R, Agbandje-McKenna M. Comparative structural, biophysical, and receptor binding study of true type and wild type AAV2. J Struct Biol 2021; 213:107795. [PMID: 34509611 PMCID: PMC9918372 DOI: 10.1016/j.jsb.2021.107795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 01/25/2023]
Abstract
Adeno-associated viruses (AAV) are utilized as gene transfer vectors in the treatment of monogenic disorders. A variant, rationally engineered based on natural AAV2 isolates, designated AAV-True Type (AAV-TT), is highly neurotropic compared to wild type AAV2 in vivo, and vectors based on it, are currently being evaluated for central nervous system applications. AAV-TT differs from AAV2 by 14 amino acids, including R585S and R588T, two residues previously shown to be essential for heparan sulfate binding of AAV2. The capsid structures of AAV-TT and AAV2 visualized by cryo-electron microscopy at 3.4 and 3.0 Å resolution, respectively, highlighted structural perturbations at specific amino acid differences. Differential scanning fluorimetry (DSF) performed at different pH conditions demonstrated that the melting temperature (Tm) of AAV2 was consistently ∼5 °C lower than AAV-TT, but both showed maximal stability at pH 5.5, corresponding to the pH in the late endosome, proposed as required for VP1u externalization to facilitate endosomal escape. Reintroduction of arginines at positions 585 and 588 in AAV-TT caused a reduction in Tm, demonstrating that the lack of basic amino acids at these positions are associated with capsid stability. These results provide structural and thermal annotation of AAV2/AAV-TT residue differences, that account for divergent cell binding, transduction, antigenic reactivity, and transduction of permissive tissues between the two viruses. Specifically, these data indicate that AAV-TT may not utilize a glycan receptor mediated pathway to enter cells and may have lower antigenic properties as compared to AAV2.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joshua Hull
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nelly Jolinon
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | | | - Katie Moss
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Enswert Binns
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mario Mietzsch
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cathleen Hagemann
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE19RT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | | | - Andrea Serio
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE19RT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Chipman
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Duncan Sousa
- Biological Science Imaging Resource, Department of Biological Sciences, Florida State University, 89 Chieftan Way Rm 119, Tallahassee, FL 32306, USA
| | - Felix Broecker
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Peter Seeberger
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium.
| | - Robert McKenna
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
32
|
Mietzsch M, Yu JC, Hsi J, Chipman P, Broecker F, Fuming Z, Linhardt RJ, Seeberger PH, Heilbronn R, McKenna R, Agbandje-McKenna M. Structural Study of Aavrh.10 Receptor and Antibody Interactions. J Virol 2021; 95:e0124921. [PMID: 34549984 PMCID: PMC8577363 DOI: 10.1128/jvi.01249-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are one of the leading tools for the delivery of therapeutic genes in human gene therapy applications. For a successful transfer of their payload, the AAV vectors have to circumvent potential preexisting neutralizing host antibodies and bind to the receptors of the target cells. Both of these aspects have not been structurally analyzed for AAVrh.10. Here, cryo-electron microscopy and three-dimensional image reconstruction were used to map the binding site of sulfated N-acetyllactosamine (LacNAc; previously shown to bind AAVrh.10) and a series of four monoclonal antibodies (MAbs). LacNAc was found to bind to a pocket located on the side of the 3-fold capsid protrusion that is mostly conserved to AAV9 and equivalent to its galactose-binding site. As a result, AAVrh.10 was also shown to be able to bind to cell surface glycans with terminal galactose. For the antigenic characterization, it was observed that several anti-AAV8 MAbs cross-react with AAVrh.10. The binding sites of these antibodies were mapped to the 3-fold capsid protrusions. Based on these observations, the AAVrh.10 capsid surface was engineered to create variant capsids that escape these antibodies while maintaining infectivity. IMPORTANCE Gene therapy vectors based on adeno-associated virus rhesus isolate 10 (AAVrh.10) have been used in several clinical trials to treat monogenetic diseases. However, compared to other AAV serotypes little is known about receptor binding and antigenicity of the AAVrh.10 capsid. Particularly, preexisting neutralizing antibodies against capsids are an important challenge that can hamper treatment efficiency. This study addresses both topics and identifies critical regions of the AAVrh.10 capsid for receptor and antibody binding. The insights gained were utilized to generate AAVrh.10 variants capable of evading known neutralizing antibodies. The findings of this study could further aid the utilization of AAVrh.10 vectors in clinical trials and help the approval of the subsequent biologics.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jennifer C. Yu
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Felix Broecker
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Zhang Fuming
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Regine Heilbronn
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
A Novel Attenuated Enterovirus A71 Mutant with VP1-V238A,K244R Exhibits Reduced Efficiency of Cell Entry/Exit and Augmented Binding Affinity to Sulfated Glycans. J Virol 2021; 95:e0105521. [PMID: 34468173 PMCID: PMC8549518 DOI: 10.1128/jvi.01055-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major etiological agents of hand, foot, and mouth disease (HFMD), and infection occasionally leads to fatal neurological complications in children. However, only inactivated whole-virus vaccines against EV-A71 are commercially available in Mainland China. Furthermore, the mechanisms underlying the infectivity and pathogenesis of EV-A71 remain to be better understood. By adaptation of an EV-A71 B5 strain in monkey Vero cells in the presence of brilliant black BN (E151), an anti-EV-A71 agent, a double mutant with VP1-V238A,K244R emerged whose infection was enhanced by E151. The growth of the reverse genetics (RG) mutant RG/B5-VP1-V238A,K244R (RG/B5-AR) was promoted by E151 in Vero cells but inhibited in other human and murine cells, while its parental wild type, RG/B5-wt, was strongly prevented by E151 from infection in all tested cells. In the absence of E151, RG/B5-AR exhibited defective cell entry/exit, resulting in reduced viral transmission and growth in vitro. It had augmented binding affinity to sulfated glycans, cells, and tissue/organs, which probably functioned as decoys to restrict viral dissemination and infection. RG/B5-AR was also attenuated, with a 355 times higher 50% lethal dose (LD50) and a shorter timing of virus clearance than those of RG/B5-wt in suckling AG129 mice. However, it remained highly immunogenic in adult AG129 mice and protected their suckling mice from lethal EV-A71 challenges through maternal neutralizing antibodies. Overall, discovery of the attenuated mutant RG/B5-AR contributes to better understanding of virulence determinants of EV-A71 and to further development of novel vaccines against EV-A71. IMPORTANCE Enterovirus A71 (EV-A71) is highly contagious in children and has been responsible for thousands of deaths in Asia-Pacific region since the 1990s. Unfortunately, the virulence determinants and pathogenesis of EV-A71 are not fully clear. We discovered that a novel EV-A71 mutant, VP1-V238A,K244R, showed growth attenuation with reduced efficiency of cell entry/exit. In the Vero cell line, which has been approved for manufacturing EV-A71 vaccines, the growth defects of the mutant were compensated by a food dye, brilliant black BN. The mutant also showed augmented binding affinity to sulfated glycans and other cellular components, which probably restricted viral infection and dissemination. Therefore, it was virulence attenuated in a mouse model but still retained its immunogenicity. Our findings suggest the mutant as a promising vaccine candidate against EV-A71 infection.
Collapse
|
34
|
Macdonald J, Marx J, Büning H. Capsid-Engineering for Central Nervous System-Directed Gene Therapy with Adeno-Associated Virus Vectors. Hum Gene Ther 2021; 32:1096-1119. [PMID: 34662226 DOI: 10.1089/hum.2021.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Closing the gap in knowledge on the cause of neurodegenerative disorders is paving the way toward innovative treatment strategies, among which gene therapy has emerged as a top candidate. Both conventional gene therapy and genome editing approaches are being developed, and a great number of human clinical trials are ongoing. Already 2 years ago, the first gene therapy for a neurodegenerative disease, spinal muscular atrophy type 1 (SMA1), obtained market approval. To realize such innovative strategies, gene therapy delivery tools are key assets. Here, we focus on recombinant adeno-associated virus (AAV) vectors and report on strategies to improve first-generation vectors. Current efforts focus on the viral capsid to modify the host-vector interaction aiming at increasing the efficacy of target cell transduction, at simplifying vector administration, and at reducing the risk of vector dose-related side effects.
Collapse
Affiliation(s)
- Josephine Macdonald
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jennifer Marx
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Liu YB, Xu BC, Chen YT, Yuan X, Liu JY, Liu T, Du GZ, Jiang W, Yang Y, Zhu Y, Chen LJ, Ding BS, Wei YQ, Yang L. Directed evolution of AAV accounting for long-term and enhanced transduction of cardiovascular endothelial cells in vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:148-161. [PMID: 34485601 PMCID: PMC8397840 DOI: 10.1016/j.omtm.2021.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
Cardiac endothelial cells (ECs) are important targets for cardiovascular gene therapy. However, the approach of stably transducing ECs in vivo using different vectors, including adeno-associated virus (AAV), remains unexamined. Regarding this unmet need, two AAV libraries from DNA shuffling and random peptide display were simultaneously screened in a transgenic mouse model. Cardiac ECs were isolated by cell sorting for salvage of EC-targeting AAV. Two AAV variants, i.e., EC71 and EC73, enriched in cardiac EC, were further characterized for their tissue tropism. Both of them demonstrated remarkably enhanced transduction of cardiac ECs and reduced infection of liver ECs in comparison to natural AAVs after intravenous injection. Significantly, persistent transgene expression was maintained in mouse cardiac ECs in vivo for at least 4 months. The EC71 vector was selected for delivery of the endothelial nitric oxide synthase (eNOS) gene into cardiac ECs in a mouse model of myocardial infarction. Enhanced eNOS activity was observed in the mouse heart and lung, which was correlated with partially improved cardiac function. Taken together, two AAV capsids were evolved with more efficient transduction in cardiovascular endothelium in vivo, but their endothelial tropism might need to be further optimized for practical application to cardiac gene therapy.
Collapse
Affiliation(s)
- Y B Liu
- Department of Cardiology and Laboratory of Gene Therapy for Heart Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - B C Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y T Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - X Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - J Y Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - T Liu
- Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - G Z Du
- Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - W Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Y Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L J Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - B S Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Y Q Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L Yang
- Department of Cardiology and Laboratory of Gene Therapy for Heart Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Kuklik J, Michelfelder S, Schiele F, Kreuz S, Lamla T, Müller P, Park JE. Development of a Bispecific Antibody-Based Platform for Retargeting of Capsid Modified AAV Vectors. Int J Mol Sci 2021; 22:ijms22158355. [PMID: 34361120 PMCID: PMC8347852 DOI: 10.3390/ijms22158355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
A major limiting factor for systemically delivered gene therapies is the lack of novel tissue specific AAV (Adeno-associated virus) derived vectors. Bispecific antibodies can be used to redirect AAVs to specific target receptors. Here, we demonstrate that the insertion of a short linear epitope “2E3” derived from human proprotein-convertase subtilisin/kexin type 9 (PCSK9) into different surface loops of the VP capsid proteins can be used for AAV de-targeting from its natural receptor(s), combined with a bispecific antibody-mediated retargeting. We chose to target a set of distinct disease relevant membrane proteins—fibroblast activation protein (FAP), which is upregulated on activated fibroblasts within the tumor stroma and in fibrotic tissues, as well as programmed death-ligand 1 (PD-L1), which is strongly upregulated in many cancers. Upon incubation with a bispecific antibody recognizing the 2E3 epitope and FAP or PD-L1, the bispecific antibody/rAAV complex was able to selectively transduce receptor positive cells. In summary, we developed a novel, rationally designed vector retargeting platform that can target AAVs to a new set of cellular receptors in a modular fashion. This versatile platform may serve as a valuable tool to investigate the role of disease relevant cell types and basis for novel gene therapy approaches.
Collapse
Affiliation(s)
- Juliane Kuklik
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Stefan Michelfelder
- Division of Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany; (S.M.); (S.K.)
| | - Felix Schiele
- Division of Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Sebastian Kreuz
- Division of Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany; (S.M.); (S.K.)
- Boehringer Ingelheim Venture Fund GmbH, 55216 Ingelheim am Rhein, Germany;
| | - Thorsten Lamla
- Division of Drug Discovery Sciences Biberach, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Philipp Müller
- Boehringer Ingelheim Venture Fund GmbH, 55216 Ingelheim am Rhein, Germany;
| | - John E. Park
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
- Correspondence:
| |
Collapse
|
37
|
Large EE, Silveria MA, Zane GM, Weerakoon O, Chapman MS. Adeno-Associated Virus (AAV) Gene Delivery: Dissecting Molecular Interactions upon Cell Entry. Viruses 2021; 13:1336. [PMID: 34372542 PMCID: PMC8310307 DOI: 10.3390/v13071336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Human gene therapy has advanced from twentieth-century conception to twenty-first-century reality. The recombinant Adeno-Associated Virus (rAAV) is a major gene therapy vector. Research continues to improve rAAV safety and efficacy using a variety of AAV capsid modification strategies. Significant factors influencing rAAV transduction efficiency include neutralizing antibodies, attachment factor interactions and receptor binding. Advances in understanding the molecular interactions during rAAV cell entry combined with improved capsid modulation strategies will help guide the design and engineering of safer and more efficient rAAV gene therapy vectors.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO 65201, USA; (E.E.L.); (M.A.S.); (G.M.Z.); (O.W.)
| |
Collapse
|
38
|
Abstract
Adeno-associated viruses utilize different glycans and the AAV receptor (AAVR) for cellular attachment and entry. Directed evolution has yielded new AAV variants; however, structure-function correlates underlying their improved transduction are generally overlooked. Here, we report that infectious cycling of structurally diverse AAV surface loop libraries yields functionally distinct variants. Newly evolved variants show enhanced cellular binding, uptake, and transduction, but through distinct mechanisms. Using glycan-based and genome-wide CRISPR knockout screens, we discover that one AAV variant acquires the ability to recognize sulfated glycosaminoglycans, while another displays receptor switching from AAVR to integrin β1 (ITGB1). A previously evolved variant, AAVhum.8, preferentially utilizes the ITGB1 receptor over AAVR. Visualization of the AAVhum.8 capsid by cryoelectron microscopy at 2.49-Å resolution localizes the newly acquired integrin recognition motif adjacent to the AAVR footprint. These observations underscore the new finding that distinct AAV surface epitopes can be evolved to exploit different cellular receptors for enhanced transduction. IMPORTANCE Understanding how viruses interact with host cells through cell surface receptors is central to discovery and development of antiviral therapeutics, vaccines, and gene transfer vectors. Here, we demonstrate that distinct epitopes on the surface of adeno-associated viruses can be evolved by infectious cycling to recognize different cell surface carbohydrates and glycoprotein receptors and solve the three-dimensional structure of one such newly evolved AAV capsid, which provides a roadmap for designing viruses with improved attributes for gene therapy applications.
Collapse
|
39
|
Croze RH, Kotterman M, Burns CH, Schmitt CE, Quezada M, Schaffer D, Kirn D, Francis P. Viral Vector Technologies and Strategies: Improving on Nature. Int Ophthalmol Clin 2021; 61:59-89. [PMID: 34196318 PMCID: PMC8253506 DOI: 10.1097/iio.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Cabanes-Creus M, Hallwirth CV, Westhaus A, Ng BH, Liao SHY, Zhu E, Navarro RG, Baltazar G, Drouyer M, Scott S, Logan GJ, Santilli G, Bennett A, Ginn SL, McCaughan G, Thrasher AJ, Agbandje-McKenna M, Alexander IE, Lisowski L. Restoring the natural tropism of AAV2 vectors for human liver. Sci Transl Med 2021; 12:12/560/eaba3312. [PMID: 32908003 DOI: 10.1126/scitranslmed.aba3312] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/25/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
Recent clinical successes in gene therapy applications have intensified interest in using adeno-associated viruses (AAVs) as vectors for therapeutic gene delivery. Although prototypical AAV2 shows robust in vitro transduction of human hepatocyte-derived cell lines, it has not translated into an effective vector for liver-directed gene therapy in vivo. This is consistent with observations made in Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice with humanized livers, showing that AAV2 functions poorly in this xenograft model. Here, we derived naturally hepatotropic AAV capsid sequences from primary human liver samples. We demonstrated that capsid mutations, likely acquired as an unintentional consequence of tissue culture propagation, attenuated the intrinsic human hepatic tropism of natural AAV2 and related human liver AAV isolates. These mutations resulted in amino acid changes that increased binding to heparan sulfate proteoglycan (HSPG), which has been regarded as the primary cellular receptor mediating AAV2 infection of human hepatocytes. Propagation of natural AAV variants in vitro showed tissue culture adaptation with resulting loss of tropism for human hepatocytes. In vivo readaptation of the prototypical AAV2 in FRG mice with a humanized liver resulted in restoration of the intrinsic hepatic tropism of AAV2 through decreased binding to HSPG. Our results challenge the notion that high affinity for HSPG is essential for AAV2 entry into human hepatocytes and suggest that natural AAV capsids of human liver origin are likely to be more effective for liver-targeted gene therapy applications than culture-adapted AAV2.
Collapse
Affiliation(s)
- Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute and Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia.,Great Ormond Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Boaz H Ng
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H Y Liao
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children's Medical Research Institute and Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Grober Baltazar
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Matthieu Drouyer
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Gene Therapy Research Unit, Children's Medical Research Institute and Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute and Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Giorgia Santilli
- Great Ormond Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute and Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Geoff McCaughan
- Liver Injury and Cancer Program, Centenary Research Institute, A.W Morrow Gastroenterology and Liver Centre, Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, The University of Sydney, Sydney, NSW 2006, Australia
| | - Adrian J Thrasher
- Great Ormond Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney Medical School, Faculty of Medicine and Health, Westmead, NSW 2145, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia. .,Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia.,Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Centre, 24-100 Puławy, Poland
| |
Collapse
|
41
|
Hörner M, Jerez-Longres C, Hudek A, Hook S, Yousefi OS, Schamel WWA, Hörner C, Zurbriggen MD, Ye H, Wagner HJ, Weber W. Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors. SCIENCE ADVANCES 2021; 7:7/25/eabf0797. [PMID: 34134986 PMCID: PMC8208708 DOI: 10.1126/sciadv.abf0797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/04/2021] [Indexed: 05/15/2023]
Abstract
Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Carolina Jerez-Longres
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Anna Hudek
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sebastian Hook
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - O Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Wolfgang W A Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Cindy Hörner
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hanna J Wagner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. J Mol Med (Berl) 2021; 99:1057-1071. [PMID: 34021360 DOI: 10.1007/s00109-021-02086-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Gene therapy of genetically determined diseases, including some pathologies of the respiratory system, requires an efficient method for transgene delivery. Recombinant adeno-associated viral (rAAV) vectors are well studied and employed in gene therapy, as they are relatively simple and low immunogenic and able to efficiently transduce eukaryotic cells. To date, many natural and artificial (with modified capsids) AAV serotypes have been isolated, demonstrating preferential tropism toward different tissues and cells in accordance with the prevalent receptors on the cell surface. However, rAAV-mediated delivery is not strictly specific due to wide tropism of some viral serotypes. Thus, the development of the methods allowing modulating specificity of these vectors could be beneficial in some cases. This review describes various approaches for retargeting rAAV to respiratory cells, for example, using different types of capsid modifications and regulation of a transgene expression by tissue-specific promoters. Part of the review is devoted to the issues of transduction of stem and progenitor lung cells using AAV, which is a complicated task today.
Collapse
|
43
|
Knockout of the CMP-Sialic Acid Transporter SLC35A1 in Human Cell Lines Increases Transduction Efficiency of Adeno-Associated Virus 9: Implications for Gene Therapy Potency Assays. Cells 2021; 10:cells10051259. [PMID: 34069698 PMCID: PMC8160606 DOI: 10.3390/cells10051259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/04/2023] Open
Abstract
Recombinant adeno-associated viruses (AAV) have emerged as an important tool for gene therapy for human diseases. A prerequisite for clinical approval is an in vitro potency assay that can measure the transduction efficiency of each virus lot produced. The AAV serotypes are typical for gene therapy bind to different cell surface structures. The binding of AAV9 on the surface is mediated by terminal galactose residues present in the asparagine-linked carbohydrates in glycoproteins. However, such terminal galactose residues are rare in cultured cells. They are masked by sialic acid residues, which is an obstacle for the infection of many cell lines with AAV9 and the respective potency assays. The sialic acid residues can be removed by enzymatic digestion or chemical treatment. Still, such treatments are not practical for AAV9 potency assays since they may be difficult to standardize. In this study, we generated human cell lines (HEK293T and HeLa) that become permissive for AAV9 transduction after a knockout of the CMP–sialic acid transporter SLC35A1. Using the human aspartylglucosaminidase (AGA) gene, we show that these cell lines can be used as a model system for establishing potency assays for AAV9-based gene therapy approaches for human diseases.
Collapse
|
44
|
Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004018. [PMID: 33977059 PMCID: PMC8097373 DOI: 10.1002/advs.202004018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Indexed: 05/28/2023]
Abstract
Three recent approvals and over 100 ongoing clinical trials make adeno-associated virus (AAV)-based vectors the leading gene delivery vehicles in gene therapy. Pharmaceutical companies are investing in this small and nonpathogenic gene shuttle to increase the therapeutic portfolios within the coming years. This prospect of marking a new era in gene therapy has fostered both investigations of the fundamental AAV biology as well as engineering studies to enhance delivery vehicles. Driven by the high clinical potential, a new generation of synthetic-biologically engineered AAV vectors is on the rise. Concepts from synthetic biology enable the control and fine-tuning of vector function at different stages of cellular transduction and gene expression. It is anticipated that the emerging field of synthetic-biologically engineered AAV vectors can shape future gene therapeutic approaches and thus the design of tomorrow's gene delivery vectors. This review describes and discusses the recent trends in capsid and vector genome engineering, with particular emphasis on synthetic-biological approaches.
Collapse
Affiliation(s)
- Hanna J. Wagner
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Wilfried Weber
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 50Basel4056Switzerland
| |
Collapse
|
45
|
Effects of Altering HSPG Binding and Capsid Hydrophilicity on Retinal Transduction by AAV. J Virol 2021; 95:JVI.02440-20. [PMID: 33658343 PMCID: PMC8139652 DOI: 10.1128/jvi.02440-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) have recently emerged as the leading vector for retinal gene therapy. However, AAV vectors which are capable of achieving clinically relevant levels of transgene expression and widespread retinal transduction are still an unmet need. Using rationally designed AAV2-based capsid variants, we investigate the role of capsid hydrophilicity and hydrophobicity as it relates to retinal transduction. We show that hydrophilic, single amino acid (aa) mutations (V387R, W502H, E530K, L583R) in AAV2 negatively impact retinal transduction when heparan sulfate proteoglycan (HSPG) binding remains intact. Conversely, addition of hydrophobic point mutations to an HSPG binding deficient capsid (AAV2ΔHS) lead to increased retinal transduction in both mouse and macaque. Our top performing vector, AAV2(4pMut)ΔHS, achieved robust rod and cone photoreceptor (PR) transduction in macaque, especially in the fovea, and demonstrates the ability to spread laterally beyond the borders of the subretinal injection (SRI) bleb. This study both evaluates biophysical properties of AAV capsids that influence retinal transduction, and assesses the transduction and tropism of a novel capsid variant in a clinically relevant animal model.ImportanceRationally guided engineering of AAV capsids aims to create new generations of vectors with enhanced potential for human gene therapy. By applying rational design principles to AAV2-based capsids, we evaluated the influence of hydrophilic and hydrophobic amino acid (aa) mutations on retinal transduction as it relates to vector administration route. Through this approach we identified a largely deleterious relationship between hydrophilic aa mutations and canonical HSPG binding by AAV2-based capsids. Conversely, the inclusion of hydrophobic aa substitutions on a HSPG binding deficient capsid (AAV2ΔHS), generated a vector capable of robust rod and cone photoreceptor (PR) transduction. This vector AAV2(4pMut)ΔHS also demonstrates a remarkable ability to spread laterally beyond the initial subretinal injection (SRI) bleb, making it an ideal candidate for the treatment of retinal diseases which require a large area of transduction.
Collapse
|
46
|
Pavlou M, Schön C, Occelli LM, Rossi A, Meumann N, Boyd RF, Bartoe JT, Siedlecki J, Gerhardt MJ, Babutzka S, Bogedein J, Wagner JE, Priglinger SG, Biel M, Petersen‐Jones SM, Büning H, Michalakis S. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med 2021; 13:e13392. [PMID: 33616280 PMCID: PMC8033523 DOI: 10.15252/emmm.202013392] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy using recombinant adeno-associated virus (rAAV) vectors to treat blinding retinal dystrophies has become clinical reality. Therapeutically impactful targeting of photoreceptors still relies on subretinal vector delivery, which detaches the retina and harbours substantial risks of collateral damage, often without achieving widespread photoreceptor transduction. Herein, we report the development of novel engineered rAAV vectors that enable efficient targeting of photoreceptors via less invasive intravitreal administration. A unique in vivo selection procedure was performed, where an AAV2-based peptide-display library was intravenously administered in mice, followed by isolation of vector DNA from target cells after only 24 h. This stringent selection yielded novel vectors, termed AAV2.GL and AAV2.NN, which mediate widespread and high-level retinal transduction after intravitreal injection in mice, dogs and non-human primates. Importantly, both vectors efficiently transduce photoreceptors in human retinal explant cultures. As proof-of-concept, intravitreal Cnga3 delivery using AAV2.GL lead to cone-specific expression of Cnga3 protein and rescued photopic cone responses in the Cnga3-/- mouse model of achromatopsia. These novel rAAV vectors expand the clinical applicability of gene therapy for blinding human retinal dystrophies.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Christian Schön
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Laurence M Occelli
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMIUSA
| | - Axel Rossi
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
| | - Nadja Meumann
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Ryan F Boyd
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Joshua T Bartoe
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Jakob Siedlecki
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Sabrina Babutzka
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Jacqueline Bogedein
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Johanna E Wagner
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Martin Biel
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Hildegard Büning
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Stylianos Michalakis
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| |
Collapse
|
47
|
Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, Chandran J, Shah DK. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev 2021; 170:214-237. [PMID: 33486008 DOI: 10.1016/j.addr.2021.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
While protein therapeutics are one of the most successful class of drug molecules, they are expensive and not suited for treating chronic disorders that require long-term dosing. Adeno-associated virus (AAV) mediated in vivo gene therapy represents a viable alternative, which can deliver the genes of protein therapeutics to produce long-term expression of proteins in target tissues. Ongoing clinical trials and recent regulatory approvals demonstrate great interest in these therapeutics, however, there is a lack of understanding regarding their cellular disposition, whole-body disposition, dose-exposure relationship, exposure-response relationship, and how product quality and immunogenicity affects these important properties. In addition, there is a lack of quantitative studies to support the development of pharmacokinetic-pharmacodynamic models, which can support the discovery, development, and clinical translation of this delivery system. In this review, we have provided a state-of-the-art overview of current progress and limitations related to AAV mediated delivery of protein therapeutic genes, along with our perspective on the steps that need to be taken to improve clinical translation of this therapeutic modality.
Collapse
|
48
|
Rodríguez-Márquez E, Meumann N, Büning H. Adeno-associated virus (AAV) capsid engineering in liver-directed gene therapy. Expert Opin Biol Ther 2020; 21:749-766. [PMID: 33331201 DOI: 10.1080/14712598.2021.1865303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Gene therapy clinical trials with adeno-associated virus (AAV) vectors report impressive clinical efficacy data. Nevertheless, challenges have become apparent, such as the need for high vector doses and the induction of anti-AAV immune responses that cause the loss of vector-transduced hepatocytes. This fostered research focusing on development of next-generation AAV vectors capable of dealing with these hurdles.Areas Covered: While both the viral vector genome and the capsid are subjects to engineering, this review focuses on the latter. Specifically, we summarize the principles of capsid engineering strategies, and describe developments and applications of engineered capsid variants for liver-directed gene therapy.Expert Opinion: Capsid engineering is a promising strategy to significantly improve efficacy of the AAV vector system in clinical application. Reduction in vector dose will further improve vector safety, lower the risk of host immune responses and the cost of manufacturing. Capsid engineering is also expected to result in AAV vectors applicable to patients with preexisting immunity toward natural AAV serotypes.
Collapse
Affiliation(s)
- Esther Rodríguez-Márquez
- Universidad Autónoma De Madrid, Madrid, Spain.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF, Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
49
|
EGFR-Binding Peptides: From Computational Design towards Tumor-Targeting of Adeno-Associated Virus Capsids. Int J Mol Sci 2020; 21:ijms21249535. [PMID: 33333826 PMCID: PMC7765298 DOI: 10.3390/ijms21249535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/24/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a central role in the progression of many solid tumors. We used this validated target to analyze the de novo design of EGFR-binding peptides and their application for the delivery of complex payloads via rational design of a viral vector. Peptides were computationally designed to interact with the EGFR dimerization interface. Two new peptides and a reference (EDA peptide) were chemically synthesized, and their binding ability characterized. Presentation of these peptides in each of the 60 capsid proteins of recombinant adeno-associated viruses (rAAV) via a genetic based loop insertion enabled targeting of EGFR overexpressing tumor cell lines. Furthermore, tissue distribution and tumor xenograft specificity were analyzed with systemic injection in chicken egg chorioallantoic membrane (CAM) assays. Complex correlations between the targeting of the synthetic peptides and the viral vectors to cells and in ovo were observed. Overall, these data demonstrate the potential of computational design in combination with rational capsid modification for viral vector targeting opening new avenues for viral vector delivery and specifically suicide gene therapy.
Collapse
|
50
|
Weinmann J, Weis S, Sippel J, Tulalamba W, Remes A, El Andari J, Herrmann AK, Pham QH, Borowski C, Hille S, Schönberger T, Frey N, Lenter M, VandenDriessche T, Müller OJ, Chuah MK, Lamla T, Grimm D. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun 2020; 11:5432. [PMID: 33116134 PMCID: PMC7595228 DOI: 10.1038/s41467-020-19230-w] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Adeno-associated virus (AAV) forms the basis for several commercial gene therapy products and for countless gene transfer vectors derived from natural or synthetic viral isolates that are under intense preclinical evaluation. Here, we report a versatile pipeline that enables the direct side-by-side comparison of pre-selected AAV capsids in high-throughput and in the same animal, by combining DNA/RNA barcoding with multiplexed next-generation sequencing. For validation, we create three independent libraries comprising 183 different AAV variants including widely used benchmarks and screened them in all major tissues in adult mice. Thereby, we discover a peptide-displaying AAV9 mutant called AAVMYO that exhibits superior efficiency and specificity in the musculature including skeletal muscle, heart and diaphragm following peripheral delivery, and that holds great potential for muscle gene therapy. Our comprehensive methodology is compatible with any capsids, targets and species, and will thus facilitate and accelerate the stratification of optimal AAV vectors for human gene therapy. Adeno-associated virus is the basis of many gene therapies and gene transfer vectors. Here the authors report a pipeline to enable side-by-side comparison of pre-selected capsids in a high throughput manner.
Collapse
Affiliation(s)
- Jonas Weinmann
- Heidelberg University Hospital, Dept. of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, 69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Sabrina Weis
- Heidelberg University Hospital, Dept. of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, 69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Josefine Sippel
- Heidelberg University Hospital, Dept. of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, 69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Warut Tulalamba
- Vrije Universiteit Brussel, Department of Gene Therapy & Regenerative Medicine, 1090, Brussels, Belgium
| | - Anca Remes
- University Hospital Schleswig-Holstein, Campus Kiel, Innere Medizin III, 24105, Kiel, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Jihad El Andari
- Heidelberg University Hospital, Dept. of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, 69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Anne-Kathrin Herrmann
- Heidelberg University Hospital, Dept. of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, 69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Quang H Pham
- Vrije Universiteit Brussel, Department of Gene Therapy & Regenerative Medicine, 1090, Brussels, Belgium
| | - Christopher Borowski
- University Hospital Schleswig-Holstein, Campus Kiel, Innere Medizin III, 24105, Kiel, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Susanne Hille
- University Hospital Schleswig-Holstein, Campus Kiel, Innere Medizin III, 24105, Kiel, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Tanja Schönberger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400, Biberach an der Riß, Germany
| | - Norbert Frey
- University Hospital Schleswig-Holstein, Campus Kiel, Innere Medizin III, 24105, Kiel, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Martin Lenter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400, Biberach an der Riß, Germany
| | - Thierry VandenDriessche
- Vrije Universiteit Brussel, Department of Gene Therapy & Regenerative Medicine, 1090, Brussels, Belgium.,University of Leuven, Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, Leuven, 3000, Belgium
| | - Oliver J Müller
- University Hospital Schleswig-Holstein, Campus Kiel, Innere Medizin III, 24105, Kiel, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Marinee K Chuah
- Vrije Universiteit Brussel, Department of Gene Therapy & Regenerative Medicine, 1090, Brussels, Belgium.,University of Leuven, Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, Leuven, 3000, Belgium
| | - Thorsten Lamla
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400, Biberach an der Riß, Germany
| | - Dirk Grimm
- Heidelberg University Hospital, Dept. of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, 69120, Heidelberg, Germany. .,BioQuant, University of Heidelberg, 69120, Heidelberg, Germany. .,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|