1
|
Bulnes-Ramos A, Schott K, Rabinowitz J, Luchsinger C, Bertelli C, Miyagi E, Yu CH, Persaud M, Shepard C, König R, Kim B, Ivanov DN, Strebel K, Diaz-Griffero F. Acetylation of SAMHD1 at lysine 580 is crucial for blocking HIV-1 infection. mBio 2024; 15:e0195824. [PMID: 39162568 PMCID: PMC11389391 DOI: 10.1128/mbio.01958-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
In humans, sterile alpha motif (SAM) domain- and histidine-aspartic acid (HD) domain-containing protein 1 (SAMHD1) is a dNTPase enzyme that prevents HIV-1 infection in non-cycling cells, such as differentiated THP-1 cells and human primary macrophages. Although phosphorylation of threonine 592 (T592) in SAMHD1 is recognized as the primary regulator of the ability to prevent HIV-1 infection, the contributions of SAMHD1 acetylation to this ability remain unknown. Mass spectrometry analysis of SAMHD1 proteins derived from cycling and non-cycling THP-1 cells, primary cycling B cells, and primary macrophages revealed that SAMHD1 is preferentially acetylated at lysine residues 354, 494, and 580 (K354, K494, and K580). In non-cycling cells, SAMHD1 is preferentially acetylated at K580, suggesting that this post-translational modification may contribute to the ability of SAMHD1 to block HIV-1 infection. Consistent with this finding, we found that mutations in K580 disrupted the ability of SAMHD1 to block HIV-1 infection without affecting the ability of SAMHD1 to deplete cellular dNTP levels. Gene editing of SAMHD1 in macrophage-like cells revealed that an intact K580 is required for HIV-1 restriction. This finding suggests that K580 acetylation in SAMHD1 is essential for blocking HIV-1 infection. More importantly, we found that a larger proportion of SAMHD1 featuring K580 acetylation could be detected in human primary macrophages when compared to human primary monocytes. In agreement, we found that SAMHD1 is acetylated during the monocyte-to-macrophage differentiation process. This finding agrees with the idea that the blockade of HIV-1 infection in macrophages requires SAMHD1 acetylation.IMPORTANCEThe natural inhibitor of HIV-1, sterile alpha motif (SAM) domain- and histidine-aspartic acid (HD) domain-containing protein 1 (SAMHD1), plays a pivotal role in preventing HIV-1 infection of macrophages and dendritic cells, which are vital components of the immune system. This study unveils that SAMHD1 undergoes post-translational modifications, specifically acetylation at lysines 354, 494, and 580. Our research underscores the significance of these modifications, demonstrating that acetylation at residue K580 is indispensable for SAMHD1's efficacy in blocking HIV-1 infection. Notably, K580 is found in a critical regulatory domain of SAMHD1, highlighting acetylation as a novel layer of SAMHD1 regulation for HIV-1 restriction in humans. A comprehensive understanding of the regulation mechanisms governing this anti-HIV-1 protein is crucial for leveraging nature's defense mechanisms against HIV-1 and could pave the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Angel Bulnes-Ramos
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
| | - Jesse Rabinowitz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Charlotte Luchsinger
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Cinzia Bertelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eri Miyagi
- Viral Biochemistry Section NIAID, NIH, Bethesda, Maryland, USA
| | - Corey H Yu
- Department of Biochemistry, UTHSA, San Antonio, Texas, USA
| | - Mirjana Persaud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Caitlin Shepard
- Department of Pediatrics, Center for ViroScience and Cure, School of Medicine, Emory University, Atlanta, Georgia, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
| | - Baek Kim
- Department of Pediatrics, Center for ViroScience and Cure, School of Medicine, Emory University, Atlanta, Georgia, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Klaus Strebel
- Viral Biochemistry Section NIAID, NIH, Bethesda, Maryland, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
A Stretch of Unpaired Purines in the Leader Region of Simian Immunodeficiency Virus (SIV) Genomic RNA is Critical for its Packaging into Virions. J Mol Biol 2021; 433:167293. [PMID: 34624298 DOI: 10.1016/j.jmb.2021.167293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
Simian immunodeficiency virus (SIV) is an important lentivirus used as a non-human primate model to study HIV replication, and pathogenesis of human AIDS, as well as a potential vector for human gene therapy. This study investigated the role of single-stranded purines (ssPurines) as potential genomic RNA (gRNA) packaging determinants in SIV replication. Similar ssPurines have been implicated as important motifs for gRNA packaging in many retroviruses like, HIV-1, MPMV, and MMTV by serving as Gag binding sites during virion assembly. In examining the secondary structure of the SIV 5' leader region, as recently deduced using SHAPE methodology, we identified four specific stretches of ssPurines (I-IV) in the region that harbors major packaging determinants of SIV. The significance of these ssPurine motifs were investigated by mutational analysis coupled with a biologically relevant single round of replication assay. These analyses revealed that while ssPurine II was essential, the others (ssPurines I, III, & IV) did not significantly contribute to SIV gRNA packaging. Any mutation in the ssPurine II, such as its deletion or substitution, or other mutations that caused base pairing of ssPurine II loop resulted in near abrogation of RNA packaging, further substantiating the crucial role of ssPurine II and its looped conformation in SIV gRNA packaging. Structure prediction analysis of these mutants further corroborated the biological results and further revealed that the unpaired nature of ssPurine II is critical for its function during SIV RNA packaging perhaps by enabling it to function as a specific binding site for SIV Gag.
Collapse
|
3
|
Buffone C, Kutzner J, Opp S, Martinez-Lopez A, Selyutina A, Coggings SA, Studdard LR, Ding L, Kim B, Spearman P, Schaller T, Diaz-Griffero F. The ability of SAMHD1 to block HIV-1 but not SIV requires expression of MxB. Virology 2019; 531:260-268. [PMID: 30959264 PMCID: PMC6487861 DOI: 10.1016/j.virol.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
Abstract
SAMHD1 is a human restriction factor known to prevent infection of macrophages, resting CD4+ T cells, and dendritic cells by HIV-1. To test the contribution of MxB to the ability of SAMHD1 to block HIV-1 infection, we created human THP-1 cell lines that were knocked out for expression of MxB, SAMHD1, or both. Interestingly, MxB depletion renders SAMHD1 ineffective against HIV-1 but not SIVmac. We observed similar results in human primary macrophages that were knockdown for the expression of MxB. To understand how MxB assists SAMHD1 restriction of HIV-1, we examined direct interaction between SAMHD1 and MxB in pull-down experiments. In addition, we investigated several properties of SAMHD1 in the absence of MxB expression, including subcellular localization, phosphorylation of the SAMHD1 residue T592, and dNTPs levels. These experiments showed that SAMHD1 restriction of HIV-1 requires expression of MxB.
Collapse
Affiliation(s)
- Cindy Buffone
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Juliane Kutzner
- University Hospital Heidelberg, Department of Infectious Diseases, Heidelberg, 69120, Germany
| | - Silvana Opp
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Alicia Martinez-Lopez
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Anastasia Selyutina
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | | | | | - Lingmei Ding
- Cincinnati Children's Hospital, Infectious Diseases, Cincinnati, OH, 45229, USA
| | - Baek Kim
- Emory University, Pediatrics, Atlanta, 30322, Georgia
| | - Paul Spearman
- Cincinnati Children's Hospital, Infectious Diseases, Cincinnati, OH, 45229, USA
| | - Torsten Schaller
- University Hospital Heidelberg, Department of Infectious Diseases, Heidelberg, 69120, Germany
| | - Felipe Diaz-Griffero
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
Martinez-Lopez A, Martin-Fernandez M, Buta S, Kim B, Bogunovic D, Diaz-Griffero F. SAMHD1 deficient human monocytes autonomously trigger type I interferon. Mol Immunol 2018; 101:450-460. [PMID: 30099227 DOI: 10.1016/j.molimm.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023]
Abstract
Germline mutations in the human SAMHD1 gene cause the development of Aicardi-Goutières Syndrome (AGS), with a dominant feature being increased systemic type I interferon(IFN) production. Here we tested the state of type I IFN induction and response to, in SAMHD1 knockout (KO) human monocytic cells. SAMHD1 KO cells exhibited spontaneous transcription and translation of IFN-β and subsequent interferon-stimulated genes (ISGs) as compared to parental wild-type cells. This elevation of IFN-β and ISGs was abrogated via inhibition of the TBK1-IRF3 pathway in the SAMHD1 KO cells. In agreement, we found that SAMHD1 KO cells present high levels of phosphorylated TBK1 when compared to control cells. Moreover, addition of blocking antibody against type I IFN also reversed elevation of ISGs. These experiments suggested that SAMHD1 KO cells are persistently auto-stimulating the TBK1-IRF3 pathway, leading to an enhanced production of type I IFN and subsequent self-induction of ISGs.
Collapse
Affiliation(s)
- Alicia Martinez-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Marta Martin-Fernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Sofija Buta
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, GA 30322, United States
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
5
|
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences. Viruses 2016; 8:v8100276. [PMID: 27727192 PMCID: PMC5086612 DOI: 10.3390/v8100276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Collapse
|
6
|
Da Silva Santos C, Tartour K, Cimarelli A. A Novel Entry/Uncoating Assay Reveals the Presence of at Least Two Species of Viral Capsids During Synchronized HIV-1 Infection. PLoS Pathog 2016; 12:e1005897. [PMID: 27690375 PMCID: PMC5045187 DOI: 10.1371/journal.ppat.1005897] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
To better characterize the behavior of HIV-1 capsids we developed EURT, for Entry/Uncoating assay based on core-packaged RNA availability and Translation. EURT is an alternative to Blam-Vpr, but as reporter RNA translation relies on core opening, it can be used to study viral capsids behavior. Our study reveals the existence of two major capsid species, a dead end one in which the viral genome is readily exposed to the cytoplasm and a functional one in which such exposure requires artificial core destabilization. Although reverse transcription drives a faster loss of susceptibility of viral cores to high doses of PF74, it does not lead to higher exposure of the viral genome, implying that viral cores protect the genome irrespectively of reverse transcription. Lastly, IFNα drifts cores from functional to non-functional species, revealing a novel core-destabilizing activity. This assay sheds new light on the behavior of viral cores inside target cells. Following viral-to-cellular membrane fusion, the HIV-1 genome is propelled inside the cell as part of an higher order nucleoproteic structure often referred to as viral core, or capsid. Here, we have developed a novel entry/uncoating assay based on the degree of exposure of a virion-packaged mRNA reporter to the translation machinery (EURT). Using this assay, we highlight here that at least two measurable kinds of viral capsids coexist during HIV-1 infection: one defined as open, in which the viral genome is readily accessible to translation and another that we define as closed, in which access to the genome is prevented until the artificial destabilization of capsids. Our data points to the former as dead-end products of infection and indicate the latter as the commonly referred infectious viral cores. Interestingly, we show here that despite the fact that reverse transcription reshapes viral cores, these structures maintain an exquisite ability to shield the viral genome from the cytoplasmic environment. Finally, IFNα that negatively impacts HIV-1 replication increases the proportion of open viral cores to the detriment of closed ones, suggesting a core-destabilizing activity driven by interferon-regulated proteins. Overall, this assay sheds new light on the behavior of viral cores inside target cells.
Collapse
Affiliation(s)
- Claire Da Silva Santos
- CIRI, Centre International de Recherche en Infectiologie, 46 Allée d’Italie, Lyon F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Université Claude Bernard Lyon I, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- Université de Lyon, Lyon, France
| | - Kevin Tartour
- CIRI, Centre International de Recherche en Infectiologie, 46 Allée d’Italie, Lyon F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Université Claude Bernard Lyon I, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- Université de Lyon, Lyon, France
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, 46 Allée d’Italie, Lyon F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Université Claude Bernard Lyon I, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
7
|
White TE, Brandariz-Nuñez A, Valle-Casuso JC, Knowlton C, Kim B, Sawyer SL, Diaz-Griffero F. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility. Virology 2014; 460-461:34-44. [PMID: 25010268 DOI: 10.1016/j.virol.2014.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/11/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022]
Abstract
SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition.
Collapse
Affiliation(s)
- Tommy E White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Alberto Brandariz-Nuñez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Jose Carlos Valle-Casuso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Caitlin Knowlton
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Baek Kim
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sara L Sawyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA.
| |
Collapse
|
8
|
The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 2014; 13:441-51. [PMID: 23601106 DOI: 10.1016/j.chom.2013.03.005] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 01/08/2023]
Abstract
SAMHD1 is a cellular enzyme that depletes intracellular deoxynucleoside triphosphates (dNTPs) and inhibits the ability of retroviruses, notably HIV-1, to infect myeloid cells. Although SAMHD1 is expressed in both cycling and noncycling cells, the antiviral activity of SAMHD1 is limited to noncycling cells. We determined that SAMHD1 is phosphorylated on residue T592 in cycling cells but that this phosphorylation is lost when cells are in a noncycling state. Reverse genetic experiments revealed that SAMHD1 phosphorylated on residue T592 is unable to block retroviral infection, but this modification does not affect the ability of SAMHD1 to decrease cellular dNTP levels. SAMHD1 contains a target motif for cyclin-dependent kinase 1 (cdk1) ((592)TPQK(595)), and cdk1 activity is required for SAMHD1 phosphorylation. Collectively, these findings indicate that phosphorylation modulates the ability of SAMHD1 to block retroviral infection without affecting its ability to decrease cellular dNTP levels.
Collapse
|
9
|
Hu W, Chen SS, Zhang JL, Lou XE, Zhou HJ. Dihydroartemisinin induces autophagy by suppressing NF-κB activation. Cancer Lett 2014; 343:239-48. [DOI: 10.1016/j.canlet.2013.09.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 01/04/2023]
|
10
|
Contribution of oligomerization to the anti-HIV-1 properties of SAMHD1. Retrovirology 2013; 10:131. [PMID: 24219908 PMCID: PMC3882887 DOI: 10.1186/1742-4690-10-131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 10/10/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND SAMHD1 is a restriction factor that potently blocks infection by HIV-1 and other retroviruses. We have previously demonstrated that SAMHD1 oligomerizes in mammalian cells by immunoprecipitation. Here we investigated the contribution of SAMHD1 oligomerization to retroviral restriction. RESULTS Structural analysis of SAMHD1 and homologous HD domain proteins revealed that key hydrophobic residues Y146, Y154, L428 and Y432 stabilize the extensive dimer interface observed in the SAMHD1 crystal structure. Full-length SAMHD1 variants Y146S/Y154S and L428S/Y432S lost their ability to oligomerize tested by immunoprecipitation in mammalian cells. In agreement with these observations, the Y146S/Y154S variant of a bacterial construct expressing the HD domain of human SAMHD1 (residues 109-626) disrupted the dGTP-dependent tetramerization of SAMHD1 in vitro. Tetramerization-defective variants of the full-length SAMHD1 immunoprecipitated from mammalian cells and of the bacterially-expressed HD domain construct lost their dNTPase activity. The nuclease activity of the HD domain construct was not perturbed by the Y146S/Y154S mutations. Remarkably, oligomerization-deficient SAMHD1 variants potently restricted HIV-1 infection. CONCLUSIONS These results suggested that SAMHD1 oligomerization is not required for the ability of the protein to block HIV-1 infection.
Collapse
|
11
|
Cordeil S, Nguyen XN, Berger G, Durand S, Ainouze M, Cimarelli A. Evidence for a different susceptibility of primate lentiviruses to type I interferons. J Virol 2013; 87:2587-96. [PMID: 23255800 PMCID: PMC3571359 DOI: 10.1128/jvi.02553-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022] Open
Abstract
Type I interferons induce a complex transcriptional program that leads to a generalized antiviral response against a large panel of viruses, including human immunodeficiency virus type 1 (HIV-1). However, despite the fact that interferons negatively regulate HIV-1 ex vivo, a chronic interferon state is linked to the progression of AIDS and to robust viral replication, rather than protection, in vivo. To explain this apparent contradiction, we hypothesized that HIV-1 may have evolved a partial resistance to interferon, and to test this hypothesis, we analyzed the effects of alpha interferon (IFN-α) on the infectivity of HIV-1, human immunodeficiency virus type 2 (HIV-2), and rhesus monkey simian immunodeficiency virus (SIVmac). The results we obtained indicate that HIV-1 is more resistant to an IFN-α-induced response than are HIV-2 and SIVmac. Our data indicate that the accumulation of viral DNA is more compromised following the infection of IFN-α-treated cells with HIV-2 and SIVmac than with HIV-1. This defect correlates with a faster destabilization of HIV-2 viral nucleoprotein complexes (VNCs), suggesting a link between VNC destabilization and impaired viral DNA (vDNA) accumulation. The differential susceptibilities to IFN-α of the primate lentiviruses tested here do not map to the capsid protein (CA), excluding de facto a role for human tripartite motif protein isoform 5 alpha (Trim5α) in this restriction; this also suggests that an additional restriction mechanism differentially affects primate lentivirus infection. The different behaviors of HIV-1 and HIV-2 with respect to IFN-α responses may account at least in part for the differences in pathogenesis observed between these two virus types.
Collapse
|
12
|
Blanchet FP, Stalder R, Czubala M, Lehmann M, Rio L, Mangeat B, Piguet V. TLR-4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse. Retrovirology 2013; 10:6. [PMID: 23311681 PMCID: PMC3561259 DOI: 10.1186/1742-4690-10-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/19/2012] [Indexed: 12/12/2022] Open
Abstract
Background Dendritic cells and their subsets, located at mucosal surfaces, are among the first immune cells to encounter disseminating pathogens. The cellular restriction factor BST-2/tetherin (also known as CD317 or HM1.24) potently restricts HIV-1 release by retaining viral particles at the cell surface in many cell types, including primary cells such as macrophages. However, BST-2/tetherin does not efficiently restrict HIV-1 infection in immature dendritic cells. Results We now report that BST-2/tetherin expression in myeloid (myDC) and monocyte-derived dendritic cells (DC) can be significantly up-regulated by IFN-α treatment and TLR-4 engagement with LPS. In contrast to HeLa or 293T cells, infectious HIV-1 release in immature DC and IFN-α–matured DC was only modestly affected in the absence of Vpu compared to wild-type viruses. Strikingly, immunofluorescence analysis revealed that BST-2/tetherin was excluded from HIV containing tetraspanin-enriched microdomains (TEMs) in both immature DC and IFN-α–matured DC. In contrast, in LPS-mediated mature DC, BST-2/tetherin exerted a significant restriction in transfer of HIV-1 infection to CD4+ T cells. Additionally, LPS, but not IFN-α stimulation of immature DC, leads to a dramatic redistribution of cellular restriction factors to the TEM as well as at the virological synapse between DC and CD4+ T cells. Conclusions In conclusion, we demonstrate that TLR-4 engagement in immature DC significantly up-regulates the intrinsic antiviral activity of BST-2/tetherin, during cis-infection of CD4+ T cells across the DC/T cell virological synapse. Manipulating the function and potency of cellular restriction factors such as BST-2/tetherin to HIV-1 infection, has implications in the design of antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Fabien P Blanchet
- Department of Dermatology and Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, 3rd Floor, Glamorgan house, Heath Park, Wales, Cardiff, CF14 4XN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Bobadilla S, Sunseri N, Landau NR. Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein. Gene Ther 2012; 20:514-20. [PMID: 22895508 DOI: 10.1038/gt.2012.61] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lentiviral vectors are widely used for the stable expression of genes and small hairpin RNA (shRNA)-mediated knockdown and are currently under development for clinical use in gene therapy. Pseudotyping of the vectors with VSV-G allows them to infect a wide range of cell types. However, myeloid cells, such as dendritic cells and macrophages, are relatively refractory to lentiviral vector transduction as a result of the myeloid-specific restriction factor, SAMHD1. SIVmac/HIV-2 and related viruses relieve the SAMHD1-mediated restriction by encoding Vpx, a virion-packaged accessory protein that induces the degradation of SAMHD1 upon infection. HIV-1 does not encode Vpx and cannot package the protein. We report the development of an HIV-1-based lentiviral vector in which the Vpx packaging motif has been placed in the p6 region of the Gag/Pol expression vector that is used to generate the lentiviral vector virions. The virions package Vpx in high copy number and infect myeloid cells with a two-log increase in titer. Transduction of dendritic cells with an shRNA against transportin-3 resulted in >90% knockdown of the encoding mRNA. The system can be applied to any HIV-based lentiviral vector and is useful for laboratory and clinical applications where the efficient transduction of myeloid cells is required.
Collapse
Affiliation(s)
- S Bobadilla
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
14
|
Brandariz-Nuñez A, Valle-Casuso JC, White TE, Laguette N, Benkirane M, Brojatsch J, Diaz-Griffero F. Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology 2012; 9:49. [PMID: 22691373 PMCID: PMC3410799 DOI: 10.1186/1742-4690-9-49] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SAMHD1 is a nuclear protein that blocks lentiviral infection before reverse transcription in macrophages and dendritic cells. The viral accessory protein Vpx overcomes the SAMHD1-mediated lentiviral block by inducing its proteasomal degradation. RESULTS Here, we identified the nuclear localization signal (NLS) of SAMHD1, and studied its contribution to restriction of HIV-1 and SIVmac. By studying the cellular distribution of different SAMHD1 variants, we mapped the nuclear localization of SAMHD1 to residues 11KRPR14. Mutagenesis of these residues changed the cellular distribution of SAMHD1 from the nucleus to the cytoplasm. SAMHD1 mutants that lost nuclear localization restricted HIV-1 and SIV as potently as the wild type protein. Interestingly, SAMHD1 mutants that localized to the cytoplasm were not degraded by nuclear Vpx alleles. Therefore, nuclear Vpx alleles require nuclear localization of SAMHD1 in order to induce its degradation. In agreement, SIVmac viruses encoding Vpx did not overcome the restriction imposed by the cytoplasmic variants of SAMHD1. CONCLUSIONS We mapped the NLS of SAMHD1 to residues 11KRPR14 and studied the contribution of SAMHD1 nuclear localization to restriction of HIV-1 and SIV. These experiments demonstrate that cytoplasmic variants of SAMHD1 potently block lentiviral infection and are resistant to Vpx-mediated degradation. The nuclear Vpx alleles studied here are only capable of degrading a nuclearly localized SAMHD1 suggesting that Vpx-mediated degradation of SAMHD1 is initiated in the nucleus.
Collapse
Affiliation(s)
- Alberto Brandariz-Nuñez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Measles virus glycoprotein-pseudotyped lentiviral vectors are highly superior to vesicular stomatitis virus G pseudotypes for genetic modification of monocyte-derived dendritic cells. J Virol 2012; 86:5192-203. [PMID: 22345444 DOI: 10.1128/jvi.06283-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells capable of promoting or regulating innate and adaptive immune responses against non-self antigens. To better understand the DC biology or to use them for immune intervention, a tremendous effort has been made to improve gene transfer in these cells. Lentiviral vectors (LVs) have conferred a huge advantage in that they can transduce nondividing cells such as human monocyte-derived DCs (MDDCs) but required high amounts of viral particles and/or accessory proteins such as Vpx or Vpr to achieve sufficient transduction rates. As a consequence, these LVs have been shown to cause dramatic functional modifications, such as the activation or maturation of transduced MDDCs. Taking advantage of new pseudotyped LVs, i.e., with envelope glycoproteins from the measles virus (MV), we demonstrate that MDDCs are transduced very efficiently with these new LVs compared to the classically used vesicular stomatitis virus G-pseudotyped LVs and thus allowed to achieve high transduction rates at relatively low multiplicities of infection. Moreover, in this experimental setting, no activation or maturation markers were upregulated, while MV-LV-transduced cells remained able to mature after an appropriate Toll-like receptor stimulation. We then demonstrate that our MV-pseudotyped LVs use DC-SIGN, CD46, and CD150/SLAM as receptors to transduce MDDCs. Altogether, our results show that MV-pseudotyped LVs provide the most accurate and simple viral method for efficiently transferring genes into MDDCs without affecting their activation and/or maturation status.
Collapse
|
16
|
Ahmed Z, Czubala M, Blanchet F, Piguet V. HIV impairment of immune responses in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:201-38. [PMID: 22975877 DOI: 10.1007/978-1-4614-4433-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dendritic cells and their subsets are diverse populations of immune cells in the skin and mucous membranes that possess the ability to sense the presence of microbes and orchestrate an efficient and adapted immune response. Dendritic cells (DC) have the unique ability to act as a bridge between the innate and adaptive immune responses. These cells are composed of a number of subsets behaving with preferential and specific features depending on their location and surrounding environment. Langerhans cells (LC) or dermal DC (dDC) are readily present in mucosal areas. Other DC subsets such as plasmacytoid DC (pDC), myeloid DC (myDC), or monocyte-derived DC (MDDC) are thought to be recruited or differentiated in sites of pathogenic challenge. Upon HIV infection, DC and their subsets are likely among the very first immune cells to encounter incoming pathogens and initiate innate and adaptive immune responses. However, as evidenced during HIV infection, some pathogens have evolved subtle strategies to hijack key cellular machineries essential to generate efficient antiviral responses and subvert immune responses for spread and survival.In this chapter, we review recent research aimed at investigating the involvement of DC subtypes in HIV transmission at mucosal sites, concentrating on HIV impact on cellular signalling and trafficking pathways in DC leading to DC-mediated immune response alterations and viral immune evasion. We also address some aspects of DC functions during the chronic immune pathogenesis and conclude with an overview of the current and novel therapeutic and prophylactic strategies aimed at improving DC-mediated immune responses, thus to potentially tackle the early events of mucosal HIV infection and spread.
Collapse
Affiliation(s)
- Zahra Ahmed
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
17
|
Rossetti M, Cavarelli M, Gregori S, Scarlatti G. HIV-Derived Vectors for Gene Therapy Targeting Dendritic Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:239-61. [DOI: 10.1007/978-1-4614-4433-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Berger G, Durand S, Fargier G, Nguyen XN, Cordeil S, Bouaziz S, Muriaux D, Darlix JL, Cimarelli A. APOBEC3A is a specific inhibitor of the early phases of HIV-1 infection in myeloid cells. PLoS Pathog 2011; 7:e1002221. [PMID: 21966267 PMCID: PMC3178557 DOI: 10.1371/journal.ppat.1002221] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/30/2011] [Indexed: 11/19/2022] Open
Abstract
Myeloid cells play numerous roles in HIV-1 pathogenesis serving as a vehicle for viral spread and as a viral reservoir. Yet, cells of this lineage generally resist HIV-1 infection when compared to cells of other lineages, a phenomenon particularly acute during the early phases of infection. Here, we explore the role of APOBEC3A on these steps. APOBEC3A is a member of the APOBEC3 family that is highly expressed in myeloid cells, but so far lacks a known antiviral effect against retroviruses. Using ectopic expression of APOBEC3A in established cell lines and specific silencing in primary macrophages and dendritic cells, we demonstrate that the pool of APOBEC3A in target cells inhibits the early phases of HIV-1 infection and the spread of replication-competent R5-tropic HIV-1, specifically in cells of myeloid origins. In these cells, APOBEC3A affects the amount of vDNA synthesized over the course of infection. The susceptibility to the antiviral effect of APOBEC3A is conserved among primate lentiviruses, although the viral protein Vpx coded by members of the SIV(SM)/HIV-2 lineage provides partial protection from APOBEC3A during infection. Our results indicate that APOBEC3A is a previously unrecognized antiviral factor that targets primate lentiviruses specifically in myeloid cells and that acts during the early phases of infection directly in target cells. The findings presented here open up new venues on the role of APOBEC3A during HIV infection and pathogenesis, on the role of the cellular context in the regulation of the antiviral activities of members of the APOBEC3 family and more generally on the natural functions of APOBEC3A.
Collapse
Affiliation(s)
- Gregory Berger
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Stéphanie Durand
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Guillaume Fargier
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Xuan-Nhi Nguyen
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Stéphanie Cordeil
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Serge Bouaziz
- UMR 8015 CNRS, University Paris Descartes, Paris, France
| | - Delphine Muriaux
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Jean-Luc Darlix
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Andrea Cimarelli
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
- * E-mail:
| |
Collapse
|
19
|
Fang Y, Zhou X, Lin M, Ying M, Luo P, Zhu D, Lou J, Yang B, He Q. Inhibition of all-trans-retinoic acid-induced proteasome activation potentiates the differentiating effect of retinoid in acute myeloid leukemia cells. Mol Carcinog 2011; 50:24-35. [PMID: 20945414 DOI: 10.1002/mc.20687] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
All-trans retinoic acid (ATRA) is nowadays considered to be the sole efficient agent for differentiation-based therapy in leukemia; however, the mechanisms of ATRA's biological effects remain largely unknown. Here we first reported that ATRA-induced myeloid leukemia differentiation was accompanied with the increased level of ubiquitin-protein conjugates and the upregulation of proteasome activity. To explore the functional role of the activated proteasome in retinoic acid (RA) signaling, the effects of proteasome inhibitors on RA-induced cell differentiation were determined. Our results demonstrated that inhibition of ATRA-elevated proteasome activity obviously promoted the myeloid maturation program triggered by ATRA, suggesting that the overactivated proteasome is not beneficial for ATRA's effects. Further studies demonstrated that the synergistic differentiating effects of ATRA and proteasome inhibitors might be associated with the protection of retinoic acid receptor alpha (RARα) from degradation by the ubiquitin-proteasome pathway (UPP). Moreover, the accumulated RARα was able to enhance the transcription of its target gene, which might also contribute to the enhanced differentiation of leukemia cells. Together, by linking the UPP to ATRA-dependent signaling, our data provide a novel insight into studying the mechanisms of ATRA-elicited cellular effects and imply the possibility of combination of ATRA and proteasome inhibitors in leukemia therapy.
Collapse
Affiliation(s)
- Yanfen Fang
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Improved adenovirus type 5 vector-mediated transduction of resistant cells by piggybacking on coxsackie B-adenovirus receptor-pseudotyped baculovirus. J Virol 2009; 83:6048-66. [PMID: 19357170 DOI: 10.1128/jvi.00012-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Taking advantage of the wide tropism of baculoviruses (BVs), we constructed a recombinant BV (BV(CAR)) pseudotyped with human coxsackie B-adenovirus receptor (CAR), the high-affinity attachment receptor for adenovirus type 5 (Ad5), and used the strategy of piggybacking Ad5-green fluorescent protein (Ad5GFP) vector on BV(CAR) to transduce various cells refractory to Ad5 infection. We found that transduction of all cells tested, including human primary cells and cancer cell lines, was significantly improved using the BV(CAR)-Ad5GFP biviral complex compared to that obtained with Ad5GFP or BV(CAR)GFP alone. We determined the optimal conditions for the formation of the complex and found that a high level of BV(CAR)-Ad5GFP-mediated transduction occurred at relatively low adenovirus vector doses, compared with transduction by Ad5GFP alone. The increase in transduction was dependent on the direct coupling of BV(CAR) to Ad5GFP via CAR-fiber knob interaction, and the cell attachment of the BV(CAR)-Ad5GFP complex was mediated by the baculoviral envelope glycoprotein gp64. Analysis of the virus-cell binding reaction indicated that the presence of BV(CAR) in the complex provided kinetic benefits to Ad5GFP compared to the effects with Ad5GFP alone. The endocytic pathway of BV(CAR)-Ad5GFP did not require Ad5 penton base RGD-integrin interaction. Biodistribution of BV(CAR)-Ad5Luc complex in vivo was studied by intravenous administration to nude BALB/c mice and compared to Ad5Luc injected alone. No significant difference in viscerotropism was found between the two inocula, and the liver remained the preferred localization. In vitro, coagulation factor X drastically increased the Ad5GFP-mediated transduction of CAR-negative cells but had no effect on the efficiency of transduction by the BV(CAR)-Ad5GFP complex. Various situations in vitro or ex vivo in which our BV(CAR)-Ad5 duo could be advantageously used as gene transfer biviral vector are discussed.
Collapse
|
21
|
Characterization of simian immunodeficiency virus SIVSM/human immunodeficiency virus type 2 Vpx function in human myeloid cells. J Virol 2008; 82:12335-45. [PMID: 18829761 DOI: 10.1128/jvi.01181-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2)/simian immunodeficiency virus SIV(SM) Vpx is incorporated into virion particles and is thus present during the early steps of infection, when it has been reported to influence the nuclear import of viral DNA. We recently reported that Vpx promoted the accumulation of full-length viral DNA following the infection of human monocyte-derived dendritic cells (DCs). This positive effect was exerted following the infection of DCs with cognate viruses and with retroviruses as divergent as HIV-1, feline immunodeficiency virus, and even murine leukemia virus, leading us to suggest that Vpx counteracted an antiviral restriction present in DCs. Here, we show that Vpx is required, albeit to a different extent, for the infection of all myeloid but not of lymphoid cells, including monocytes, macrophages, and monocytoid THP-1 cells that had been induced to differentiate with phorbol esters. The intracellular localization of Vpx was highly heterogeneous and cell type dependent, since Vpx localized differently in HeLa cells and DCs. Despite these differences, no clear correlation between the functionality of Vpx and its intracellular localization could be drawn. As a first insight into its function, we determined that SIV(SM)/HIV-2 and SIV(RCM) Vpx proteins interact with the DCAF1 adaptor of the Cul4-based E3 ubiquitin ligase complex recently described to associate with HIV-1 Vpr and HIV-2 Vpx. However, the functionality of Vpx proteins in the infection of DCs did not strictly correlate with DCAF1 binding, and knockdown experiments failed to reveal a functional role for this association in differentiated THP-1 cells. Lastly, when transferred in the context of a replication-competent viral clone, Vpx was required for replication in DCs.
Collapse
|
22
|
Berger G, Goujon C, Darlix JL, Cimarelli A. SIVMAC Vpx improves the transduction of dendritic cells with nonintegrative HIV-1-derived vectors. Gene Ther 2008; 16:159-63. [PMID: 18668143 DOI: 10.1038/gt.2008.128] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lentiviral vector (LV)-mediated gene therapy bears an intrinsic risk of insertional mutagenesis following integration into the host genome. Nonintegrative LVs may offer an alternative avenue at least in nondividing cells where episomal viral DNA persists stably. Owing to their central role in immune system functions, differentiated dendritic cells (DCs) offer an interesting cell target for these vectors. We have previously described that the transduction of DCs with wild-type HIV-1-derived vectors can be considerably improved by providing DCs with noninfectious virion-like particles (VLPs) carrying Vpx (Vpx-VLPs), a nonstructural protein coded by members of the SIV(SM)/HIV-2 lineage that removes a specific restriction to lentiviral infection in these cells. Here, we describe that the transduction efficiency of DCs with nonintegrative HIV-1 vectors can also be improved via Vpx-VLPs that promote the accumulation of complete and episomal viral DNA. In this setting, Vpx increases both the number of transduced cells and the levels of transgene expression. Thus, these results describe a simple procedure by which transduction of differentiated DCs can be achieved at low viral inputs with safer LVs to improve both the number of transduced cells and the levels of transgene expression.
Collapse
Affiliation(s)
- G Berger
- LaboRetro, Department of Human Virology, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
23
|
Zhou B, Ann DK, Flodby P, Minoo P, Liebler JM, Crandall ED, Borok Z. Rat aquaporin-5 4.3-kb 5'-flanking region differentially regulates expression in salivary gland and lung in vivo. Am J Physiol Cell Physiol 2008; 295:C111-20. [PMID: 18448628 DOI: 10.1152/ajpcell.90620.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously cloned a 4.3-kb genomic fragment encompassing 5'-flanking regulatory elements of rat aquaporin-5 (Aqp5) that demonstrated preferential transcriptional activity in lung and salivary cells in vitro. To investigate the ability of Aqp5 regulatory elements to direct transgene expression in vivo, transgenic (TG) mice and rats were generated in which the 4.3-kb Aqp5 fragment directed the expression of enhanced green fluorescent protein (EGFP). RT-PCR revealed relative promoter specificity for the lung and salivary glands in TG mice. Immunofluorescence microscopy showed strong EGFP expression in salivary acinar cells but not in lung type I (AT1) cells, both known sites of endogenous AQP5 expression. Similar results were obtained in TG rats generated by lentiviral transgenesis. EGFP mRNA was detected in both salivary glands and lung. Robust EGFP fluorescence was observed in frozen sections of the rat salivary gland but not in the lung or other tested tissues. The percentage of EGFP-positive acinar cells was increased in parotid and submandibular glands of TG rats receiving a chronic injection of the beta-adrenergic receptor agonist isoproterenol. EGFP-positive cells in the lung that were also reactive with the AT1-cell specific monoclonal antibody VIIIB2 were identified by flow cytometry. These findings demonstrate that the 4.3-kb Aqp5 promoter/enhancer directs strong cell-specific transgene expression in salivary gland and low-level AT1 cell-specific expression in the lung. While these Aqp5 regulatory elements should be useful for functional studies in salivary glands, additional upstream or intronic cis-active elements are likely required for robust expression in the lung.
Collapse
Affiliation(s)
- Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 2007; 4:2. [PMID: 17212817 PMCID: PMC1779362 DOI: 10.1186/1742-4690-4-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/09/2007] [Indexed: 01/03/2023] Open
Abstract
Background Vpx is a non-structural protein coded by members of the SIVSM/HIV-2 lineage that is believed to have originated by duplication of the common vpr gene present in primate lentiviruses. Vpx is incorporated into virion particles and is thus present during the early steps of viral infection, where it is thought to drive nuclear import of viral nucleoprotein complexes. We have previously shown that Vpx is required for SIVMAC-derived lentiviral vectors (LVs) infection of human monocyte-derived dendritic cells (DCs). However, since the requirement for Vpx is specific for DCs and not for other non-dividing cell types, this suggests that Vpx may play a role other than nuclear import. Results Here, we show that the function of Vpx in the infection of DCs is conserved exclusively within the SIVSM/HIV-2 lineage. At a molecular level, Vpx acts by promoting the accumulation of full length viral DNA. Furthermore, when supplied in target cells prior to infection, Vpx exerts a similar effect following infection of DCs with retroviruses as divergent as primate and feline lentiviruses and gammaretroviruses. Lastly, the effect of Vpx overlaps with that of the proteasome inhibitor MG132 in DCs. Conclusion Overall, our results support the notion that Vpx modifies the intracellular milieu of target DCs to facilitate lentiviral infection. The data suggest that this is achieved by promoting viral escape from a proteasome-dependent pathway especially detrimental to viral infection in DCs.
Collapse
|
25
|
Mukherjee S, Lee HLR, Pacchia AL, Ron Y, Dougherty JP. A HIV-2-based self-inactivating vector for enhanced gene transduction. J Biotechnol 2006; 127:745-57. [PMID: 16979253 DOI: 10.1016/j.jbiotec.2006.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/02/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
The employment of HIV-1-based vectors in clinical trials is controversial mainly due to the lethal nature of the virus. HIV-2 is less pathogenic in nature and therefore is likely to be safer for vector design and production. We developed HIV-2-based self-inactivating vectors in which 520 bp out of 554 bp of the viral U3 was deleted. Interestingly, high titers were obtained only when an exogenous promoter was used to drive expression of viral RNA. It was found that the vectors could target a wide range of mammalian cell types including primary neuronal cells and could yield long term expression. It is also noteworthy that the HIV-2 vectors could be effectively cross-packaged into HIV-1 core, which might provide for enhanced safety by reducing the recombination potential of the system.
Collapse
Affiliation(s)
- Sayandip Mukherjee
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Lentiviral vectors portend a promising system to deliver antiviral genes for treating viral infections such as HIV-1 as they are capable of stably transducing both dividing and nondividing cells. Recently, small interfering RNAs (siRNAs) have been shown to be quite efficacious in silencing target genes. RNA interference is a natural mechanism, conserved in nature from Yeast to Humans, by which siRNAs operate to specifically and potently down regulate the expression of a target gene either transcriptionally (targeted to DNA) or post-transcriptionally (targeted to mRNA). The specificity and relative simplicity of siRNA design insinuate that siRNAs will prove to be favorable therapeutic agents. Since siRNAs are a small nucleic acid reagents, they are unlikely to elicit an immune response and genes encoding these siRNAs can be easily manipulated and delivered by lentiviral vectors to target cells. As such, lentiviral vectors expressing siRNAs represent a potential therapeutic approach for the treatment of viral infections such as HIV-1. This review will focus on the development, lentiviral based delivery, and the potential therapeutic use of siRNAs in treating viral infections.
Collapse
Affiliation(s)
- K V Morris
- Department of Molecular and Experimental Medicine, Division of Rheumatology, The Scripps Research Institute, La Jolla, CA USA
| | - J J Rossi
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA USA
| |
Collapse
|
27
|
Morris K, Castanotto D, Al-Kadhimi Z, Jensen M, Rossi J, Cooper LJN. Enhancing siRNA effects in T cells for adoptive immunotherapy. ACTA ACUST UNITED AC 2006; 10:461-7. [PMID: 16321811 DOI: 10.1080/10245330500233569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically manipulated T cells can be endowed with novel functions to obtain desired in vivo effects after adoptive transfer. This genetic approach is being used to introduce genes such as chimeric immunoreceptors and tumor-specific T cells are being evaluated in early phase clinic trials. However, the ability to alter the genetic programming of T cells also presents opportunities to remove unwanted T-cell functions in order to augment an anti-tumor effect or endow resistance such as to HIV infection. Specifically, the use of RNA interference (RNAi) to disrupt gene expression by targeting either the mRNA or the promoter, provides investigators with many new opportunities to genetically modify T cells that should prove useful in future applications of adoptive immunotherapy.
Collapse
Affiliation(s)
- Kevin Morris
- Division of Molecular Biology, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA 90010-3000, USA
| | | | | | | | | | | |
Collapse
|
28
|
Morris KV, Rossi JJ. Lentivirus-Mediated RNA Interference Therapy for Human Immunodeficiency Virus Type 1 Infection. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Morris KV, Rossi JJ. Lentivirus-Mediated RNA Interference Therapy for Human Immunodeficiency Virus Type 1 Infection. Hum Gene Ther 2006; 17:479-86. [PMID: 16716105 DOI: 10.1089/hum.2006.17.479] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi) is a natural mechanism by which small interfering RNAs (siRNAs) operate to specifically and potently downregulate the expression of a target gene. This downregulation has been demonstrated by targeting siRNAs to the mRNA (posttranscriptional gene silencing) as well as to the gene promoter, regulating gene expression epigenetically by transcriptional gene silencing. These observations significantly broaden the role RNA plays in the cell and suggest that siRNAs could prove to be a potent future therapeutic for the treatment of diseases such as human immunodeficiency virus type 1 (HIV-1) infection. The specificity and simplicity of design and the ability to express siRNAs from mammalian promoters make the use of siRNAs to target and suppress virtually any gene or gene promoter of interest a soon-to-be-realized technology. However, the delivery and stable expression of siRNAs to target cells remain an enigma that could be surmounted, at least regarding the treatment of HIV-1 infection, by the application of lentiviral vectors to deliver and express anti-HIV-1 siRNAs in target cells. This review focuses on the development, delivery, and potential therapeutic use of antiviral siRNAs in treating HIV-1.
Collapse
Affiliation(s)
- Kevin V Morris
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
30
|
Goujon C, Jarrosson-Wuillème L, Bernaud J, Rigal D, Darlix JL, Cimarelli A. With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIVMAC. Gene Ther 2006; 13:991-4. [PMID: 16525481 DOI: 10.1038/sj.gt.3302753] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modification of dendritic cells (DCs) is a promising avenue for gene therapy purposes, given the versatility and the multiplicity of functions of these cells. In this study, we show that preincubation of monocyte-derived DCs with low amounts of non-infectious virion-like particles derived from the simian immunodeficiency virus (SIV(MAC) VLPs) increases up to 10-fold the efficiency of transduction by HIV-1 lentiviral vectors at low multiplicity of infections yielding up to 90% of transduced cells, in the absence of alterations of DCs behavior. This effect is restricted to DCs and specified by the viral accessory protein Vpx. Thus, preincubation with empty VLPs of SIV(MAC) can be used in transduction protocols to increase the efficacy of HIV-1-mediated modification of DCs.
Collapse
Affiliation(s)
- C Goujon
- INSERM U412, Ecole Normale Supérieure de Lyon, IFR 128 BioSciences Lyon-Gerland, Lyon, France
| | | | | | | | | | | |
Collapse
|
31
|
Jarrosson-Wuilleme L, Goujon C, Bernaud J, Rigal D, Darlix JL, Cimarelli A. Transduction of nondividing human macrophages with gammaretrovirus-derived vectors. J Virol 2006; 80:1152-9. [PMID: 16414992 PMCID: PMC1346929 DOI: 10.1128/jvi.80.3.1152-1159.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is commonly accepted that infection of nondividing cells by gammaretroviruses such as the murine leukemia viruses is inefficient due to their inability to cross the nuclear envelope barrier. Challenging this notion, we now show that human nondividing macrophages display a specific window of susceptibility to transduction with a Friend murine leukemia virus (F-MLV)-derived vector during their differentiation from monocytes. This finding suggests that factors other than the nuclear membrane govern permissiveness to gammaretroviral infection and raises the possibility of using the macrophage tropism of F-MLV in gene therapy.
Collapse
Affiliation(s)
- Loraine Jarrosson-Wuilleme
- LaboRetro, INSERM U412, Ecole Normale Supérieure de Lyon, IFR 128 BioSciences Lyon-Gerland, 46 Allée d'Italie, 69364 Lyon, France
| | | | | | | | | | | |
Collapse
|
32
|
Erdmann V, Barciszewski J, Brosius J. Antiviral Applications of RNAi. Handb Exp Pharmacol 2006:105-16. [PMID: 16594613 PMCID: PMC7122589 DOI: 10.1007/3-540-27262-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
RNA interference is a natural mechanism by which small interfering (si)RNA operates to specifically and potently down-regulate the expression of a target gene. This down-regulation has been thought to predominantly function at the level of the messenger (m)RNA, post-transcriptional gene silencing (PTGS). Recently, the discovery that siRNAs can function to suppress a gene's expression at the level of transcription, i.e., transcriptional gene silencing (TGS), has created a major paradigm shift in mammalian RNAi. These recent findings significantly broaden the role RNA, specifically siRNAs and potentially microRNAs, plays in the regulation of gene expression as well as the breadth of potential siRNA target sites. Indeed, the specificity and simplicity of design makes the use of siRNAs to target and suppress virtually any gene or gene promoter of interest a realized technology. Furthermore, since siRNAs are a small nucleic acid reagent, they are unlikely to elicit an immune response, making them a theoretically good future therapeutic. This review will focus on the development, delivery, and potential therapeutic use of antiviral siRNAs in treating viral infections as well as emerging viral threats.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
33
|
Sachdeva G, D'Costa J, Cho JE, Kachapati K, Choudhry V, Arya SK. Chimeric HIV-1 and HIV-2 lentiviral vectors with added safety insurance. J Med Virol 2006; 79:118-26. [PMID: 17177309 DOI: 10.1002/jmv.20767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lentiviruses are unique in their ability to infect both dividing and non-dividing cells. This makes the vectors derived from them particularly useful for gene transfer into non-dividing cells, including stem cells. Lentiviral vectors are becoming the vectors of choice for si/shRNA delivery. The utility of the lentiviral vectors will be enhanced if additional elements of safety are built into their design. One safety concern is the generation of replication competent virus by recombination. We reasoned that HIV-1 and HIV-2 hybrid or chimeric lentiviral vectors will have added safety insurance in this regard. This is based on the premise that HIV-1 and HIV-2 are dissimilar enough in sequence to curtail recombination, yet similar enough to complement functionally. For hybrid vectors, we found that both HIV-1 and HIV-2 transfer vector RNAs could be packaged to equivalent titer by the HIV-1 packaging machinery. However, HIV-2 packaging machinery was unable to package HIV-1 transfer vector as well as it did HIV-2 transfer vector. This non-reciprocacity suggested that the requirement for HIV-2 vectors was more stringent and that for HIV-1 vectors more promiscuous. When the HIV-1 transfer vector was packaged with the chimeric packaging construct where the leader-gag region of HIV-2 was replaced with that of HIV-1 packaging construct, the titer of the vector went up. This suggests that at least some of the determinants of specificity for vector assembly reside in the leader-gag region. Incorporation of central polypurine tract (cPPT) and woodchuck post-transcriptional enhance element (WPRE) into the HIV-2 vectors had only modest effect on vector titer. Thus, chimeric lentiviral vectors with added safety features can be designed without compromising transduction efficiency.
Collapse
Affiliation(s)
- Geetanjali Sachdeva
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
34
|
Strappe PM, Hampton DW, Brown D, Cachon-Gonzalez B, Caldwell M, Fawcett JW, Lever AML. Identification of unique reciprocal and non reciprocal cross packaging relationships between HIV-1, HIV-2 and SIV reveals an efficient SIV/HIV-2 lentiviral vector system with highly favourable features for in vivo testing and clinical usage. Retrovirology 2005; 2:55. [PMID: 16168051 PMCID: PMC1253535 DOI: 10.1186/1742-4690-2-55] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 09/16/2005] [Indexed: 11/24/2022] Open
Abstract
Background Lentiviral vectors have shown immense promise as vehicles for gene delivery to non-dividing cells particularly to cells of the central nervous system (CNS). Improvements in the biosafety of viral vectors are paramount as lentiviral vectors move into human clinical trials. This study investigates the packaging relationship between gene transfer (vector) and Gag-Pol expression constructs of HIV-1, HIV-2 and SIV. Cross-packaged vectors expressing GFP were assessed for RNA packaging, viral vector titre and their ability to transduce rat primary glial cell cultures and human neural stem cells. Results HIV-1 Gag-Pol demonstrated the ability to cross package both HIV-2 and SIV gene transfer vectors. However both HIV-2 and SIV Gag-Pol showed a reduced ability to package HIV-1 vector RNA with no significant gene transfer to target cells. An unexpected packaging relationship was found to exist between HIV-2 and SIV with SIV Gag-Pol able to package HIV-2 vector RNA and transduce dividing SV2T cells and CNS cell cultures with an efficiency equivalent to the homologous HIV-1 vector however HIV-2 was unable to deliver SIV based vectors. Conclusion This new non-reciprocal cross packaging relationship between SIV and HIV-2 provides a novel way of significantly increasing bio-safety with a reduced sequence homology between the HIV-2 gene transfer vector and the SIV Gag-Pol construct thus ensuring that vector RNA packaging is unidirectional.
Collapse
Affiliation(s)
- Padraig M Strappe
- Department of Medicine, University of Cambridge Addenbrooke's Hospital Cambridge CB2 2QQ, UK
| | - David W Hampton
- Centre for Brain Repair, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Douglas Brown
- Department of Medicine, University of Cambridge Addenbrooke's Hospital Cambridge CB2 2QQ, UK
| | - Begona Cachon-Gonzalez
- Department of Medicine, University of Cambridge Addenbrooke's Hospital Cambridge CB2 2QQ, UK
| | - Maeve Caldwell
- Centre for Brain Repair, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - James W Fawcett
- Centre for Brain Repair, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Andrew ML Lever
- Department of Medicine, University of Cambridge Addenbrooke's Hospital Cambridge CB2 2QQ, UK
| |
Collapse
|
35
|
Mark-Danieli M, Laham N, Kenan-Eichler M, Castiel A, Melamed D, Landau M, Bouvier NM, Evans MJ, Bacharach E. Single point mutations in the zinc finger motifs of the human immunodeficiency virus type 1 nucleocapsid alter RNA binding specificities of the gag protein and enhance packaging and infectivity. J Virol 2005; 79:7756-67. [PMID: 15919928 PMCID: PMC1143677 DOI: 10.1128/jvi.79.12.7756-7767.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A specific interaction between the nucleocapsid (NC) domain of the Gag polyprotein and the RNA encapsidation signal (Psi) is required for preferential incorporation of the retroviral genomic RNA into the assembled virion. Using the yeast three-hybrid system, we developed a genetic screen to detect human immunodeficiency virus type 1 (HIV-1) Gag mutants with altered RNA binding specificities. Specifically, we randomly mutated full-length HIV-1 Gag or its NC portion and screened the mutants for an increase in affinity for the Harvey murine sarcoma virus encapsidation signal. These screens identified several NC zinc finger mutants with altered RNA binding specificities. Furthermore, additional zinc finger mutants that also demonstrated this phenotype were made by site-directed mutagenesis. The majority of these mutants were able to produce normal virion-like particles; however, when tested in a single-cycle infection assay, some of the mutants demonstrated higher transduction efficiencies than that of wild-type Gag. In particular, the N17K mutant showed a seven- to ninefold increase in transduction, which correlated with enhanced vector RNA packaging. This mutant also packaged larger amounts of foreign RNA. Our results emphasize the importance of the NC zinc fingers, and not other Gag sequences, in achieving specificity in the genome encapsidation process. In addition, the described mutations may contribute to our understanding of HIV diversity resulting from recombination events between copackaged viral genomes and foreign RNA.
Collapse
Affiliation(s)
- Michal Mark-Danieli
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|