1
|
Moussa AK, Abd El-Rahman HA, Mohamed RR, Hanna DH. Hyaluronic Acid-Based pH-Sensitive Nanogel: Synthesis, Characterization, and Assessment for Acyclovir Delivery In Vitro and In Vivo. Biomacromolecules 2025; 26:341-362. [PMID: 39720889 DOI: 10.1021/acs.biomac.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Acyclovir (ACV) is a potentially effective antiviral medication; however, it has a serious drawback, which is its poor solubility, bioavailability, and short half-life. The goal of this study is to improve its drawbacks through the synthesis of nanogels. In this study, the cross-linked hyaluronic acid-grafted poly(acrylamide-co-itaconic acid) nanogel is synthesized successfully through free radical polymerization and used as a safe pH-responsive carrier for ACV. The nanogels showed pH response in vitro and in vivo. The prepared nanogel C5 (1:1 ratio of acrylamide: itaconic), which had the highest grafting efficiency, showed maximum swelling, drug loading, and release in pH 7.4, higher than pH 1.2. Also, nanogel C5, which had a large surface area, showed good stability, and its matrices shrank in acidic medium and protected the drug, while in basic medium, it expanded and released ACV in a sustained manner and improved the bioavailability and half-life of ACV in vivo.
Collapse
Affiliation(s)
- Aalaa K Moussa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Riham R Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Demiana H Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
2
|
Geisler A, Dieringer B, Elsner L, Klopfleisch R, Kurreck J, Fechner H. Oncolytic Coxsackievirus B3 Strain PD-H Is Effective Against a Broad Spectrum of Pancreatic Cancer Cell Lines and Induces a Growth Delay in Pancreatic KPC Cell Tumors In Vivo. Int J Mol Sci 2024; 25:11224. [PMID: 39457005 PMCID: PMC11508574 DOI: 10.3390/ijms252011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic cancer is one of the deadliest cancers globally, with limited success from existing therapies, including chemotherapies and immunotherapies like checkpoint inhibitors for patients with advanced pancreatic ductal adenocarcinoma (PDAC). A promising new approach is the use of oncolytic viruses (OV), a form of immunotherapy that has been demonstrated clinical effectiveness in various cancers. Here we investigated the potential of the oncolytic coxsackievirus B3 strain (CVB3) PD-H as a new treatment for pancreatic cancer. In vitro, PD-H exhibited robust replication, as measured by plaque assays, and potent lytic activity, as assessed by XTT assays, in most pancreatic tumor cell lines, outperforming two other coxsackievirus strains tested, H3N-375/1TS and CVA21. Thus, H3N-375/1TS showed efficient replication and lytic efficiency in distinctly fewer tumor cell lines, while most tumor cells were resistant to CVA21. The oncolytic efficiency of the three OV largely correlated with mRNA expression levels of viral receptors and their ability to induce apoptosis, as measured by cleaved caspase 3/7 activity in the tumor cells. In a syngeneic mouse model with subcutaneous pancreatic tumors, intratumoral administration of PD-H significantly inhibited tumor growth but did not completely stop tumor progression. Importantly, no virus-related side effects were observed. Although pancreatic tumors respond to PD-H treatment, its therapeutic efficacy is limited. Combining PD-H with other treatments, such as those aiming at reducing the desmoplastic stroma which impedes viral infection and spread within the tumor, may enhance its efficacy.
Collapse
Affiliation(s)
- Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany (H.F.)
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany (H.F.)
| | - Leslie Elsner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany (H.F.)
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany (H.F.)
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany (H.F.)
| |
Collapse
|
3
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
4
|
Jiang L, Zhang T, Lu H, Li S, Lv K, Tuffour A, Zhang L, Ding K, Li JP, Li H, Liu X. Heparin mimetics as potential intervention for COVID-19 and their bio-manufacturing. Synth Syst Biotechnol 2023; 8:11-19. [PMID: 36313216 PMCID: PMC9595387 DOI: 10.1016/j.synbio.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The COVID-19 pandemic has caused severe health problems worldwide and unprecedented decimation of the global economy. Moreover, after more than 2 years, many populations are still under pressure of infection. Thus, a broader perspective in developing antiviral strategies is still of great importance. Inspired by the observed multiple benefits of heparin in the treatment of thrombosis, the potential of low molecular weight heparin (LMWH) for the treatment of COVID-19 have been explored. Clinical applications found that LMWH decreased the level of inflammatory cytokines in COVID-19 patients, accordingly reducing lethality. Furthermore, several in vitro studies have demonstrated the important roles of heparan sulfate in SARS-CoV-2 infection and the inhibitory effects of heparin and heparin mimetics in viral infection. These clinical observations and designed studies argue for the potential to develop heparin mimetics as anti-SARS-CoV-2 drug candidates. In this review, we summarize the properties of heparin as an anticoagulant and the pharmaceutical possibilities for the treatment of virus infection, focusing on the perspectives of developing heparin mimetics via chemical synthesis, chemoenzymatic synthesis, and bioengineered production by microbial cell factories. The ultimate goal is to pave the eminent need for exploring novel compounds to treat coronavirus infection-caused diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saijuan Li
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Alex Tuffour
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin-Ping Li
- International Research Center for Soft Matter, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Hongmei Li
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
5
|
Mone K, Lasrado N, Sur M, Reddy J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines (Basel) 2023; 11:vaccines11020274. [PMID: 36851152 PMCID: PMC9961666 DOI: 10.3390/vaccines11020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease associations have been reported for most serotypes, and multiple serotypes can cause similar diseases. For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis, whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D). Yet, no vaccines against these viruses are currently available. In this review, we have analyzed the attributes of experimentally tested vaccines and discussed their merits and demerits or limitations, as well as their impact in preventing infections, most importantly myocarditis and T1D.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-(402)-472-8541
| |
Collapse
|
6
|
Li Q, Oduro PK, Guo R, Li R, Leng L, Kong X, Wang Q, Yang L. Oncolytic Viruses: Immunotherapy Drugs for Gastrointestinal Malignant Tumors. Front Cell Infect Microbiol 2022; 12:921534. [PMID: 35719333 PMCID: PMC9203847 DOI: 10.3389/fcimb.2022.921534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic virus therapy has advanced rapidly in recent years. Natural or transgenic viruses can target tumor cells and inhibit tumor growth and metastasis in various ways without interfering with normal cell and tissue function. Oncolytic viruses have a high level of specificity and are relatively safe. Malignant tumors in the digestive system continue to have a high incidence and mortality rate. Although existing treatment methods have achieved some curative effects, they still require further improvement due to side effects and a lack of specificity. Many studies have shown that oncolytic viruses can kill various tumor cells, including malignant tumors in the digestive system. This review discusses how oncolytic virus therapy improves malignant tumors in the digestive system from the point-of-view of basic and clinical studies. Also, the oncolytic virus anti-tumor mechanisms underpinning the therapeutic potential of oncolytic viruses are expounded. In all, we argue that oncolytic viruses might eventually provide therapeutic solutions to malignant tumors in the digestive system.
Collapse
Affiliation(s)
- Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine & State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Rui Guo
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqiao Li
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine & State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Ling Leng
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine & State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Qilong Wang, ; Long Yang,
| | - Qilong Wang
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine & State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
- *Correspondence: Xianbin Kong, ; Qilong Wang, ; Long Yang,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Qilong Wang, ; Long Yang,
| |
Collapse
|
7
|
3,4-Dicaffeoylquinic Acid from the Medicinal Plant Ilex kaushue Disrupts the Interaction Between the Five-Fold Axis of Enterovirus A-71 and the Heparan Sulfate Receptor. J Virol 2022; 96:e0054221. [PMID: 35319229 DOI: 10.1128/jvi.00542-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While infections by enterovirus A71 (EV-A71) are generally self-limiting, they can occasionally lead to serious neurological complications and death. No licensed therapies against EV-A71 currently exist. Using anti-virus-induced cytopathic effect assays, 3,4-dicaffeoylquinic acid (3,4-DCQA) from Ilex kaushue extracts was found to exert significant anti-EV-A71 activity, with a broad inhibitory spectrum against different EV-A71 genotypes. Time-of-drug-addition assays revealed that 3,4-DCQA affects the initial phase (entry step) of EV-A71 infection by directly targeting viral particles and disrupting viral attachment to host cells. Using resistant virus selection experiments, we found that 3,4-DCQA targets the glutamic acid residue at position 98 (E98) and the proline residue at position 246 (P246) in the 5-fold axis located within the VP1 structural protein. Recombinant viruses harboring the two mutations were resistant to 3,4-DCQA-elicited inhibition of virus attachment and penetration into human rhabdomyosarcoma (RD) cells. Finally, we showed that 3,4-DCQA specifically inhibited the attachment of EV-A71 to the host receptor heparan sulfate (HS), but not to the scavenger receptor class B member 2 (SCARB2) and P-selectin glycoprotein ligand-1 (PSGL1). Molecular docking analysis confirmed that 3,4-DCQA targets the 5-fold axis to form a stable structure with the E98 and P246 residues through noncovalent and van der Waals interactions. The targeting of E98 and P246 by 3,4-DCQA was found to be specific; accordingly, HS binding of viruses carrying the K242A or K244A mutations in the 5-fold axis was successfully inhibited by 3,4-DCQA.The clinical utility of 3,4-DCQA in the prevention or treatment of EV-A71 infections warrants further scrutiny. IMPORTANCE The canyon region and the 5-fold axis of the EV-A71 viral particle located within the VP1 protein mediate the interaction of the virus with host surface receptors. The three most extensively investigated cellular receptors for EV-A71 include SCARB2, PSGL1, and cell surface heparan sulfate. In the current study, a RD cell-based anti-cytopathic effect assay was used to investigate the potential broad spectrum inhibitory activity of 3,4-DCQA against different EV-A71 strains. Mechanistically, we demonstrate that 3,4-DCQA disrupts the interaction between the 5-fold axis of EV-A71 and its heparan sulfate receptor; however, no effect was seen on the SCARB2 or PSGL1 receptors. Taken together, our findings show that this natural product may pave the way to novel anti-EV-A71 therapeutic strategies.
Collapse
|
8
|
Zhang T, Wang C, Wei J, Zhu Z, Wang X, Sun C. Ligand-of-Numb protein X1 controls the coxsackievirus B3-induced myocarditis via regulating the stability of coxsackievirus and adenovirus receptor. Genes Immun 2022; 23:42-46. [PMID: 35115665 DOI: 10.1038/s41435-022-00163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
Group B coxsackieviruses (CVBs) are the main cause of virus-induced myocarditis. CVBs use coxsackievirus and adenovirus receptor (CAR) for infection and targeting CAR has been shown to ameliorate CVBs-induced myocarditis. Ligand-of-Numb protein X1 (LNX1) is an E3 ubiquitin ligase that was shown to interact with CAR. However, the precise effect of LNX1 on CAR and the roles of LNX1 on CVBs-induced myocarditis remain unknown. In the present study, we generated mice deficient in LNX1 in the heart and evaluated the symptoms of myocarditis after CVB3 infection. We also monitored the expression and ubiquitination of CAR in LNX1-deficient cardiomyocytes after CVBs infection. We found that CVBs infection decreased CAR expression while promoted the expression of LNX1. Mice with deficiency of LNX1 in the heart had normal myocardial development while had deteriorated myocarditis symptoms after CVB3 infection. In LNX1-deficient cardiomyocytes, decreased ubiquitination of CAR and upregulation of CAR were observed after CVB3 infection. In summary, LNX1 controls CVB3-induced myocarditis by regulating the expression of CAR.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China
| | - Changying Wang
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China
| | - Jinjuan Wei
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China
| | - Zhenyin Zhu
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China
| | - Xiaoni Wang
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China
| | - Chuang Sun
- Department of Cardiology, XI'AN International Medical Center Hospital, No. 777, Xitai Road, Chang'an District, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
9
|
Hazini A, Dieringer B, Klingel K, Pryshliak M, Geisler A, Kobelt D, Daberkow O, Kurreck J, van Linthout S, Fechner H. Application Route and Immune Status of the Host Determine Safety and Oncolytic Activity of Oncolytic Coxsackievirus B3 Variant PD-H. Viruses 2021; 13:1918. [PMID: 34696348 PMCID: PMC8539752 DOI: 10.3390/v13101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
The coxsackievirus B3 strain PD-0 has been proposed as a new oncolytic virus for the treatment of colorectal carcinoma. Here, we generated a cDNA clone of PD-0 and analyzed the virus PD-H, newly generated from this cDNA, in xenografted and syngenic models of colorectal cancer. Replication and cytotoxic assays revealed that PD-H replicated and lysed colorectal carcinoma cell lines in vitro as well as PD-0. Intratumoral injection of PD-H into subcutaneous DLD-1 tumors in nude mice resulted in strong inhibition of tumor growth and significantly prolonged the survival of the animals, but virus-induced systemic infection was observed in one of the six animals. In a syngenic mouse model of subcutaneously growing Colon-26 tumors, intratumoral administration of PD-H led to a significant reduction of tumor growth, the prolongation of animal survival, the prevention of tumor-induced cachexia, and the elevation of CD3+ and dendritic cells in the tumor microenvironment. No virus-induced side effects were observed. After intraperitoneal application, PD-H induced weak pancreatitis and myocarditis in immunocompetent mice. By equipping the virus with target sites of miR-375, which is specifically expressed in the pancreas, organ infections were prevented. Moreover, employment of this virus in a syngenic mouse model of CT-26 peritoneal carcinomatosis resulted in a significant reduction in tumor growth and an increase in animal survival. The results demonstrate that the immune status of the host, the route of virus application, and the engineering of the virus with target sites of suitable microRNAs are crucial for the use of PD-H as an oncolytic virus.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.H.); (B.D.); (M.P.); (A.G.); (J.K.)
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.H.); (B.D.); (M.P.); (A.G.); (J.K.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Markian Pryshliak
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.H.); (B.D.); (M.P.); (A.G.); (J.K.)
| | - Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.H.); (B.D.); (M.P.); (A.G.); (J.K.)
| | - Dennis Kobelt
- EPO GmbH Berlin-Buch, Robert-Rössle Str. 10, 13125 Berlin, Germany; (D.K.); (O.D.)
| | - Ole Daberkow
- EPO GmbH Berlin-Buch, Robert-Rössle Str. 10, 13125 Berlin, Germany; (D.K.); (O.D.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.H.); (B.D.); (M.P.); (A.G.); (J.K.)
| | - Sophie van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Campus Virchow Klinikum (CVK), Charité—Universitätsmedizin Berlin, Föhrer Str. 15, 13353 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin—Charité, Oudenarder Straße 16, 13316 Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.H.); (B.D.); (M.P.); (A.G.); (J.K.)
| |
Collapse
|
10
|
Lanahan MR, Maples RW, Pfeiffer JK. Tradeoffs for a viral mutant with enhanced replication speed. Proc Natl Acad Sci U S A 2021; 118:e2105288118. [PMID: 34282021 PMCID: PMC8325337 DOI: 10.1073/pnas.2105288118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA viruses exist as genetically heterogeneous populations due to high mutation rates, and many of these mutations reduce fitness and/or replication speed. However, it is unknown whether mutations can increase replication speed of a virus already well adapted to replication in cultured cells. By sequentially passaging coxsackievirus B3 in cultured cells and collecting the very earliest progeny, we selected for increased replication speed. We found that a single mutation in a viral capsid protein, VP1-F106L, was sufficient for the fast-replication phenotype. Characterization of this mutant revealed quicker genome release during entry compared to wild-type virus, highlighting a previously unappreciated infection barrier. However, this mutation also reduced capsid stability in vitro and reduced replication and pathogenesis in mice. These results reveal a tradeoff between overall replication speed and fitness. Importantly, this approach-selecting for the earliest viral progeny-could be applied to a variety of viral systems and has the potential to reveal unanticipated inefficiencies in viral replication cycles.
Collapse
Affiliation(s)
- Matthew R Lanahan
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| | - Robert W Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| |
Collapse
|
11
|
Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22126574. [PMID: 34207476 PMCID: PMC8235362 DOI: 10.3390/ijms22126574] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.
Collapse
|
12
|
Geisler A, Hazini A, Heimann L, Kurreck J, Fechner H. Coxsackievirus B3-Its Potential as an Oncolytic Virus. Viruses 2021; 13:v13050718. [PMID: 33919076 PMCID: PMC8143167 DOI: 10.3390/v13050718] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy represents one of the most advanced strategies to treat otherwise untreatable types of cancer. Despite encouraging developments in recent years, the limited fraction of patients responding to therapy has demonstrated the need to search for new suitable viruses. Coxsackievirus B3 (CVB3) is a promising novel candidate with particularly valuable features. Its entry receptor, the coxsackievirus and adenovirus receptor (CAR), and heparan sulfate, which is used for cellular entry by some CVB3 variants, are highly expressed on various cancer types. Consequently, CVB3 has broad anti-tumor activity, as shown in various xenograft and syngeneic mouse tumor models. In addition to direct tumor cell killing the virus induces a strong immune response against the tumor, which contributes to a substantial increase in the efficiency of the treatment. The toxicity of oncolytic CVB3 in healthy tissues is variable and depends on the virus strain. It can be abrogated by genetic engineering the virus with target sites of microRNAs. In this review, we present an overview of the current status of the development of CVB3 as an oncolytic virus and outline which steps still need to be accomplished to develop CVB3 as a therapeutic agent for clinical use in cancer treatment.
Collapse
Affiliation(s)
- Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.G.); (L.H.); (J.K.)
| | - Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Lisanne Heimann
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.G.); (L.H.); (J.K.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.G.); (L.H.); (J.K.)
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (A.G.); (L.H.); (J.K.)
- Correspondence: ; Tel.: +49-30-31-47-21-81
| |
Collapse
|
13
|
Single-Point Mutations within the Coxsackie B Virus Receptor-Binding Site Promote Resistance against Soluble Virus Receptor Traps. J Virol 2020; 94:JVI.00952-20. [PMID: 32669334 PMCID: PMC7495374 DOI: 10.1128/jvi.00952-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022] Open
Abstract
Coxsackie B viruses (CVB) cause a wide spectrum of diseases, ranging from mild respiratory syndromes and hand, foot, and mouth disease to life-threatening conditions, such as pancreatitis, myocarditis, and encephalitis. Previously, we and others found that the soluble virus receptor trap sCAR-Fc strongly attenuates CVB3 infection in mice. In this study, we investigated whether treatment with sCAR-Fc results in development of resistance by CVB3. Two CVB3 strains (CVB3-H3 and CVB3 Nancy) were passaged in HeLa cells in the presence of sCAR-Fc. The CVB3-H3 strain did not develop resistance, whereas two populations of CVB3 Nancy mutants emerged, one with complete (CVB3M) and one with partial (CVB3K) resistance. DNA sequence alignment of the resistant virus variant CVB3M with CVB3 Nancy revealed an amino acid exchange from Asn(N) to Ser(S) at position 139 of the CVB3 capsid protein VP2 (N2139S), an amino acid predicted to be involved in the virus's interaction with its cognate receptor CAR. Insertion of the N2139S mutation into CVB3-H3 by site-directed mutagenesis promoted resistance of the engineered CVB3-H3N2139S to sCAR-Fc. Interestingly, development of resistance by CVB3-H3N2139S and the exemplarily investigated CVB3M-clone 2 (CVB3M2) against soluble CAR did not compromise the use of cellular CAR for viral infection. Infection of HeLa cells showed that sCAR-Fc resistance, however, negatively affected both virus stability and viral replication compared to that of the parental strains. These data demonstrate that during sCAR-Fc exposure, CVB3 can develop resistance against sCAR-Fc by single-amino-acid exchanges within the virus-receptor binding site, which, however, come at the expense of viral fitness.IMPORTANCE The emergence of resistant viruses is one of the most frequent obstacles preventing successful therapy of viral infections, representing a significant threat to human health. We investigated the emergence of resistant viruses during treatment with sCAR-Fc, a well-studied, highly effective antiviral molecule against CVB infections. Our data show the molecular aspects of resistant CVB3 mutants that arise during repetitive sCAR-Fc usage. However, drug resistance comes at the price of lower viral fitness. These results extend our knowledge of the development of resistance by coxsackieviruses and indicate potential limitations of antiviral therapy using soluble receptor molecules.
Collapse
|
14
|
Polyamine Depletion Abrogates Enterovirus Cellular Attachment. J Virol 2019; 93:JVI.01054-19. [PMID: 31341056 DOI: 10.1128/jvi.01054-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
Polyamines are small polycationic molecules with flexible carbon chains that are found in all eukaryotic cells. Polyamines are involved in the regulation of many host processes and have been shown to be implicated in viral replication. Depletion of polyamine pools in cells treated with FDA-approved drugs restricts replication of diverse RNA viruses. Viruses can exploit host polyamines to facilitate nucleic acid packaging, transcription, and translation, but other mechanisms remain largely unknown. Picornaviruses, including Coxsackievirus B3 (CVB3), are sensitive to the depletion of polyamines and remain a significant public health threat. We employed CVB3 as a model system to investigate a potential proviral role for polyamines using a forward screen. Passaging CVB3 in polyamine-depleted cells generated a mutation in capsid protein VP3 at residue 234. We show that this mutation confers resistance to polyamine depletion. Through attachment assays, we demonstrate that polyamine depletion limits CVB3 attachment to susceptible cells, which is rescued by incubating virus with polyamines. Furthermore, the capsid mutant rescues this inhibition in polyamine-depleted cells. More divergent viruses also exhibited reduced attachment to polyamine-depleted cells, suggesting that polyamines may facilitate attachment of diverse RNA viruses. These studies inform additional mechanisms of action for polyamine-depleting pharmaceuticals, with implications for potential antiviral therapies.IMPORTANCE Enteroviruses are significant human pathogens that can cause severe disease. These viruses rely on polyamines, small positively charged molecules, for robust replication, and polyamine depletion limits infection in vitro and in vivo The mechanisms by which polyamines enhance enteroviral replication are unknown. Here, we describe how Coxsackievirus B3 (CVB3) utilizes polyamines to attach to susceptible cells and initiate infection. Using a forward genetic screen, we identified a mutation in a receptor-binding amino acid that promotes infection of polyamine-depleted cells. These data suggest that pharmacologically inhibiting polyamine biosynthesis may combat virus infection by preventing virus attachment to susceptible cells.
Collapse
|
15
|
Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019; 11:v11070596. [PMID: 31266258 PMCID: PMC6669472 DOI: 10.3390/v11070596] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface.
Collapse
Affiliation(s)
- Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland.
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| | - Samuel T Jones
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| |
Collapse
|
16
|
Hazini A, Pryshliak M, Brückner V, Klingel K, Sauter M, Pinkert S, Kurreck J, Fechner H. Heparan Sulfate Binding Coxsackievirus B3 Strain PD: A Novel Avirulent Oncolytic Agent Against Human Colorectal Carcinoma. Hum Gene Ther 2018; 29:1301-1314. [PMID: 29739251 DOI: 10.1089/hum.2018.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coxsackievirus B3 (CVB3), a single-stranded RNA virus of the picornavirus family, has been described as a novel oncolytic virus. However, the CVB3 strain used induced hepatitis and myocarditis in vivo. It was hypothesized that oncolytic activity and safety of CVB3 depends on the virus strain and its specific receptor tropism. Different laboratory strains of CVB3 (Nancy, 31-1-93, and H3), which use the coxsackievirus and adenovirus receptor (CAR), and the strain PD, which uses N- and 6-O-sulfated heparan sulfate (HS) for entry into the cells, were investigated for their potential to lyse tumor cells and for their safety profile. The investigations were carried out in colorectal carcinoma. In vitro investigations showed variable infection efficiency and lysis of colorectal carcinoma cell lines by the CVB3 strains. The most efficient strain was PD, which was the only one that could lyse all investigated colorectal carcinoma cell lines. Lytic activity of CAR-dependent CVB3 did not correlate with CAR expression on cells, whereas there was a clear correlation between lytic activity of PD and its ability to bind to HS at the cell surface of colorectal carcinoma cells. Intratumoral injection of Nancy, 31-1-93, or PD into subcutaneous colorectal DLD1 cell tumors in BALB/c nude mice resulted in strong inhibition of tumor growth. The effect was seen in the injected tumor, as well as in a non-injected, contralateral tumor. However, all animals treated with 31-1-93 and Nancy developed systemic infection and died or were moribund and sacrificed within 8 days post virus injection. In contrast, five of the six animals treated with PD showed no signs of a systemic viral infection, and PD was not detected in any organ. The data demonstrate the potential of PD as a new oncolytic virus and HS-binding of PD as a key feature of oncolytic activity and improved safety.
Collapse
Affiliation(s)
- Ahmet Hazini
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany .,2 Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University , Davutpasa Campus, Istanbul, Turkey
| | - Markian Pryshliak
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Vanessa Brückner
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Karin Klingel
- 3 Department of Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen , Tübingen, Germany
| | - Martina Sauter
- 3 Department of Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen , Tübingen, Germany
| | - Sandra Pinkert
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Jens Kurreck
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Henry Fechner
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| |
Collapse
|
17
|
van Wijk XM, Döhrmann S, Hallström BM, Li S, Voldborg BG, Meng BX, McKee KK, van Kuppevelt TH, Yurchenco PD, Palsson BO, Lewis NE, Nizet V, Esko JD. Whole-Genome Sequencing of Invasion-Resistant Cells Identifies Laminin α2 as a Host Factor for Bacterial Invasion. mBio 2017; 8:e02128-16. [PMID: 28074024 PMCID: PMC5225314 DOI: 10.1128/mbio.02128-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
To understand the role of glycosaminoglycans in bacterial cellular invasion, xylosyltransferase-deficient mutants of Chinese hamster ovary (CHO) cells were created using clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated gene 9 (CRISPR-cas9) gene targeting. When these mutants were compared to the pgsA745 cell line, a CHO xylosyltransferase mutant generated previously using chemical mutagenesis, an unexpected result was obtained. Bacterial invasion of pgsA745 cells by group B Streptococcus (GBS), group A Streptococcus, and Staphylococcus aureus was markedly reduced compared to the invasion of wild-type cells, but newly generated CRISPR-cas9 mutants were only resistant to GBS. Invasion of pgsA745 cells was not restored by transfection with xylosyltransferase, suggesting that an additional mutation conferring panresistance to multiple bacteria was present in pgsA745 cells. Whole-genome sequencing and transcriptome sequencing (RNA-Seq) uncovered a deletion in the gene encoding the laminin subunit α2 (Lama2) that eliminated much of domain L4a. Silencing of the long Lama2 isoform in wild-type cells strongly reduced bacterial invasion, whereas transfection with human LAMA2 cDNA significantly enhanced invasion in pgsA745 cells. The addition of exogenous laminin-α2β1γ1/laminin-α2β2γ1 strongly increased bacterial invasion in CHO cells, as well as in human alveolar basal epithelial and human brain microvascular endothelial cells. Thus, the L4a domain in laminin α2 is important for cellular invasion by a number of bacterial pathogens. IMPORTANCE Pathogenic bacteria penetrate host cellular barriers by attachment to extracellular matrix molecules, such as proteoglycans, laminins, and collagens, leading to invasion of epithelial and endothelial cells. Here, we show that cellular invasion by the human pathogens group B Streptococcus, group A Streptococcus, and Staphylococcus aureus depends on a specific domain of the laminin α2 subunit. This finding may provide new leads for the molecular pathogenesis of these bacteria and the development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Xander M van Wijk
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Simon Döhrmann
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Björn M Hallström
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
- Royal Institute of Technology, Stockholm, Sweden
| | - Shangzhong Li
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, La Jolla, California, USA
| | - Bjørn G Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Brandon X Meng
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, La Jolla, California, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
Bochkov YA, Watters K, Basnet S, Sijapati S, Hill M, Palmenberg AC, Gern JE. Mutations in VP1 and 3A proteins improve binding and replication of rhinovirus C15 in HeLa-E8 cells. Virology 2016; 499:350-360. [PMID: 27743961 PMCID: PMC5110265 DOI: 10.1016/j.virol.2016.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 11/21/2022]
Abstract
Viruses in the rhinovirus C species (RV-C) can cause severe respiratory illnesses in children including pneumonia and asthma exacerbations. A transduced cell line (HeLa-E8) stably expressing the CDHR3-Y529 receptor variant, supports propagation of RV-C after infection. C15 clinical or recombinant isolates replicate in HeLa-E8, however progeny yields are lower than those of related strains of RV-A and RV-B. Serial passaging of C15 in HeLa-E8 resulted in stronger cytopathic effects and increased (≥10-fold) virus binding to cells and progeny yields. The adaptation was acquired by two mutations which increased binding (VP1 T125K) and replication (3A E41K), respectively. A similar 3A mutation engineered into C2 and C41 cDNAs also improved viral replication (2-8 fold) in HeLa but the heparan sulfate mediated cell-binding enhancement by the VP1 change was C15-specific. The findings now enable large-scale cost-effective C15 production by infection and the testing of RV-C infectivity by plaque assay.
Collapse
Affiliation(s)
- Yury A Bochkov
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| | - Kelly Watters
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarmila Basnet
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Shakher Sijapati
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Marchel Hill
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Wang Y, Pfeiffer JK. Emergence of a Large-Plaque Variant in Mice Infected with Coxsackievirus B3. mBio 2016; 7:e00119. [PMID: 27025249 PMCID: PMC4817249 DOI: 10.1128/mbio.00119-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
UNLABELLED Coxsackieviruses are enteric viruses that frequently infect humans. To examine coxsackievirus pathogenesis, we orally inoculated mice with the coxsackievirus B3 (CVB3) Nancy strain. Using HeLa cell plaque assays with agar overlays, we noticed that some fecal viruses generated plaques >100 times as large as inoculum viruses. These large-plaque variants emerged following viral replication in several different tissues. We identified a single amino acid change, N63Y, in the VP3 capsid protein that was sufficient to confer the large-plaque phenotype. Wild-type CVB3 and N63Y mutant CVB3 had similar plaque sizes when agarose was used in the overlay instead of agar. We determined that sulfated glycans in agar inhibited plaque formation by wild-type CVB3 but not by N63Y mutant CVB3. Furthermore, N63Y mutant CVB3 bound heparin, a sulfated glycan, less efficiently than wild-type CVB3 did. While N63Y mutant CVB3 had a growth defect in cultured cells and reduced attachment, it had enhanced replication and pathogenesis in mice. Infection with N63Y mutant CVB3 induced more severe hepatic damage than infection with wild-type CVB3, likely because N63Y mutant CVB3 disseminates more efficiently to the liver. Our data reinforce the idea that culture-adapted laboratory virus strains can have reduced fitnessin vivo N63Y mutant CVB3 may be useful as a platform to understand viral adaptation and pathogenesis in animal studies. IMPORTANCE Coxsackieviruses frequently infect humans, and although many infections are mild or asymptomatic, there can be severe outcomes, including heart inflammation. Most studies with coxsackieviruses and other viruses use laboratory-adapted viral strains because of their efficient replication in cell culture. We used a cell culture-adapted strain of CVB3, Nancy, to examine viral replication and pathogenesis in orally inoculated mice. We found that mice shed viruses distinct from input viruses because they formed extremely large plaques in cell culture. We identified a single mutation, VP3 N63Y, that was sufficient for large-plaque formation. N63Y mutant viruses have reduced glycan binding and replication in cell culture; however, they have enhanced replication and virulence in mice. We are now using N63Y mutant CVB3 as an improved system for viral pathogenesis studies.
Collapse
Affiliation(s)
- Yao Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Marjomäki V, Turkki P, Huttunen M. Infectious Entry Pathway of Enterovirus B Species. Viruses 2015; 7:6387-99. [PMID: 26690201 PMCID: PMC4690868 DOI: 10.3390/v7122945] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/17/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022] Open
Abstract
Enterovirus B species (EV-B) are responsible for a vast number of mild and serious acute infections. They are also suspected of remaining in the body, where they cause persistent infections contributing to chronic diseases such as type I diabetes. Recent studies of the infectious entry pathway of these viruses revealed remarkable similarities, including non-clathrin entry of large endosomes originating from the plasma membrane invaginations. Many cellular factors regulating the efficient entry have recently been associated with macropinocytic uptake, such as Rac1, serine/threonine p21-activated kinase (Pak1), actin, Na/H exchanger, phospholipace C (PLC) and protein kinase Cα (PKCα). Another characteristic feature is the entry of these viruses to neutral endosomes, independence of endosomal acidification and low association with acidic lysosomes. The biogenesis of neutral multivesicular bodies is crucial for their infection, at least for echovirus 1 (E1) and coxsackievirus A9 (CVA9). These pathways are triggered by the virus binding to their receptors on the plasma membrane, and they are not efficiently recycled like other cellular pathways used by circulating receptors. Therefore, the best “markers” of these pathways may be the viruses and often their receptors. A deeper understanding of this pathway and associated endosomes is crucial in elucidating the mechanisms of enterovirus uncoating and genome release from the endosomes to start efficient replication.
Collapse
Affiliation(s)
- Varpu Marjomäki
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland.
| | - Paula Turkki
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland.
| | - Moona Huttunen
- MRC-Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Sialic acid-dependent cell entry of human enterovirus D68. Nat Commun 2015; 6:8865. [PMID: 26563423 PMCID: PMC4660200 DOI: 10.1038/ncomms9865] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/09/2015] [Indexed: 01/30/2023] Open
Abstract
Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon' on the virus surface. The sialic acid receptor induces a cascade of conformational changes in the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Thus, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry. The human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory infections, but despite its prevalence the exact mechanism mediating its cell entry have not been fully established. Here, the authors show how EV-D68 binds to sialic acid on the cell surface to initiate infection.
Collapse
|
22
|
Carson SD, Tracy S, Kaczmarek ZG, Alhazmi A, Chapman NM. Three capsid amino acids notably influence coxsackie B3 virus stability. J Gen Virol 2015; 97:60-68. [PMID: 26489722 DOI: 10.1099/jgv.0.000319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coxsackievirus B3 strain 28 (CVB3/28) is less stable at 37 °C than eight other CVB3 strains with which it has been compared, including four in this study. In a variant CVB3/28 population selected for increased stability at 37 °C, the capsid proteins of the stable variant differed from the parental CVB3/28 by two mutations in Vp1 and one mutation in Vp3, each of which resulted in altered protein sequences. Each of the amino acid changes was individually associated with a more stable virus. Competition between CVB3/28 and a more stable derivative of the strain showed that propagation of the less stable virus was favoured in receptor-rich HeLa cells.
Collapse
Affiliation(s)
- Steven D Carson
- Department of Pathology and Microbiology, University of Nebraska College of Medicine, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Steven Tracy
- Department of Pathology and Microbiology, University of Nebraska College of Medicine, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Zac G Kaczmarek
- Department of Pathology and Microbiology, University of Nebraska College of Medicine, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Abdulaziz Alhazmi
- Department of Microbiology, College of Medicine, Jazan University, King Abdullah Street, Jazan 82621, Saudi Arabia
| | - Nora M Chapman
- Department of Pathology and Microbiology, University of Nebraska College of Medicine, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| |
Collapse
|
23
|
Single Neutralizing Monoclonal Antibodies Targeting the VP1 GH Loop of Enterovirus 71 Inhibit both Virus Attachment and Internalization during Viral Entry. J Virol 2015; 89:12084-95. [PMID: 26401034 DOI: 10.1128/jvi.02189-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Antibodies play a critical role in immunity against enterovirus 71 (EV71). However, how EV71-specific antibodies neutralize infections remains poorly understood. Here we report the working mechanism for a group of three monoclonal antibodies (MAbs) that potently neutralize EV71. We found that these three MAbs (termed D5, H7, and C4, respectively) recognize the same conserved neutralizing epitope within the VP1 GH loop of EV71. Single MAbs in this group, exemplified by D5, could inhibit EV71 infection in cell cultures at both the pre- and postattachment stages in a cell type-independent manner. Specifically, MAb treatment resulted in the blockade of multiple steps of EV71 entry, including virus attachment, internalization, and subsequent uncoating and RNA release. Furthermore, we show that the D5 and C4 antibodies can interfere with EV71 binding to its key receptors, including heparan sulfate, SCARB2, and PSGL-1, thus providing a possible explanation for the observed multi-inhibitory function of the MAbs. Collectively, our study unravels the mechanism of neutralization by a unique group of anti-EV71 MAbs targeting the conserved VP1 GH loop. The findings should enhance our understanding of MAb-mediated immunity against enterovirus infections and accelerate the development of MAb-based anti-EV71 therapeutic drugs. IMPORTANCE Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), which has caused significant morbidities and mortalities in young children. Neither a vaccine nor an antiviral drug is available. Neutralizing antibodies are major protective components in EV71 immunity. Here, we unraveled an unusual mechanism of EV71 neutralization by a group of three neutralizing monoclonal antibodies (MAbs). All of these MAbs bound the same conserved epitope located at the VP1 GH loop of EV71. Interestingly, mechanistic studies showed that single antibodies in this MAb group could block EV71 attachment and internalization during the viral entry process and interfere with EV71 binding to heparan sulfate, SCARB2, and PSGL-1 molecules, which are key receptors involved in different steps of EV71 entry. Our findings greatly enhance the understanding of the interplays among EV71, neutralizing antibodies, and host receptors, which in turn should facilitate the development of an MAb-based anti-EV71 therapy.
Collapse
|
24
|
Garmaroudi FS, Marchant D, Hendry R, Luo H, Yang D, Ye X, Shi J, McManus BM. Coxsackievirus B3 replication and pathogenesis. Future Microbiol 2015; 10:629-53. [DOI: 10.2217/fmb.15.5] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Viruses such as coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction. In this update, the patho-stratagems of CVB3 are explored from molecular, and systems-level approaches. In summarizing recent developments in this field, we focus particularly on mechanisms by which CVB3 can harness different host cell processes including kinases, host cell-killing and cell-eating machineries, matrix metalloproteinases and miRNAs to promote disease.
Collapse
Affiliation(s)
- Farshid S Garmaroudi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - David Marchant
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Reid Hendry
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Honglin Luo
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Decheng Yang
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Xin Ye
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Junyan Shi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Bruce M McManus
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
- Centre of Excellence for Prevention of Organ Failure, Vancouver, BC, Canada
| |
Collapse
|
25
|
Biology of Viruses and Viral Diseases. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7152303 DOI: 10.1016/b978-1-4557-4801-3.00134-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
26
|
Zautner AE, Masanta WO, Hinz R, Hagen RM, Frickmann H. Artificially designed pathogens - a diagnostic option for future military deployments. Mil Med Res 2015; 2:17. [PMID: 26157585 PMCID: PMC4495699 DOI: 10.1186/s40779-015-0045-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023] Open
Abstract
Diagnostic microbial isolates of bio-safety levels 3 and 4 are difficult to handle in medical field camps under military deployment settings. International transport of such isolates is challenging due to restrictions by the International Air Transport Association. An alternative option might be inactivation and sequencing of the pathogen at the deployment site with subsequent sequence-based revitalization in well-equipped laboratories in the home country for further scientific assessment. A literature review was written based on a PubMed search. First described for poliovirus in 2002, de novo synthesis of pathogens based on their sequence information has become a well-established procedure in science. Successful syntheses have been demonstrated for both viruses and prokaryotes. However, the technology is not yet available for routine diagnostic purposes. Due to the potential utility of diagnostic sequencing and sequence-based de novo synthesis of pathogens, it seems worthwhile to establish the technology for diagnostic purposes over the intermediate term. This is particularly true for resource-restricted deployment settings, where safe handling of harmful pathogens cannot always be guaranteed.
Collapse
Affiliation(s)
- Andreas E Zautner
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Wycliffe O Masanta
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Rebecca Hinz
- Fachbereich Tropenmedizin am Bernhard-Nocht Institut, Bundeswehrkrankenhaus Hamburg, Hamburg, Germany
| | - Ralf Matthias Hagen
- Fachbereich Tropenmedizin am Bernhard-Nocht Institut, Bundeswehrkrankenhaus Hamburg, Hamburg, Germany
| | - Hagen Frickmann
- Fachbereich Tropenmedizin am Bernhard-Nocht Institut, Bundeswehrkrankenhaus Hamburg, Hamburg, Germany ; Institut für Mikrobiologie, Virologie und Hygiene, Universitätsmedizin Rostock, Rostock, Germany
| |
Collapse
|
27
|
Riabi S, Harrath R, Gaaloul I, Bouslama L, Nasri D, Aouni M, Pillet S, Pozzetto B. Study of Coxsackie B viruses interactions with Coxsackie Adenovirus receptor and Decay-Accelerating Factor using Human CaCo-2 cell line. J Biomed Sci 2014; 21:50. [PMID: 24885774 PMCID: PMC4035751 DOI: 10.1186/1423-0127-21-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/06/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Decay Accelerating Factor (DAF) and Coxsackievirus-Adenovirus Receptor (CAR) have been identified as cellular receptors for Coxsackie B viruses (CV-B). The aim of this study is to elucidate the different binding properties of CV-B serotypes and to find out if there are any amino acid changes that could be associated to the different phenotypes.Twenty clinical CV-B isolates were tested on CaCo-2 cell line using anti-DAF (BRIC216) and anti-CAR (RmcB) antibodies. CV-B3 Nancy prototype strain and a recombinant strain (Rec, CV-B3/B4) were tested in parallel. The P1 genomic region of 12 CV-B isolates from different serotypes was sequenced and the Trans-Epithelial Electrical Resistance (TEER) along with the virus growth cycle was measured. RESULTS Infectivity assays revealed clear differences between CV-B isolates with regard to their interactions with DAF and CAR. All tested CV-B isolates showed an absolute requirement for CAR but varied in their binding to DAF. We also reported that for some isolates of CV-B, DAF attachment was not adapted. Genetic analysis of the P1 region detected multiple differences in the deduced amino acid sequences. CONCLUSION Within a given serotype, variations exist in the capacity of virus isolates to bind to specific receptors, and variants with different additional ligands may arise during infection in humans as well as in tissue culture.
Collapse
Affiliation(s)
- Samira Riabi
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Avenue Avicenne 5000, Monastir, Tunisia
- Laboratory of Bacteriology-Virology, GIMAP EA3064, Faculty of Medicine of Saint-Etienne, Saint-Etienne, France
| | - Rafik Harrath
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Avenue Avicenne 5000, Monastir, Tunisia
- Laboratory of Bacteriology-Virology, GIMAP EA3064, Faculty of Medicine of Saint-Etienne, Saint-Etienne, France
| | - Imed Gaaloul
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Avenue Avicenne 5000, Monastir, Tunisia
| | - Lamjed Bouslama
- Laboratory of Bio-Active Substances, Center of Biotechnology of Borj Cedria, Borj Cedria, Tunisia
| | - Dorsaf Nasri
- Laboratory of Bacteriology-Virology, GIMAP EA3064, Faculty of Medicine of Saint-Etienne, Saint-Etienne, France
| | - Mahjoub Aouni
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Avenue Avicenne 5000, Monastir, Tunisia
| | - Sylvie Pillet
- Laboratory of Bacteriology-Virology-Hygiene, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Bruno Pozzetto
- Laboratory of Bacteriology-Virology, GIMAP EA3064, Faculty of Medicine of Saint-Etienne, Saint-Etienne, France
- Laboratory of Bacteriology-Virology-Hygiene, University Hospital Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
28
|
Abstract
The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.
Collapse
|
29
|
Characterization of coxsackievirus B3 replication in human umbilical vein endothelial cells. Med Microbiol Immunol 2014; 203:217-29. [DOI: 10.1007/s00430-014-0333-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
|
30
|
Henke A, Jarasch N, Wutzler P. Vaccination procedures against Coxsackievirus-induced heart disease. Expert Rev Vaccines 2014; 2:805-15. [PMID: 14711363 DOI: 10.1586/14760584.2.6.805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coxsackievirus B3--a member of the picornavirus family--is one of the major causes of virus-induced acute or chronic heart disease. Despite the fact that the molecular structure of this pathogen has been characterized very precisely during the last 10 years, until recently, there was no virus-specific preventive or therapeutic procedure against Coxsackievirus B3-induced human heart disease in clinical use. However, using different murine model systems it has been demonstrated that classic as well as newly developed vaccination procedures are quite successful in preventing Coxsackievirus B3 infections. In particular, the application of an interferon-gamma-expressing recombinant Coxsackievirus variant against Coxsackievirus B3-induced myocarditis has been effective.
Collapse
Affiliation(s)
- Andreas Henke
- Institute of Virology and Antiviral Therapy, Medical Center at the Friedrich Schiller University Jena, Hans-Knöll-Strasse 2, D-07740 Jena, Germany.
| | | | | |
Collapse
|
31
|
A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J Virol 2013; 88:2385-97. [PMID: 24371059 DOI: 10.1128/jvi.03116-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a reemerging arbovirus responsible for outbreaks of infection throughout Asia and Africa, causing an acute illness characterized by fever, rash, and polyarthralgia. Although CHIKV infects a broad range of host cells, little is known about how CHIKV binds and gains access to the target cell interior. In this study, we tested whether glycosaminoglycan (GAG) binding is required for efficient CHIKV replication using CHIKV vaccine strain 181/25 and clinical isolate SL15649. Preincubation of strain 181/25, but not SL15649, with soluble GAGs resulted in dose-dependent inhibition of infection. While parental Chinese hamster ovary (CHO) cells are permissive for both strains, neither strain efficiently bound to or infected mutant CHO cells devoid of GAG expression. Although GAGs appear to be required for efficient binding of both strains, they exhibit differential requirements for GAGs, as SL15649 readily infected cells that express excess chondroitin sulfate but that are devoid of heparan sulfate, whereas 181/25 did not. We generated a panel of 181/25 and SL15649 variants containing reciprocal amino acid substitutions at positions 82 and 318 in the E2 glycoprotein. Reciprocal exchange at residue 82 resulted in a phenotype switch; Gly(82) results in efficient infection of mutant CHO cells but a decrease in heparin binding, whereas Arg(82) results in reduced infectivity of mutant cells and an increase in heparin binding. These results suggest that E2 residue 82 is a primary determinant of GAG utilization, which likely mediates attenuation of vaccine strain 181/25. IMPORTANCE Chikungunya virus (CHIKV) infection causes a debilitating rheumatic disease that can persist for months to years, and yet there are no licensed vaccines or antiviral therapies. Like other alphaviruses, CHIKV displays broad tissue tropism, which is thought to be influenced by virus-receptor interactions. In this study, we determined that cell-surface glycosaminoglycans are utilized by both a vaccine strain and a clinical isolate of CHIKV to mediate virus binding. We also identified an amino acid polymorphism in the viral E2 attachment protein that influences utilization of glycosaminoglycans. These data enhance an understanding of the viral and host determinants of CHIKV cell entry, which may foster development of new antivirals that act by blocking this key step in viral infection.
Collapse
|
32
|
Initial evidence on differences among Enterovirus 71, Coxsackievirus A16 and Coxsackievirus B4 in binding to cell surface heparan sulphate. Virusdisease 2013; 25:277-84. [PMID: 25674594 DOI: 10.1007/s13337-013-0172-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 10/10/2013] [Indexed: 10/25/2022] Open
Abstract
Cell surface heparan sulphate (HS) mediates infection for many viruses from diverse families. We demonstrated significant antiviral potencies for a number of HS mimetics against a cloned strain of Enterovirus 71 (EV71) in a previous study. Thus, the involvement of HS in mediating viral infection of isolates of human enteroviruses was investigated in Vero and human neural cells in the present work. In both cell lines, heparin and pentosan polysulphate significantly inhibited both infection and attachment of low passage clinical isolates of EV71 and Coxsackievirus A16 (CVA16) but showed no affect on Coxsackievirus B4 (CVB4) (p < 0.05). In addition, enzymatic removal of cell surface HS by heparinase I prevented binding of the clinical EV71 by nearly 50 % but failed to significantly inhibit CVA16 or CVB4 binding in Vero cells. Overall, the findings of this study provides evidence that whilst highly sulphated domains of HS serve as an essential attachment co-receptor for EV71, HS might be used as an alternative attachment receptor by the other member of Human Enterovirus group A, CVA16. In addition, HS may not mediate early infection in CVB4.
Collapse
|
33
|
Pourianfar HR, Palombo E, Grollo L. Global Impact of Heparin on Gene Expression Profiles in Neural Cells Infected by Enterovirus 71. Intervirology 2013; 57:93-100. [DOI: 10.1159/000355872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
|
34
|
Abstract
Enteroviruses can frequently target the human central nervous system to induce a variety of neurological diseases. Although enteroviruses are highly cytolytic, emerging evidence has shown that these viruses can establish persistent infections both in vivo and in vitro. Here, we investigated the susceptibility of three human brain cell lines, CCF-STTG1, T98G, and SK-N-SH, to infection with three enterovirus serotypes: coxsackievirus B3 (CVB3), enterovirus 71, and coxsackievirus A9. Persistent infection was observed in CVB3-infected CCF-STTG1 cells, as evidenced by prolonged detection of infectious virions, viral RNA, and viral antigens. Of note, infected CCF-STTG1 cells expressed the nonfunctional canonical viral receptors coxsackievirus-adenovirus receptor and decay-accelerating factor, while removal of cell surface chondroitin sulfate from CCF-STTG1 cells inhibited the replication of CVB3, suggesting that receptor usage was one of the major limiting factors in CVB3 persistence. In addition, CVB3 curtailed the induction of beta interferon in infected CCF-STTG1 cells, which likely contributed to the initiation of persistence. Furthermore, proinflammatory chemokines and cytokines, such as vascular cell adhesion molecule 1, interleukin-8 (IL-8), and IL-6, were upregulated in CVB3-infected CCF-STTG1 cells and human progenitor-derived astrocytes. Our data together demonstrate the potential of CCF-STTG1 cells to be a novel cell model for studying CVB3-central nervous system interactions, providing the basis toward a better understanding of CVB3-induced chronic neuropathogenesis.
Collapse
|
35
|
Bergelson JM, Coyne CB. Picornavirus entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:24-41. [PMID: 23884584 DOI: 10.1007/978-1-4614-7651-1_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The essential event in picornavirus entry is the delivery of the RNA genome to the cytoplasm of a target cell, where replication occurs. In the past several years progress has been made in understanding the structural changes in the virion important for uncoating and RNA release. In addition, for several viruses the endocytic mechanisms responsible for internalization have been identified, as have the cellular sites at which uncoating occurs. It has become clear that entry is not a passive process, and that viruses initiate specific signals required for entry. And we have begun to recognize that for a given virus, there may be multiple routes of entry, depending on the particular target cell and the receptors available on that cell.
Collapse
Affiliation(s)
- Jeffrey M Bergelson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
36
|
In vitro evaluation of the antiviral activity of heparan sulfate mimetic compounds against Enterovirus 71. Virus Res 2012; 169:22-9. [DOI: 10.1016/j.virusres.2012.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/13/2012] [Accepted: 06/27/2012] [Indexed: 11/19/2022]
|
37
|
Induction of a broad spectrum of inflammation-related genes by Coxsackievirus B3 requires Interleukin-1 signaling. Med Microbiol Immunol 2012; 202:11-23. [DOI: 10.1007/s00430-012-0245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 05/09/2012] [Indexed: 10/27/2022]
|
38
|
Virus-host coevolution in a persistently coxsackievirus B3-infected cardiomyocyte cell line. J Virol 2011; 85:13409-19. [PMID: 21976640 DOI: 10.1128/jvi.00621-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coevolution of virus and host is a process that emerges in persistent virus infections. Here we studied the coevolutionary development of coxsackievirus B3 (CVB3) and cardiac myocytes representing the major target cells of CVB3 in the heart in a newly established persistently CVB3-infected murine cardiac myocyte cell line, HL-1(CVB3). CVB3 persistence in HL-1(CVB3) cells represented a typical carrier-state infection with high levels (10(6) to 10(8) PFU/ml) of infectious virus produced from only a small proportion (approximately 10%) of infected cells. CVB3 persistence was characterized by the evolution of a CVB3 variant (CVB3-HL1) that displayed strongly increased cytotoxicity in the naive HL-1 cell line and showed increased replication rates in cultured primary cardiac myocytes of mouse, rat, and naive HL-1 cells in vitro, whereas it was unable to establish murine cardiac infection in vivo. Resistance of HL-1(CVB3) cells to CVB3-HL1 was associated with reduction of coxsackievirus and adenovirus receptor (CAR) expression. Decreasing host cell CAR expression was partially overcome by the CVB3-HL1 variant through CAR-independent entry into resistant cells. Moreover, CVB3-HL1 conserved the ability to infect cells via CAR. The employment of a soluble CAR variant resulted in the complete cure of HL-1(CVB3) cells with respect to the adapted virus. In conclusion, this is the first report of a CVB3 carrier-state infection in a cardiomyocyte cell line, revealing natural coevolution of CAR downregulation with CAR-independent viral entry in resistant host cells as an important mechanism of induction of CVB3 persistence.
Collapse
|
39
|
Lang J, Yang N, Deng J, Liu K, Yang P, Zhang G, Jiang C. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One 2011; 6:e23710. [PMID: 21887302 PMCID: PMC3161750 DOI: 10.1371/journal.pone.0023710] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/22/2011] [Indexed: 02/07/2023] Open
Abstract
It has been reported that lactoferrin (LF) participates in the host immune response against Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) invasion by enhancing NK cell activity and stimulating neutrophil aggregation and adhesion. We further investigated the role of LF in the entry of SARS pseudovirus into HEK293E/ACE2-Myc cells. Our results reveal that LF inhibits SARS pseudovirus infection in a dose-dependent manner. Further analysis suggested that LF was able to block the binding of spike protein to host cells at 4°C, indicating that LF exerted its inhibitory function at the viral attachment stage. However, LF did not disrupt the interaction of spike protein with angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV. Previous studies have shown that LF colocalizes with the widely distributed cell-surface heparan sulfate proteoglycans (HSPGs). Our experiments have also confirmed this conclusion. Treatment of the cells with heparinase or exogenous heparin prevented binding of spike protein to host cells and inhibited SARS pseudovirus infection, demonstrating that HSPGs provide the binding sites for SARS-CoV invasion at the early attachment phase. Taken together, our results suggest that, in addition to ACE2, HSPGs are essential cell-surface molecules involved in SARS-CoV cell entry. LF may play a protective role in host defense against SARS-CoV infection through binding to HSPGs and blocking the preliminary interaction between SARS-CoV and host cells. Our findings may provide further understanding of SARS-CoV pathogenesis and aid in treatment of this deadly disease.
Collapse
Affiliation(s)
- Jianshe Lang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, People's Republic of China
| | - Ning Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, People's Republic of China
| | - Jiejie Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, People's Republic of China
| | - Kangtai Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, People's Republic of China
| | - Peng Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, People's Republic of China
| | - Guigen Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, People's Republic of China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
40
|
Eymann-Häni R, Leifer I, McCullough KC, Summerfield A, Ruggli N. Propagation of classical swine fever virus in vitro circumventing heparan sulfate-adaptation. J Virol Methods 2011; 176:85-95. [PMID: 21703305 DOI: 10.1016/j.jviromet.2011.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Amplification of natural virus isolates in permanent cell lines can result in adaptation, in particular enhanced binding to heparan sulfate (HS)-containing glycosaminoglycans present on most vertebrate cells. This has been reported for several viruses, including the pestivirus classical swine fever virus (CSFV), the causative agent of a highly contagious hemorrhagic disease in pigs. Propagation of CSFV in cell culture is essential in virus diagnostics and research. Adaptation of CSFV to HS-binding has been related to amino acid changes in the viral E(rns) glycoprotein, resulting in viruses with altered replication characteristics in vitro and in vivo. Consequently, a compound blocking the HS-containing structures on cell surfaces was employed to monitor conversion from HS-independency to HS-dependency. It was shown that the porcine PEDSV.15 cell line permitted propagation of CSFV within a limited number of passages without adaptation to HS-binding. The selection of HS-dependent CSFV mutants was also prevented by propagation of the virus in the presence of DSTP 27. The importance of these findings can be seen from the altered ratio of cell-associated to secreted virus upon acquisition of enhanced HS-binding affinity, a phenotype proposed previously to be related to virulence in the natural host.
Collapse
Affiliation(s)
- Rita Eymann-Häni
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Cermelli C, Cuoghi A, Scuri M, Bettua C, Neglia RG, Ardizzoni A, Blasi E, Iannitti T, Palmieri B. In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid. Virol J 2011; 8:141. [PMID: 21439070 PMCID: PMC3073889 DOI: 10.1186/1743-422x-8-141] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 03/25/2011] [Indexed: 11/13/2022] Open
Abstract
Background hyaluronic acid (HA), a non-sulphated glycosaminoglycan, is present in synovial fluid, vitreous humour serum and many connective tissues. Pharmaceutical preparations of HA are used in clinical practice for wound healing, joint pain, kerato-conjunctivitis, asthma, mouth care, oesophageal-reflux, and gastritis. Moreover, it is used as a filler to counteract ageing and facial lipoatrophy. Our study aims at investigating the in vitro antiviral activity of a high molecular weight HA. Methods the MTT test was used to rule out the potential toxic effects of HA on the different cell lines used in the antiviral assays. The antiviral activity of HA against Coxsackievirus B5, Herpes Simplex Virus-1, Mumps Virus, Adenovirus-5, Influenza Virus A/H1N1, Human Herpesvirus-6, Porcine Parvovirus, Porcine Reproductive and Respiratory Syndrome Virus was assessed by virus yield assays. Results the most effective inhibition was observed against Coxsackievirus B5, with 3Log reduction of the virus yield at 4 mg/ml, and a reduction of 3.5Log and 2Log, at 2 mg/ml and 1 mg/ml, respectively: the selectivity index was 16. Mumps virus was highly inhibited too showing a reduction of 1.7Log at 1 mg/ml and 1Log at 4 mg/ml and 2 mg/ml (selectivity index = 12). The selectivity index for Influenza Virus was 12 with the highest inhibition (1Log) observed at 4 mg/ml. Herpes Simplex Virus-1 and Porcine Parvovirus were mildly inhibited, whereas no antiviral activity was observed with respect to Adenovirus-5, Human Herpesvirus-6, Porcine Reproductive and Respiratory Syndrome Virus. No HA virucidal activity was ever observed against any of the viruses tested. Kinetic experiments showed that both Coxsackievirus B5 and Herpes simplex virus-1 replication were consistently inhibited, not influenced by the time of HA addition, during the virus replication cycle. Conclusions the spectrum of the antiviral activity exhibited by HA against both RNA and DNA viruses, known to have different structures (with or without envelope) and replication strategies, suggests a non specific mechanism of action, probably involving cell membrane-virus interaction steps. The results of the kinetic experiments support this hypothesis.
Collapse
Affiliation(s)
- Claudio Cermelli
- Department of Public Health Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Variations of coxsackievirus B3 capsid primary structure, ligands, and stability are selected for in a coxsackievirus and adenovirus receptor-limited environment. J Virol 2011; 85:3306-14. [PMID: 21270163 DOI: 10.1128/jvi.01827-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While group B coxsackieviruses (CVB) use the coxsackievirus and adenovirus receptor (CAR) as the receptor through which they infect susceptible cells, some CVB strains are known for their acquired capacity to bind other molecules. The CVB3/RD strain that emerged from a CVB3/Nancy population sequentially passaged in the CAR-poor RD cell line binds decay-accelerating factor (DAF) (CD55) and CAR. A new strain, CVB3/RDVa, has been isolated from RD cells chronically infected with CVB3/RD and binds multiple molecules in addition to DAF and CAR. The capsid proteins of CVB3/RD differ from those of CVB3/28, a cloned strain that binds only CAR, by only four amino acids, including a glutamate/glutamine dimorphism in the DAF-binding region of the capsid. The capsid proteins of CVB3/RD and CVB3/RDVa differ by seven amino acids. The ability of CVB3/RDVa to bind ligands in addition to CAR and DAF may be attributed to lysine residues near the icosahedral 5-fold axes of symmetry. Considered with differences in the stability of the CVB3 strains, these traits suggest that in vitro selection in a CAR-limited environment selects for virus populations that can associate with molecules on the cell surface and survive until CAR becomes available to support infection.
Collapse
|
43
|
Abstract
To cause infections, microbial pathogens elaborate a multitude of factors that interact with host components. Using these host–pathogen interactions to their advantage, pathogens attach, invade, disseminate, and evade host defense mechanisms to promote their survival in the hostile host environment. Many viruses, bacteria, and parasites express adhesins that bind to cell surface heparan sulfate proteoglycans (HSPGs) to facilitate their initial attachment and subsequent cellular entry. Some pathogens also secrete virulence factors that modify HSPG expression. HSPGs are ubiquitously expressed on the cell surface of adherent cells and in the extracellular matrix. HSPGs are composed of one or several heparan sulfate (HS) glycosaminoglycan chains attached covalently to specific core proteins. For most intracellular pathogens, cell surface HSPGs serve as a scaffold that facilitates the interaction of microbes with secondary receptors that mediate host cell entry. Consistent with this mechanism, addition of HS or its pharmaceutical functional mimic, heparin, inhibits microbial attachment and entry into cultured host cells, and HS-binding pathogens can no longer attach or enter cultured host cells whose HS expression has been reduced by enzymatic treatment or chemical mutagenesis. In pathogens where the specific HS adhesin has been identified, mutant strains lacking HS adhesins are viable and show normal growth rates, suggesting that the capacity to interact with HSPGs is strictly a virulence activity. The goal of this chapter is to provide a mechanistic overview of our current understanding of how certain microbial pathogens subvert HSPGs to promote their infection, using specific HSPG–pathogen interactions as representative examples.
Collapse
Affiliation(s)
- Mauro S.G. Pavão
- , Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco 255, Rio de Janeiro, 21941-913 Rio de Janeiro Brazil
| |
Collapse
|
44
|
Bradshaw AC, Parker AL, Duffy MR, Coughlan L, van Rooijen N, Kähäri VM, Nicklin SA, Baker AH. Requirements for receptor engagement during infection by adenovirus complexed with blood coagulation factor X. PLoS Pathog 2010; 6:e1001142. [PMID: 20949078 PMCID: PMC2951380 DOI: 10.1371/journal.ppat.1001142] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/08/2010] [Indexed: 01/22/2023] Open
Abstract
Human adenoviruses from multiple species bind to coagulation factor X (FX), yet the importance of this interaction in adenovirus dissemination is unknown. Upon contact with blood, vectors based on adenovirus serotype 5 (Ad5) binds to FX via the hexon protein with nanomolar affinity, leading to selective uptake of the complex into the liver and spleen. The Ad5:FX complex putatively targets heparan sulfate proteoglycans (HSPGs). The aim of this study was to elucidate the specific requirements for Ad5:FX-mediated cellular uptake in this high-affinity pathway, specifically the HSPG receptor requirements as well as the role of penton base-mediated integrin engagement in subsequent internalisation. Removal of HS sidechains by enzymatic digestion or competition with highly-sulfated heparins/heparan sulfates significantly decreased FX-mediated Ad5 cell binding in vitro and ex vivo. Removal of N-linked and, in particular, O-linked sulfate groups significantly attenuated the inhibitory capabilities of heparin, while the chemical inhibition of endogenous HSPG sulfation dose-dependently reduced FX-mediated Ad5 cellular uptake. Unlike native heparin, modified heparins lacking O- or N-linked sulfate groups were unable to inhibit Ad5 accumulation in the liver 1h after intravascular administration of adenovirus. Similar results were observed in vitro using Ad5 vectors possessing mutations ablating CAR- and/or α(v) integrin binding, demonstrating that attachment of the Ad5:FX complex to the cell surface involves HSPG sulfation. Interestingly, Ad5 vectors ablated for α(v) integrin binding showed markedly delayed cell entry, highlighting the need for an efficient post-attachment internalisation signal for optimal Ad5 uptake and transport following surface binding mediated through FX. This study therefore integrates the established model of α(v) integrin-dependent adenoviral infection with the high-affinity FX-mediated pathway. This has important implications for mechanisms that define organ targeting following contact of human adenoviruses with blood.
Collapse
MESH Headings
- Adenoviridae Infections/metabolism
- Adenoviridae Infections/virology
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Adenoviruses, Human/physiology
- Factor X/metabolism
- Hep G2 Cells
- Heparan Sulfate Proteoglycans/metabolism
- Heparan Sulfate Proteoglycans/physiology
- Heparin/pharmacology
- Humans
- Multiprotein Complexes/metabolism
- Multiprotein Complexes/physiology
- Oligopeptides/chemistry
- Oligopeptides/physiology
- Organisms, Genetically Modified
- Protein Binding/drug effects
- Protein Processing, Post-Translational/physiology
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Receptors, Virus/physiology
- Sulfates/metabolism
- Tumor Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Angela C Bradshaw
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Funke C, Farr M, Werner B, Dittmann S, Überla K, Piper C, Niehaus K, Horstkotte D. Antiviral effect of Bosentan and Valsartan during coxsackievirus B3 infection of human endothelial cells. J Gen Virol 2010; 91:1959-1970. [DOI: 10.1099/vir.0.020065-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In viral myocarditis, adeno- and enteroviruses have most commonly been implicated as causes of infection. Both viruses require the human coxsackie-adenovirus receptor (CAR) to infect the myocardium. Due to its crucial role for viral entry, CAR-downregulation may lead to novel approaches for treatment for viral myocarditis. In this study, we report on pharmaceutical drug influences on CAR levels in human umbilical vein endothelial cells (HUVEC) and cervical carcinoma cells (HeLa) detected by immunoblotting, quantitative real time-PCR and cellular susceptibility to the cardiotropic coxsackie-B3 virus strain Nancy (CVB3). Our results indicate, for the first time, a dose-dependent CAR mRNA and protein downregulation upon Valsartan and Bosentan treatment. Most interestingly, drug-induced CAR diminution significantly reduced the viral load in CVB3-infected HUVEC. In order to assess the regulatory effects of both drugs in detail, we knocked down their protein targets, the G-protein coupled receptors angiotensin-II type-1 receptor (AT1R) and endothelin-1 type-A and -B receptors (ETAR/ETBR) in HUVEC. Receptor-specific gene silencing indicates that CAR gene expression is regulated by agonistic and antagonistic binding to ETBR, but not ETAR. In addition, neither stimulation nor inhibition of AT1R seemed to be involved in CAR gene regulatory processes. Our study indicates that Valsartan and Bosentan protected human endothelial cells from CVB3-infection. Therefore, besides their well-known anti-hypertensive effects these drugs may also protect the myocardium and other tissues from coxsackie- and adenoviral infection.
Collapse
Affiliation(s)
- Carsten Funke
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Martin Farr
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Bianca Werner
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Sven Dittmann
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr University of Bochum, Universitätsstr. 150, 44801 Bochum, NRW, Germany
| | - Cornelia Piper
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Karsten Niehaus
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, NRW, Germany
| | - Dieter Horstkotte
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| |
Collapse
|
46
|
Israelsson S, Gullberg M, Jonsson N, Roivainen M, Edman K, Lindberg AM. Studies of Echovirus 5 interactions with the cell surface: heparan sulfate mediates attachment to the host cell. Virus Res 2010; 151:170-6. [PMID: 20466025 DOI: 10.1016/j.virusres.2010.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
Infections caused by Echovirus 5 (E5), an enterovirus of the Picornaviridae family, have been associated with fever, rashes and sporadic cases of aseptic meningitis. To elucidate the receptor usage of this virus, the significance of a previously proposed integrin binding arginine-glycine-aspartic acid (RGD) motif found in the VP3 capsid protein was investigated, as well as the capacity of E5 to interact with heparan sulfate on the cell surface. Using the prototype strain E5 Noyce (E5N), an E5N mutant where the aspartic acid of the RGD motif has been substituted to a glutamic acid and clinical E5 isolates, the RGD motif of VP3 was found to be non-essential and hence not involved in integrin receptor binding. However, E5N and clinical E5 isolates interact with heparan sulfate at the cell surface, as demonstrated by virus replication inhibition assays using heparin and heparinase III, and studies of E5 interactions at the cell surface measured by real-time PCR analysis. In conclusion, E5 utilizes heparan sulfate as a cellular receptor, but the RGD motif of VP3 is not essential for E5 infectivity.
Collapse
Affiliation(s)
- Stina Israelsson
- School of Natural Sciences, Linnaeus University, Smalandsgatan 24, SE-391 82 Kalmar, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
A wide variety of different viruses use tight junction (TJ) proteins in the course of infection and different mechanisms of pathogen–TJ interactions have been described; pathogens may induce the reorganization or degradation of distinct TJ proteins, reorganization of the cell cytoskeleton, activation of host-cell signaling pathways and/or use TJ proteins as receptors to enter host cells. Most recently, the TJ proteins claudin-1 and occludin have been identified as essential host factors for HCV entry. Furthermore, TJ protein occludin has been shown to play an important role in the species specificity of HCV infection. Recent data suggest that claudin-1 is a promising target for antiviral strategies. The aim of this article is to elucidate the impact of the interplay between pathogens and TJ proteins for pathogen–host interactions, summarize recent findings regarding the role of TJ proteins in HCV entry and highlight the relevance of TJ proteins for the development of novel antiviral strategies.
Collapse
Affiliation(s)
| | - Marine Turek
- Inserm, U748, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U748, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
48
|
Kallewaard NL, Zhang L, Chen JW, Guttenberg M, Sanchez MD, Bergelson JM. Tissue-specific deletion of the coxsackievirus and adenovirus receptor protects mice from virus-induced pancreatitis and myocarditis. Cell Host Microbe 2009; 6:91-8. [PMID: 19616768 PMCID: PMC2761025 DOI: 10.1016/j.chom.2009.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/23/2009] [Accepted: 05/15/2009] [Indexed: 01/19/2023]
Abstract
In cultured cells, infection by group B coxsackievirus (CVB) is mediated by the coxsackievirus and adenovirus receptor (CAR), but the importance of this molecule in CVB-induced disease has not been determined. We generated mice with tissue-specific ablation of CAR within each of two major CVB target organs, the pancreas and heart. In the pancreas, deletion of CAR resulted in a significant reduction in both virus titers and virus-induced tissue damage. Similarly, cardiomyocyte-specific CAR deletion resulted in a marked reduction in virus titer, infection-associated cytokine production, and histopathology within the heart. Consistent with the in vivo phenotype, CAR-deficient cardiomyocytes resisted infection in vitro. These results demonstrate a critical function for CAR in the pathogenesis of CVB infection in vivo and in virus tropism for the heart and pancreas.
Collapse
Affiliation(s)
- Nicole L. Kallewaard
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lili Zhang
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jin-Wen Chen
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Marta Guttenberg
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA, Department of Pathology, University of Pennsylvania School of Medicine
| | - Melissa D. Sanchez
- Department of Pathology and Toxicology, University of Pennsylvania School of Veterinary Medicine
| | - Jeffrey M. Bergelson
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania School of Medicine
| |
Collapse
|
49
|
De Palma AM, Vliegen I, De Clercq E, Neyts J. Selective inhibitors of picornavirus replication. Med Res Rev 2008; 28:823-84. [PMID: 18381747 DOI: 10.1002/med.20125] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Picornaviruses cover a large family of pathogens that have a major impact on human but also on veterinary health. Although most infections in man subside mildly or asymptomatically, picornaviruses can also be responsible for severe, potentially life-threatening disease. To date, no therapy has been approved for the treatment of picornavirus infections. However, efforts to develop an antiviral that is effective in treating picornavirus-associated diseases are ongoing. In 2007, Schering-Plough, under license of ViroPharma, completed a phase II clinical trial with Pleconaril, a drug that was originally rejected by the FDA after a New Drug Application in 2001. Rupintrivir, a rhinovirus protease inhibitor developed at Pfizer, reached clinical trials but was recently halted from further development. Finally, Biota's HRV drug BTA-798 is scheduled for phase II trials in 2008. Several key steps in the picornaviral replication cycle, involving structural as well as non-structural proteins, have been identified as valuable targets for inhibition. The current review aims to highlight the most important developments during the past decades in the search for antivirals against picornaviruses.
Collapse
Affiliation(s)
- Armando M De Palma
- Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
50
|
Role of class I human leukocyte antigen molecules in early steps of echovirus infection of rhabdomyosarcoma cells. Virology 2008; 381:203-14. [PMID: 18823925 DOI: 10.1016/j.virol.2008.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/23/2008] [Accepted: 08/04/2008] [Indexed: 11/20/2022]
Abstract
Several echoviruses use decay accelerating factor (DAF) as a cell surface receptor. However, most of them require additional cell surface coreceptors. We investigated the respective roles of DAF and class I human leukocyte antigen (HLA) molecules in the early steps of the echovirus 11 (EV11) lifecycle in rhabdomyosarcoma (RD) cells. EV11 infection was inhibited at an early stage by anti-beta2-microglobulin (beta2m) and anti-HLA monoclonal antibodies and by a soluble monochain HLA class I molecule. Expression of class I HLA molecules restored the early steps of the EV11 lifecycle, but its expression was not sufficient for EV11 replication and particle production. Expression of HLA class I molecules was associated with leukocyte cell line permissiveness to EV11 infection. In conclusion, HLA class I molecules are involved in the early steps of EV11 infection of RD cells and appear to participate in a complex interplay of surface molecules acting as coreceptors, including DAF.
Collapse
|