1
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Liang Z, Yao K, Wang S, Yin J, Ma X, Yin X, Wang X, Sun Y. Understanding the research advances on lumpy skin disease: A comprehensive literature review of experimental evidence. Front Microbiol 2022; 13:1065894. [PMID: 36519172 PMCID: PMC9742232 DOI: 10.3389/fmicb.2022.1065894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 10/28/2023] Open
Abstract
Lumpy skin disease is caused by lumpy skin disease virus (LSDV), which can induce cattle with high fever and extensive nodules on the mucosa or the scarfskin, seriously influencing the cattle industry development and international import and export trade. Since 2013, the disease has spread rapidly and widely throughout the Russia and Asia. In the past few decades, progress has been made in the study of LSDV. It is mainly transmitted by blood-sucking insects, and various modes of transmission with distinct seasonality. Figuring out how the virus spreads will help eradicate LSDV at its source. In the event of an outbreak, selecting the most effective vaccine to block and eliminate the threat posed by LSDV in a timely manner is the main choice for farmers and authorities. At present, a variety of vaccines for LSDV have been developed. The available vaccine products vary in quality, protection rate, safety and side effects. Early detection of LSDV can help reduce the cost of disease. In addition, because LSDV has a huge genome, it is currently also used as a vaccine carrier, forming a new complex with other viral genes through homologous recombination. The vaccine prepared based on this can have a certain preventive effect on many kinds of diseases. Clinical detection of disease including nucleic acid and antigen level. Each method varies in convenience, accuracy, cost, time and complexity of equipment. This article reviews our current understanding of the mode of transmission of LSDV and advances in vaccine types and detection methods, providing a background for further research into various aspects of LSDV in the future.
Collapse
Affiliation(s)
- Zhengji Liang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kaishen Yao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanbin Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqin Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Zhou JO, Ton T, Morriss JW, Nguyen D, Fera D. Structural Insights from HIV-Antibody Coevolution and Related Immunization Studies. AIDS Res Hum Retroviruses 2018; 34:760-768. [PMID: 29984587 DOI: 10.1089/aid.2018.0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a rapidly evolving pathogen that causes acquired immunodeficiency syndrome (AIDS) in humans. There are ∼30-35 million people infected with HIV around the world, and ∼25 million have died since the first reported cases in 1981. In addition, each year 2-3 million people become newly infected, and >1 million die of AIDS. An HIV-1 vaccine would help halt an AIDS pandemic, and efforts to develop a vaccine have focused on targeting the HIV-1 envelope, Env, found on the surface of the virus. A number of chronically infected individuals have been shown to produce antibodies, called broadly neutralizing antibodies (bnAbs), that target many strains of HIV-1 by binding to Env, thus suggesting promise for HIV-1 vaccine development. BnAbs take years to develop, and have a number of traits that inhibit their production; thus, a number of researchers are trying to understand the pathways that result in bnAb production, so that they can be elicited more rapidly by vaccination. This review discusses results and implications from two HIV-1-infected individuals studied longitudinally who produced bnAbs against two different sites on HIV-1 Env, and immunization studies that used Envs derived from those individuals.
Collapse
Affiliation(s)
- Jeffrey O. Zhou
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| | - Therese Ton
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Julia W. Morriss
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Diep Nguyen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| |
Collapse
|
4
|
Moody MA, Pedroza-Pacheco I, Vandergrift NA, Chui C, Lloyd KE, Parks R, Soderberg KA, Ogbe AT, Cohen MS, Liao HX, Gao F, McMichael AJ, Montefiori DC, Verkoczy L, Kelsoe G, Huang J, Shea PR, Connors M, Borrow P, Haynes BF. Immune perturbations in HIV-1-infected individuals who make broadly neutralizing antibodies. Sci Immunol 2016; 1:aag0851. [PMID: 28783677 PMCID: PMC5589960 DOI: 10.1126/sciimmunol.aag0851] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
Abstract
Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. bnAbs occur in some HIV-1-infected individuals and frequently have characteristics of autoantibodies. We have studied cohorts of HIV-1-infected individuals who made bnAbs and compared them with those who did not do so, and determined immune traits associated with the ability to produce bnAbs. HIV-1-infected individuals with bnAbs had a higher frequency of blood autoantibodies, a lower frequency of regulatory CD4+ T cells, a higher frequency of circulating memory T follicular helper CD4+ cells, and a higher T regulatory cell level of programmed cell death-1 expression compared with HIV-1-infected individuals without bnAbs. Thus, induction of HIV-1 bnAbs may require vaccination regimens that transiently mimic immunologic perturbations in HIV-1-infected individuals.
Collapse
Affiliation(s)
- M Anthony Moody
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Nathan A Vandergrift
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cecilia Chui
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Krissey E Lloyd
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelly A Soderberg
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ane T Ogbe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Myron S Cohen
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hua-Xin Liao
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Feng Gao
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurent Verkoczy
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Garnett Kelsoe
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jinghe Huang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Barton F Haynes
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Bradley T, Fera D, Bhiman J, Eslamizar L, Lu X, Anasti K, Zhang R, Sutherland LL, Scearce RM, Bowman CM, Stolarchuk C, Lloyd KE, Parks R, Eaton A, Foulger A, Nie X, Karim SSA, Barnett S, Kelsoe G, Kepler TB, Alam SM, Montefiori DC, Moody MA, Liao HX, Morris L, Santra S, Harrison SC, Haynes BF. Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site. Cell Rep 2015; 14:43-54. [PMID: 26725118 DOI: 10.1016/j.celrep.2015.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/20/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022] Open
Abstract
Antibodies that neutralize autologous transmitted/founder (TF) HIV occur in most HIV-infected individuals and can evolve to neutralization breadth. Autologous neutralizing antibodies (nAbs) against neutralization-resistant (Tier-2) viruses are rarely induced by vaccination. Whereas broadly neutralizing antibody (bnAb)-HIV-Envelope structures have been defined, the structures of autologous nAbs have not. Here, we show that immunization with TF mutant Envs gp140 oligomers induced high-titer, V5-dependent plasma neutralization for a Tier-2 autologous TF evolved mutant virus. Structural analysis of autologous nAb DH427 revealed binding to V5, demonstrating the source of narrow nAb specificity and explaining the failure to acquire breadth. Thus, oligomeric TF Envs can elicit autologous nAbs to Tier-2 HIVs, but induction of bnAbs will require targeting of precursors of B cell lineages that can mature to heterologous neutralization.
Collapse
Affiliation(s)
- Todd Bradley
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Daniela Fera
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jinal Bhiman
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2131, South Africa
| | - Leila Eslamizar
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ruijung Zhang
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard M Scearce
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cindy M Bowman
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christina Stolarchuk
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Krissey E Lloyd
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoyan Nie
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Salim S Abdool Karim
- Center for AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa; Columbia University, New York, NY 10032, USA
| | - Susan Barnett
- Novartis Vaccines and Diagnostics, Inc., Cambridge, MA 02139, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - S Munir Alam
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa; Center for AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2131, South Africa
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Gaufin T, Ribeiro RM, Gautam R, Dufour J, Mandell D, Apetrei C, Pandrea I. Experimental depletion of CD8+ cells in acutely SIVagm-infected African Green Monkeys results in increased viral replication. Retrovirology 2010; 7:42. [PMID: 20459829 PMCID: PMC2879233 DOI: 10.1186/1742-4690-7-42] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/11/2010] [Indexed: 11/22/2022] Open
Abstract
Background In vivo CD8+ cell depletions in pathogenic SIV infections identified a key role for cellular immunity in controlling viral load (VL) and disease progression. However, similar studies gave discordant results in chronically-infected SMs, leading some authors to propose that in natural hosts, SIV replication is independent of cellular immunity. To assess the role of cellular immune responses in the control of SIV replication in natural hosts, we investigated the impact of CD8+ cell depletion during acute SIV infection in AGMs. Results Nine AGMs were infected with SIVagm.sab and were followed up to day 225 p.i. Four were intravenously infused with the cM-T807 antibody on days 0 (50 mg/kg), 6, and 13 (10 mg/kg, respectively) post infection (p.i.). CD8+ cells were depleted for up to 28 days p.i. in peripheral blood and LNs in all treated AGMs. Partial CD8+ T cell depletion occurred in the intestine. SIVagm VLs peaked at similar levels in both groups (107-108 RNA copies/ml). However, while VLs were controlled in undepleted AGMs, reaching set-point levels (104-105 RNA copies/ml) by day 28 p.i., high VLs (>106 RNA copies/ml) were maintained by day 21 p.i. in CD8-depleted AGMs. By day 42 p.i., VLs were comparable between the two groups. The levels of immune activation and proliferation remained elevated up to day 72 p.i. in CD8-depleted AGMs and returned to preinfection levels in controls by day 28 p.i. None of the CD8-depleted animals progressed to AIDS. Conclusion CD8+ cells are responsible for a partial control of postacute viral replication in SIVagm.sab-infected AGMs. In contrast to macaques, the SIVagm-infected AGMs are able to control viral replication after recovery of the CD8+ T cells and avoid disease progression.
Collapse
Affiliation(s)
- Thaidra Gaufin
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Yamamoto H, Matano T. Anti-HIV adaptive immunity: determinants for viral persistence. Rev Med Virol 2008; 18:293-303. [PMID: 18416450 DOI: 10.1002/rmv.577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The immense difficulty in primary control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection by adaptive immune responses has been a topic of exceptional importance. CD8+ cytotoxic T lymphocytes (CTLs) do play a central role in primary resolution of viremia, but their potency in viral control is generally constrained in the natural courses of HIV/SIV infections. The overall repertoire of CTLs is dependent on both the host and the virus genetic polymorphisms, and the potency of each individual CTL is affected by immunological and virological determinants. HIV/SIV infections lack early appearance of neutralising antibodies (NAbs), and our recent finding has suggested a possibility of their absence contributing to diminished virus-specific CD4+ T-cell responses leading to failure in primary viral control. Extrapolations from studies in macaque models of SIV infection and analyses of the cohorts of HIV control in humans have to date delineated the numerous requirements for attainment of viral control. Understanding of the individual components of adaptive immune responses and their optimal concert required for HIV/SIV control would contribute to development of an effective AIDS vaccine. Here, we discuss current insights into CTLs and NAbs, and speculate their possible protective mechanism against establishment of persistent HIV/SIV infection.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
8
|
Vaccine protection by live, attenuated simian immunodeficiency virus in the absence of high-titer antibody responses and high-frequency cellular immune responses measurable in the periphery. J Virol 2008; 82:4135-48. [PMID: 18272584 DOI: 10.1128/jvi.00015-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An attenuated derivative of simian immunodeficiency virus strain 239 deleted of V1-V2 sequences in the envelope gene (SIV239DeltaV1-V2) was used for vaccine/challenge experiments in rhesus monkeys. Peak levels of viral RNA in plasma of 10(4) to 10(6.5) copies/ml in the weeks immediately following inoculation of SIV239DeltaV1-V2 were 10- to 1,000-fold lower than those observed with parental SIV239 ( approximately 10(7.3) copies/ml). Viral loads consistently remained below 200 copies/ml after 8 weeks of infection by the attenuated SIV239DeltaV1-V2 strain. Viral localization experiments revealed large numbers of infected cells within organized lymphoid nodules of the colonic gut-associated lymphoid tissue at 14 days; double-labeling experiments indicated that 93.5% of the virally infected cells at this site were positive for the macrophage marker CD68. Cellular and humoral immune responses measured principally by gamma interferon enzyme-linked immunospot and neutralization assays were variable in the five vaccinated monkeys. One monkey had responses in these assays comparable to or only slightly less than those observed in monkeys infected with parental, wild-type SIV239. Four of the vaccinated monkeys, however, had low, marginal, or undetectable responses in these same assays. These five vaccinated monkeys and three naïve control monkeys were subsequently challenged intravenously with wild-type SIV239. Three of the five vaccinated monkeys, including the one with strong anti-SIV immune responses, were strongly protected against the challenge on the basis of viral load measurements. Surprisingly, two of the vaccinated monkeys were strongly protected against SIV239 challenge despite the presence of cellular anti-SIV responses of low-frequency and low-titer anti-SIV antibody responses. These results indicate that high-titer anti-SIV antibody responses and high-frequency anti-SIV cellular immune responses measurable by standard assays from the peripheral blood are not needed to achieve strong vaccine protection, even against a difficult, neutralization-resistant strain such as SIV239.
Collapse
|
9
|
Perspectives for a protective HIV-1 vaccine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:423-52. [PMID: 18086420 DOI: 10.1016/s1054-3589(07)56014-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Abstract
Many experimental strategies have been adopted in experiments to protect cats from FIV infection by vaccination, and some have been successful. The interest in developing a vaccine arose both because FIV is a common cause of morbidity and mortality in pet cats and because the feline virus provides a model for its counterpart in man, human immunodeficiency virus (HIV), for which an effective vaccine is urgently required to halt the current tragic pandemic of acquired immunodeficiency syndrome (AIDS). Shortly after the discovery of FIV and its characterization as a lentivirus, attempts were made to produce a vaccine and success was soon achieved with relatively simple inactivated virus or inactivated virus-infected cell vaccines.82 Further development of this approach led to the introduction in 2002 of the first commercial vaccine against FIV.59 With an estimated prevalence of the infection of up to 25% in populations of pet cats, an effective FIV vaccine could have a significant influence on animal welfare. In addition, this success poses the question of whether a similar strategy might produce an effective vaccine against HIV.
Collapse
|
11
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
12
|
Yamamoto H, Kawada M, Tsukamoto T, Takeda A, Igarashi H, Miyazawa M, Naruse T, Yasunami M, Kimura A, Matano T. Vaccine-based, long-term, stable control of simian/human immunodeficiency virus 89.6PD replication in rhesus macaques. J Gen Virol 2007; 88:652-659. [PMID: 17251584 DOI: 10.1099/vir.0.82469-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The X4-tropic simian/human immunodeficiency virus (SHIV) 89.6P (or 89.6PD) causes rapid CD4(+) T-cell depletion leading to an acute crash of the host immune system, whereas pathogenic R5-tropic simian immunodeficiency virus (SIV) infection, like HIV-1 infection in humans, results in chronic disease progression in macaques. Recent pre-clinical vaccine trials inducing cytotoxic T lymphocyte (CTL) responses have succeeded in controlling replication of the former but shown difficulty in control of the latter. Analysis of the immune responses involved in consistent control of SHIV would contribute to elucidation of the mechanism for consistent control of SIV replication. This study followed up rhesus macaques that showed vaccine-based control of primary SHIV89.6PD replication and found that all of these controllers maintained viraemia control for more than 2 years. SHIV89.6PD control was observed in vaccinees of diverse major histocompatibility complex (MHC) haplotypes and was maintained without rapid selection of CTL escape mutations, a sign of particular CTL pressure. Despite the vaccine regimen not targeting Env, all of the SHIV controllers showed efficient elicitation of de novo neutralizing antibodies by 6 weeks post-challenge. These results contrast with our previous observation of particular MHC-associated control of SIV replication without involvement of neutralizing antibodies and suggest that vaccine-based control of SHIV89.6PD replication can be stably maintained in the presence of multiple functional immune effectors.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Miki Kawada
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tetsuo Tsukamoto
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Akiko Takeda
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroko Igarashi
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Taeko Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Michio Yasunami
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
13
|
Young KR, McBurney SP, Karkhanis LU, Ross TM. Virus-like particles: designing an effective AIDS vaccine. Methods 2007; 40:98-117. [PMID: 16997718 DOI: 10.1016/j.ymeth.2006.05.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Accepted: 05/05/2006] [Indexed: 01/10/2023] Open
Abstract
Viruses that infect eukaryotic organisms have the unique characteristic of self-assembling into particles. The mammalian immune system is highly attuned to recognizing and attacking these viral particles following infection. The use of particle-based immunogens, often delivered as live-attenuated viruses, has been an effective vaccination strategy for a variety of viruses. The development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge, since HIV infects cells of the immune system causing severe immunodeficiency resulting in the syndrome known as AIDS. In addition, the ability of the virus to adapt to immune pressure and reside in an integrated form in host cells presents hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes against different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immune responses. However, while these vaccines stimulate immunity, challenged animals rarely clear the viral infection and the degree of attenuation directly correlates with protection from disease. Further, a live-attenuated vaccine has the potential to revert to a pathogenic form. Alternatively, virus-like particles (VLPs) mimic the viral particle without causing an immunodeficiency disease. VLPs are self-assembling, non-replicating, non-pathogenic particles that are similar in size and conformation to intact virions. A variety of VLPs for lentiviruses are currently in preclinical and clinical trials. This review focuses on our current status of VLP-based AIDS vaccines, regarding issues of purification and immune design for animal and clinical trials.
Collapse
Affiliation(s)
- Kelly R Young
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | |
Collapse
|
14
|
Kaur A, Sanford HB, Garry D, Lang S, Klumpp SA, Watanabe D, Bronson RT, Lifson JD, Rosati M, Pavlakis GN, Felber BK, Knipe DM, Desrosiers RC. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus. Virology 2006; 357:199-214. [PMID: 16962628 PMCID: PMC1819472 DOI: 10.1016/j.virol.2006.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/14/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNA in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value<0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value <0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS.
Collapse
Affiliation(s)
- Amitinder Kaur
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, P.O. Box 9102, Southborough, MA 01772-9102, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Burke B, Derby NR, Kraft Z, Saunders CJ, Dai C, Llewellyn N, Zharkikh I, Vojtech L, Zhu T, Srivastava IK, Barnett SW, Stamatatos L. Viral evolution in macaques coinfected with CCR5- and CXCR4-tropic SHIVs in the presence or absence of vaccine-elicited anti-CCR5 SHIV neutralizing antibodies. Virology 2006; 355:138-51. [PMID: 16920175 DOI: 10.1016/j.virol.2006.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/08/2006] [Accepted: 07/11/2006] [Indexed: 11/21/2022]
Abstract
Macaques were immunized with SF162 Env-based gp140 immunogens and challenged simultaneously with the CCR5-tropic homologous SHIV(SF162P4) and the CXCR4-tropic heterologous SHIV(SF33A) viruses. Both mock-immunized and immunized animals became dually infected. Prior immunization preferentially reduced the viral replication of the homologous virus during primary infection but the relative replication of the two coinfecting viruses during chronic infection was unaffected by prior immunization, despite the fact that five of six immunized animals maintained a significantly lower overall viral replication that the control animals. Neutralizing antibodies participated in controlling the replication of SHIV(SF162P4), but not that of SHIV(SF33A). Dual infection resulted in the emergence and predominance within the circulating CCR5 virus pool, of a variant with a distinct neutralization phenotype. The signature of this variant was the presence of three amino acid changes in gp120, two of which were located in the receptor and coreceptor binding sites. Also, a significant fraction of the viruses circulating in the blood, as early as two weeks post-infection, was recombinants and prior immunization did not prevent their emergence. These findings provide new insights into the dynamic interaction of CCR5- and CXCR4-tropic HIV isolates that are potentially relevant in better understanding HIV-mediated pathogenesis.
Collapse
Affiliation(s)
- Brian Burke
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li Y, Svehla K, Mathy NL, Voss G, Mascola JR, Wyatt R. Characterization of antibody responses elicited by human immunodeficiency virus type 1 primary isolate trimeric and monomeric envelope glycoproteins in selected adjuvants. J Virol 2006; 80:1414-26. [PMID: 16415019 PMCID: PMC1346938 DOI: 10.1128/jvi.80.3.1414-1426.2006] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that soluble, stable YU2 gp140 trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein immunogens could elicit improved breadth of neutralization against HIV-1 isolates compared to monomeric YU2 gp120 proteins. In this guinea pig immunization study, we sought to extend these data and determine if adjuvant could quantitatively or qualitatively alter the neutralizing response elicited by trimeric or monomeric immunogens. Consistent with our earlier studies, the YU2 gp140 immunogens elicited higher-titer neutralizing antibodies against homologous and heterologous isolates than those elicited by monomeric YU2 gp120. Additionally, the GlaxoSmithKline family of adjuvants AS01B, AS02A, and AS03 induced higher levels of neutralizing antibodies compared to emulsification of the same immunogens in Ribi adjuvant. Further analysis of vaccine sera indicated that homologous virus neutralization was not mediated by antibodies to the V3 loop, although V3 loop-directed neutralization could be detected for some heterologous isolates. In most gp120-inoculated animals, the homologous YU2 neutralization activity was inhibited by a peptide derived from the YU2 V1 loop, whereas the neutralizing activity elicited by YU2 gp140 trimers was much less sensitive to V1 peptide inhibition. Consistent with a less V1-focused antibody response, sera from the gp140-immunized animals more efficiently neutralized heterologous HIV-1 isolates, as determined by two distinct neutralization formats. Thus, there appear to be qualitative differences in the neutralizing antibody response elicited by YU2 gp140 compared to YU2 monomeric gp120. Further mapping analysis of more conserved regions of gp120/gp41 may be required to determine the neutralizing specificity elicited by the trimeric immunogens.
Collapse
Affiliation(s)
- Y Li
- Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Rm 4512, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Cristillo AD, Wang S, Caskey MS, Unangst T, Hocker L, He L, Hudacik L, Whitney S, Keen T, Chou THW, Shen S, Joshi S, Kalyanaraman VS, Nair B, Markham P, Lu S, Pal R. Preclinical evaluation of cellular immune responses elicited by a polyvalent DNA prime/protein boost HIV-1 vaccine. Virology 2005; 346:151-68. [PMID: 16325880 DOI: 10.1016/j.virol.2005.10.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 09/19/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
While DNA vaccines have been shown to prime cellular immune responses, levels are often low in nonhuman primates or humans. Hence, efforts have been directed toward boosting responses by combining DNA with different vaccination modalities. To this end, a polyvalent DNA prime/protein boost vaccine, consisting of codon optimized HIV-1 env (A, B, C, E) and gag (C) and homologous gp120 proteins in QS-21, was evaluated in rhesus macaques and BALB/c mice. Humoral and cellular responses, detected following DNA immunization, were increased following protein boost in macaques and mice. In dissecting cellular immune responses in mice, protein-enhanced responses were found to be mediated by CD4+ and CD8+ T cells with a Th1 cytokine bias. Our study reveals that, in addition to augmenting humoral responses, protein boosting of DNA-primed animals augments cellular immune responses mediated by CD8+ CTL, CD4+ T-helper cells and Th1 cytokines; thus, offering much promise in controlling HIV-1 in vaccinees.
Collapse
Affiliation(s)
- Anthony D Cristillo
- Advanced BioScience Laboratories, Department of Cell Biology, 5510 Nicholson Lane, Kensington, MD 20895, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liang X, Casimiro DR, Schleif WA, Wang F, Davies ME, Zhang ZQ, Fu TM, Finnefrock AC, Handt L, Citron MP, Heidecker G, Tang A, Chen M, Wilson KA, Gabryelski L, McElhaugh M, Carella A, Moyer C, Huang L, Vitelli S, Patel D, Lin J, Emini EA, Shiver JW. Vectored Gag and Env but not Tat show efficacy against simian-human immunodeficiency virus 89.6P challenge in Mamu-A*01-negative rhesus monkeys. J Virol 2005; 79:12321-31. [PMID: 16160159 PMCID: PMC1211517 DOI: 10.1128/jvi.79.19.12321-12331.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian-human immunodeficiency virus (SHIV) challenge studies in rhesus macaques were conducted to evaluate the efficacy of adenovirus-based vaccines in the context of different major histocompatibility complex class I genetic backgrounds and different vaccine compositions. Mamu-A*01 allele-negative rhesus monkeys were immunized with one of the following vaccine constructs: (i) replication-defective recombinant adenovirus type 5 (Ad5) expressing human immunodeficiency virus type 1 (HIV-1) Tat (Ad5/HIVTat); (ii) Ad5 vector expressing simian immunodeficiency virus (SIV) Gag (Ad5/SIVGag); (iii) Ad5 vector expressing the truncated HIV-1(jrfl) Env, gp140 (Ad5/gp140_jrfl); (iv) Ad5 vector expressing the SHIV-89.6P gp140 (Ad5/gp140_89.6P); or (v) the combination of Ad5/SIVGag and Ad5/gp140_jrfl. Following intravenous challenge with SHIV-89.6P, only those cohorts that received vaccines expressing Gag or Env exhibited an attenuation of the acute viremia and associated CD4-cell lymphopenia. While no prechallenge neutralizing antibody titers were detectable in either Ad5/gp140-vaccinated group, an accelerated neutralizing antibody response was observed in the Ad5/gp140_89.6P-vaccinated group upon viral challenge. The set-point viral loads in the Ad5/SIVGag- and Ad5/gp140_jrfl-vaccinated groups were associated with the overall strength of the induced cellular immune responses. To examine the contribution of Mamu-A*01 allele in vaccine efficacy against SHIV-89.6P challenge, Mamu-A*01-positive monkeys were immunized with Ad5/SIVGag. Vaccine-mediated protection was significantly more pronounced in the Mamu-A*01-positive monkeys than in Mamu-A*01-negative monkeys, suggesting the strong contributions of T-cell epitopes restricted by the Mamu-A*01 molecule. The implications of these results in the development of an HIV-1 vaccine will be discussed.
Collapse
MESH Headings
- AIDS Vaccines/immunology
- Acquired Immunodeficiency Syndrome/prevention & control
- Adenoviridae/genetics
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD4 Lymphocyte Count
- Disease Models, Animal
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/immunology
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- Genetic Vectors
- HIV/genetics
- HIV/immunology
- Histocompatibility Antigens Class I/genetics
- Immunity, Cellular
- Macaca mulatta
- Neutralization Tests
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Viral Load
- Viremia
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Xiaoping Liang
- Merck Research Laboratories, P. O. Box 4, WP16-306, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nishimura Y, Brown CR, Mattapallil JJ, Igarashi T, Buckler-White A, Lafont BAP, Hirsch VM, Roederer M, Martin MA. Resting naive CD4+ T cells are massively infected and eliminated by X4-tropic simian-human immunodeficiency viruses in macaques. Proc Natl Acad Sci U S A 2005; 102:8000-5. [PMID: 15911767 PMCID: PMC1142395 DOI: 10.1073/pnas.0503233102] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unlike HIV-1 and simian immunodeficiency virus (SIV), which induce a slow, unrelenting loss of immune function spanning several years, highly pathogenic simian-human immunodeficiency viruses (SHIVs) induce a rapid, complete, and irreversible depletion of CD4(+) T lymphocytes in rhesus monkeys within weeks of infection, leading to death from immunodeficiency. We recently reported that, because these SHIVs exclusively use the CXCR4 coreceptor for cell entry, they target naive CD4(+) T cells for depletion in infected monkeys, whereas SIVs, which use CCR5, not CXCR4, cause the selective loss of memory CD4(+) T lymphocytes in vivo. Here we show both by DNA PCR analyses and infectivity assays, using live sorted CD4(+) T lymphocyte subsets, that 30-90% of circulating naive cells were productively infected by day 10 after inoculation. This result implies that direct cell killing, not bystander apoptosis, is responsible for the massive loss of CD4(+) T cells in the X4-tropic SHIV model. Furthermore, we directly demonstrate that >96% of virus producing cells did not express the Ki-67 proliferation marker on day 10 after inoculation using confocal microscopic analysis of lymph nodes samples. This finding is consistent with the prodigious levels of plasma viremia measured during acute X4-tropic SHIV infections of macaques being generated almost entirely by resting naive CD4(+) T cells.
Collapse
Affiliation(s)
- Yoshiaki Nishimura
- Laboratory of Molecular Microbiology and Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Quinnan GV, Yu XF, Lewis MG, Zhang PF, Sutter G, Silvera P, Dong M, Choudhary A, Sarkis PTN, Bouma P, Zhang Z, Montefiori DC, Vancott TC, Broder CC. Protection of rhesus monkeys against infection with minimally pathogenic simian-human immunodeficiency virus: correlations with neutralizing antibodies and cytotoxic T cells. J Virol 2005; 79:3358-69. [PMID: 15731230 PMCID: PMC1075715 DOI: 10.1128/jvi.79.6.3358-3369.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the capacity of active immunization of rhesus monkeys with HIV-1 envelope protein (Env) to induce primary virus cross-reactive neutralizing antibodies to prevent infection following intravenous challenge with simian-human immunodeficiency virus (SHIV). Monkeys were immunized with the human immunodeficiency type 1 (HIV-1) strain R2 Env. Initially, the Env was expressed in vivo by an alphavirus replicon particle system, and then it was administered as soluble oligomeric gp140. Concurrently, groups of monkeys received expression vectors that encoded either simian immunodeficiency virus (SIV) gag/pol genes or no SIV genes in vivo to test the additional protective benefit of concurrent induction of virus-specific cell-mediated immune (CMI) responses. Groups of control monkeys received either the gag/pol regimen or sham immunizations. The antibodies induced by the Env immunization regimen neutralized diverse primary HIV-1 strains. Similarly, potent CMI responses were induced by the gag/pol regimen, as measured by gamma interferon enzyme-linked immunospot assays. Differences in the responses among groups of monkeys strongly suggested that there was interference between the Env and gag/pol immunization regimens. Complete protection of some of the monkeys against infection after intravenous challenge with the partially pathogenic SHIV(DH12R (Clone 7)) was associated independently with both neutralizing antibody and CMI responses. Protection was associated with SHIV(DH12 (Clone 7)) serum neutralizing antibody titers of > or =1:80 or with cellular immune responses corresponding to >2,000 spot forming cells per 10(6) peripheral blood mononuclear cells. Immunization was also associated with a reduction in the magnitude and duration of virus load. Induction of cross-reactive, primary HIV-1-neutralizing antibodies is feasible and, when potent, may result in complete protection against infection with a heterologous challenge virus strain.
Collapse
Affiliation(s)
- Gerald V Quinnan
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Johnson PR, Schnepp BC, Connell MJ, Rohne D, Robinson S, Krivulka GR, Lord CI, Zinn R, Montefiori DC, Letvin NL, Clark KR. Novel adeno-associated virus vector vaccine restricts replication of simian immunodeficiency virus in macaques. J Virol 2005; 79:955-65. [PMID: 15613324 PMCID: PMC538580 DOI: 10.1128/jvi.79.2.955-965.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene transfer vectors based on recombinant adeno-associated virus (rAAV) are simple, versatile, and safe. While the conventional applications for rAAV vectors have focused on delivery of therapeutic genes, we have developed the system for delivery of vaccine antigens. In particular, we are interested in generating rAAV vectors for use as a prophylactic human immunodeficiency virus type 1 (HIV-1) vaccine. To that end, we constructed vaccine vectors that expressed genes from the simian immunodeficiency virus (SIV) for evaluation in the monkey SIV model. After a single intramuscular dose, rAAV/SIV vaccines elicited SIV-specific T cells and antibodies in macaques. Furthermore, immunized animals were able to significantly restrict replication of a live, virulent SIV challenge. These data suggest that rAAV vaccine vectors induced biologically relevant immune responses, and thus, warrant continued development as a viable HIV-1 vaccine candidate.
Collapse
Affiliation(s)
- Philip R Johnson
- Columbus Children's Hospital, Room WA3011, 700 Children's Dr., Columbus, OH 43205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Akahata W, Yang ZY, Nabel GJ. Comparative immunogenicity of human immunodeficiency virus particles and corresponding polypeptides in a DNA vaccine. J Virol 2005; 79:626-31. [PMID: 15596858 PMCID: PMC538686 DOI: 10.1128/jvi.79.1.626-631.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunogenicity of a plasmid DNA expression vector encoding both Gag and envelope (Env), which produced human immunodeficiency virus (HIV) type 1 virus-like particles (VLP), was compared to vectors expressing Gag and Env individually, which presented the same gene products as polypeptides. Vaccination with plasmids that generated VLP showed cellular immunity comparable to that of Gag and cell-mediated or humoral responses similar to those of Env as immunization with separate vectors. These data suggest that DNA vaccines encoding separated HIV polypeptides generate immune responses similar to those generated by viral particles.
Collapse
Affiliation(s)
- Wataru Akahata
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3005, USA
| | | | | |
Collapse
|
23
|
Teleshova N, Kenney J, Jones J, Marshall J, Van Nest G, Dufour J, Bohm R, Lifson JD, Gettie A, Pope M. CpG-C immunostimulatory oligodeoxyribonucleotide activation of plasmacytoid dendritic cells in rhesus macaques to augment the activation of IFN-gamma-secreting simian immunodeficiency virus-specific T cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:1647-57. [PMID: 15265893 DOI: 10.4049/jimmunol.173.3.1647] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There are two principle subsets of dendritic cells (DCs); CD11c(+)CD123(-) myeloid DCs (MDCs) and CD11c(-)CD123(+) plasmacytoid DCs (PDCs). DC activation via TNF-TNFRs (e.g., CD40L) and TLRs (e.g., immunostimulatory oligodeoxyribonucleotides (ISS-ODNs)) is crucial for maximal stimulation of innate and adaptive immunity. Macaque DC biology is being studied to improve HIV vaccines using the SIV macaque model. Using lineage (Lin) markers to exclude non-DCs, Lin(-)HLA-DR(+)CD11c(+)CD123(-) MDCs and Lin(-)HLA-DR(+)CD11c(-)CD123(+) PDCs were identified in the blood of uninfected macaques and healthy macaques infected with SIV or simian-human immunodeficiency virus. Overnight culture of DC-enriched Lin-depleted cells increased CD80 and CD86 expression. IL-12 production and CD80/CD86 expression by MDC/PDC mixtures was further enhanced by CD40L and ISS-ODN treatment. A CpG-B ISS-ODN increased CD80/CD86 expression by PDCs, but resulted in little IFN-alpha secretion unless IL-3 was added. In contrast, a CpG-C ISS-ODN and aldrithiol-2-inactivated (AT-2) SIV induced considerable PDC activation and IFN-alpha release without needing exogenous IL-3. The CpG-C ISS-ODN also stimulated IL-12 release (unlike AT-2 SIV) and augmented DC immunostimulatory activity, increasing SIV-specific T cell IFN-gamma production induced by AT-2 SIV-presenting MDC/PDC-enriched mixtures. These data highlight the functional capacities of MDCs and PDCs in naive as well as healthy, infected macaques, revealing a promising CpG-C ISS-ODN-driven DC activation strategy that boosts immune function to augment preventative and therapeutic vaccine efficacy.
Collapse
Affiliation(s)
- Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mackay GA, Liu Z, Singh DK, Smith MS, Mukherjee S, Sheffer D, Jia F, Adany I, Sun KH, Dhillon S, Zhuge W, Narayan O. Protection Against Late-Onset AIDS in Macaques Prophylactically Immunized with a Live Simian HIV Vaccine Was Dependent on Persistence of the Vaccine Virus. THE JOURNAL OF IMMUNOLOGY 2004; 173:4100-7. [PMID: 15356160 DOI: 10.4049/jimmunol.173.6.4100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This is a 5-year follow-up study on 12 macaques that were immunized orally with two live SHIV vaccines, six with V1 and six with V2. All 12 macaques became persistently infected after transient replication of the vaccine viruses; all were challenged vaginally 6 mo later with homologous pathogenic SHIV(KU-1). Two of the V1 group developed full-blown AIDS without evidence of vaccine virus DNA in tissues. The data on the 10 vaccinated survivors showed that all 10 became infected with SHIV(KU-1) and that DNA of both vaccine and SHIV(KU-1) viruses were present 6 mo postchallenge, with minimal replication of SHIV(KU-1). During the following 5 years, these animals remained persistently infected, but with only one of the two viruses. Six animals eliminated their vaccine virus after variable periods of time and four of these succumbed to reactivation of the challenge virus and AIDS. Five years after challenge, four latently infected animals, two with V2 and two with SHIV(KU-1), were reinoculated with SHIV(KU-1.) This resulted in transient superinfection and the animals promptly returned to their prechallenge status. Immunosuppression of the four animals 1 year later with Abs to CD8+ lymphocytes resulted in transiently productive replication of their respective latent viruses, and upon recovery of CD8+ lymphocytes, they reverted to their latent virus status. The major finding was that of eight animals that eliminated the vaccine virus, six developed AIDS. The two others harboring SHIV(KU-1) remain at risk for developing late-onset disease. The primary correlate against AIDS was persistence of the vaccine virus.
Collapse
Affiliation(s)
- Glenn A Mackay
- Marion Merrell Dow Laboratory of Viral Pathogenesis, Division of Infectious Diseases, Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lifson JD, Rossio JL, Piatak M, Bess J, Chertova E, Schneider DK, Coalter VJ, Poore B, Kiser RF, Imming RJ, Scarzello AJ, Henderson LE, Alvord WG, Hirsch VM, Benveniste RE, Arthur LO. Evaluation of the safety, immunogenicity, and protective efficacy of whole inactivated simian immunodeficiency virus (SIV) vaccines with conformationally and functionally intact envelope glycoproteins. AIDS Res Hum Retroviruses 2004; 20:772-87. [PMID: 15307924 DOI: 10.1089/0889222041524661] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel, general approach to chemical inactivation of retroviruses was used to produce inactivated simian immunodeficiency virus (SIV) particles with functional envelope glycoproteins. Inactivated virions of three different virus isolates (SIVmne E11S, SIVmac239, and SIVmac239 g4,5), prepared by treatment with 2,2'-dithiodipyridine (aldrithol-2, AT-2), were not detectably infectious, in vitro or in vivo. Immunization of pigtailed macaques with inactivated SIVmne E11S particles, without adjuvant, induced both humoral and cellular immune responses. Four of six animals immunized with the inactivated particles did not show measurable SIV RNA in plasma (<100 copy Eq/ml) following intravenous challenge with pathogenic, homologous virus (SIVmne E11S), compared to peak values of > or =10(6) copy Eq/ml in challenged SIV-naive control animals (p = 0.0001). Despite the absence of measurable viral RNA in plasma in these animals, culturable virus and viral DNA were initially detectable in blood and lymph node specimens; in contrast to control animals, SIV DNA could no longer be detected in PBMC by 10 weeks postchallenge in five of six SIV-immunized animals (p = 0.0001). However, vaccines did not resist a sequential rechallenge with the heterologous pathogenic virus SIVsm E660. AT-2-inactivated virus with functional envelope glycoproteins is a novel class of vaccine immunogen and was noninfectious, under conditions of rigorous in vivo challenge, and induced both binding and neutralizing antibody responses, along with cellular immune responses. Results suggest that immunization facilitated effective containment of pathogenic homologous challenge virus. With further optimization, AT-2-inactivated viral particles may be a useful class of immunogen in the development of a vaccine to prevent AIDS.
Collapse
Affiliation(s)
- Jeffrey D Lifson
- AIDS Vaccine Program, SAIC Frederick, Inc., National Cancer Institute-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sadjadpour R, Theodore TS, Igarashi T, Donau OK, Plishka RJ, Buckler-White A, Martin MA. Induction of disease by a molecularly cloned highly pathogenic simian immunodeficiency virus/human immunodeficiency virus chimera is multigenic. J Virol 2004; 78:5513-9. [PMID: 15113931 PMCID: PMC400343 DOI: 10.1128/jvi.78.10.5513-5519.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
One of three full-length infectious molecular clones of SHIV(DH12R), designated SHIV(DH12R-CL-7) and obtained from productively infected rhesus monkey peripheral blood mononuclear cells, directed rapid and irreversible loss of CD4+ T cells within 3 weeks of its inoculation into Indian rhesus monkeys. Induction of complete CD4+ T-cell depletion by SHIV(DH12R-CL-7) was found to be dependent on inoculum size. The acquisition of this pathogenic phenotype was accompanied by the introduction of 42 amino acid substitutions into multiple genes of parental nonpathogenic SHIV(DH12). Transfer of the entire SHIV(DH12R-CL-7) env gene into the genetic background of nonpathogenic SHIV(DH12) failed to confer the rapid CD4+ T-lymphocyte-depleting syndrome; similarly, the substitution of gag plus pol sequences from SIV(smE543) for analogous SIV(mac239) genes in SHIV(DH12R-CL-7) attenuated the pathogenic phenotype. Amino acid changes affecting multiple viral genes are necessary, but insufficient by themselves, to confer the prototypically rapid and irreversible CD4+ T-cell-depleting phenotype exhibited by molecularly cloned SHIV(DH12R-CL-7).
Collapse
Affiliation(s)
- Reza Sadjadpour
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Berkower I, Raymond M, Muller J, Spadaccini A, Aberdeen A. Assembly, structure, and antigenic properties of virus-like particles rich in HIV-1 envelope gp120. Virology 2004; 321:75-86. [PMID: 15033567 DOI: 10.1016/j.virol.2003.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 11/21/2003] [Accepted: 12/16/2003] [Indexed: 11/21/2022]
Abstract
In order to improve the immunogenicity of HIV-1 envelope glycoproteins, we have fused gp120 to a carrier protein, hepatitis B surface antigen (HBsAg), which is capable of spontaneous assembly into virus-like particles. The HBsAg-gp120 hybrid proteins assembled efficiently into 20-30 nm particles. The particles resemble native HBsAg particles in size and density, consistent with a lipid composition of about 25% and a gp120 content of about 100 per particle. Particulate gp120 folds in its native conformation and is biologically active, as shown by high affinity binding of CD4. The particles express conformational determinants targeted by a panel of broadly cross-reactive neutralizing antibodies, and they show tight packing of gp120. Because the particles are lipoprotein micelles, an array of gp120 on their surface closely mimics gp120 on the surface of HIV-1 virions. These gp120-rich particles can enhance the quality, as well as quantity, of antibodies elicited by a gp120 vaccine.
Collapse
Affiliation(s)
- Ira Berkower
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
28
|
Igarashi T, Donau OK, Imamichi H, Dumaurier MJ, Sadjadpour R, Plishka RJ, Buckler-White A, Buckler C, Suffredini AF, Lane HC, Moore JP, Martin MA. Macrophage-tropic simian/human immunodeficiency virus chimeras use CXCR4, not CCR5, for infections of rhesus macaque peripheral blood mononuclear cells and alveolar macrophages. J Virol 2004; 77:13042-52. [PMID: 14645561 PMCID: PMC296065 DOI: 10.1128/jvi.77.24.13042-13052.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After the nearly complete and irreversible depletion of CD4(+) T lymphocytes induced by highly pathogenic simian/human immunodeficiency virus chimeric viruses (SHIVs) during infections of rhesus monkeys, tissue macrophages are able to sustain high levels (>10(6) viral RNA copies/ml) of plasma viremia for several months. We recently reported that the virus present in the plasma during the late macrophage phase of infection had acquired changes that specifically targeted the V2 region of gp120 (H. Imamichi et al., Proc. Natl. Acad. Sci. USA 99:13813-13818, 2002); some of these SHIV variants were macrophage-tropic (M-tropic). Those findings have been extended by examining the tropic properties, coreceptor usage, and gp120 structure of five independent SHIVs recovered directly from lymph nodes of late-stage animals. All of these tissue-derived SHIV isolates were able to infect alveolar macrophages. These M-tropic SHIVs used CXCR4, not CCR5, for infections of rhesus monkey PBMC and primary alveolar macrophages. Because the starting highly pathogenic T-tropic SHIV inoculum also utilized CXCR4, these results indicate that the acquisition of M-tropism in the SHIV-macaque system is not accompanied by a change in coreceptor usage. Compared to the initial T-tropic SHIV inoculum, tissue-derived M-tropic SHIVs from individual infected animals carry gp120s containing similar changes (specific amino acid deletions, substitutions, and loss of N-linked glycosylation sites), primarily within the V1 and/or V2 regions of gp120.
Collapse
Affiliation(s)
- Tatsuhiko Igarashi
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nishimura Y, Igarashi T, Haigwood NL, Sadjadpour R, Donau OK, Buckler C, Plishka RJ, Buckler-White A, Martin MA. Transfer of neutralizing IgG to macaques 6 h but not 24 h after SHIV infection confers sterilizing protection: implications for HIV-1 vaccine development. Proc Natl Acad Sci U S A 2003; 100:15131-6. [PMID: 14627745 PMCID: PMC299920 DOI: 10.1073/pnas.2436476100] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Passive transfer of high-titered antiviral neutralizing IgG, known to confer sterilizing immunity in pig-tailed monkeys, has been used to determine how soon after virus exposure neutralizing antibodies (NAbs) must be present to block a simian immunodeficiency virus (SIV)/HIV chimeric virus infection. Sterilizing protection was achieved in three of four macaques receiving neutralizing IgG 6 h after intravenous SIV/HIV chimeric virus inoculation as monitored by PCR analyses of and attempted virus isolations from plasma, peripheral blood mononuclear cell, and lymph node specimens. In the fourth animal, the production of progeny virus was suppressed for >4 weeks. A delay in transferring NAbs until 24 h after virus challenge resulted in infection in two of two monkeys. These results suggest that even if a vaccine capable of eliciting broadly reactive NAbs against primary HIV-1 were at hand, the Abs generated must remain at, or rapidly achieve, high levels within a relatively short period after exposure to virus to prevent the establishment of a primate lentivirus infection.
Collapse
Affiliation(s)
- Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Doria-Rose NA, Pierce CC, Hensel MT, Sutton WF, Sheikh N, Polacino P, Kuller L, Zhu YD, Hu SL, Anderson D, Haigwood NL. Multigene DNA prime-boost vaccines for SHIV89.6P. J Med Primatol 2003; 32:218-28. [PMID: 14498982 DOI: 10.1034/j.1600-0684.2003.00028.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We assessed four prime-boost vaccine regimens with a Gene Gun component for SHIV89.6P in Macaca nemestrina. A dosing experiment using beta-galactosidase plasmid showed that 30 or 45 shots per dose elicited higher titer antibody than smaller doses. For SHIV89.6P, we administered a six-plasmid vaccine capable of producing non-infectious virions in vivo in combination with either vaccinia recombinants or inactivated virus. DNA prime/vaccinia boost, or the reverse, elicited strong immune responses. The SHIV89.6P challenge virus was grown in M. nemestrina peripheral blood mononuclear cells and titered in vivo intrarectally. As has been observed for SHIV89.6P in M. mulatta, the infected M. nemestrina experienced rapid and severe loss of circulating CD4+ T cells. Vaccinated macaques were challenged three weeks after the last boost. DNA prime/vaccina boost or vaccina prime/DNA boost protected 11/12 animals from acute CD4+ T cell depletion and disease, while other regimens were not effective.
Collapse
|
31
|
Igarashi T, Imamichi H, Brown CR, Hirsch VM, Martin MA. The emergence and characterization of macrophage-tropic SIV/HIV chimeric viruses (SHIVs) present in CD4+T cell-depleted rhesus monkeys. J Leukoc Biol 2003; 74:772-80. [PMID: 14595005 DOI: 10.1189/jlb.0503196] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Highly pathogenic simian immunodeficiency virus/human immunodeficiency virus type 1 chimeric viruses (SHIVs) induce an extremely rapid, systemic, and irreversible depletion of CD4+ T lymphocytes following their inoculation into rhesus macaques. Confocal fluorescence microscopy was used to demonstrate that high levels of viremia in infected animals were sustained by virus-producing tissue macrophage (mphi) following the irreversible elimination of CD4+ T lymphocytes by highly pathogenic SHIVDH12R. The envelope glycoproteins carried by plasma virus in CD4-depleted animals were found to contain specific alterations affecting the V2 region of gp120; similar V2 changes were observed during independent monkey infections. The altered V2 loops contained double amino acid deletions and the loss of a highly conserved N-linked glycosylation site. In contrast to the starting highly pathogenic SHIV, which is exclusively T cell-tropic, some mphi-phase SHIVs, bearing altered V2 regions, were able to establish spreading infections of cultured alveolar mphi.
Collapse
Affiliation(s)
- Tatsuhiko Igarashi
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
32
|
Doria-Rose NA, Ohlen C, Polacino P, Pierce CC, Hensel MT, Kuller L, Mulvania T, Anderson D, Greenberg PD, Hu SL, Haigwood NL. Multigene DNA priming-boosting vaccines protect macaques from acute CD4+-T-cell depletion after simian-human immunodeficiency virus SHIV89.6P mucosal challenge. J Virol 2003; 77:11563-77. [PMID: 14557642 PMCID: PMC229261 DOI: 10.1128/jvi.77.21.11563-11577.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 07/16/2003] [Indexed: 01/14/2023] Open
Abstract
We evaluated four priming-boosting vaccine regimens for the highly pathogenic simian human immunodeficiency virus SHIV89.6P in Macaca nemestrina. Each regimen included gene gun delivery of a DNA vaccine expressing all SHIV89.6 genes plus Env gp160 of SHIV89.6P. Additional components were two recombinant vaccinia viruses, expressing SHIV89.6 Gag-Pol or Env gp160, and inactivated SHIV89.6 virus. We compared (i) DNA priming/DNA boosting, (ii) DNA priming/inactivated virus boosting, (iii) DNA priming/vaccinia virus boosting, and (iv) vaccinia virus priming/DNA boosting versus sham vaccines in groups of 6 macaques. Prechallenge antibody responses to Env and Gag were strongest in the groups that received vaccinia virus priming or boosting. Cellular immunity to SHIV89.6 peptides was measured by enzyme-linked immunospot assay; strong responses to Gag and Env were found in 9 of 12 vaccinia virus vaccinees and 1 of 6 DNA-primed/inactivated-virus-boosted animals. Vaccinated macaques were challenged intrarectally with 50 50% animal infectious doses of SHIV89.6P 3 weeks after the last immunization. All animals became infected. Five of six DNA-vaccinated and 5 of 6 DNA-primed/particle-boosted animals, as well as all 6 controls, experienced severe CD4(+)-T-cell loss in the first 3 weeks after infection. In contrast, DNA priming/vaccinia virus boosting and vaccinia virus priming/DNA boosting vaccines both protected animals from disease: 11 of 12 macaques had no loss of CD4(+) T cells or moderate declines. Virus loads in plasma at the set point were significantly lower in vaccinia virus-primed/DNA-boosted animals versus controls (P = 0.03). We conclude that multigene vaccines delivered by a combination of vaccinia virus and gene gun-delivered DNA were effective against SHIV89.6P viral challenge in M. nemestrina.
Collapse
Affiliation(s)
- N A Doria-Rose
- Seattle Biomedical Research Institute, University of Washington, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Igarashi T, Endo Y, Nishimura Y, Buckler C, Sadjadpour R, Donau OK, Dumaurier MJ, Plishka RJ, Buckler-White A, Martin MA. Early control of highly pathogenic simian immunodeficiency virus/human immunodeficiency virus chimeric virus infections in rhesus monkeys usually results in long-lasting asymptomatic clinical outcomes. J Virol 2003; 77:10829-40. [PMID: 14512533 PMCID: PMC224955 DOI: 10.1128/jvi.77.20.10829-10840.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In contrast to simian immunodeficiency viruses (SIVs), which induce immunodeficiency over a 1- to 2-year period, highly pathogenic simian-human immunodeficiency viruses (SHIVs) cause an irreversible and systemic depletion of CD4(+) T lymphocytes in macaque monkeys within weeks of inoculation. Nonetheless, the seemingly more aggressive SHIVs have proven to be easier to control by the same vaccine regimens which fail to contain SIV. Because early events during in vivo infections may determine both the pathogenic consequences of the challenge virus and its sensitivity to interventions that prevent disease, we have evaluated the effects of inoculum size and a potent antiretroviral drug on the development of disease in monkeys infected with SHIV(DH12R). The results obtained show that in a majority of inoculated animals, suppression of SHIV replication during the first 2 weeks of infection, which prevents complete loss of CD4(+) T cells, leads to very low to undetectable postpeak viremia and an asymptomatic clinical course for periods up to 4 years.
Collapse
Affiliation(s)
- Tatsuhiko Igarashi
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Frank I, Santos JJ, Mehlhop E, Villamide-Herrera L, Santisteban C, Gettie A, Ignatius R, Lifson JD, Pope M. Presentation of exogenous whole inactivated simian immunodeficiency virus by mature dendritic cells induces CD4+ and CD8+ T-cell responses. J Acquir Immune Defic Syndr 2003; 34:7-19. [PMID: 14501788 DOI: 10.1097/00126334-200309010-00002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interactions between HIV-1 and dendritic cells (DCs) play an important role in the initial establishment and spread of infection and development of antiviral immunity. We used chemically inactivated aldrithiol-2 (AT-2) simian immunodeficiency virus (SIV) with functional envelope glycoproteins to study virus interactions with DCs and developed an in vitro system to evaluate the quality of SIV antigen (Ag) presentation by DCs to T cells. AT-2 SIV interacts authentically with T cells and DCs and thus allows assessment of natural SIV-specific responses. CD4+ and CD8+ T cells from blood or lymph nodes of SIV-infected macaques released interferon-gamma (IFN gamma) and proliferated in response to a variety of AT-2 SIV isolates. Responses did not vary significantly as a function of the quantitative envelope glycoprotein content of the virions. Presentation of Ags derived from AT-2 SIV by DCs was more potent than presentation by comparably Ag-loaded monocytes. Interestingly, SIV-pulsed mature DCs stimulated both CD4+ and CD8+ T-cell responses, whereas immature DCs primarily stimulated CD4+ T cells. Further studies using AT-2 inactivated virus may help to define better the details of the virus-DC interactions critical for infection versus induction of antiviral immune responses.
Collapse
Affiliation(s)
- Ines Frank
- Center for Biomedical Research, Population Council, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aspden K, Passmore JA, Tiedt F, Williamson AL. Evaluation of lumpy skin disease virus, a capripoxvirus, as a replication-deficient vaccine vector. J Gen Virol 2003; 84:1985-1996. [PMID: 12867628 DOI: 10.1099/vir.0.19116-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lumpy skin disease virus (LSDV), a capripoxvirus with a host range limited to ruminants, was evaluated as a replication-deficient vaccine vector for use in non-ruminant hosts. By using the rabies virus glycoprotein (RG) as a model antigen, it was demonstrated that recombinant LSDV encoding the rabies glycoprotein (rLSDV-RG) was able to express RG in both permissive (ruminant) and non-permissive (non-ruminant) cells. The recombinant LSDV, however, replicated to maturity only in permissive but not in non-permissive cells. Recombinant LSDV-RG was assessed for its ability to generate immunity against RG in non-ruminant hosts (rabbits and mice). Rabbits inoculated with rLSDV-RG produced rabies virus (RV) neutralizing antibodies at levels twofold higher than those reported by the WHO to be protective. BALB/c mice immunized with rLSDV-RG elicited levels of RV-specific cellular immunity (T-cell proliferation) comparable with those of mice immunized with a commercial inactivated rabies vaccine (Verorab; Pasteur Merieux). Most importantly, mice immunized with rLSDV-RG were protected from an aggressive intracranial rabies virus challenge.
Collapse
Affiliation(s)
- Kate Aspden
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Jo-Ann Passmore
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Friedrich Tiedt
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Anna-Lise Williamson
- National Health Laboratory Service, University of Cape Town, Observatory 7925, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
36
|
Smith KA. The HIV vaccine saga. MEDICAL IMMUNOLOGY (LONDON, ENGLAND) 2003; 2:1. [PMID: 12628020 PMCID: PMC151598 DOI: 10.1186/1476-9433-2-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2003] [Accepted: 02/14/2003] [Indexed: 01/03/2023]
Abstract
The development of a vaccine that can prevent infection by the Human immunodeficiency virus or prevent the Acquired Immunodeficiency Syndrome has remained elusive despite 20 years of scientific effort. This "Commentary" analyzes the reasons that the development of a vaccine has been so difficult, and proposes a plan to work towards an immunological approach to investigate the best vaccine candidates in the first world in individuals who are already infected, before taking the most promising vaccines to the developing world to attempt to prevent infection and disease. SAGA: (Old Norse) "a long, continued heroic story that is action-packed, but not especially romantic, and that is historical or legendary or both".
Collapse
Affiliation(s)
- Kendall A Smith
- The Division of Immunology, Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|