1
|
Thomas AM, Shea LD. Polysaccharide-modified scaffolds for controlled lentivirus delivery in vitro and after spinal cord injury. J Control Release 2013; 170:421-9. [PMID: 23791981 DOI: 10.1016/j.jconrel.2013.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
Gene delivering biomaterials have increasingly been employed to modulate the cellular microenvironment to promote tissue regeneration, yet low transduction efficiency has been a persistent challenge for in vivo applications. In this report, we investigated the surface modification of poly(lactide-co-glycolide) (PLG) scaffolds with polysaccharides, which have been implicated in binding lentivirus but have not been used for delivery. Chitosan was directly conjugated onto PLG scaffolds, whereas heparin and hyaluronan were indirectly conjugated onto PLG scaffolds with multi-amine crosslinkers. The addition of chitosan and heparin onto PLG promoted the association of lentivirus to these scaffolds and enhanced their transduction efficiency in vitro relative to hyaluronan-conjugated and control scaffolds that had limited lentivirus association and transduction. Transduction efficiency in vitro was increased partly due to an enhanced retention of virus on the scaffold as well as an extended half-life of viral activity. Transduction efficiency was also evaluated in vivo using porous, multiple channel PLG bridges that delivered lentivirus to the injured mouse spinal cord. Transgene expression persisted for weeks after implantation, and was able to enhance axon growth and myelination. These studies support gene-delivering PLG scaffolds for in vivo regenerative medicine applications.
Collapse
Affiliation(s)
- Aline M Thomas
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
2
|
Mazari PM, Roth MJ. Library screening and receptor-directed targeting of gammaretroviral vectors. Future Microbiol 2013; 8:107-21. [PMID: 23252496 DOI: 10.2217/fmb.12.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene- and cell-based therapies hold great potential for the advancement of the personalized medicine movement. Gene therapy vectors have made dramatic leaps forward since their inception. Retroviral-based vectors were the first to gain clinical attention and still offer the best hope for the long-term correction of many disorders. The fear of nonspecific transduction makes targeting a necessary feature for most clinical applications. However, this remains a difficult feature to optimize, with specificity often coming at the expense of efficiency. The aim of this article is to discuss the various methods employed to retarget retroviral entry. Our focus will lie on the modification of gammaretroviral envelope proteins with an in-depth discussion of the creation and screening of envelope libraries.
Collapse
Affiliation(s)
- Peter M Mazari
- University of Medicine & Dentistry of NJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
3
|
Gennari F, Lopes L, Verhoeyen E, Marasco W, Collins MK. Single-chain antibodies that target lentiviral vectors to MHC class II on antigen-presenting cells. Hum Gene Ther 2009; 20:554-62. [PMID: 19260768 DOI: 10.1089/hum.2008.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lentiviral vectors are promising vaccines because they can transduce and express antigens in dendritic cells in vivo, leading to potent immunization. To improve the safety and efficacy of lentivector vaccination, we sought to target vector transduction to antigen-presenting cells by modifying the viral envelope. To do this we screened a nonimmunized human single-chain antibody phage display library for phage that bound mouse bone marrow-derived dendritic cells (BMDCs) and isolated three single-chain antibodies (scFvs) that bound to more than 20% of cells in the BMDC culture. The three scFvs also bound to dendritic cells, macrophages, monocytes, and B cells from mouse spleen, but not to neutrophils, eosinophils, or T cells. Immunoblotting demonstrated that two unique scFvs, C2 and C7, recognized MHC class II. We constructed chimeric envelope proteins, by fusing these two scFvs to the amino terminus of the amphotropic murine leukemia virus envelope (MLV-A). These chimeric envelopes were expressed on the surface of lentiviral vector particles and enhanced infection (5- to 10-fold) of BMDC cultures, compared with lentiviral vectors with unmodified MLV-A envelope. Similarly, the chimeric envelopes enhanced (10- to 20-fold) the infection of primary lymph node class II-positive cells. One of the envelopes, C2, gave increased interferon-gamma production from splenocytes of vaccinated mice compared with MLV-A, achieving a level similar to that obtained with vesicular stomatitis virus glycoprotein G, when used to deliver an ovalbumin model antigen gene. These results demonstrate that surface-targeting lentiviral vector transduction of antigen-presenting cells gives efficient and potentially safer immunization.
Collapse
Affiliation(s)
- Francesca Gennari
- Infection and Immunity, University College London , London W1T4JF, UK
| | | | | | | | | |
Collapse
|
4
|
Li HJ, Everts M, Pereboeva L, Komarova S, Idan A, Curiel DT, Herschman HR. Adenovirus tumor targeting and hepatic untargeting by a coxsackie/adenovirus receptor ectodomain anti-carcinoembryonic antigen bispecific adapter. Cancer Res 2007; 67:5354-61. [PMID: 17545616 DOI: 10.1158/0008-5472.can-06-4679] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.g., colon, lung, and breast) express carcinoembryonic antigen (CEA). To block the natural hepatic tropism of adenovirus and to "retarget" the virus to CEA-expressing tumors, we used a bispecific adapter protein (sCAR-MFE), which fuses the ectodomain of the coxsackie/adenovirus receptor (sCAR) with a single-chain anti-CEA antibody (MFE-23). sCAR-MFE untargets adenovirus-directed luciferase transgene expression in the liver by >90% following systemic vector administration. Moreover, sCAR-MFE can "retarget" adenovirus to CEA-positive epithelial tumor cells in cell culture, in s.c. tumor grafts, and in hepatic tumor grafts. The sCAR-MFE bispecific adapter should, therefore, be a powerful agent to retarget adenovirus vectors to epithelial tumor metastases.
Collapse
Affiliation(s)
- Hua-Jung Li
- Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Macor P, Tedesco F. Complement as effector system in cancer immunotherapy. Immunol Lett 2007; 111:6-13. [PMID: 17572509 DOI: 10.1016/j.imlet.2007.04.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 04/30/2007] [Indexed: 11/28/2022]
Abstract
The contribution of the complement system to the control of tumour growth has been neglected for a long time as the major emphasis has been put mainly on cell-mediated immune response against cancer. With the introduction of monoclonal antibodies in cancer immunotherapy complement has come into play with a great potential as effector system. Complement has a number of advantages over other effector systems in that it is made of molecules that can easily penetrate the tumour tissue and a large majority, if not all, of the components of this system can be supplied locally by many cells at tissue site. Further advances are being made to increase the anti-tumour efficiency of the complements system using C-fixing antibodies that are modified in the Fc portion to be more active in complement activation. Another strategy currently investigated is essentially based on the use of a combination of two antibodies directed against different molecules or different epitopes of the same molecule expressed on the cell surface in order to increase the number of the binding sites for the antibodies on the tumor cells and the chance for them to activate complement more efficiently. One of the problems to solve in exploiting complement as an effector system in cancer immunotherapy is to neutralize the inhibitory effect of complement regulatory proteins which are often over-expressed on tumour cells and represent a mechanism of evasion of these cells from complement attack. This situation can be overcome using neutralizing antibodies to target onto tumour cells together with the specific antibodies directed against tumor specific antigens. This is an area of active investigation and the initial data that start to be available from animal models seem to be promising.
Collapse
Affiliation(s)
- Paolo Macor
- Department of Physiology and Pathology, University of Trieste, Via Fleming 22, Trieste 34127, Italy
| | | |
Collapse
|
6
|
Gao Y, Whitaker-Dowling P, Watkins SC, Griffin JA, Bergman I. Rapid adaptation of a recombinant vesicular stomatitis virus to a targeted cell line. J Virol 2006; 80:8603-12. [PMID: 16912309 PMCID: PMC1563842 DOI: 10.1128/jvi.00142-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is being developed for cancer therapy. We created a recombinant replicating VSV (rrVSV) that preferentially infected Her2/neu-expressing breast cancer cells. This rrVSV did not express the native VSV-G glycoprotein (gp). Instead, it expressed a chimeric Sindbis gp which included a single-chain antibody (SCA) directed to the human Her2/neu receptor. The virus infected mouse mammary carcinoma cells (D2F2/E2) expressing Her2/neu 23-fold better than the parent cells (D2F2). However, viral growth in cultured D2F2/E2 cells was curtailed after several cycles, and viral yield was very poor at 2 x 10(4) infectious doses (ID)/ml. We performed in vitro serial passage in D2F2/E2 cells to evolve a virus with improved growth that could be used for preclinical therapy trials in mice. Fifteen passes generated an adapted virus that progressed through multiple cycles in cultured D2F2/E2 cells until all cells were infected and had a viral yield of 1 x 10(8) ID/ml. Sequencing of the entire viral genomes found only 2 mutations in the adapted virus. Both mutations occurred in the gp gene segment coding for the SCA. An additional N-glycosylation site was created by one of the mutations. The adapted virus showed higher density of gp on the viral envelope, improved infectivity, much greater stability, higher burst size, and decreased induction of cellular interferon. The specificity for cells expressing the Her2/neu receptor was unchanged. These studies demonstrate that serial passage can be used to rapidly evolve a VSV genome encoding an improved chimeric glycoprotein.
Collapse
Affiliation(s)
- Yanhua Gao
- Department of Pediatrics, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | |
Collapse
|
7
|
Szécsi J, Drury R, Josserand V, Grange MP, Boson B, Hartl I, Schneider R, Buchholz CJ, Coll JL, Russell SJ, Cosset FL, Verhoeyen E. Targeted retroviral vectors displaying a cleavage site-engineered hemagglutinin (HA) through HA-protease interactions. Mol Ther 2006; 14:735-44. [PMID: 16784893 DOI: 10.1016/j.ymthe.2006.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/28/2006] [Accepted: 04/04/2006] [Indexed: 02/05/2023] Open
Abstract
We report here a targeting method that exploits the expression pattern of cell surface proteases to induce gene delivery to specific tissues. We describe retroviral vectors harboring modified surface glycoproteins derived from an avian influenza virus hemagglutinin (HA) for which the cell entry properties, dependent on HA cleavage by producer cells, were conditionally blocked at a postbinding step by insertion of matrix metalloproteinase (MMP) substrates. We demonstrate that such vectors induce gene transfer, both in vitro and in mice harboring human tumor xenografts, only through contact with target cells expressing MMPs that cleave the substrate introduced into the recombinant HA. This selective gene transfer in MMP-rich cells was specifically inhibited by 1,10-phenanthroline, a broad-range MMP inhibitor. Importantly, such MMP-activatable vectors selectively transduced MMP-rich cells in heterogeneous populations containing MMP-rich and MMP-poor cells. These vectors will allow useful gene transfer applications into target cells exhibiting specific protease activities.
Collapse
|
8
|
Yu JH, Schaffer DV. Advanced targeting strategies for murine retroviral and adeno-associated viral vectors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 99:147-67. [PMID: 16568891 DOI: 10.1007/10_006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Targeted gene delivery involves broadening viral tropism to infect previously nonpermissive cells, replacing viral tropism to infect a target cell exclusively, or stealthing the vector against nonspecific interactions with host cells and proteins. These approaches offer the potential advantages of enhanced therapeutic effects, reduced side effects, lowered dosages, and enhanced therapeutic economics. This review will discuss a variety of targeting strategies, both genetic and nongenetic, for re-engineering the tropism of two representative enveloped and nonenveloped viruses, murine retrovirus and adeno-associated virus. Basic advances in understanding the structural biology and virology of the parent viruses have aided rational design efforts to engineer novel properties into the viral attachment proteins. Furthermore, even in the absence of basic, mechanistic knowledge of viral function, high-throughput library and directed evolution approaches can yield significant improvements in vector function. These two complementary strategies offer the potential to gain enhanced molecular control over vector properties and overcome challenges in generating high titer, stealthy, retargeted vectors.
Collapse
Affiliation(s)
- Julie H Yu
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley 94720, USA
| | | |
Collapse
|
9
|
Bergman I, Whitaker-Dowling P, Gao Y, Griffin JA. Preferential targeting of vesicular stomatitis virus to breast cancer cells. Virology 2004; 330:24-33. [PMID: 15527831 DOI: 10.1016/j.virol.2004.06.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 05/17/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
Vesicular stomatitis virus (VSV) is a candidate for development for cancer therapy. We created a recombinant replicating VSV (rrVSV) with an altered surface protein that targeted preferentially to breast cancer cells. The rrVSV genome contained a single glycoprotein (gp) gene derived from Sindbis virus. This gene expressed a chimeric Sindbis E2 binding gp and the native Sindbis E1 fusion gp. The chimeric E2 binding gp, called Sindbis-SCA-erbb2, was modified to reduce its native binding function and to contain a single chain antibody (SCA) with specificity for the human epidermal growth factor receptor Her2/neu protein, erbb2. These viruses selectively infected, replicated in and killed cells expressing erbb2. The titer of rrVSV on SKBR3 cells, a human breast cancer cell line which highly expresses erbb2 was 3.1 x 10(7)/ml compared with a titer of 7.3 x 10(5)/ml on 143 cells, a human osteosarcoma cell line which does not express erbb2. The titer of rrVSV on D2F2/E2 cells, a mouse mammary cancer cell line stably transfected to express human erbb2 was 2.46 x 10(6)/ml compared with a titer of 5 x 10(4)/ml on the parent D2F2 cells which do not express erbb2. When titered on erbb2-negative cells, non-replicating pseudotype VSV coated with Sindbis-SCA-erbb2 had <3% the titer of pseudotype VSV coated with wild type Sindbis gp indicating that the chimeric Sindbis gp had severely impaired binding to the natural receptor. Analysis of the protein composition of the rrVSV found low expression of the modified Sindbis gp on the virus.
Collapse
Affiliation(s)
- Ira Bergman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
10
|
Guibinga GH, Hall FL, Gordon EM, Ruoslahti E, Friedmann T. Ligand-Modified Vesicular Stomatitis Virus Glycoprotein Displays a Temperature-Sensitive Intracellular Trafficking and Virus Assembly Phenotype. Mol Ther 2004; 9:76-84. [PMID: 14741780 DOI: 10.1016/j.ymthe.2003.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The production of potentially targetable VSV-G-pseudotyped retrovirus vectors has been hampered by inadequate understanding of the structure-function relationships of the VSV-G protein. In these studies we demonstrate assembly and production of MLV-based and HIV-1-based vector particles using VSV-G proteins modified by the insertion of a peptide ligand into a site corresponding to amino acid position 24 of the native VSV-G molecule. The inserted ligand represents the decapeptide encoding the collagen-binding domain of von Willebrand factor. We have used deconvolution microscopy to demonstrate that the modified VSV-G molecules sequester in perinuclear structures and are unavailable for assembly of infectious virus particles at the cell surface under standard tissue culture conditions at 37 degrees C. In contrast, at a lower permissive temperature of 30 degrees C, the modified VSV-G protein traffics appropriately to the cell surface and participates in useful titers. Furthermore, VSV-G-pseudotyped MLV-based and HIV-1-based vectors displaying the collagen-binding domain demonstrate a statistically significant increased attachment to a collagen matrix as indicated by an ELISA-like cell binding assay and by a focus transduction assay.
Collapse
Affiliation(s)
- Ghiabe H Guibinga
- Department of Pediatrics, Center for Molecular Genetics, University of California at San Diego School of Medicine, La Jolla, CA 92093-0634, USA
| | | | | | | | | |
Collapse
|
11
|
Chowdhury S, Chester KA, Bridgewater J, Collins MK, Martin F. Efficient Retroviral Vector Targeting of Carcinoembryonic Antigen-Positive Tumors. Mol Ther 2004; 9:85-92. [PMID: 14741781 DOI: 10.1016/j.ymthe.2003.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Many gene therapy approaches require specific, efficient gene delivery to cells in vivo. To target colorectal tumors we fused a single-chain variable fragment (scFv) directed against carcinoembryonic antigen (CEA) to the amphotropic murine leukemia virus envelope. A proline-rich hinge and matrix metalloprotease (MMP) cleavage site linked the two proteins. Following attachment to CEA, MMP cleavage of the envelope at the cell surface removed the scFv and proline-rich hinge, allowing transduction. This allowed selective targeting of CEA-positive cells in vivo after injection of producer cells at the site of the tumor, with up to 10% of cells within a CEA-positive tumor xenograft becoming transduced. Intraperitoneal injection of amphotropic producer cells resulted in transduction of cells in spleen, liver, and kidney, which was not detected when CEA-targeted producer cells were used. These results demonstrate the feasibility of using targeted retroviral vectors for in vivo gene delivery to tumors. Furthermore, the lack of transduction of host cells eliminates the risk of insertional mutagenesis leading to transformation of host hematopoietic cells.
Collapse
Affiliation(s)
- Simon Chowdhury
- Department of Immunology and Molecular Pathology, Windeyer Institute, London W1T 2AH, UK
| | | | | | | | | |
Collapse
|
12
|
Abstract
Retroviral vectors capable of efficient in vivo gene delivery to specific target cell types or to specific locations of disease pathology would greatly facilitate many gene therapy applications. The surface glycoproteins of membrane-enveloped viruses stand among the choice candidates to control the target cell receptor recognition and host range of retroviral vectors onto which they are incorporated. This can be achieved in many ways, such as the exchange of glycoprotein by pseudotyping, their biochemical modifications, their conjugation with virus-cell bridging agents or their structural modifications. Understanding the fundamental properties of the viral glycoproteins and the molecular mechanism of virus entry into cells has been instrumental in the functional alteration of their tropism. Here we briefly review the current state of our understanding of the structure and function of viral envelope glycoproteins and we discuss the emerging targeting strategies based on retroviral and lentiviral vector systems.
Collapse
Affiliation(s)
- V Sandrin
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, Unité de Virologie Humaine, INSERM U412, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|