1
|
Permar SR, Schleiss MR, Plotkin SA. A vaccine against cytomegalovirus: how close are we? J Clin Invest 2025; 135:e182317. [PMID: 39744948 DOI: 10.1172/jci182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The pursuit of a vaccine against the human cytomegalovirus (HCMV) has been ongoing for more than 50 years. HCMV is the leading infectious cause of birth defects, including damage to the brain, and is a common cause of complications in organ transplantation. The complex biology of HCMV has made vaccine development difficult, but a recent meeting sponsored by the National Institute of Allergy and Infectious Diseases in September of 2023 brought together experts from academia, industry, and federal agencies to discuss progress in the field. The meeting reviewed the status of candidate HCMV vaccines under study and the challenges in clinical trial design in demonstrating efficacy against congenital CMV infection or the reduction of HCMV disease following solid organ transplantation or hematopoietic stem cell transplantation. Discussion in the meeting revealed that, with the numerous candidate vaccines that are under study, it is clear that a safe and effective HCMV vaccine is within reach. Meeting attendees achieved a consensus opinion that even a partially effective vaccine would have a major effect on the global health consequences of HCMV infection.
Collapse
Affiliation(s)
- Sallie R Permar
- Department of Pediatrics, Weill Cornell Medical Center, New York, New York, USA
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaxconsult, Doylestown, Pennsylvania, USA
| |
Collapse
|
2
|
Santamorena MM, Tischer-Zimmermann S, Bonifacius A, Mireisz CNM, Costa B, Khan F, Kulkarni U, Lauruschkat CD, Sampaio KL, Stripecke R, Blasczyk R, Maecker-Kolhoff B, Kraus S, Schlosser A, Cicin-Sain L, Kalinke U, Eiz-Vesper B. Engineered HCMV-infected APCs enable the identification of new immunodominant HLA-restricted epitopes of anti-HCMV T-cell immunity. HLA 2024; 103:e15541. [PMID: 38923358 DOI: 10.1111/tan.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.
Collapse
Affiliation(s)
- Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - Chiara Noemi-Marie Mireisz
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Fawad Khan
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Renata Stripecke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Institute of Translational Immuno-oncology, Cologne, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Britta Maecker-Kolhoff
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Luka Cicin-Sain
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
3
|
Essa S, Safar HA, Raghupathy R. Cytokine responses to major human Cytomegalovirus antigens in mouse model. Cytokine 2024; 176:156546. [PMID: 38359558 DOI: 10.1016/j.cyto.2024.156546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Human cytomegalovirus (CMV) continues to be a source of severe complications in immunologically immature and immunocompromised hosts. Effective CMV vaccines that help diminish CMV disease in transplant patients and avoid congenital infection are essential. Though the exact roles of defense mechanisms are unidentified, virus-specific antibodies and cytokine responses are known to be involved in controlling CMV infections. Identifying the CMV antigens that trigger these protective immune responses will help us choose the most suitable CMV-related proteins for future vaccines. CMV envelope glycoprotein B (UL55/gB), matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and assembly protein UL80a/pp38 are known to be targets for antiviral immune responses. We immunized mice intraperitoneally with these five CMV-related proteins for their ability to induce specific antibody responses and cytokine production in a mouse model. We observed a significant CMV-antigen-specific antibody response to UL80a/pp38 and UL83/pp65 (E/C>2.0). Mice immunized with UL80a/pp38 had significantly higher concentrations of GM-CSF, IFN-γ, IL-2, IL-4, IL-5, and IL-17A (p<0.05). Mice immunized with UL83/pp65 showed significantly higher concentrations of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF-α. Ratios of Th1 to Th2 cytokines revealed a Th1 cytokine bias in mice immunized with UL80a/pp38, UL83/pp65, UL32/pp150, and UL55/gB. We suggest that stimulation with multiple CMV-related proteins, which include UL80a/pp38, UL83/pp65, UL32/pp150, and UL55/gB antigens, will allow both humoral and cellular immune responses to be efficiently activated, thus serving as appropriate CMV antigens for future novel vaccines and immune-based therapeutic design.
Collapse
Affiliation(s)
- Sahar Essa
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait.
| | - Hussain A Safar
- OMICS Research Unit, Health Science Center, Kuwait University, Kuwait City, Kuwait.
| | - Raj Raghupathy
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
4
|
Zimmermann C, Watson GM, Bauersfeld L, Berry R, Ciblis B, Lan H, Gerke C, Oberhardt V, Fuchs J, Hofmann M, Freund C, Rossjohn J, Momburg F, Hengel H, Halenius A. Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids. Proc Natl Acad Sci U S A 2024; 121:e2315985121. [PMID: 38377192 PMCID: PMC10907249 DOI: 10.1073/pnas.2315985121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.
Collapse
Affiliation(s)
- Cosima Zimmermann
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Gabrielle M. Watson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Liane Bauersfeld
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Barbara Ciblis
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Huan Lan
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195Berlin, Germany
| | - Carolin Gerke
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Valerie Oberhardt
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Jonas Fuchs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195Berlin, Germany
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, 69120Heidelberg, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Anne Halenius
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| |
Collapse
|
5
|
Rein AF, Lauruschkat CD, Muchsin I, Köchel C, Tischer-Zimmermann S, Bauersfeld L, Nelde A, Lübke M, Prusty BK, Schlosser A, Halenius A, Eiz-Vesper B, Dölken L, Grigoleit GU, Einsele H, Erhard F, Kraus S. Identification of novel canonical and cryptic HCMV-specific T-cell epitopes for HLA-A∗03 and HLA-B∗15 via peptide-PRISM. Blood Adv 2024; 8:712-724. [PMID: 38127299 PMCID: PMC10845030 DOI: 10.1182/bloodadvances.2023011120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
ABSTRACT Human cytomegalovirus (HCMV) reactivation poses a substantial risk to patients receiving tranplants. Effective risk stratification and vaccine development is hampered by a lack of HCMV-derived immunogenic peptides in patients with common HLA-A∗03:01 and HLA-B∗15:01 haplotypes. This study aimed to discover novel HCMV immunogenic peptides for these haplotypes by combining ribosome sequencing (Ribo-seq) and mass spectrometry with state-of-the-art computational tools, Peptide-PRISM and Probabilistic Inference of Codon Activities by an EM Algorithm. Furthermore, using machine learning, an algorithm was developed to predict immunogenicity based on translational activity, binding affinity, and peptide localization within small open reading frames to identify the most promising peptides for in vitro validation. Immunogenicity of these peptides was subsequently tested by analyzing peptide-specific T-cell responses of HCMV-seropositive and -seronegative healthy donors as well as patients with transplants. This resulted in the direct identification of 3 canonical and 1 cryptic HLA-A∗03-restricted immunogenic peptides as well as 5 canonical and 1 cryptic HLA-B∗15-restricted immunogenic peptide, with a specific interferon gamma-positive (IFN-γ+)/CD8+ T-cell response of ≥0.02%. High T-cell responses were detected against 2 HLA-A∗03-restricted and 3 HLA-B∗15-restricted canonical peptides with frequencies of up to 8.77% IFN-γ+/CD8+ T cells in patients after allogeneic stem cell transplantation. Therefore, our comprehensive strategy establishes a framework for efficient identification of novel immunogenic peptides from both existing and novel Ribo-seq data sets.
Collapse
Affiliation(s)
- Alice Felicitas Rein
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | - Ihsan Muchsin
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carolin Köchel
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Liane Bauersfeld
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” University of Tübingen, Tübingen, Germany
| | - Maren Lübke
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Bhupesh Kumar Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center - Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Anne Halenius
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Götz Ulrich Grigoleit
- Department of Hematology, Oncology and Immunology, Helios Hospital Duisburg, Duisburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Chen DG, Xie J, Su Y, Heath JR. T cell receptor sequences are the dominant factor contributing to the phenotype of CD8 + T cells with specificities against immunogenic viral antigens. Cell Rep 2023; 42:113279. [PMID: 37883974 PMCID: PMC10729740 DOI: 10.1016/j.celrep.2023.113279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antigen-specific CD8+ T cells mediate pathogen clearance. T cell phenotype is influenced by T cell receptor (TCR) sequences and environmental signals. Quantitative comparisons of these factors in human disease, while challenging to obtain, can provide foundational insights into basic T cell biology. Here, we investigate the phenotype kinetics of 679 CD8+ T cell clonotypes, each with specificity against one of three immunogenic viral antigens. Data were collected from a longitudinal study of 68 COVID-19 patients with antigens from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), and influenza. Each antigen is associated with a different type of immune activation during COVID-19. We find TCR sequence to be by far the most important factor in shaping T cell phenotype and persistence for populations specific to any of these antigens. Our work demonstrates the important relationship between TCR sequence and T cell phenotype and persistence and helps explain why T cell phenotype often appears to be determined early in an infection.
Collapse
Affiliation(s)
- Daniel G Chen
- Institute of Systems Biology, Seattle, WA 98109, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jingyi Xie
- Institute of Systems Biology, Seattle, WA 98109, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Yapeng Su
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
7
|
Zehner M, Alt M, Ashurov A, Goldsmith JA, Spies R, Weiler N, Lerma J, Gieselmann L, Stöhr D, Gruell H, Schultz EP, Kreer C, Schlachter L, Janicki H, Laib Sampaio K, Stegmann C, Nemetchek MD, Dähling S, Ullrich L, Dittmer U, Witzke O, Koch M, Ryckman BJ, Lotfi R, McLellan JS, Krawczyk A, Sinzger C, Klein F. Single-cell analysis of memory B cells from top neutralizers reveals multiple sites of vulnerability within HCMV Trimer and Pentamer. Immunity 2023; 56:2602-2620.e10. [PMID: 37967532 DOI: 10.1016/j.immuni.2023.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/02/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.
Collapse
Affiliation(s)
- Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Mira Alt
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Artem Ashurov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jory A Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rebecca Spies
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nina Weiler
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Justin Lerma
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Eric P Schultz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Linda Schlachter
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | | | - Cora Stegmann
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Michelle D Nemetchek
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Sabrina Dähling
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Leon Ullrich
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brent J Ryckman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Ramin Lotfi
- Institute for Transfusion Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christian Sinzger
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
8
|
Gerbitz A, Gary R, Aigner M, Moosmann A, Kremer A, Schmid C, Hirschbuehl K, Wagner E, Hauptrock B, Teschner D, Roesler W, Spriewald B, Tischer J, Moi S, Balzer H, Schaffer S, Bausenwein J, Wagner A, Schmidt F, Brestrich J, Ullrich B, Maas S, Herold S, Strobel J, Zimmermann R, Weisbach V, Hansmann L, Lammoglia-Cobo F, Remberger M, Stelljes M, Ayuk F, Zeiser R, Mackensen A. Prevention of CMV/EBV reactivation by double-specific T cells in patients after allogeneic stem cell transplantation: results from the randomized phase I/IIa MULTIVIR-01 study. Front Immunol 2023; 14:1251593. [PMID: 37965339 PMCID: PMC10642256 DOI: 10.3389/fimmu.2023.1251593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Allogeneic stem cell transplantation is used to cure hematologic malignancies or deficiencies of the hematopoietic system. It is associated with severe immunodeficiency of the host early after transplant and therefore early reactivation of latent herpesviruses such as CMV and EBV within the first 100 days are frequent. Small studies and case series indicated that application of herpes virus specific T cells can control and prevent disease in this patient population. Methods We report the results of a randomized controlled multi centre phase I/IIa study (MULTIVIR-01) using a newly developed T cell product with specificity for CMV and EBV derived from the allogeneic stem cell grafts used for transplantation. The study aimed at prevention and preemptive treatment of both viruses in patients after allogeneic stem cell transplantation targeting first infusion on day +30. Primary endpoints were acute transfusion reaction and acute-graft versus-host-disease after infusion of activated T cells. Results Thirty-three patients were screened and 9 patients were treated with a total of 25 doses of the T cell product. We show that central manufacturing can be achieved successfully under study conditions and the product can be applied without major side effects. Overall survival, transplant related mortality, cumulative incidence of graft versus host disease and number of severe adverse events were not different between treatment and control groups. Expansion of CMV/EBV specific T cells was observed in a fraction of patients, but overall there was no difference in virus reactivation. Discussion Our study results indicate peptide stimulated epitope specific T cells derived from stem cell grafts can be administered safely for prevention and preemptive treatment of reactivation without evidence for induction of acute graft versus host disease. Clinical trial registration https://clinicaltrials.gov, identifier NCT02227641.
Collapse
Affiliation(s)
- Armin Gerbitz
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
- Princess Margaret Cancer Centre, Division of Medical Oncology/Hematology, Toronto, ON, Canada
| | - Regina Gary
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Aigner
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Moosmann
- Department of Medicine 3, LMU University Hospital, Munich, Germany
- Helmholtz Center Munich, Institute of Virology, Munich, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) – German Center for Infection Research, Munich, Germany
| | - Anita Kremer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Schmid
- Department of Medicine 2, University Hospital Augsburg, Augsburg, Germany
| | - Klaus Hirschbuehl
- Department of Medicine 2, University Hospital Augsburg, Augsburg, Germany
| | - Eva Wagner
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Beate Hauptrock
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Daniel Teschner
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Wolf Roesler
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Bernd Spriewald
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Johanna Tischer
- Department of Medicine 3, LMU University Hospital, Munich, Germany
| | - Stephanie Moi
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Heidi Balzer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Schaffer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Judith Bausenwein
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Anja Wagner
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Franziska Schmidt
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Jens Brestrich
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Barbara Ullrich
- Medical Center for Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Maas
- Center for Clinical Studies (CCS), University Hospital Erlangen, Erlangen, Germany
| | - Susanne Herold
- Center for Clinical Studies (CCS), University Hospital Erlangen, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Fernanda Lammoglia-Cobo
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University and Clinical Research and Development Unit (KFUE), Uppsala University Hospital, Uppsala, Sweden
| | - Matthias Stelljes
- Department of Hematology/Oncology, University Hospital Muenster, Muenster, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Hospital Eppendorf, Hamburg, Germany
| | - Robert Zeiser
- Department of Medicine 1, University Hospital Freiburg, Freiburg, Germany
| | - Andreas Mackensen
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Britsch I, van Wijngaarden AP, Helfrich W. Applications of Anti-Cytomegalovirus T Cells for Cancer (Immuno)Therapy. Cancers (Basel) 2023; 15:3767. [PMID: 37568582 PMCID: PMC10416821 DOI: 10.3390/cancers15153767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Infection with cytomegalovirus (CMV) is highly prevalent in the general population and largely controlled by CD8pos T cells. Intriguingly, anti-CMV T cells accumulate over time to extraordinarily high numbers, are frequently present as tumor-resident 'bystander' T cells, and remain functional in cancer patients. Consequently, various strategies for redirecting anti-CMV CD8pos T cells to eliminate cancer cells are currently being developed. Here, we provide an overview of these strategies including immunogenic CMV peptide-loading onto endogenous HLA complexes on cancer cells and the use of tumor-directed fusion proteins containing a preassembled CMV peptide/HLA-I complex. Additionally, we discuss conveying the advantageous characteristics of anti-CMV T cells in adoptive cell therapy. Utilization of anti-CMV CD8pos T cells to generate CAR T cells promotes their in vivo persistence and expansion due to appropriate co-stimulation through the endogenous (CMV-)TCR signaling complex. Designing TCR-engineered T cells is more challenging, as the artificial and endogenous TCR compete for expression. Moreover, the use of expanded/reactivated anti-CMV T cells to target CMV peptide-expressing glioblastomas is discussed. This review highlights the most important findings and compares the benefits, disadvantages, and challenges of each strategy. Finally, we discuss how anti-CMV T cell therapies can be further improved to enhance treatment efficacy.
Collapse
Affiliation(s)
| | | | - Wijnand Helfrich
- Department of Surgery, Translational Surgical Oncology, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.B.)
| |
Collapse
|
10
|
Huntley D, Giménez E, Vázquez L, Pascual MJ, Amat P, Remigia MJ, Hernández-Boluda JC, García M, Gago B, Torres I, de la Asunción CS, Hernani R, Pérez A, Albert E, Piñana JL, Solano C, Navarro D. Impact of cytomegalovirus immunodominant HLA-I donor-recipient matching on the incidence and features of virus DNAemia and virus-specific T-cell immune reconstitution in unmanipulated haploidentical hematopoietic stem cell transplantation. Transpl Infect Dis 2023:e14065. [PMID: 37120821 DOI: 10.1111/tid.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND We investigated whether donor-recipient mismatch involving one or more cytomegalovirus (CMV) immunodominant (ID) human leukocyte antigen (HLA)-I alleles may impact on the degree of CMV pp65/immediate-early 1 (IE-1) T-cell reconstitution and the incidence of CMV DNAemia in patients undergoing unmanipulated haploidentical hematopoietic stem cell transplantation with high-dose posttransplant cyclophosphamide (PT/Cy-haplo). METHODS Multicenter observational study including 106 consecutive adult PT/Cy-haplo patients (34 CMV ID HLA-I matched and 72 mismatched). A real-time PCR was used for plasma CMV DNA load monitoring. Enumeration of CMV-specific (pp65/IE-1) interferon (IFN)-γ-producing T cells from several patients was performed by flow cytometry by days +30, +60, +90 and +180 after transplantation. RESULTS The cumulative incidence of CMV DNAemia, clinically significant CMV DNAemia episodes (cs-CMVi), and recurrent CMV DNAemia was comparable across CMV ID HLA-I matched and mismatched patients (71.8% vs. 80.9%, p = .95; 40.7% vs. 44.2%, p = .85; 16.4% vs. 28.1%; p = .43, respectively). The percentage of patients exhibiting detectable CMV-specific IFN-γ-producing T-cell responses (either CD8+ or CD4+ ) was similar across groups; nevertheless, significantly higher CMV-specific CD8+ T-cell counts were enumerated in the CMV ID HLA-I matched compared to mismatched patients by day +60 (p = .04) and +180 (p = .016) after transplantation. CONCLUSION CMV ID HLA-I matching may impact on the magnitude of CMV-pp65/IE-1-specific CD8+ T-cell reconstitution; yet, this effect seemed not to have an impact on the incidence of initial, recurrent CMV DNAemia, or cs-CMVi.
Collapse
Affiliation(s)
- Dixie Huntley
- Microbiology Service, INCLIVA Research Institute, Hospital Clínico Universitario, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, INCLIVA Research Institute, Hospital Clínico Universitario, Valencia, Spain
| | - Lourdes Vázquez
- Hematology Service, Hospital Clínico Universitario, Salamanca, Spain
| | | | - Paula Amat
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - María José Remigia
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Juan Carlos Hernández-Boluda
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Magdalena García
- Hematology Service, Hospital Clínico Universitario, Salamanca, Spain
| | - Beatriz Gago
- Hematology Service, Hospital Regional Universitario, Málaga, Spain
| | - Ignacio Torres
- Microbiology Service, INCLIVA Research Institute, Hospital Clínico Universitario, Valencia, Spain
| | | | - Rafael Hernani
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Ariadna Pérez
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, INCLIVA Research Institute, Hospital Clínico Universitario, Valencia, Spain
| | - José Luis Piñana
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - David Navarro
- Microbiology Service, INCLIVA Research Institute, Hospital Clínico Universitario, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Spencer Clinton JL, Hoornweg TE, Tan J, Peng R, Schaftenaar W, Rutten VPMG, de Haan CAM, Ling PD. EEHV1A glycoprotein B subunit vaccine elicits humoral and cell-mediated immune responses in mice. Vaccine 2022; 40:5131-5140. [PMID: 35879117 DOI: 10.1016/j.vaccine.2022.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Asian elephants are an endangered species facing many threats, including severe hemorrhagic disease (HD) caused by the elephant endotheliotropic herpesvirus (EEHV). EEHV-HD is the leading cause of death in captive juvenile Asian elephants in North America and Europe, and also affects elephants in their natural range countries. Significant challenges exist for successful treatment of EEHV-HD, which include timely recognition of disease onset and limited availability of highly effective treatment options. To address this problem, our goal is to prevent lethal disease in young elephants by developing a vaccine that elicits robust and durable humoral and cell-mediated immunity against EEHV. EEHV glycoprotein B (gB) is a major target for cellular and humoral immunity in elephants previously exposed to EEHV. Therefore, we generated a vaccine containing recombinant EEHV1A gB together with a liposome formulated TLR-4 and saponin combination adjuvant (SLA-LSQ). CD-1 mice that received one or two vaccinations with the vaccine elicited significant anti-gB antibody and polyfunctional CD4+ and CD8+ T cell responses, while no adverse effects of vaccination were observed. Overall, our findings demonstrate that an adjuvanted gB protein subunit vaccine stimulates robust humoral and cell-mediated immune responses and supports its potential use in elephants.
Collapse
Affiliation(s)
- Jennifer L Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| | - Tabitha E Hoornweg
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| | - Willem Schaftenaar
- Veterinary Advisor EAZA Elephant TAG, Rotterdam Zoo, Blijdorplaan 8, 3041 JG Rotterdam, The Netherlands.
| | - Victor P M G Rutten
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa.
| | - Cornelis A M de Haan
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Dasari V, Beckett K, Horsefield S, Ambalathingal G, Khanna R. A bivalent CMV vaccine formulated with human compatible TLR9 agonist CpG1018 elicits potent cellular and humoral immunity in HLA expressing mice. PLoS Pathog 2022; 18:e1010403. [PMID: 35737741 PMCID: PMC9223316 DOI: 10.1371/journal.ppat.1010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
There is now convincing evidence that the successful development of an effective CMV vaccine will require improved formulation and adjuvant selection that is capable of inducing both humoral and cellular immune responses. Here, we have designed a novel bivalent subunit vaccine formulation based on CMV-encoded oligomeric glycoprotein B (gB) and polyepitope protein in combination with human compatible TLR9 agonist CpG1018. The polyepitope protein includes multiple minimal HLA class I-restricted CD8+ T cell epitopes from different antigens of CMV. This subunit vaccine generated durable anti-viral antibodies, CMV-specific CD4+ and CD8+ T cell responses in multiple HLA expressing mice. Antibody responses included broad TH1 isotypes (IgG2a, IgG2b and IgG3) and potently neutralized CMV infection in fibroblasts and epithelial cells. Furthermore, polyfunctional antigen-specific T cell immunity and antiviral antibody responses showed long-term memory maintenance. These observations argue that this novel vaccine strategy, if applied to humans, could facilitate the generation of robust humoral and cellular immune responses which may be more effective in preventing CMV-associated complications in various clinical settings. Human Cytomegalovirus (CMV) is a significant human pathogen. Generally, in healthy people CMV causes mild symptomatic disease, but during pregnancy CMV can transmit from mother to foetus (1 out of every 200 live births worldwide) and lead to sensorineural hearing loss, vision impairment and central nervous system damage. In transplant patients, CMV can cause serious complications leading to organ rejection and even death. Currently, there is no licensed vaccine available to prevent CMV-associated complications in pregnant women and transplant patients. Here, we have developed a novel bivalent CMV vaccine formulation consisting of recombinant CMVpoly and gB proteins in combination with human compatible adjuvant CpG1018. Preclinical immunogenicity evaluation in multiple HLA expressing mice demonstrated that bivalent CMV vaccine formulation consistently generated robust CMV-specific neutralising antibodies, CD4+ and CD8+ T cell responses. More importantly, long-term follow-up analysis showed that the CMV vaccine can induce durable CMV-specific humoral and cellular immune responses. Our results support further development of this bivalent subunit CMV vaccine to test safety, immunogenicity and efficacy in humans.
Collapse
Affiliation(s)
- Vijayendra Dasari
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (VD); (RK)
| | - Kirrilee Beckett
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shane Horsefield
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - George Ambalathingal
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (VD); (RK)
| |
Collapse
|
13
|
Prem S, Remberger M, Alotaibi A, Lam W, Law AD, Kim DDH, Michelis FV, Al-Shaibani Z, Lipton JH, Mattsson J, Viswabandya A, Kumar R, Ellison C. Relationship between certain HLA alleles and the risk of cytomegalovirus reactivation following allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2022; 24:e13879. [PMID: 35706108 DOI: 10.1111/tid.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Evidence is emerging to support an association between certain HLA alleles and the risk of cytomegalovirus (CMV) reactivation following allogeneic HSCT (allo-HSCT). The primary aim of this study was to identify HLA alleles associated with resistance or susceptibility to CMV reactivation. METHODS We studied 586 adults who underwent allo-HSCT for high-risk hematological malignancies. High resolution HLA typing data was available for recipient and donor. HLA Class I and II alleles observed at a frequency of > 5% in our population, were included in the analysis. A CMV viremia level of more than 200 IU/ml on weekly monitoring was considered to be indicative of CMV reactivation. RESULTS The median follow-up time in surviving patients was 21 months (range 4-74 months). The cumulative incidence of CMV reactivation at 6 months in the entire cohort was 55% (95% CI 50.8%-59.2%). Mismatched donor, increasing recipient age, occurrence of AGVHD and recipient CMV seropositivity were associated with increased risk of CMV reactivation. HLA B*07:02 (HR 0.59, 95% CI 0.40-0.83) was associated with decreased risk of CMV reactivation. Patients who developed CMV reactivation had a lower incidence of relapse, higher transplant related mortality (TRM) and lower overall survival (OS) compared to those without CMV reactivation. There was an adverse correlation of OS and TRM with increasing numbers of CMV reactivations. CONCLUSION We observed that HLA B*07:02 was associated with decreased risk of CMV reactivation. CMV reactivation was associated with lower relapse post-transplant, but this did not translate into a survival benefit due to higher transplant related mortality. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shruti Prem
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University and KFUE, Uppsala University Hospital, Uppsala, Sweden
| | - Ahmad Alotaibi
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wilson Lam
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Arjun Datt Law
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dennis Dong Hwan Kim
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fotios V Michelis
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zeyad Al-Shaibani
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey Howard Lipton
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonas Mattsson
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Auro Viswabandya
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rajat Kumar
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cynthia Ellison
- HLA Laboratory, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Dominant epitopes presented by prevalent HLA alleles permit wide use of banked CMVpp65 T-cells in adoptive therapy. Blood Adv 2022; 6:4859-4872. [PMID: 35605246 DOI: 10.1182/bloodadvances.2022007005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022] Open
Abstract
We established and characterized a bank of 138 CMVpp65 peptide-specific T-cell lines (CMVpp65CTLs) from healthy marrow transplant donors who consented to their use for treatment of individuals other than their transplant recipient. CMVpp65CTL lines included 131 containing predominantly CD8+ T-cells and 7 CD4+ T-cell. CD8+ CMVpp65CTLs were specific for 1-3 epitopes each presented by one of only 34 of the 148 class I alleles in the bank. Similarly, the 7 predominantly CD4+ CMVpp65CTL lines were each specific for epitopes presented by 14 of 40 HLA DR alleles in the bank. Although the number of HLA alleles presenting CMV epitopes is low, their prevalence is high, permitting selection of CMVpp65CTLs restricted by an HLA allele shared by transplant recipient and HCT donor for >90% of an ethnogeographically diverse population of HCT recipients. Within individuals, responses to CMVpp65 peptides presented by different HLA alleles are hierarchical. Furthermore, within groups, epitopes presented by HLA B*07:02 and HLA A*02:01 consistently elicit immunodominant CMVpp65 CTLs, irrespective of other HLA alleles inherited. All dominant CMVpp65CTLs exhibited HLA-restricted cytotoxicity against epitope loaded targets, and usually cleared CMV infections. However, immunodominant CMVpp65 CTL responding to epitopes presented by certain HLA B*35 alleles were ineffective in lysing CMV infected cells in vitro or controlling CMV infections post adoptive therapy. Analysis of the hierarchy of T-cell responses to CMVpp65, the HLA alleles presenting immunodominant CMVpp65 epitopes, and the responses they induce, may lead to detailed algorithms for optimal choice of 3rd party CMVpp65CTLs for effective adoptive therapy.
Collapse
|
15
|
Clement Dobbins G, Kimberlin D, Ross S. Cytomegalovirus variation among newborns treated with valganciclovir. Antiviral Res 2022; 203:105326. [DOI: 10.1016/j.antiviral.2022.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
|
16
|
Pursell T, Spencer Clinton JL, Tan J, Peng R, Ling PD. Modified vaccinia Ankara expressing EEHV1A glycoprotein B elicits humoral and cell-mediated immune responses in mice. PLoS One 2022; 17:e0265424. [PMID: 35312707 PMCID: PMC8936464 DOI: 10.1371/journal.pone.0265424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) can cause lethal hemorrhagic disease (EEHV-HD) in Asian elephants and is the largest cause of death in captive juvenile Asian elephants in North America and Europe. EEHV-HD also has been documented in captive and wild elephants in their natural range countries. A safe and effective vaccine to prevent lethal EEHV infection would significantly improve conservation efforts for this endangered species. Recent studies from our laboratory suggest that EEHV morbidity and mortality are often associated with primary infection. Therefore, we aim to generate a vaccine, particularly for EEHV1 naïve animals, with the goal of preventing lethal EEHV-HD. To address this goal, we generated a Modified Vaccinia Ankara (MVA) recombinant virus expressing a truncated form of glycoprotein B (gBΔfur731) from EEHV1A, the strain associated with the majority of lethal EEHV cases. Vaccination of CD-1 mice with this recombinant virus induced robust antibody and polyfunctional T cell responses significantly above mice inoculated with wild-type MVA. Although the vaccine-induced T cell response was mainly observed in CD8+ T cell populations, the CD4+ T cell response was also polyfunctional. No adverse responses to vaccination were observed. Overall, our data demonstrates that MVA-gBΔfur731 stimulates robust humoral and cell-mediated responses, supporting its potential translation for use in elephants.
Collapse
Affiliation(s)
- Taylor Pursell
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
17
|
Su FY, Zhao QH, Dahotre SN, Gamboa L, Bawage SS, Silva Trenkle AD, Zamat A, Phuengkham H, Ahmed R, Santangelo PJ, Kwong GA. In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles. SCIENCE ADVANCES 2022; 8:eabm7950. [PMID: 35196075 PMCID: PMC8865765 DOI: 10.1126/sciadv.abm7950] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/25/2022] [Indexed: 05/06/2023]
Abstract
Simultaneous delivery of mRNA to multiple populations of antigen (Ag)-specific CD8+ T cells is challenging given the diversity of peptide epitopes and polymorphism of class I major histocompatibility complexes (MHCI). We developed Ag-presenting nanoparticles (APNs) for mRNA delivery using pMHCI molecules that were refolded with photocleavable peptides to allow rapid ligand exchange by UV light and site-specifically conjugated with a lipid tail for postinsertion into preformed mRNA lipid nanoparticles. Across different TCR transgenic mouse models (P14, OT-1, and Pmel), UV-exchanged APNs bound and transfected their cognate Ag-specific CD8+ T cells equivalent to APNs produced using conventionally refolded pMHCI molecules. In mice infected with PR8 influenza, multiplexed delivery of UV-exchanged APNs against three immunodominant epitopes led to ~50% transfection of a VHH mRNA reporter in cognate Ag-specific CD8+ T cells. Our data show that UV-mediated peptide exchange can be used to rapidly produce APNs for mRNA delivery to multiple populations of Ag-specific T cells in vivo.
Collapse
Affiliation(s)
- Fang-Yi Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Qingyang Henry Zhao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Shreyas N. Dahotre
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Lena Gamboa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Swapnil Subhash Bawage
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Aaron D. Silva Trenkle
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ali Zamat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hathaichanok Phuengkham
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Philip J. Santangelo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Gabriel A. Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Georgia ImmunoEngineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
18
|
Mehdizadeh M, Karami S, Ghaffari Nazari H, Sankanian G, Hamidpour M, Hajifathali A. Immunotherapy with adoptive cytomegalovirus-specific T cells transfer: Summarizing latest gene engineering techniques. Health Sci Rep 2021; 4:e322. [PMID: 34263085 PMCID: PMC8264956 DOI: 10.1002/hsr2.322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023] Open
Abstract
Cytomegalovirus (CMV) infection remains a major complication following allogeneic hematopoietic stem cell transplantation (HSCT). T cell response plays a critical role in inducing long-term immunity against CMV infection/reactivation that impairs during HSCT. Adoptive T cell therapy (ACT) via transferring CMV-specific T cells from a seropositive donor to the recipient can accelerate virus-specific immune reconstitution. ACT, as an alternative approach, can restore protective antiviral T cell immunity in patients. Different manufacturing protocols have been introduced to isolate and expand specific T cells for the ACT clinical setting. Nevertheless, HLA restriction, long-term manufacturing process, risk of alloreactivity, and CMV seropositive donor availability have limited ACT broad applicability. Genetic engineering has developed new strategies to produce TCR-modified T cells for diagnosis, prevention, and treatment of infectious disease. In this review, we presented current strategies required for ACT in posttransplant CMV infection. We also introduced novel gene-modified T cell discoveries in the context of ACT for CMV infection. It seems that these innovations are enabling to improvement and development of ACT utilization to combat posttransplant CMV infection.
Collapse
Affiliation(s)
- Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Samira Karami
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Haniyeh Ghaffari Nazari
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Ghazaleh Sankanian
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mohsen Hamidpour
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
19
|
Abstract
Despite the prevalence and medical significance of human cytomegalovirus (HCMV) infections, a systematic analysis of the targets of T cell recognition in humans that spans the entire genome and includes recently described potential novel ORFs is not available. Here, we screened a library of epitopes predicted to bind HLA class II that spans over 350 different HCMV ORFs and includes ∼150 previously described and ∼200 recently described potential novel ORFs using an ex vivo IFNγ fluorospot assay. We identified 235 unique HCMV specific epitopes derived from 100 ORFs, some previously described as immunodominant and others that were not previously described to be immunogenic. Of those, 41 belong to the set of recently reported novel ORFs, thus providing evidence that at least some of these are actually expressed in vivo in humans. These data reveal that the breadth of the human T cell response to HCMV is much greater than previously thought. The ORFs and epitopes identified will help elucidate how T cell immunity relates to HCMV pathogenesis and instruct ongoing HCMV vaccine research. Importance To understand the crucial role of adaptive immunity in controlling cytomegalovirus infection and disease, we systematically analyzed the CMV 'ORFeome' to identify new CMV epitopes targeted primarily by CD4 T cells in humans. Our study identified >200 new T cell epitopes derived from both canonical and novel ORFs, highlighting the substantial breadth of anti-CMV T cell response and providing new targets for vaccine design.
Collapse
|
20
|
Höttler A, März L, Lübke M, Rammensee HG, Stevanović S. Broad and Efficient Activation of Memory CD4 + T Cells by Novel HAdV- and HCMV-Derived Peptide Pools. Front Immunol 2021; 12:700438. [PMID: 34322126 PMCID: PMC8312486 DOI: 10.3389/fimmu.2021.700438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/03/2022] Open
Abstract
Reactivation of Human Cytomegalovirus (HCMV) and Human Adenovirus (HAdV) in immunocompromised patients following stem cell transplantation (SCT) or solid organ transplantation (SOT) is associated with high morbidity and mortality. The adoptive transfer of virus-specific CD8+ and CD4+ T cells has been shown to re-establish the antiviral T-cell response and improve clinical outcome. The viral load in immunocompromised patients can efficiently be reduced solely by the infusion of virus-specific CD4+ T cells. The identification of CD4+ T-cell epitopes has mainly focused on a limited number of viral proteins that were characterized as immunodominant. Here, we used in silico prediction to determine promiscuous CD4+ T-cell epitopes from the entire proteomes of HCMV and HAdV. Immunogenicity testing with enzyme-linked immuno spot (ELISpot) assays and intracellular cytokine staining (ICS) revealed numerous novel CD4+ T-cell epitopes derived from a broad spectrum of viral antigens. We identified 17 novel HCMV-derived and seven novel HAdV-derived CD4+ T-cell epitopes that were recognized by > 50% of the assessed peripheral blood mononuclear cell (PBMC) samples. The newly identified epitopes were pooled with previously published, retested epitopes to stimulate virus-specific memory T cells in PBMCs from numerous randomly selected blood donors. Our peptide pools induced strong IFNγ secretion in 46 out of 48 (HCMV) and 31 out of 31 (HAdV) PBMC cultures. In conclusion, we applied an efficient method to screen large viral proteomes for promiscuous CD4+ T-cell epitopes to improve the detection and isolation of virus-specific T cells in a clinical setting.
Collapse
Affiliation(s)
- Alexander Höttler
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Léo März
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Maren Lübke
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Veit T, Pan M, Munker D, Arnold P, Dick A, Kunze S, Meiser B, Schneider C, Michel S, Zoller M, Böhm S, Walter J, Behr J, Kneidinger N, Kauke T. Association of CMV-specific T-cell immunity and risk of CMV infection in lung transplant recipients. Clin Transplant 2021; 35:e14294. [PMID: 33749938 DOI: 10.1111/ctr.14294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Protecting against CMV infection and maintaining CMV in latent state are largely provided by CMV-specific T-cells in lung transplant recipients. The aim of the study was to assess whether a specific T-cell response is associated with the risk for CMV infection in seronegative patients who are at high risk for delayed CMV infection. METHODS All CMV-seronegative recipients (R-) from CMV-seropositive donors (D+) between January 2018 and April 2019 were included and retrospectively screened for CMV infection before and after assessment of CMV-specific cell-mediated immunity. RESULTS Thirty-one of the 50 patients (62%) developed early-onset CMV infection. Lower absolute neutrophil counts were significantly associated with early-onset CMV infection. Antiviral prophylaxis was ceased after 137.2 ± 42.8 days. CMV-CMI were measured at a median of 5.5 months after LTx. 19 patients experienced early and late-onset CMV infection after prophylaxis withdrawal within 15 months post transplantation. Positive CMV-CMI was significantly associated with lower risk of late-onset CMV infection after transplantation in logistic and cox-regression analysis (OR=0.05, p = .01; OR=2,369, p = .026). CONCLUSION D+/R- lung transplant recipients are at high risk of developing early and late-onset CMV infection. Measurement of CMV-CMI soon after transplantation might further define the CMV infection prediction risk in LTx recipients being at high risk for CMV viremia.
Collapse
Affiliation(s)
- Tobias Veit
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Ming Pan
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany.,Laboratory for Immunogenetics, University of Munich, LMU, Munich, Germany
| | - Dieter Munker
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Paola Arnold
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Andrea Dick
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany.,Laboratory for Immunogenetics, University of Munich, LMU, Munich, Germany
| | - Susanne Kunze
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany.,Laboratory for Immunogenetics, University of Munich, LMU, Munich, Germany
| | - Bruno Meiser
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany.,Transplant Center, University of Munich, LMU, Munich, Germany
| | - Christian Schneider
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany.,Department of Thoracic Surgery, University of Munich, LMU, Munich, Germany
| | - Sebastian Michel
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany.,Clinic of Cardiac Surgery, University of Munich, LMU, Munich, Germany
| | - Michael Zoller
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany.,Department of Anaesthesiology, University of Munich, LMU, Munich, Germany
| | - Stephan Böhm
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany.,Faculty of Medicine, Virology, Max von Pettenkofer Institute, University of Munich, LMU, Munich, Germany
| | - Julia Walter
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany.,Department of Thoracic Surgery, University of Munich, LMU, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany
| | - Teresa Kauke
- Department of Medicine V, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), University Hospital, LMU Munich, Munich, Germany.,Laboratory for Immunogenetics, University of Munich, LMU, Munich, Germany.,Department of Thoracic Surgery, University of Munich, LMU, Munich, Germany
| |
Collapse
|
22
|
Lee E, Sandgren K, Duette G, Stylianou VV, Khanna R, Eden JS, Blyth E, Gottlieb D, Cunningham AL, Palmer S. Identification of SARS-CoV-2 Nucleocapsid and Spike T-Cell Epitopes for Assessing T-Cell Immunity. J Virol 2021; 95:e02002-20. [PMID: 33443088 PMCID: PMC8579755 DOI: 10.1128/jvi.02002-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022] Open
Abstract
Developing optimal T-cell response assays to severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is critical for measuring the duration of immunity to this disease and assessing the efficacy of vaccine candidates. These assays need to target conserved regions of SARS-CoV-2 global variants and avoid cross-reactivity to seasonal human coronaviruses. To contribute to this effort, we employed an in silico immunoinformatics analysis pipeline to identify immunogenic peptides resulting from conserved and highly networked regions with topological importance from the SARS-CoV-2 nucleocapsid and spike proteins. A total of 57 highly networked T-cell epitopes that are conserved across geographic viral variants were identified from these viral proteins, with a binding potential to diverse HLA alleles and 80 to 100% global population coverage. Importantly, 18 of these T-cell epitope derived peptides had limited homology to seasonal human coronaviruses making them promising candidates for SARS-CoV-2-specific T-cell immunity assays. Moreover, two of the NC-derived peptides elicited effector/polyfunctional responses of CD8+ T cells derived from SARS-CoV-2 convalescent patients.IMPORTANCE The development of specific and validated immunologic tools is critical for understanding the level and duration of the cellular response induced by SARS-CoV-2 infection and/or vaccines against this novel coronavirus disease. To contribute to this effort, we employed an immunoinformatics analysis pipeline to define 57 SARS-CoV-2 immunogenic peptides within topologically important regions of the nucleocapsid (NC) and spike (S) proteins that will be effective for detecting cellular immune responses in 80 to 100% of the global population. Our immunoinformatics analysis revealed that 18 of these peptides had limited homology to circulating seasonal human coronaviruses and therefore are promising candidates for distinguishing SARS-CoV-2-specific immune responses from pre-existing coronavirus immunity. Importantly, CD8+ T cells derived from SARS-CoV-2 survivors exhibited polyfunctional effector responses to two novel NC-derived peptides identified as HLA-binders. These studies provide a proof of concept that our immunoinformatics analysis pipeline identifies novel immunogens which can elicit polyfunctional SARS-CoV-2-specific T-cell responses.
Collapse
Affiliation(s)
- Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Kerrie Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Vicki V Stylianou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rajiv Khanna
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John-Sebastian Eden
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Emily Blyth
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- BMT and Cell Therapies Program, Westmead Hospital, Westmead, New South Wales, Australia
| | - David Gottlieb
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- BMT and Cell Therapies Program, Westmead Hospital, Westmead, New South Wales, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
23
|
Wagner-Drouet E, Teschner D, Wolschke C, Schäfer-Eckart K, Gärtner J, Mielke S, Schreder M, Kobbe G, Hilgendorf I, Klein S, Verbeek M, Ditschkowski M, Koch M, Lindemann M, Schmidt T, Rascle A, Barabas S, Deml L, Wagner R, Wolff D. Comparison of Cytomegalovirus-Specific Immune Cell Response to Proteins versus Peptides Using an IFN-γ ELISpot Assay after Hematopoietic Stem Cell Transplantation. Diagnostics (Basel) 2021; 11:diagnostics11020312. [PMID: 33671952 PMCID: PMC7919014 DOI: 10.3390/diagnostics11020312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) infection is a major cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT). Measuring CMV-specific cellular immunity may improve the risk stratification and management of patients. IFN-γ ELISpot assays, based on the stimulation of peripheral blood mononuclear cells with CMV pp65 and IE-1 proteins or peptides, have been validated in clinical settings. However, it remains unclear to which extend the T-cell response to synthetic peptides reflect that mediated by full-length proteins processed by antigen-presenting cells. We compared the stimulating ability of pp65 and IE-1 proteins and corresponding overlapping peptides in 16 HSCT recipients using a standardized IFN-γ ELISpot assay. Paired qualitative test results showed an overall 74.4% concordance. Discordant results were mainly due to low-response tests, with one exception. One patient with early CMV reactivation and graft-versus-host disease, sustained CMV DNAemia and high CD8+ counts showed successive negative protein-based ELISpot results but a high and sustained response to IE-1 peptides. Our results suggest that the response to exogenous proteins, which involves their uptake and processing by antigen-presenting cells, more closely reflects the physiological response to CMV infection, while the response to exogenous peptides may lead to artificial in vitro T-cell responses, especially in strongly immunosuppressed patients.
Collapse
Affiliation(s)
- Eva Wagner-Drouet
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (E.W.-D.); (D.T.)
| | - Daniel Teschner
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (E.W.-D.); (D.T.)
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Eppendorf, Hamburg, Germany;
| | - Kerstin Schäfer-Eckart
- Medizinische Klinik 5, Klinikum Nürnberg Nord, Paracelsus Medizinische Privatuniversität, 90419 Nürnberg, Germany; (K.S.-E.); (J.G.)
| | - Johannes Gärtner
- Medizinische Klinik 5, Klinikum Nürnberg Nord, Paracelsus Medizinische Privatuniversität, 90419 Nürnberg, Germany; (K.S.-E.); (J.G.)
| | - Stephan Mielke
- Department of Medicine II, University Medical Center Würzburg, 97080 Würzburg, Germany; (S.M.); (M.S.)
- Department of Laboratory Medicine, CAST, Karolinska Institutet and University Hospital, 17177 Stockholm, Sweden
| | - Martin Schreder
- Department of Medicine II, University Medical Center Würzburg, 97080 Würzburg, Germany; (S.M.); (M.S.)
| | - Guido Kobbe
- Department of Hematology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Inken Hilgendorf
- Klinik für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany;
| | - Stefan Klein
- Department of Hematology and Oncology, UMM University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
| | - Mareike Verbeek
- Medical Department, Hematology and Oncology, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany;
| | - Markus Ditschkowski
- Innere Klinik, Tumorforschung, University Hospital Essen, 45147 Essen, Germany;
| | - Martina Koch
- Department of Hepatobiliary Surgery and Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Eppendorf, Hamburg, Germany;
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany;
| | - Traudel Schmidt
- Lophius Biosciences, 93053 Regensburg, Germany; (T.S.); (A.R.); (S.B.); (L.D.)
| | - Anne Rascle
- Lophius Biosciences, 93053 Regensburg, Germany; (T.S.); (A.R.); (S.B.); (L.D.)
| | - Sascha Barabas
- Lophius Biosciences, 93053 Regensburg, Germany; (T.S.); (A.R.); (S.B.); (L.D.)
| | - Ludwig Deml
- Lophius Biosciences, 93053 Regensburg, Germany; (T.S.); (A.R.); (S.B.); (L.D.)
| | - Ralf Wagner
- Lophius Biosciences, 93053 Regensburg, Germany; (T.S.); (A.R.); (S.B.); (L.D.)
- Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence: (R.W.); (D.W.); Tel.: +49-941-944-6452 (R.W.); +49-941-944-5542 (D.W.)
| | - Daniel Wolff
- Department of Internal Medicine III, Hematology and Oncology, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence: (R.W.); (D.W.); Tel.: +49-941-944-6452 (R.W.); +49-941-944-5542 (D.W.)
| |
Collapse
|
24
|
Lehmann AA, Zhang T, Reche PA, Lehmann PV. Discordance Between the Predicted Versus the Actually Recognized CD8+ T Cell Epitopes of HCMV pp65 Antigen and Aleatory Epitope Dominance. Front Immunol 2021; 11:618428. [PMID: 33633736 PMCID: PMC7900545 DOI: 10.3389/fimmu.2020.618428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
CD8+ T cell immune monitoring aims at measuring the size and functions of antigen-specific CD8+ T cell populations, thereby providing insights into cell-mediated immunity operational in a test subject. The selection of peptides for ex vivo CD8+ T cell detection is critical because within a complex antigen exists a multitude of potential epitopes that can be presented by HLA class I molecules. Further complicating this task, there is HLA class I polygenism and polymorphism which predisposes CD8+ T cell responses towards individualized epitope recognition profiles. In this study, we compare the actual CD8+ T cell recognition of a well-characterized model antigen, human cytomegalovirus (HCMV) pp65 protein, with its anticipated epitope coverage. Due to the abundance of experimentally defined HLA-A*02:01-restricted pp65 epitopes, and because in silico epitope predictions are most advanced for HLA-A*02:01, we elected to focus on subjects expressing this allele. In each test subject, every possible CD8+ T cell epitope was systematically covered testing 553 individual peptides that walk the sequence of pp65 in steps of single amino acids. Highly individualized CD8+ T cell response profiles with aleatory epitope recognition patterns were observed. No correlation was found between epitopes' ranking on the prediction scale and their actual immune dominance. Collectively, these data suggest that accurate CD8+ T cell immune monitoring may necessitate reliance on agnostic mega peptide pools, or brute force mapping, rather than electing individual peptides as representative epitopes for tetramer and other multimer labeling of surface antigen receptors.
Collapse
Affiliation(s)
- Alexander A. Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Ting Zhang
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Pedro A. Reche
- Laboratorio de Inmunomedicina & Inmunoinformatica, Departamento de Immunologia & O2, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| |
Collapse
|
25
|
Annaloro C, Serpenti F, Saporiti G, Galassi G, Cavallaro F, Grifoni F, Goldaniga M, Baldini L, Onida F. Viral Infections in HSCT: Detection, Monitoring, Clinical Management, and Immunologic Implications. Front Immunol 2021; 11:569381. [PMID: 33552044 PMCID: PMC7854690 DOI: 10.3389/fimmu.2020.569381] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
In spite of an increasing array of investigations, the relationships between viral infections and allogeneic hematopoietic stem cell transplantation (HSCT) are still controversial, and almost exclusively regard DNA viruses. Viral infections per se account for a considerable risk of morbidity and mortality among HSCT recipients, and available antiviral agents have proven to be of limited effectiveness. Therefore, an optimal management of viral infection represents a key point in HSCT strategies. On the other hand, viruses bear the potential of shaping immunologic recovery after HSCT, possibly interfering with control of the underlying disease and graft-versus-host disease (GvHD), and eventually with HSCT outcome. Moreover, preliminary data are available about the possible role of some virome components as markers of immunologic recovery after HSCT. Lastly, HSCT may exert an immunotherapeutic effect against some viral infections, notably HIV and HTLV-1, and has been considered as an eradicating approach in these indications.
Collapse
Affiliation(s)
- Claudio Annaloro
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Fabio Serpenti
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Giorgia Saporiti
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Giulia Galassi
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Francesca Cavallaro
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Federica Grifoni
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Maria Goldaniga
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Luca Baldini
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Francesco Onida
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| |
Collapse
|
26
|
Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol 2021; 19:759-773. [PMID: 34168328 PMCID: PMC8223196 DOI: 10.1038/s41579-021-00582-z] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that infects ~60% of adults in developed countries and more than 90% in developing countries. Usually, it is controlled by a vigorous immune response so that infections are asymptomatic or symptoms are mild. However, if the immune system is compromised, HCMV can replicate to high levels and cause serious end organ disease. Substantial progress is being made in understanding the natural history and pathogenesis of HCMV infection and disease in the immunocompromised host. Serial measures of viral load defined the dynamics of HCMV replication and are now used routinely to allow intervention with antiviral drugs in individual patients. They are also used as pharmacodynamic read-outs to evaluate prototype vaccines that may protect against HCMV replication and to define immune correlates of this protection. This novel information is informing the design of randomized controlled trials of new antiviral drugs and vaccines currently under evaluation. In this Review, we discuss immune responses to HCMV and countermeasures deployed by the virus, the establishment of latency and reactivation from it, exogenous reinfection with additional strains, pathogenesis, development of end organ disease, indirect effects of infection, immune correlates of control of replication, current treatment strategies and the evaluation of novel vaccine candidates.
Collapse
Affiliation(s)
- Paul Griffiths
- Institute for Immunity and Transplantation, University College London, London, UK.
| | - Matthew Reeves
- grid.83440.3b0000000121901201Institute for Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
27
|
Limaye AP, Babu TM, Boeckh M. Progress and Challenges in the Prevention, Diagnosis, and Management of Cytomegalovirus Infection in Transplantation. Clin Microbiol Rev 2020; 34:34/1/e00043-19. [PMID: 33115722 PMCID: PMC7920732 DOI: 10.1128/cmr.00043-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hosts with compromised or naive immune systems, such as individuals living with HIV/AIDS, transplant recipients, and fetuses, are at the highest risk for complications from cytomegalovirus (CMV) infection. Despite substantial progress in prevention, diagnostics, and treatment, CMV continues to negatively impact both solid-organ transplant (SOT) and hematologic cell transplant (HCT) recipients. In this article, we summarize important developments in the field over the past 10 years and highlight new approaches and remaining challenges to the optimal control of CMV infection and disease in transplant settings.
Collapse
Affiliation(s)
- Ajit P Limaye
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Tara M Babu
- Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Infectious Diseases, Overlake Medical Center, Bellevue, Washington, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
28
|
Materne EC, Lilleri D, Garofoli F, Lombardi G, Furione M, Zavattoni M, Gibson L. Cytomegalovirus-Specific T Cell Epitope Recognition in Congenital Cytomegalovirus Mother-Infant Pairs. Front Immunol 2020; 11:568217. [PMID: 33329532 PMCID: PMC7732427 DOI: 10.3389/fimmu.2020.568217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Congenital cytomegalovirus (cCMV) infection is the most common infection acquired before birth and from which about 20% of infants develop permanent neurodevelopmental effects regardless of presence or absence of symptoms at birth. Viral escape from host immune control may be a mechanism of CMV transmission and infant disease severity. We sought to identify and compare CMV epitopes recognized by mother-infant pairs. We also hypothesized that if immune escape were occurring, then one pattern of longitudinal CD8 T cell responses restricted by shared HLA alleles would be maternal loss (by viral escape) and infant gain (by viral reversion to wildtype) of CMV epitope recognition. Methods: The study population consisted of 6 women with primary CMV infection during pregnancy and their infants with cCMV infection. CMV UL83 and UL123 peptides with known or predicted restriction by maternal MHC class I alleles were identified, and a subset was selected for testing based on several criteria. Maternal or infant cells were stimulated with CMV peptides in the IFN-γ ELISpot assay. Results: Overall, 14 of 25 (56%; 8 UL83 and 6 UL123) peptides recognized by mother-infant pairs were not previously reported as CD8 T cell epitopes. Of three pairs with longitudinal samples, one showed maternal loss and infant gain of responses to a CMV epitope restricted by a shared HLA allele. Conclusions: CD8 T cell responses to multiple novel CMV epitopes were identified, particularly in infants. Moreover, the hypothesized pattern of CMV immune escape was observed in one mother-infant pair. These findings emphasize that knowledge of paired CMV epitope recognition allows exploration of viral immune escape that may operate within the maternal-fetal system. Our work provides rationale for future studies of this potential mechanism of CMV transmission during pregnancy or clinical outcomes of infants with cCMV infection.
Collapse
Affiliation(s)
- Emma C Materne
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Daniele Lilleri
- Unità Operativa Complessa (UOC) Laboratorio Genetica - Trapiantologia e Malattie Cardiovascolari, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Giuseppina Lombardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Milena Furione
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Maurizio Zavattoni
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Laura Gibson
- University of Massachusetts Medical School, Worcester, MA, United States.,Department of Medicine, UMass Memorial Medical Center, Worcester, MA, United States.,Department of Pediatrics, UMass Memorial Medical Center, Worcester, MA, United States
| |
Collapse
|
29
|
Fernández-Ruiz M, Rodríguez-Goncer I, Parra P, Ruiz-Merlo T, Corbella L, López-Medrano F, Polanco N, González E, San Juan R, Folgueira MD, Andrés A, Aguado JM. Monitoring of CMV-specific cell-mediated immunity with a commercial ELISA-based interferon-γ release assay in kidney transplant recipients treated with antithymocyte globulin. Am J Transplant 2020; 20:2070-2080. [PMID: 31991045 DOI: 10.1111/ajt.15793] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 01/25/2023]
Abstract
Monitoring for cytomegalovirus (CMV)-specific cell-mediated immunity (CMV-CMI) may be useful for individualizing valganciclovir (VGCV) prophylaxis after kidney transplantation (KT). We performed a commercial ELISA-based interferon (IFN)-γ release assay (QTF-CMV) from posttransplant months 2-5 (362 points) in 120 CMV-seropositive KT recipients that received antithymocyte globulin as induction therapy and VGCV prophylaxis (median of 92 days). Forty-seven patients (39.3%) had CMV infection after discontinuation of prophylaxis. The QTF-CMV assay was reactive, nonreactive, and indeterminate in 264 (72.9%), 90 (24.9%), and 8 points (2.2%). The QTF-CMV assay at prophylaxis discontinuation exhibited suboptimal accuracy for predicting protective CMV-CMI (sensitivity: 77.4%; specificity: 34.3%; positive predictive value [PPV]: 64.1%; negative predictive value [NPV]: 50.0%), with no differences in 1-year CMV infection rates between patients with negative (nonreactive or indeterminate) or reactive results (45.8% vs 36.1%; P = .244). Specificity and PPV to predict protective CMV-CMI improved by elevating the IFN-γ cutoff value to 1.13 IU/mL (65.7% and 71.4%) and 7.0 IU/mL (85.7% and 76.2%), although NPVs decreased. The QTF-CMV assay as per manufacturer's interpretative criteria performed poorly to predict protection from CMV infection following discontinuation of VGCV prophylaxis among ATG-treated CMV-seropositive KT recipients. This performance is slightly improved by modifying the IFN-γ positivity threshold.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Laura Corbella
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - María Dolores Folgueira
- Department of Microbiology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Amado Andrés
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Jose María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| |
Collapse
|
30
|
Adoptive T-cell therapy for pediatric cytomegalovirus-associated retinitis. Blood Adv 2020; 3:1774-1777. [PMID: 31186253 DOI: 10.1182/bloodadvances.2019000121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/15/2019] [Indexed: 11/20/2022] Open
Abstract
Key Points
TCRαβ+/CD19+-depleted haploidentical HSCT was used to restore immunity in a pediatric patient with combined immunodeficiency syndrome. Posttransplant drug-resistant CMV retinitis was successfully treated with T cells expanded from a haploidentical HSCT donor.
Collapse
|
31
|
Lim EY, Jackson SE, Wills MR. The CD4+ T Cell Response to Human Cytomegalovirus in Healthy and Immunocompromised People. Front Cell Infect Microbiol 2020; 10:202. [PMID: 32509591 PMCID: PMC7248300 DOI: 10.3389/fcimb.2020.00202] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
While CD8+ T cells specific for human cytomegalovirus (HCMV) have been extensively studied in both healthy HCMV seropositive carriers and patients undergoing immunosuppression, studies on the CD4+ T cell response to HCMV had lagged behind. However, over the last few years there has been a significant advance in our understanding of the importance and contribution that CMV-specific CD4+ T cells make, not only to anti-viral immunity but also in the potential maintenance of latently infected cells. During primary infection with HCMV in adults, CD4+ T cells are important for the resolution of symptomatic disease, while persistent shedding of HCMV into urine and saliva is associated with a lack of HCMV specific CD4+ T cell response in young children. In immunosuppressed solid organ transplant recipients, a delayed appearance of HCMV-specific CD4+ T cells is associated with prolonged viremia and more severe clinical disease, while in haematopoietic stem cell transplant recipients, it has been suggested that HCMV-specific CD4+ T cells are required for HCMV-specific CD8+ T cells to exert their anti-viral effects. In addition, adoptive T-cell immunotherapy in transplant patients has shown that the presence of HCMV-specific CD4+ T cells is required for the maintenance of HCMV-specific CD8+ T cells. HCMV is a paradigm for immune evasion. The presence of viral genes that down-regulate MHC class II molecules and the expression of viral IL-10 both limit antigen presentation to CD4+ T cells, underlining the important role that this T cell subset has in antiviral immunity. This review will discuss the antigen specificity, effector function, phenotype and direct anti-viral properties of HCMV specific CD4+ T cells, as well as reviewing our understanding of the importance of this T cell subset in primary infection and long-term carriage in healthy individuals. In addition, their role and importance in congenital HCMV infection and during immunosuppression in both solid organ and haemopoietic stem cell transplantation is considered.
Collapse
Affiliation(s)
| | | | - Mark R. Wills
- Division of Infectious Diseases, Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Kula T, Dezfulian MH, Wang CI, Abdelfattah NS, Hartman ZC, Wucherpfennig KW, Lyerly HK, Elledge SJ. T-Scan: A Genome-wide Method for the Systematic Discovery of T Cell Epitopes. Cell 2020; 178:1016-1028.e13. [PMID: 31398327 PMCID: PMC6939866 DOI: 10.1016/j.cell.2019.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/20/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
Abstract
T cell recognition of specific antigens mediates protection from pathogens and controls neoplasias, but can also cause autoimmunity. Our knowledge of T cell antigens and their implications for human health is limited by the technical limitations of T cell profiling technologies. Here, we present T-Scan, a high-throughput platform for identification of antigens productively recognized by T cells. T-Scan uses lentiviral delivery of antigen libraries into cells for endogenous processing and presentation on major histocompatibility complex (MHC) molecules. Target cells functionally recognized by T cells are isolated using a reporter for granzyme B activity, and the antigens mediating recognition are identified by next-generation sequencing. We show T-Scan correctly identifies cognate antigens of T cell receptors (TCRs) from viral and human genome-wide libraries. We apply T-Scan to discover new viral antigens, perform high-resolution mapping of TCR specificity, and characterize the reactivity of a tumor-derived TCR. T-Scan is a powerful approach for studying T cell responses.
Collapse
Affiliation(s)
- Tomasz Kula
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Charlotte I Wang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Nouran S Abdelfattah
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Zachary C Hartman
- Departments of Surgery and Pathology, Duke University Medical Center, 571 Research Drive, Suite 433, Box 2606, Durham, NC 27710, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Herbert Kim Lyerly
- Departments of Surgery, Immunology, and Pathology, Duke University Medical Center, 571 Research Drive, Suite 433, Box 2606, Durham, NC 27710, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard University Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease. J Infect Dis 2020; 221:S45-S59. [PMID: 32134477 PMCID: PMC7057792 DOI: 10.1093/infdis/jiz428] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects and an etiology of significant morbidity and mortality in solid organ and hematopoietic stem cell transplant recipients. There is tremendous interest in developing a vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease, yet after nearly a half-century of research and development in this field we remain without such an intervention. Defining immune correlates of protection is a process that enables targeted vaccine/immunotherapeutic discovery and informed evaluation of clinical performance. Outcomes in the HCMV field have previously been measured against a variety of clinical end points, including virus acquisition, systemic replication, and progression to disease. Herein we review immune correlates of protection against each of these end points in turn, showing that control of HCMV likely depends on a combination of innate immune factors, antibodies, and T-cell responses. Furthermore, protective immune responses are heterogeneous, with no single immune parameter predicting protection against all clinical outcomes and stages of HCMV infection. A detailed understanding of protective immune responses for a given clinical end point will inform immunogen selection and guide preclinical and clinical evaluation of vaccines or immunotherapeutics to prevent HCMV-mediated congenital and transplant disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,Correspondence: Cody S. Nelson, Human Vaccine Institute, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710 ()
| | - Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniele Lilleri
- Laboratory of Genetics, Transplantation, and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
34
|
Lübke M, Spalt S, Kowalewski DJ, Zimmermann C, Bauersfeld L, Nelde A, Bichmann L, Marcu A, Peper JK, Kohlbacher O, Walz JS, Le-Trilling VTK, Hengel H, Rammensee HG, Stevanović S, Halenius A. Identification of HCMV-derived T cell epitopes in seropositive individuals through viral deletion models. J Exp Med 2020; 217:e20191164. [PMID: 31869419 PMCID: PMC7062530 DOI: 10.1084/jem.20191164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022] Open
Abstract
In healthy individuals, immune control of persistent human cytomegalovirus (HCMV) infection is effectively mediated by virus-specific CD4+ and CD8+ T cells. However, identifying the repertoire of T cell specificities for HCMV is hampered by the immense protein coding capacity of this betaherpesvirus. Here, we present a novel approach that employs HCMV deletion mutant viruses lacking HLA class I immunoevasins and allows direct identification of naturally presented HCMV-derived HLA ligands by mass spectrometry. We identified 368 unique HCMV-derived HLA class I ligands representing an unexpectedly broad panel of 123 HCMV antigens. Functional characterization revealed memory T cell responses in seropositive individuals for a substantial proportion (28%) of these novel peptides. Multiple HCMV-directed specificities in the memory T cell pool of single individuals indicate that physiologic anti-HCMV T cell responses are directed against a broad range of antigens. Thus, the unbiased identification of naturally presented viral epitopes enabled a comprehensive and systematic assessment of the physiological repertoire of anti-HCMV T cell specificities in seropositive individuals.
Collapse
Affiliation(s)
- Maren Lübke
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Stefanie Spalt
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Daniel J. Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Cosima Zimmermann
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annika Nelde
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of Hematology and Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Janet Kerstin Peper
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Hematology and Oncology, University Hospital Tübingen, Tübingen, Germany
| | | | - Hartmut Hengel
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
36
|
Buhler S, Bettens F, Dantin C, Ferrari-Lacraz S, Ansari M, Mamez AC, Masouridi-Levrat S, Chalandon Y, Villard J. Genetic T-cell receptor diversity at 1 year following allogeneic hematopoietic stem cell transplantation. Leukemia 2019; 34:1422-1432. [DOI: 10.1038/s41375-019-0654-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
|
37
|
A Randomized Study of Quantiferon CMV-directed Versus Fixed-duration Valganciclovir Prophylaxis to Reduce Late CMV After Lung Transplantation. Transplantation 2019; 103:1005-1013. [PMID: 30247316 DOI: 10.1097/tp.0000000000002454] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We provide the results of the first interventional study of cytomegalovirus (CMV)-specific immune monitoring to direct the length of antiviral prophylaxis in lung transplantation (LTx). METHODS Patients (n = 118) at risk of CMV infection were randomized 1:2 to either 5 months or variable length valganciclovir prophylaxis (5-11 mo post-LTx), as determined by the QuantiFERON (QFN)-CMV assay. Patients with a negative QFN-CMV assay (< 0.2 IU/mL) received prolonged valganciclovir prophylaxis. RESULTS The primary endpoint that was the incidence of CMV infection in the lung allograft within 18 months of LTx was significantly reduced in the QFN-CMV directed arm (37% versus 58%, P = 0.03). Secondary endpoints that included blood viremia, acute rejection, and chronic lung allograft dysfunction did not differ between the 2 arms. Of the 80/118 patients who ceased antiviral prophylaxis at 5 months, the incidence of viremia (> 600 copies/mL) within the blood was significantly reduced in patients with a positive QFN-CMV assay compared with those without protective immunity (13% versus 67%, P = 0.0003), as was the incidence of severe viremia (> 10 000 copies/mL) (3% versus 50%, P < 0.001). Ceasing antiviral prophylaxis at 11 months in patients with a negative assay was associated with a 25% incidence of late CMV viremia. CONCLUSIONS Cytomegalovirus immune monitoring allows an individualized approach to CMV prophylaxis and reduces late CMV infection within the lung allograft.
Collapse
|
38
|
Grosso D, Leiby B, Carabasi M, Filicko-O'Hara J, Gaballa S, O'Hara W, Wagner JL, Flomenberg N. The Presence of a CMV Immunodominant Allele in the Recipient Is Associated With Increased Survival in CMV Positive Patients Undergoing Haploidentical Hematopoietic Stem Cell Transplantation. Front Oncol 2019; 9:888. [PMID: 31608225 PMCID: PMC6758597 DOI: 10.3389/fonc.2019.00888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022] Open
Abstract
Specific major histocompatibility (MHC) class I alleles dominate anti-CMV responses in a hierarchal manner. These CMV immunodominant (IMD) alleles are associated with a higher magnitude and frequency of cytotoxic lymphocyte responses as compared to other human leukocyte antigen (HLA) alleles. CMV reactivation has been associated with an increased incidence of graft-vs.-host disease and non-relapse mortality, as well as protection from relapse in HLA-matched HSCT settings. Less is known about the impact of CMV reactivation on these major outcomes after haploidentical (HI) HSCT, an increasingly applied therapeutic option. In HI HSCT, the efficiency of the immune response is decreased due to the immune suppression required to cross the MHC barrier as well as MHC mismatch between presenting and responding cells. We hypothesized that the presence of a CMV IMD allele would increase the efficiency of CMV responses after HI HSCT potentially impacting CMV-related outcomes. In this retrospective, multivariable review of 216 HI HSCT patients, we found that CMV+ recipients possessing at least 1 of 5 identified CMV IMD alleles had a lower hazard of death (HR = 0.40, p = 0.003) compared to CMV+ recipients not possessing a CMV IMD allele, and an overall survival rate similar to their CMV- counterparts. The analysis delineated subgroups within the CMV+ population at greater risk for death due to CMV reactivation.
Collapse
Affiliation(s)
- Dolores Grosso
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Benjamin Leiby
- Pharmacology and Experimental Therapeutics, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Matthew Carabasi
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Joanne Filicko-O'Hara
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Sameh Gaballa
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - William O'Hara
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - John L. Wagner
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Neal Flomenberg
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
39
|
Manandhar T, Hò GGT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci 2019; 20:E3626. [PMID: 31344940 PMCID: PMC6695940 DOI: 10.3390/ijms20153626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. HCMV infection is typically asymptomatic and controlled by the immune system in healthy individuals, yet HCMV can be severely pathogenic for the fetus during pregnancy and in immunocompromised persons, such as transplant recipients or HIV infected patients. HCMV has co-evolved with the hosts, developed strategies to hide from immune effector cells and to successfully survive in the human organism. One strategy for evading or delaying the immune response is maintenance of the viral genome to establish the phase of latency. Furthermore, HCMV immune evasion involves the downregulation of human leukocyte antigens (HLA)-Ia molecules to hide infected cells from T-cell recognition. HCMV expresses several proteins that are described for downregulation of the HLA class I pathway via various mechanisms. Here, we review the wide range of immune evasion mechanisms of HCMV. Understanding the mechanisms of HCMV immune evasion will contribute to the development of new customized therapeutic strategies against the virus.
Collapse
Affiliation(s)
- Trishna Manandhar
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
40
|
Pump WC, Schulz R, Huyton T, Kunze-Schumacher H, Martens J, Hò GGT, Blasczyk R, Bade-Doeding C. Releasing the concept of HLA-allele specific peptide anchors in viral infections: A non-canonical naturally presented human cytomegalovirus-derived HLA-A*24:02 restricted peptide drives exquisite immunogenicity. HLA 2019; 94:25-38. [PMID: 30912293 PMCID: PMC6593758 DOI: 10.1111/tan.13537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 11/30/2022]
Abstract
T‐cell receptors possess the unique ability to survey and respond to their permanently modified ligands, self HLA‐I molecules bound to non‐self peptides of various origin. This highly specific immune function is impaired following hematopoietic stem cell transplantation (HSCT) for a timespan of several months needed for the maturation of T‐cells. Especially, the progression of HCMV disease in immunocompromised patients induces life‐threatening situations. Therefore, the need for a new immune system that delivers vital and potent CD8+ T‐cells carrying TCRs that recognize even one human cytomegalovirus (HCMV) peptide/HLA molecule and clear the viral infection long term becomes obvious. The transcription and translation of HCMV proteins in the lytic cycle is a precisely regulated cascade of processes, therefore, it is a highly sensitive challenge to adjust the exact time point of HCMV‐peptide recruitment over self‐peptides. We utilized soluble HLA technology in HCMV‐infected fibroblasts and sequenced naturally sHLA‐A*24:02 presented HCMV‐derived peptides. One peptide of 14 AAs length derived from the IE2 antigen induced the strongest T‐cell responses; this peptide can be detected with a low ranking score in general peptide prediction databanks. These results highlight the need for elaborate and HLA‐allele specific peptide selection.
Collapse
Affiliation(s)
- Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rebecca Schulz
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Jörg Martens
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
41
|
Frascaroli G, Lecher C, Varani S, Setz C, van der Merwe J, Brune W, Mertens T. Human Macrophages Escape Inhibition of Major Histocompatibility Complex-Dependent Antigen Presentation by Cytomegalovirus and Drive Proliferation and Activation of Memory CD4 + and CD8 + T Cells. Front Immunol 2018; 9:1129. [PMID: 29887865 PMCID: PMC5981096 DOI: 10.3389/fimmu.2018.01129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/04/2018] [Indexed: 12/28/2022] Open
Abstract
Human cytomegalovirus (HCMV) persistently infects 40–90% of the human population but in the face of a normal immune system, viral spread and dissemination are efficiently controlled thus preventing clinically signs and disease. HCMV-infected hosts produce a remarkably large amount of HCMV-specific CD4+ and CD8+ T cells that can even reach 20–50% of total T memory cells in the elderly. How HCMV may elicit such large and long-lasting T-cell responses in the absence of detectable viremia has not been elucidated yet. Additionally, HCMV is known to encode several gene products that potently inhibit T-cell recognition of infected cells. The best characterized are the four immune evasive US2, US3, US6, and US11 genes that by different mechanisms account for major histocompatibility complex (MHC) class I and class II degradation and intracellular retention in infected cells. By infecting M1 and M2 human macrophages (Mφ) with the wild-type HCMV strain TB40E or a mutant virus deleted of the four immune evasive genes US2, US3, US6, and US11, we demonstrated that human Mφ counteract the inhibitory potential of the US2-11 genes and remain capable to present peptides via MHC class I and class II molecules. Moreover, by sorting the infected and bystander cells, we provide evidence that both infected and bystander Mφ contribute to antigen presentation to CD4+ and CD8+ T cells. The T cells responding to TB40E-infected Mφ show markers of the T effector memory compartment, produce interferon-γ, and express the lytic granule marker CD107a on the cell surface, thus mirroring the HCMV-specific T cells present in healthy seropositive individuals. All together, our findings reveal that human Mφ escape inhibition of MHC-dependent antigen presentation by HCMV and continue to support T cell proliferation and activation after HCMV infection. Taking into account that Mφ are natural targets of HCMV infection and a site of viral reactivation from latency, our findings support the hypothesis that Mφ play crucial roles for the lifelong maintenance and expansion of HCMV-committed T cells in the human host.
Collapse
Affiliation(s)
- Giada Frascaroli
- Institute of Virology, Ulm University Medical Center, Ulm, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carina Lecher
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Stefania Varani
- Department of Diagnostic, Experimental and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Corinna Setz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Mertens
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
42
|
Analysis of spontaneous resolution of cytomegalovirus replication after transplantation in CMV-seropositive patients with pretransplant CD8+IFNG+ response. Antiviral Res 2018; 155:97-105. [PMID: 29782877 DOI: 10.1016/j.antiviral.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/27/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
Abstract
This prospective study evaluates whether CMV-seropositive (R+) transplant patients with pretransplant CD8+IFNG+ T-cell response to cytomegalovirus (CMV) (CD8+IFNG+ response) can spontaneously clear the CMV viral load without requiring treatment. A total of 104 transplant patients (kidney/liver) with pretransplant CD8+IFNG+ response were evaluable. This response was determined using QuantiFERON-CMV assay. The incidence of CMV replication and disease was 45.2% (47/104) and 6.7% (7/104), respectively. Of the total patients, 77.9% (81/104) did not require antiviral treatment, either because they did not have CMV replication (n = 57) or because they had asymptomatic CMV replication that could be spontaneously cleared (n = 24). Both situations are likely related to the presence of CD8+IFNG+ response to CMV, which has a key role in controlling CMV infection. However, 22.1% of the patients (23/104) received antiviral treatment, although only 7 of them did so because they had symptomatic CMV replication. These patients developed symptoms in spite of having pretransplant CD8+IFNG+ response, thus suggesting that other immunological parameters might be involved, such as a dysfunctional CD4+ response or that they might have become QFNon-reactive due to the immunosuppression. In conclusion, around 80% of R+ patients with pretransplant CD8+IFNG+ response to CMV did not require antiviral treatment, although this percentage might be underestimated. Nevertheless, other strategies such as performing an additional CD8+IFNG+ response determination at posttransplant time might provide more reliable information regarding the patients who will be able to spontaneously clear the viremia.
Collapse
|
43
|
Gary R, Aigner M, Moi S, Schaffer S, Gottmann A, Maas S, Zimmermann R, Zingsem J, Strobel J, Mackensen A, Mautner J, Moosmann A, Gerbitz A. Clinical-grade generation of peptide-stimulated CMV/EBV-specific T cells from G-CSF mobilized stem cell grafts. J Transl Med 2018; 16:124. [PMID: 29743075 PMCID: PMC5941463 DOI: 10.1186/s12967-018-1498-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022] Open
Abstract
Background A major complication after allogeneic hematopoietic stem cell transplantation (aSCT) is the reactivation of herpesviruses such as cytomegalovirus (CMV) and Epstein–Barr virus (EBV). Both viruses cause significant mortality and compromise quality of life after aSCT. Preventive transfer of virus-specific T cells can suppress reactivation by re-establishing functional antiviral immune responses in immunocompromised hosts. Methods We have developed a good manufacturing practice protocol to generate CMV/EBV-peptide-stimulated T cells from leukapheresis products of G-CSF mobilized and non-mobilized donors. Our procedure selectively expands virus-specific CD8+ und CD4+ T cells over 9 days using a generic pool of 34 CMV and EBV peptides that represent well-defined dominant T-cell epitopes with various HLA restrictions. For HLA class I, this set of peptides covers at least 80% of the European population. Results CMV/EBV-specific T cells were successfully expanded from leukapheresis material of both G-CSF mobilized and non-mobilized donors. The protocol allows administration shortly after stem cell transplantation (d30+), storage over liquid nitrogen for iterated applications, and protection of the stem cell donor by avoiding a second leukapheresis. Conclusion Our protocol allows for rapid and cost-efficient production of T cells for early transfusion after aSCT as a preventive approach. It is currently evaluated in a phase I/IIa clinical trial. Electronic supplementary material The online version of this article (10.1186/s12967-018-1498-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regina Gary
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| | - Michael Aigner
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stephanie Moi
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stefanie Schaffer
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Anja Gottmann
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stefanie Maas
- Center for Clinical Studies CCS, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Jürgen Zingsem
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Andreas Mackensen
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Josef Mautner
- Clinical Cooperation Group Pediatric Tumor Immunology, Helmholtz Zentrum München, and Technical University of Munich, Marchioninistr. 25, 81377, Munich, Germany
| | - Andreas Moosmann
- DZIF Research Group Host Control of Viral Latency and Reactivation (HOCOVLAR), Helmholtz Zentrum München, Marchioninistr. 25, 81377, Munich, Germany
| | - Armin Gerbitz
- Department of Hematology, Oncology and Tumorimmunology, Charité Berlin, Berlin, Germany
| |
Collapse
|
44
|
Martin LK, Hollaus A, Stahuber A, Hübener C, Fraccaroli A, Tischer J, Schub A, Moosmann A. Cross-sectional analysis of CD8 T cell immunity to human herpesvirus 6B. PLoS Pathog 2018; 14:e1006991. [PMID: 29698478 PMCID: PMC5919459 DOI: 10.1371/journal.ppat.1006991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) is prevalent in healthy persons, causes disease in immunosuppressed carriers, and may be involved in autoimmune disease. Cytotoxic CD8 T cells are probably important for effective control of infection. However, the HHV-6-specific CD8 T cell repertoire is largely uncharacterized. Therefore, we undertook a virus-wide analysis of CD8 T cell responses to HHV-6. We used a simple anchor motif-based algorithm (SAMBA) to identify 299 epitope candidates potentially presented by the HLA class I molecule B*08:01. Candidates were found in 77 of 98 unique HHV-6B proteins. From peptide-expanded T cell lines, we obtained CD8 T cell clones against 20 candidates. We tested whether T cell clones recognized HHV-6-infected cells. This was the case for 16 epitopes derived from 12 proteins from all phases of the viral replication cycle. Epitopes were enriched in certain amino acids flanking the peptide. Ex vivo analysis of eight healthy donors with HLA-peptide multimers showed that the strongest responses were directed against an epitope from IE-2, with a median frequency of 0.09% of CD8 T cells. Reconstitution of T cells specific for this and other HHV-6 epitopes was also observed after allogeneic hematopoietic stem cell transplantation. We conclude that HHV-6 induces CD8 T cell responses against multiple antigens of diverse functional classes. Most antigens against which CD8 T cells can be raised are presented by infected cells. Ex vivo multimer staining can directly identify HHV-6-specific T cells. These results will advance development of immune monitoring, adoptive T cell therapy, and vaccines. This paper deals with the immune response to a very common virus, called human herpesvirus 6 (HHV-6). Most people catch HHV-6 in early childhood, which often leads to a disease known as three-day fever. Later in life, the virus stays in the body, and an active immune response is needed to prevent the virus from multiplying and causing damage. It is suspected that HHV-6 contributes to autoimmune diseases and chronic fatigue. Moreover, patients with severely weakened immune responses, for example after some forms of transplantation, clearly have difficulties controlling HHV-6, which puts them at risk of severe disease and shortens their survival. This can potentially be prevented by giving them HHV-6-specific "killer" CD8 T cells, which are cells of the immune system that destroy body cells harboring the virus. However, little is known so far about such T cells. Here, we describe 16 new structures that CD8 T cells can use to recognize and kill HHV-6-infected cells. We show that very different viral proteins can furnish such structures. We also observe that such T cells are regularly present in healthy people and in transplant patients who control the virus. Our results will help develop therapies of disease due to HHV-6.
Collapse
MESH Headings
- Adult
- Anemia, Aplastic/immunology
- Anemia, Aplastic/therapy
- Antigens, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- Case-Control Studies
- Cells, Cultured
- Cross-Sectional Studies
- Epitopes, T-Lymphocyte/immunology
- HLA Antigens/immunology
- Hematopoietic Stem Cell Transplantation
- Herpesvirus 6, Human/immunology
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Roseolovirus Infections/immunology
- Roseolovirus Infections/virology
- T-Lymphocytes, Cytotoxic
- Transplantation, Homologous
Collapse
Affiliation(s)
- Larissa K. Martin
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Alexandra Hollaus
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Anna Stahuber
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Christoph Hübener
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alessia Fraccaroli
- Internal Medicine III, Hematopoietic Stem Cell Transplantation, Klinikum der Universität München (LMU), Grosshadern, Munich, Germany
| | - Johanna Tischer
- Internal Medicine III, Hematopoietic Stem Cell Transplantation, Klinikum der Universität München (LMU), Grosshadern, Munich, Germany
| | - Andrea Schub
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Andreas Moosmann
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF–Deutsches Zentrum für Infektionsforschung), Munich, Germany
- * E-mail:
| |
Collapse
|
45
|
STRANAVOVA L, HRUBA P, GIRMANOVA E, TYCOVA I, SLAVCEV A, FRONEK J, SLATINSKA J, REINKE P, VOLK HD, VIKLICKY O. The Effect of Induction Therapy on Established CMV Specific T Cell Immunity in Living Donor Kidney Transplantation. Physiol Res 2018; 67:251-260. [DOI: 10.33549/physiolres.933736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cytomegalovirus (CMV) infection influences both short and long term outcomes in immunosuppressed organ transplant recipients. The aim of this study was to evaluate the effect of different induction immunosuppression regimens on CMV specific T cell response in patients with already established CMV immunity. In 24 seropositive living donor kidney recipients, the frequency of CMV specific T cells was determined by ELISPOT (Enzyme-Linked ImmunoSpot) assay prior and 6 months after transplantation. Recipients’ peripheral blood mononuclear cells were stimulated with immediate-early (IE1) and phosphoprotein 65 (pp65) CMV-derived peptide pools and the number of cells producing interferon gamma (IFN-γ) was assessed. Patients received quadruple immunosuppression based either on depletive rabbit antithymocyte globulin (rATG) or non-depletive basiliximab induction and tacrolimus/mycophenolate mofetil/steroids. Patients with rATG induction received valgancyclovir prophylaxis. No effects of different induction agents on CMV specific T cell immunity were found at sixth month after kidney transplantation. There were no associations among dialysis vintage, pretransplant CMV specific T cell immunity, and later CMV DNAemia. Similarly, no effect of CMV prophylaxis on CMV specific T cell immunity was revealed. This study shows no effect of posttransplant immunosuppression on CMV specific T cell immunity in living donor kidney transplant recipients with CMV immunity already established, regardless of lymphocyte depletion and CMV prophylaxis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - O. VIKLICKY
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
46
|
The simultaneous isolation of multiple high and low frequent T-cell populations from donor peripheral blood mononuclear cells using the major histocompatibility complex I-Streptamer isolation technology. Cytotherapy 2018; 20:543-555. [DOI: 10.1016/j.jcyt.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022]
|
47
|
Khanna R. Immune Monitoring of Infectious Complications in Transplant Patients: an Important Step towards Improved Clinical Management. J Clin Microbiol 2018; 56:e02009-17. [PMID: 29343541 PMCID: PMC5869832 DOI: 10.1128/jcm.02009-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immune reconstitution following organ transplantation is absolutely critical in preventing infectious complications. However, understanding the kinetics of immune reconstitution and its potential impact on the clinical management of transplant patients remains a significant challenge. Over the last decade, various platform technologies have emerged which have provided important insights into the immune reconstitution kinetics in transplant patients. However, many of these technologies are too complicated and cumbersome to implement in a clinical setting. In this issue of the Journal of Clinical Microbiology, Chiereghin et al. (J. Clin. Microbiol. 56:e01040-17, 2018, https://doi.org/10.1128/JCM.01040-17) report the results of their evaluation of the QuantiFERON-CMV (QFN-CMV) assay to assess human cytomegalovirus (CMV)-specific CD8+ T-cell immunity in heart transplant recipients as a prognostic tool. These studies showed that patients with absence of global immune reactivity in the QFN-CMV assay were at a higher risk of developing CMV after discontinuing antiviral prophylaxis. Furthermore, failure to reconstitute CMV-specific immunity after resolution of the first episode of viremia was associated with viral relapse. These observations, along with other recent clinical studies utilizing the QFN-CMV assay, demonstrate that systematic monitoring of antiviral immunity can be successfully used as a prognostic tool and also to guide changes to the clinical management of transplant patients.
Collapse
Affiliation(s)
- Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
48
|
Youn JC, Kim JY, Jung MK, Yu HT, Park SH, Kim IC, Lee SK, Choi SW, Han S, Ryu KH, Park S, Shin EC. Analysis of cytomegalovirus-specific T-cell responses in patients with hypertension: comparison of assay methods and antigens. Clin Hypertens 2018; 24:5. [PMID: 29568571 PMCID: PMC5861653 DOI: 10.1186/s40885-018-0090-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/25/2018] [Indexed: 01/01/2023] Open
Abstract
Background Recent studies suggest an association between cytomegalovirus (CMV) infection and hypertension. In the present study, we used a variety of antigens and different assay methods to investigate the relationship between CMV-specific T-cell responses and arterial stiffness in patients with hypertension. Methods To evaluate arterial stiffness, pulse wave velocity (PWV) was measured in 207 hypertensive patients (average age, 63 ± 8 years). To measure CMV pp65 and IE-1-specific T-cell responses, we performed intracellular cytokine staining (ICS) and enzyme-linked immunospot (ELISPOT) assays. We also analyzed CMV-specific T-cell responses against 10 different CMV antigens using ELISPOT assays. Results In patients with hypertension, senescent CD8+ T-cell frequencies were significantly correlated with arterial stiffness. Moreover, arterial stiffness was independently associated with CMV pp65-specific CD8+ T-cell responses as measured by ICS. CMV-specific CD8+ T-cell responses measured by ICS and ELISPOT assays showed good agreement and significant correlation with each other. ELISPOT analyses against 10 different CMV antigens revealed a consistent response pattern irrespective of age, gender, and diabetes Conclusions CMV pp65-specific CD8+ T-cell responses were independently correlated with arterial stiffness in patients with hypertension. Additionally, the results of ICS and ELISPOT assays showed a significant correlation and good agreement with each other. These findings are important for guiding choices regarding the broad clinical application of CMV-specific T-cell response assays in this patient population.
Collapse
Affiliation(s)
- Jong-Chan Youn
- 1Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keunjaebong-gil 7, Hwaseong-si, Gyeonggi-do 18450 Republic of Korea.,2Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Jun Yong Kim
- 2Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Min Kyung Jung
- 2Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Hee Tae Yu
- 2Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea.,3Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- 4Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - In-Cheol Kim
- 5Division of Cardiology, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Sun Ki Lee
- 1Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keunjaebong-gil 7, Hwaseong-si, Gyeonggi-do 18450 Republic of Korea
| | - Suk-Won Choi
- 1Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keunjaebong-gil 7, Hwaseong-si, Gyeonggi-do 18450 Republic of Korea
| | - Seongwoo Han
- 1Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keunjaebong-gil 7, Hwaseong-si, Gyeonggi-do 18450 Republic of Korea
| | - Kyu-Hyung Ryu
- 1Division of Cardiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Keunjaebong-gil 7, Hwaseong-si, Gyeonggi-do 18450 Republic of Korea
| | - Sungha Park
- 3Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- 2Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
49
|
Asian Elephant T Cell Responses to Elephant Endotheliotropic Herpesvirus. J Virol 2018; 92:JVI.01951-17. [PMID: 29263271 PMCID: PMC5827410 DOI: 10.1128/jvi.01951-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) can cause lethal hemorrhagic disease in juvenile Asian elephants, an endangered species. One hypothesis to explain this vulnerability of some juvenile elephants is that they fail to mount an effective T cell response to the virus. To our knowledge, there have been no studies of Asian elephant T cell responses to EEHV. To address this deficiency, we validated the gamma interferon (IFN-γ) enzyme-linked immunospot assay for tracking antigen-directed T cell activity by monitoring rabies-specific responses in vaccinated elephants. In addition, we generated monoclonal antibodies to Asian elephant CD4 and CD8 to facilitate phenotypic T cell profiling. Using these tools, we screened healthy elephants with a history of EEHV infection for reactivity against nine EEHV proteins whose counterparts in other herpesviruses are known to induce T cell responses in their natural hosts. We identified glycoprotein B (gB) and the putative regulatory protein E40 as the most immunogenic T cell targets (IFN-γ responses in five of seven elephants), followed by the major capsid protein (IFN-γ responses in three of seven elephants). We also observed that IFN-γ responses were largely from CD4+ T cells. We detected no activity against the predicted major immediate early (E44) and large tegument (E34) proteins, both immunodominant T cell targets in humans latently infected with cytomegalovirus. These studies identified EEHV-specific T cells in Asian elephants for the first time, lending insight into the T cell priming that might be required to protect against EEHV disease, and will guide the design of effective vaccine strategies. IMPORTANCE Endangered Asian elephants are facing many threats, including lethal hemorrhagic disease from elephant endotheliotropic herpesvirus (EEHV). EEHV usually establishes chronic, benign infections in mature Asian elephants but can be lethal to juvenile elephants in captivity and the wild. It is the leading cause of death in captive Asian elephants in North America and Europe. Despite the availability of sensitive tests and protocols for treating EEHV-associated illness, these measures are not always effective. The best line of defense would be a preventative vaccine. We interrogated normal healthy elephants previously infected with EEHV for T cell responses to nine EEHV proteins predicted to induce cellular immune responses. Three proteins elicited IFN-γ responses, suggesting their potential usefulness as vaccine candidates. Our work is the first to describe T cell responses to a member of the proposed fourth subfamily of mammalian herpesviruses, the Deltaherpesvirinae, within a host species in the clade Afrotheria. An EEHV vaccine would greatly contribute to the health care of Asian and African elephants that are also susceptible to this disease.
Collapse
|
50
|
John S, Yuzhakov O, Woods A, Deterling J, Hassett K, Shaw CA, Ciaramella G. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 2018; 36:1689-1699. [PMID: 29456015 DOI: 10.1016/j.vaccine.2018.01.029] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/13/2022]
Abstract
A cytomegalovirus (CMV) vaccine that is effective at preventing congenital infection and reducing CMV disease in transplant patients remains a high priority as no approved vaccines exist. While the precise correlates of protection are unknown, neutralizing antibodies and antigen-specific T cells have been implicated in controlling infection. We demonstrate that the immunization of mice and nonhuman primates (NHPs) with lipid nanoparticles (LNP) encapsulating modified mRNA encoding CMV glycoproteins gB and pentameric complex (PC) elicit potent and durable neutralizing antibody titers. Since the protective correlates in pregnant women and transplant recipients may differ, we developed an additional mRNA vaccine expressing the immunodominant CMV T cell antigen pp65. Administration of pp65 vaccine with PC and gB elicited robust multi-antigenic T cell responses in mice. Our data demonstrate that mRNA/LNP is a versatile platform that enables the development of vaccination strategies that could prevent CMV infection and consequent disease in different target populations.
Collapse
Affiliation(s)
- Shinu John
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Olga Yuzhakov
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Angela Woods
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Jessica Deterling
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Kimberly Hassett
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Christine A Shaw
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Giuseppe Ciaramella
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|