1
|
Saddoris SM, Schang LM. The opportunities and challenges of epigenetic approaches to manage herpes simplex infections. Expert Rev Anti Infect Ther 2024; 22:1123-1142. [PMID: 39466139 PMCID: PMC11634640 DOI: 10.1080/14787210.2024.2420329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Despite the existence of antivirals that potently and efficiently inhibit the replication of herpes simplex virus 1 and 2 (HSV-1, -2), their ability to establish and maintain, and reactivate from, latency has precluded the development of curative therapies. Several groups are exploring the opportunities of targeting epigenetic regulation to permanently silence latent HSV genomes or induce their simultaneous reactivation in the presence of antivirals to flush the latent reservoirs, as has been explored for HIV. AREAS COVERED This review covers the basic principles of epigenetic regulation with an emphasis on those mechanisms relevant to the regulation of herpes simplex viruses, as well as the current knowledge on the regulation of lytic infections and the establishment and maintenance of, and reactivation from, latency, with an emphasis on epigenetic regulation. The differences with the epigenetic regulation of viral and cellular gene expression are highlighted as are the effects of known epigenetic regulators on herpes simplex viruses. The major limitations of current models to the development of novel antiviral strategies targeting latency are highlighted. EXPERT OPINION We provide an update on the epigenetic regulation during lytic and latent HSV-1 infection, highlighting the commonalities and differences with cellular gene expression and the potential of epigenetic drugs as antivirals, including the opportunities, challenges, and potential future directions.
Collapse
Affiliation(s)
- Sarah M Saddoris
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| | - Luis M Schang
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| |
Collapse
|
2
|
Le Hars M, Joussain C, Jégu T, Epstein AL. Non-replicative herpes simplex virus genomic and amplicon vectors for gene therapy - an update. Gene Ther 2024:10.1038/s41434-024-00500-x. [PMID: 39533042 DOI: 10.1038/s41434-024-00500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Two major types of defective vectors have been derived from herpes simplex virus type 1 (HSV-1), non-replicative genomic vectors (nrHSV-1), and amplicon vectors. This review recapitulates the main features of both vector types and summarizes recent improvements in our understanding of virus/vector biology, particularly with regard to the critical role played by the overpowering of antiviral cellular defenses and the epigenetic control of viral gene expression. Over the past years, significant breakthroughs in vector design, genetic engineering, and HSV-1 biology have accelerated the development of nrHSV-1 vectors. The low immunogenicity and enhanced safety profiles allowed the successful translation of these vectors into several clinical trials, with some being approved by the FDA. Regarding amplicons, despite their advantage in carrying very large or multiple transgenes, and their potential to avoid genome dilution in dividing cells, the absence of production procedures capable of generating large amounts of helper-free amplicons at reasonable cost with GMP compliance, still limits the translation of these outstanding vectors to clinical trials.
Collapse
Affiliation(s)
- Matthieu Le Hars
- UMR U1179 INSERM - University of Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, Montigny-le-Bretonneux, France
| | - Charles Joussain
- UMR U1179 INSERM - University of Versailles Saint Quentin en Yvelines (UVSQ)-Paris Saclay, Montigny-le-Bretonneux, France
| | | | | |
Collapse
|
3
|
Lu Y, Zhao Y, Gao C, Suresh S, Men J, Sawyers A, Smith GL. HDAC5 enhances IRF3 activation and is targeted for degradation by protein C6 from orthopoxviruses including Monkeypox virus and Variola virus. Cell Rep 2024; 43:113788. [PMID: 38461415 PMCID: PMC11650635 DOI: 10.1016/j.celrep.2024.113788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
Histone deacetylases (HDACs) regulate gene expression and innate immunity. Previously, we showed that HDAC5 is degraded during Vaccinia virus (VACV) infection and is a restriction factor for VACV and herpes simplex virus type 1. Here, we report that HDAC5 promotes interferon regulatory factor 3 (IRF3) activation downstream of Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 or Sendai virus-mediated stimulation without requiring HDAC activity. Loss of HDAC5-mediated IRF3 activation is restored by re-introduction of HDAC5 but not HDAC1 or HDAC4. The antiviral activity of HDAC5 is antagonized by VACV protein C6 and orthologs from the orthopoxviruses cowpox, rabbitpox, camelpox, monkeypox, and variola. Infection by many of these viruses induces proteasomal degradation of HDAC5, and expression of C6 alone can induce HDAC5 degradation. Mechanistically, C6 binds to the dimerization domain of HDAC5 and prevents homodimerization and heterodimerization with HDAC4. Overall, this study describes HDAC5 as a positive regulator of IRF3 activation and provides mechanistic insight into how the poxviral protein C6 binds to HDAC5 to antagonize its function.
Collapse
Affiliation(s)
- Yongxu Lu
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Chinese Academy of Medical Sciences-Oxford Institute, University of Oxford, Oxford, UK.
| | - Yiqi Zhao
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Chinese Academy of Medical Sciences-Oxford Institute, University of Oxford, Oxford, UK
| | - Chen Gao
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Shreehari Suresh
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jinghao Men
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Amelia Sawyers
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; The Pirbright Institute, Surrey, UK; Chinese Academy of Medical Sciences-Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Gong Q, Ren S, Dou Y, Tadele BA, Hu T, Zhou L, Wang T, Yao K, Xu J, Yin X, Sun Y. Foot-and-Mouth Disease Virus Capsid Protein VP1 Antagonizes Type I Interferon Signaling via Degradation of Histone Deacetylase 5. Cells 2024; 13:539. [PMID: 38534383 PMCID: PMC10969541 DOI: 10.3390/cells13060539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically important disease of cloven-hoofed animals that hampers trade and production. To ensure effective infection, the foot-and-mouth disease virus (FMDV) evades host antiviral pathways in different ways. Although the effect of histone deacetylase 5 (HDAC5) on the innate immune response has previously been documented, the precise molecular mechanism underlying HDAC5-mediated FMDV infection is not yet clearly understood. In this study, we found that silencing or knockout of HDAC5 promoted FMDV replication, whereas HDAC5 overexpression significantly inhibited FMDV propagation. IFN-β and IFN-stimulated response element (ISRE) activity was strongly activated through the overexpression of HDAC5. The silencing and knockout of HDAC5 led to an increase in viral replication, which was evident by decreased IFN-β, ISG15, and ISG56 production, as well as a noticeable reduction in IRF3 phosphorylation. Moreover, the results showed that the FMDV capsid protein VP1 targets HDAC5 and facilitates its degradation via the proteasomal pathway. In conclusion, this study highlights that HDAC5 acts as a positive modulator of IFN-β production during viral infection, while FMDV capsid protein VP1 antagonizes the HDAC5-mediated antiviral immune response by degrading HDAC5 to facilitate viral replication.
Collapse
Affiliation(s)
- Qing Gong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Q.G.); (S.R.); (Y.D.); (B.A.T.); (L.Z.); (T.W.); (K.Y.); (J.X.)
| | - Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Q.G.); (S.R.); (Y.D.); (B.A.T.); (L.Z.); (T.W.); (K.Y.); (J.X.)
| | - Yongxi Dou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Q.G.); (S.R.); (Y.D.); (B.A.T.); (L.Z.); (T.W.); (K.Y.); (J.X.)
| | - Berihun Afera Tadele
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Q.G.); (S.R.); (Y.D.); (B.A.T.); (L.Z.); (T.W.); (K.Y.); (J.X.)
| | - Tao Hu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, China;
| | - Luoyi Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Q.G.); (S.R.); (Y.D.); (B.A.T.); (L.Z.); (T.W.); (K.Y.); (J.X.)
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Q.G.); (S.R.); (Y.D.); (B.A.T.); (L.Z.); (T.W.); (K.Y.); (J.X.)
- School of Dentistry, Lanzhou University, Lanzhou 730000, China
| | - Kaishen Yao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Q.G.); (S.R.); (Y.D.); (B.A.T.); (L.Z.); (T.W.); (K.Y.); (J.X.)
| | - Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Q.G.); (S.R.); (Y.D.); (B.A.T.); (L.Z.); (T.W.); (K.Y.); (J.X.)
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Q.G.); (S.R.); (Y.D.); (B.A.T.); (L.Z.); (T.W.); (K.Y.); (J.X.)
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Q.G.); (S.R.); (Y.D.); (B.A.T.); (L.Z.); (T.W.); (K.Y.); (J.X.)
| |
Collapse
|
5
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
6
|
The Crosstalk of Epigenetics and Metabolism in Herpesvirus Infection. Viruses 2020; 12:v12121377. [PMID: 33271926 PMCID: PMC7760534 DOI: 10.3390/v12121377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 01/31/2023] Open
Abstract
Epigenetics is a versatile player in manipulating viral infection and a potential therapeutic target for the treatment of viral-induced diseases. Both epigenetics and metabolism are crucial in establishing a highly specific transcriptional network, which may promote or suppress virus infection. Human herpesvirus infection can induce a broad range of human malignancies and is largely dependent on the status of cellular epigenetics as well as its related metabolism. However, the crosstalk between epigenetics and metabolism during herpesvirus infection has not been fully explored. Here, we describe how epigenetic regulation of cellular metabolism affects herpesvirus infection and induces viral diseases. This further highlights the importance of epigenetics and metabolism during viral infection and provides novel insights into the development of targeted therapies.
Collapse
|
7
|
Soday L, Lu Y, Albarnaz JD, Davies CTR, Antrobus R, Smith GL, Weekes MP. Quantitative Temporal Proteomic Analysis of Vaccinia Virus Infection Reveals Regulation of Histone Deacetylases by an Interferon Antagonist. Cell Rep 2020; 27:1920-1933.e7. [PMID: 31067474 PMCID: PMC6518873 DOI: 10.1016/j.celrep.2019.04.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023] Open
Abstract
Vaccinia virus (VACV) has numerous immune evasion strategies, including multiple mechanisms of inhibition of interferon regulatory factor 3 (IRF-3), nuclear factor κB (NF-κB), and type I interferon (IFN) signaling. Here, we use highly multiplexed proteomics to quantify ∼9,000 cellular proteins and ∼80% of viral proteins at seven time points throughout VACV infection. A total of 265 cellular proteins are downregulated >2-fold by VACV, including putative natural killer cell ligands and IFN-stimulated genes. Two-thirds of these viral targets, including class II histone deacetylase 5 (HDAC5), are degraded proteolytically during infection. In follow-up analysis, we demonstrate that HDAC5 restricts replication of both VACV and herpes simplex virus type 1. By generating a protein-based temporal classification of VACV gene expression, we identify protein C6, a multifunctional IFN antagonist, as being necessary and sufficient for proteasomal degradation of HDAC5. Our approach thus identifies both a host antiviral factor and a viral mechanism of innate immune evasion. Temporal proteomic analysis quantifies host and viral dynamics during vaccinia infection Host protein families are proteasomally degraded over the course of vaccinia infection Vaccinia protein C6 targets HDAC5 for proteasomal degradation HDAC5 is a host antiviral factor that restricts different families of DNA viruses
Collapse
Affiliation(s)
- Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin T R Davies
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
8
|
Cai M, Wang P, Wang Y, Chen T, Xu Z, Zou X, Ou X, Li Y, Chen D, Peng T, Li M. Identification of the molecular determinants for nuclear import of PRV EP0. Biol Chem 2020; 400:1385-1394. [PMID: 31120855 DOI: 10.1515/hsz-2019-0201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/12/2019] [Indexed: 12/12/2022]
Abstract
Pseudorabies virus (PRV) early protein EP0 is a homologue of the herpes simplex virus 1 (HSV-1) immediate-early protein ICP0, which is a multifunctional protein and important for HSV-1 infection. However, the definite function of EP0 during PRV infection is not clear. In this study, to determine if EP0 might localize to the nucleus, as it is shown for its homologue in HSV-1, the subcellular localization pattern and molecular determinants for the nuclear import of EP0 were investigated. EP0 was demonstrated to predominantly target the nucleus in both PRV infected- and plasmid-transfected cells. Furthermore, the nuclear import of EP0 was shown to be dependent on the Ran-, importin α1-, α3-, α7-, β1- and transportin-1-mediated multiple pathways. Taken together, these data will open up new horizons for portraying the biological roles of EP0 in the course of PRV lytic cycle.
Collapse
Affiliation(s)
- Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Ping Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Tao Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Daixiong Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China.,South China Vaccine Corporation Limited, Guangzhou Science Park, Guangzhou 510663, Guangdong, China
| | - Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, No. 250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| |
Collapse
|
9
|
RNA Polymerase II Promoter-Proximal Pausing and Release to Elongation Are Key Steps Regulating Herpes Simplex Virus 1 Transcription. J Virol 2020; 94:JVI.02035-19. [PMID: 31826988 DOI: 10.1128/jvi.02035-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (Pol II). Expression of viral immediate early (α) genes is followed sequentially by early (β), late (γ1), and true late (γ2) genes. We used precision nuclear run-on with deep sequencing to map and to quantify Pol II on the HSV-1(F) genome with single-nucleotide resolution. Approximately 30% of total Pol II relocated to viral genomes within 3 h postinfection (hpi), when it occupied genes of all temporal classes. At that time, Pol II on α genes accumulated most heavily at promoter-proximal pause (PPP) sites located ∼60 nucleotides downstream of the transcriptional start site, while β genes bore Pol II more evenly across gene bodies. At 6 hpi, Pol II increased on γ1 and γ2 genes while Pol II pausing remained prominent on α genes. At that time, average cytoplasmic mRNA expression from α and β genes decreased, relative to levels at 3 hpi, while γ1 relative expression increased slightly and γ2 expression increased more substantially. Cycloheximide treatment during the first 3 h reduced the amount of Pol II associated with the viral genome and confined most of the remaining Pol II to α gene PPP sites. Inhibition of both cyclin-dependent kinase 9 activity and viral DNA replication reduced Pol II on the viral genome and restricted much of the remaining Pol II to PPP sites.IMPORTANCE These data suggest that viral transcription is regulated not only by Pol II recruitment to viral genes but also by control of elongation into viral gene bodies. We provide a detailed map of Pol II occupancy on the HSV-1 genome that clarifies features of the viral transcriptome, including the first identification of Pol II PPP sites. The data indicate that Pol II is recruited to late genes early in infection. Comparing α and β gene occupancy at PPP sites and gene bodies suggests that Pol II is released more efficiently into the bodies of β genes than α genes at 3 hpi and that repression of α gene expression late in infection is mediated by prolonged promoter-proximal pausing. In addition, DNA replication is required to maintain full Pol II occupancy on viral DNA and to promote elongation on late genes later in infection.
Collapse
|
10
|
Mirzaei H, Ghorbani S, Khanizadeh S, Namdari H, Faghihloo E, Akbari A. Histone deacetylases in virus-associated cancers. Rev Med Virol 2019; 30:e2085. [PMID: 31743548 DOI: 10.1002/rmv.2085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
Oncogenic viruses are one of the most important causes of cancer worldwide. The pathogens contribute to the establishment of human malignancies by affecting various cellular events. Epigenetic mechanisms, such as histone modification methylation/demethylation, are one of the most critical events manipulated by oncogenic viruses to drive tumorigenesis. Histone modifications are mediated by histone acetylation and deacetylation, regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Dysregulation of HDACs activity affects viral tumorigenesis in several ways, such as manipulating tumor suppressor and viral gene expression. The present review aims to describe the vital interactions between both cancer-caused/associated viruses and the HDAC machinery, particularly by focusing on those viruses involved in gastrointestinal tumors, as some of the most common viral-mediated cancers.
Collapse
Affiliation(s)
- Habibollah Mirzaei
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Ghorbani
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Haideh Namdari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Chromatin dynamics and the transcriptional competence of HSV-1 genomes during lytic infections. PLoS Pathog 2019; 15:e1008076. [PMID: 31725813 PMCID: PMC6855408 DOI: 10.1371/journal.ppat.1008076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
During latent infections with herpes simplex virus 1 (HSV-1), viral transcription is restricted and the genomes are mostly maintained in silenced chromatin, whereas in lytically infected cells all viral genes are transcribed and the genomes are dynamically chromatinized. Histones in the viral chromatin bear markers of silenced chromatin at early times in lytic infection or of active transcription at later times. The virion protein VP16 activates transcription of the immediate-early (IE) genes by recruiting transcription activators and chromatin remodelers to their promoters. Two IE proteins, ICP0 and ICP4 which modulate chromatin epigenetics, then activate transcription of early and late genes. Although chromatin is involved in the mechanism of activation of HSV- transcription, its precise role is not entirely understood. In the cellular genome, chromatin dynamics often modulate transcription competence whereas promoter-specific transcription factors determine transcription activity. Here, biophysical fractionation of serially digested HSV-1 chromatin followed by short-read deep sequencing indicates that nuclear HSV-1 DNA has different biophysical properties than protein-free or encapsidated HSV-1 DNA. The entire HSV-1 genomes in infected cells were equally accessible. The accessibility of transcribed or non-transcribed genes under any given condition did not differ, and each gene was entirely sampled in both the most and least accessible chromatin. However, HSV-1 genomes fractionated differently under conditions of generalized or restricted transcription. Approximately 1/3 of the HSV-1 DNA including fully sampled genes resolved to the most accessible chromatin when HSV-1 transcription was active, but such enrichment was reduced to only 3% under conditions of restricted HSV-1 transcription. Short sequences of restricted accessibility separated genes with different transcription levels. Chromatin dynamics thus provide a first level of regulation on HSV-1 transcription, dictating the transcriptional competency of the genomes during lytic infections, whereas the transcription of individual genes is then most likely activated by specific transcription factors. Moreover, genes transcribed to different levels are separated by short sequences with limited accessibility. Although chromatin epigenetics modulate transcription of the nuclear replicating DNA viruses, and play major roles in the process of establishment of, and reactivation from, latency, the specific mechanisms of this modulation are not totally clear. Chromatin often regulates the transcriptional competency of cellular genes, rather than the actual level of transcription of individual genes. Here, we show that chromatin dynamics regulate the transcription competency of entire herpes simplex virus 1 (HSV-1) genomes, rather than the actual transcription level of individual genes. Moreover, CTCF/ insulator containing sequences flanking the immediate-early gene loci are more inaccessible when these genes are highly transcribed in a context of little transcription from the rest of the genome than when no gene was highly transcribed or all genes were. We postulate that chromatin dynamics modulate the transcriptional competency of the HSV-1 genome. Genes in genomes rendered transcriptionally inactive by chromatin dynamics cannot be transcribed, whereas transcription of individual genes, or of group of genes, is regulated separately in the transcriptionally competent genomes.
Collapse
|
12
|
Lu Y, Stuart JH, Talbot-Cooper C, Agrawal-Singh S, Huntly B, Smid AI, Snowden JS, Dupont L, Smith GL. Histone deacetylase 4 promotes type I interferon signaling, restricts DNA viruses, and is degraded via vaccinia virus protein C6. Proc Natl Acad Sci U S A 2019; 116:11997-12006. [PMID: 31127039 PMCID: PMC6575207 DOI: 10.1073/pnas.1816399116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interferons (IFNs) represent an important host defense against viruses. Type I IFNs induce JAK-STAT signaling and expression of IFN-stimulated genes (ISGs), which mediate antiviral activity. Histone deacetylases (HDACs) perform multiple functions in regulating gene expression and some class I HDACs and the class IV HDAC, HDAC11, influence type I IFN signaling. Here, HDAC4, a class II HDAC, is shown to promote type I IFN signaling and coprecipitate with STAT2. Pharmacological inhibition of class II HDAC activity, or knockout of HDAC4 from HEK-293T and HeLa cells, caused a defective response to IFN-α. This defect in HDAC4-/- cells was rescued by reintroduction of HDAC4 or catalytically inactive HDAC4, but not HDAC1 or HDAC5. ChIP analysis showed HDAC4 was recruited to ISG promoters following IFN stimulation and was needed for binding of STAT2 to these promoters. The biological importance of HDAC4 as a virus restriction factor was illustrated by the observations that (i) the replication and spread of vaccinia virus (VACV) and herpes simplex virus type 1 (HSV-1) were enhanced in HDAC4-/- cells and inhibited by overexpression of HDAC4; and (ii) HDAC4 is targeted for proteasomal degradation during VACV infection by VACV protein C6, a multifunctional IFN antagonist that coprecipitates with HDAC4 and is necessary and sufficient for HDAC4 degradation.
Collapse
Affiliation(s)
- Yongxu Lu
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom
| | - Jennifer H Stuart
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom
| | - Callum Talbot-Cooper
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom
| | - Shuchi Agrawal-Singh
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, United Kingdom
| | - Brian Huntly
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, United Kingdom
| | - Andrei I Smid
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom
| | - Joseph S Snowden
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom
| | - Liane Dupont
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom;
| |
Collapse
|
13
|
Drayman N, Patel P, Vistain L, Tay S. HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations. eLife 2019; 8:e46339. [PMID: 31090537 PMCID: PMC6570482 DOI: 10.7554/elife.46339] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022] Open
Abstract
Viral infection is usually studied at the population level by averaging over millions of cells. However, infection at the single-cell level is highly heterogeneous, with most infected cells giving rise to no or few viral progeny while some cells produce thousands. Analysis of Herpes Simplex virus 1 (HSV-1) infection by population-averaged measurements has taught us a lot about the course of viral infection, but has also produced contradictory results, such as the concurrent activation and inhibition of type I interferon signaling during infection. Here, we combine live-cell imaging and single-cell RNA sequencing to characterize viral and host transcriptional heterogeneity during HSV-1 infection of primary human cells. We find extreme variability in the level of viral gene expression among individually infected cells and show that these cells cluster into transcriptionally distinct sub-populations. We find that anti-viral signaling is initiated in a rare group of abortively infected cells, while highly infected cells undergo cellular reprogramming to an embryonic-like transcriptional state. This reprogramming involves the recruitment of β-catenin to the host nucleus and viral replication compartments, and is required for late viral gene expression and progeny production. These findings uncover the transcriptional differences in cells with variable infection outcomes and shed new light on the manipulation of host pathways by HSV-1.
Collapse
Affiliation(s)
- Nir Drayman
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| | - Parthiv Patel
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| | - Luke Vistain
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| | - Savaş Tay
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| |
Collapse
|
14
|
Innate responses to gene knockouts impact overlapping gene networks and vary with respect to resistance to viral infection. Proc Natl Acad Sci U S A 2018; 115:E3230-E3237. [PMID: 29559532 DOI: 10.1073/pnas.1720464115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: (i) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. (ii) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.
Collapse
|
15
|
Wei J, Joshi S, Speransky S, Crowley C, Jayathilaka N, Lei X, Wu Y, Gai D, Jain S, Hoosien M, Gao Y, Chen L, Bishopric NH. Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI Insight 2017; 2:91068. [PMID: 28878124 DOI: 10.1172/jci.insight.91068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/19/2017] [Indexed: 11/17/2022] Open
Abstract
Cardiac hypertrophy, as a response to hemodynamic stress, is associated with cardiac dysfunction and death, but whether hypertrophy itself represents a pathological process remains unclear. Hypertrophy is driven by changes in myocardial gene expression that require the MEF2 family of DNA-binding transcription factors, as well as the nuclear lysine acetyltransferase p300. Here we used genetic and small-molecule probes to determine the effects of preventing MEF2 acetylation on cardiac adaptation to stress. Both nonacetylatable MEF2 mutants and 8MI, a molecule designed to interfere with MEF2-coregulator binding, prevented hypertrophy in cultured cardiac myocytes. 8MI prevented cardiac hypertrophy in 3 distinct stress models, and reversed established hypertrophy in vivo, associated with normalization of myocardial structure and function. The effects of 8MI were reversible, and did not prevent training effects of swimming. Mechanistically, 8MI blocked stress-induced MEF2 acetylation, nuclear export of class II histone deacetylases HDAC4 and -5, and p300 induction, without impeding HDAC4 phosphorylation. Correspondingly, 8MI transformed the transcriptional response to pressure overload, normalizing almost all 232 genes dysregulated by hemodynamic stress. We conclude that MEF2 acetylation is required for development and maintenance of pathological cardiac hypertrophy, and that blocking MEF2 acetylation can permit recovery from hypertrophy without impairing physiologic adaptation.
Collapse
Affiliation(s)
| | - Shaurya Joshi
- Department of Molecular and Cellular Pharmacology, and
| | | | | | - Nimanthi Jayathilaka
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Xiao Lei
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Yongqing Wu
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - David Gai
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Sumit Jain
- Department of Molecular and Cellular Pharmacology, and
| | | | | | - Lin Chen
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Nanette H Bishopric
- Department of Medicine.,Department of Molecular and Cellular Pharmacology, and.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
16
|
Xu X, Che Y, Li Q. HSV-1 tegument protein and the development of its genome editing technology. Virol J 2016; 13:108. [PMID: 27343062 PMCID: PMC4919851 DOI: 10.1186/s12985-016-0563-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is composed of complex structures primarily characterized by four elements: the nucleus, capsid, tegument and envelope. The tegument is an important viral component mainly distributed in the spaces between the capsid and the envelope. The development of viral genome editing technologies, such as the identification of temperature-sensitive mutations, homologous recombination, bacterial artificial chromosome, and the CRISPR/Cas9 system, has been shown to largely contribute to the rapid promotion of studies on the HSV-1 tegument protein. Many researches have demonstrated that tegument proteins play crucial roles in viral gene regulatory transcription, viral replication and virulence, viral assembly and even the interaction of the virus with the host immune system. This article briefly reviews the recent research on the functions of tegument proteins and specifically elucidates the function of tegument proteins in viral infection, and then emphasizes the significance of using genome editing technology in studies of providing new techniques and insights into further studies of HSV-1 infection in the future.
Collapse
Affiliation(s)
- Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, Yunnan, China
| | - Yanchun Che
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, Yunnan, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
17
|
Arts P, van de Veerdonk FL, van der Lee R, Langereis MA, Gilissen C, van Zelst-Stams WAG, Huynen MA, van der Meer JWM, van Kuppeveld FJ, Veltman JA, Kullberg BJ, Hoischen A, Netea MG. Immunologic defects in severe mucocutaneous HSV-2 infections: Response to IFN-γ therapy. J Allergy Clin Immunol 2016; 138:895-898. [PMID: 27132219 DOI: 10.1016/j.jaci.2016.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Peer Arts
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, and RadboudUMC Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robin van der Lee
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine, and RadboudUMC Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank J van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Medical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bart Jan Kullberg
- Department of Internal Medicine, and RadboudUMC Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, and RadboudUMC Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Gu H, Zheng Y. Role of ND10 nuclear bodies in the chromatin repression of HSV-1. Virol J 2016; 13:62. [PMID: 27048561 PMCID: PMC4822283 DOI: 10.1186/s12985-016-0516-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/28/2016] [Indexed: 01/09/2023] Open
Abstract
Herpes simplex virus (HSV) is a neurotropic virus that establishes lifelong latent infection in human ganglion sensory neurons. This unique life cycle necessitates an intimate relation between the host defenses and virus counteractions over the long course of infection. Two important aspects of host anti-viral defense, nuclear substructure restriction and epigenetic chromatin regulation, have been intensively studied in the recent years. Upon viral DNA entering the nucleus, components of discrete nuclear bodies termed nuclear domain 10 (ND10), converge at viral DNA and place restrictions on viral gene expression. Meanwhile the infected cell mobilizes its histones and histone-associated repressors to force the viral DNA into nucleosome-like structures and also represses viral transcription. Both anti-viral strategies are negated by various HSV countermeasures. One HSV gene transactivator, infected cell protein 0 (ICP0), is a key player in antagonizing both the ND10 restriction and chromatin repression. On one hand, ICP0 uses its E3 ubiquitin ligase activity to target major ND10 components for proteasome-dependent degradation and thereafter disrupts the ND10 nuclear bodies. On the other hand, ICP0 participates in de-repressing the HSV chromatin by changing histone composition or modification and therefore activates viral transcription. Involvement of a single viral protein in two seemingly different pathways suggests that there is coordination in host anti-viral defense mechanisms and also cooperation in viral counteraction strategies. In this review, we summarize recent advances in understanding the role of chromatin regulation and ND10 dynamics in both lytic and latent HSV infection. We focus on the new observations showing that ND10 nuclear bodies play a critical role in cellular chromatin regulation. We intend to find the connections between the two major anti-viral defense pathways, chromatin remodeling and ND10 structure, in order to achieve a better understanding of how host orchestrates a concerted defense and how HSV adapts with and overcomes the host immunity.
Collapse
Affiliation(s)
- Haidong Gu
- Department of Biological Sciences, Wayne State University, 4117 Biological Science Building, 5047 Gullen Mall, Detroit, MI, 48202, USA.
| | - Yi Zheng
- Department of Biological Sciences, Wayne State University, 4117 Biological Science Building, 5047 Gullen Mall, Detroit, MI, 48202, USA
| |
Collapse
|
19
|
Guise AJ, Cristea IM. Approaches for Studying the Subcellular Localization, Interactions, and Regulation of Histone Deacetylase 5 (HDAC5). Methods Mol Biol 2016; 1436:47-84. [PMID: 27246208 PMCID: PMC5644287 DOI: 10.1007/978-1-4939-3667-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As a member of the class IIa family of histone deacetylases, the histone deacetylase 5 (HDAC5) is known to undergo nuclear-cytoplasmic shuttling and to be a critical transcriptional regulator. Its misregulation has been linked to prominent human diseases, including cardiac diseases and tumorigenesis. In this chapter, we describe several experimental methods that have proven effective for studying the functions and regulatory features of HDAC5. We present methods for assessing the subcellular localization, protein interactions, posttranslational modifications (PTMs), and activity of HDAC5 from the standpoint of investigating either the endogenous protein or tagged protein forms in human cells. Specifically, given that at the heart of HDAC5 regulation lie its dynamic localization, interactions, and PTMs, we present methods for assessing HDAC5 localization in fixed and live cells, for isolating HDAC5-containing protein complexes to identify its interactions and modifications, and for determining how these PTMs map to predicted HDAC5 structural motifs. Lastly, we provide examples of approaches for studying HDAC5 functions with a focus on its regulation during cell-cycle progression. These methods can readily be adapted for the study of other HDACs or non-HDAC-proteins of interest. Individually, these techniques capture temporal and spatial snapshots of HDAC5 functions; yet together, these approaches provide powerful tools for investigating both the regulation and regulatory roles of HDAC5 in different cell contexts relevant to health and disease.
Collapse
Affiliation(s)
- Amanda J Guise
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA.
| |
Collapse
|
20
|
Nakashima H, Nguyen T, Chiocca EA. Combining HDAC inhibitors with oncolytic virotherapy for cancer therapy. Oncolytic Virother 2015; 4:183-91. [PMID: 27512681 PMCID: PMC4918398 DOI: 10.2147/ov.s66081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase (HDAC) enzymes play a critical role in the epigenetic regulation of cellular functions and signaling pathways in many cancers. HDAC inhibitors (HDACi) have been validated for single use or in combination with other drugs in oncologic therapeutics. An even more novel combination therapy with HDACi is to use them with an oncolytic virus. HDACi may lead to an amplification of tumor-specific lytic effects by facilitating increased cycles of viral replication, but there may also be direct anticancer effects of the drug by itself. Here, we review the molecular mechanisms of anti-cancer effects of the combination of oncolytic viruses with HDACi.
Collapse
Affiliation(s)
- Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tran Nguyen
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | | |
Collapse
|
21
|
Widely Used Herpes Simplex Virus 1 ICP0 Deletion Mutant Strain dl1403 and Its Derivative Viruses Do Not Express Glycoprotein C Due to a Secondary Mutation in the gC Gene. PLoS One 2015; 10:e0131129. [PMID: 26186447 PMCID: PMC4505948 DOI: 10.1371/journal.pone.0131129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) ICP0 is a multi-functional phosphoprotein expressed with immediate early kinetics. An ICP0 deletion mutant, HSV-1 dl1403, has been widely used to study the roles of ICP0 in the HSV-1 replication cycle including gene expression, latency, entry and assembly. We show that HSV-1 dl1403 virions lack detectable levels of envelope protein gC, and that gC is not synthesized in infected cells. Sequencing of the gC gene from HSV-1 dl1403 revealed a single amino acid deletion that results in a frameshift mutation. The HSV-1 dl1403 gC gene is predicted to encode a polypeptide consisting of the original 62 N-terminal amino acids of the gC protein followed by 112 irrelevant, non-gC residues. The mutation was also present in a rescuant virus and in two dl1403-derived viruses, D8 and FXE, but absent from the parental 17+, suggesting that the mutation was introduced during the construction of the dl1403 virus, and not as a result of passage in culture.
Collapse
|
22
|
Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication. J Virol 2015; 89:9841-52. [PMID: 26178983 DOI: 10.1128/jvi.01705-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/12/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both our understanding of basic cellular biology as well as how this protein is co-opted by HSV.
Collapse
|
23
|
Aranda AM, Epstein AL. [Herpes simplex virus type 1 latency and reactivation: an update]. Med Sci (Paris) 2015; 31:506-14. [PMID: 26059301 DOI: 10.1051/medsci/20153105012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Following primary infections HSV-1 replicates productively in epithelial cells and enters sensory neurons via nerve termini. After retrograde transport the virus genome is delivered into the cell nucleus, where it establishes lifelong latent infections. During latency, the virus genome remains as a chromatinized episome expressing only a set of latency-associated transcripts (LAT) and a group of microRNAs that inhibit expression of key lytic viral functions. Periodically the virus can reactivate to reinitiate lytic, secondary infections at peripheral tissues. The ability to establish both lytic and latent infections relies on the coexistence in the virus genome of two alternative gene expression programs, under the control of epigenetic mechanisms. Latency is an adaptive phenotype that allows the virus to escape immune host responses and to reactivate and disseminate to other hosts upon recognizing danger signals such as stress, neurologic trauma or growth factor deprivation.
Collapse
Affiliation(s)
- Alejandro M Aranda
- UVSQ-Inserm U1179 - End-icap, Handicap Neuromusculaire - Physiopathologie, Biothérapie et Pharmacologie appliquées, UFR des sciences de la santé Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines, 2, avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Alberto L Epstein
- UVSQ-Inserm U1179 - End-icap, Handicap Neuromusculaire - Physiopathologie, Biothérapie et Pharmacologie appliquées, UFR des sciences de la santé Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines, 2, avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
24
|
DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA. PLoS One 2015; 10:e0126088. [PMID: 25950714 PMCID: PMC4423948 DOI: 10.1371/journal.pone.0126088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/29/2015] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.
Collapse
|
25
|
Diner BA, Lum KK, Javitt A, Cristea IM. Interactions of the Antiviral Factor Interferon Gamma-Inducible Protein 16 (IFI16) Mediate Immune Signaling and Herpes Simplex Virus-1 Immunosuppression. Mol Cell Proteomics 2015; 14:2341-56. [PMID: 25693804 DOI: 10.1074/mcp.m114.047068] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 12/19/2022] Open
Abstract
The interferon-inducible protein IFI16 has emerged as a critical antiviral factor and sensor of viral DNA. IFI16 binds nuclear viral DNA, triggering expression of antiviral cytokines during infection with herpesviruses. The knowledge of the mechanisms and protein interactions through which IFI16 exerts its antiviral functions remains limited. Here, we provide the first characterization of endogenous IFI16 interactions following infection with the prominent human pathogen herpes simplex virus 1 (HSV-1). By integrating proteomics and virology approaches, we identified and validated IFI16 interactions with both viral and host proteins that are involved in HSV-1 immunosuppressive mechanisms and host antiviral responses. We discover that during early HSV-1 infection, IFI16 is recruited to sub-nuclear puncta and subsequently targeted for degradation. We observed that the HSV-1 E3 ubiquitin ligase ICP0 is necessary, but not sufficient, for the proteasom e-mediated degradation of IFI16 following infection. We substantiate that this ICP0-mediated mechanism suppresses IFI16-dependent immune responses. Utilizing an HSV-1 strain that lacks ICP0 ubiquitin ligase activity provided a system for studying IFI16-dependent cytokine responses to HSV-1, as IFI16 levels were maintained throughout infection. We next defined temporal IFI16 interactions during this immune signaling response. We discovered and validated interactions with the viral protein ICP8 and cellular ND10 nuclear body components, sites at which HSV-1 DNA is present during infection. These interactions may be critical for IFI16 to bind to nuclear viral DNA. Altogether, our results provide critical insights into both viral inhibition of IFI16 and interactions that can contribute to IFI16 antiviral functions.
Collapse
Affiliation(s)
- Benjamin A Diner
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Krystal K Lum
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Aaron Javitt
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Ileana M Cristea
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
26
|
Palmisano I, Della Chiara G, Schiaffino MV, Poli G. Passport control for foreign integrated DNAs: An unexpected checkpoint by class II HDAC4 revealed by amino acid starvation. Mob Genet Elements 2014; 2:233-238. [PMID: 23550098 PMCID: PMC3575431 DOI: 10.4161/mge.22610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The endless battle between mammalian host cells and microbes has evolved mechanisms to shut down the expression of exogenous transcriptional units integrated into the genome with the goal of limiting their spreading. Recently, we observed that deprivation of essential amino acids leads to a selective, reversible upregulation of expression of exogenous transgenes, either carried by integrated plasmids or retroviral vectors, but not of their endogenous counterparts. This effect was dependent on epigenetic modifications and was mediated by the downregulation of the class II histone deacetylase-4 (HDAC4). Indeed, HDAC4 expression inversely correlated with that of the transgene and its inhibition or downregulation enhanced transgene expression. Could this be true also for "naturally" integrated proviruses? We investigated this question in the case of HIV-1, the etiological agent of AIDS and we observed that both amino acid starvation and HDAC4 inhibition triggered HIV-1 reactivation in chronically infected ACH-2 T lymphocytic cells (HDAC4+), but not in similarly infected U1 promonocytic cells (HDAC4-negative). Thus, an HDAC4-dependent pathway may contribute to unleash virus expression by latently infected cells, which represent nowadays a major obstacle to HIV eradication. We discuss here the implications and open questions of these novel findings, as well as their serendipitous prelude.
Collapse
Affiliation(s)
- Ilaria Palmisano
- Center for Translational Genomics and Bioinformatics; San Raffaele Scientific Institute; Milan, Italy
| | | | | | | |
Collapse
|
27
|
Liu X, Zhao L, Yang Y, Bode L, Huang H, Liu C, Huang R, Zhang L, Wang X, Zhang L, Liu S, Zhou J, Li X, He T, Cheng Z, Xie P. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells. Virology 2014; 464-465:196-205. [PMID: 25086498 PMCID: PMC7112117 DOI: 10.1016/j.virol.2014.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/23/2014] [Accepted: 06/30/2014] [Indexed: 12/18/2022]
Abstract
Background Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. BDV infection affected the expression of many transcription factors and several HATs and HDACs.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240, China
| | - Libo Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The Third People's Hospital of Chongqing, 400014, China
| | - Yongtao Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Liv Bode
- Bornavirus Research Group affiliated to the Free University of Berlin, Berlin, Germany
| | - Hua Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Chengyu Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Rongzhong Huang
- Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Lujun Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Siwen Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Jingjing Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Li
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Tieming He
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Zhongyi Cheng
- Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
28
|
HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity. Cells 2014; 3:438-54. [PMID: 24852129 PMCID: PMC4092860 DOI: 10.3390/cells3020438] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/08/2014] [Indexed: 01/05/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0), is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10), SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate) regulatory mediators that include IFI16 (IFN γ-inducible protein 16), MyD88 (myeloid differentiation factor 88), and Mal (MyD88 adaptor-like protein). We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B) inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7) and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.
Collapse
|
29
|
Novel roles of cytoplasmic ICP0: proteasome-independent functions of the RING finger are required to block interferon-stimulated gene production but not to promote viral replication. J Virol 2014; 88:8091-101. [PMID: 24807717 DOI: 10.1128/jvi.00944-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The immediate-early protein ICP0 from herpes simplex virus 1 (HSV-1) plays pleiotropic roles in promoting viral lytic replication and reactivation from latency. Most of the known actions of ICP0 occur in the nucleus and are thought to involve the E3 ubiquitin ligase activity of its RING finger domain, which targets proteins for degradation via the proteasome. Although ICP0 translocates to the cytoplasm as the infection progresses, little is known about its activities in this location. Here, we show that cytoplasmic ICP0 has two distinct functions. In primary cell cultures and in an intravaginal mouse model, cytoplasmic ICP0 promotes viral replication in the absence of an intact RING finger domain. Additionally, ICP0 blocks the activation of interferon regulatory factor 3 (IRF3), a key transcription factor of the innate antiviral response, in a mechanism that requires the RING finger domain but not the proteasome. To our knowledge, this is the first observation of a proteasome-independent function of the RING finger domain of ICP0. Collectively, these results underscore the importance of cytoplasm-localized ICP0 and the diverse nature of its activities. Importance: Despite ICP0 being a well-studied viral protein, the significance of its cytoplasmic localization has been largely overlooked. This is, in part, because common experimental manipulations result in the restriction of ICP0 to the nucleus. By overcoming this constraint, we both further characterize the ability of cytoplasmic ICP0 to inhibit antiviral signaling and show that ICP0 at this site has unexpected activities in promoting viral replication. This demonstrates the importance of considering location when analyzing protein function and adds a new perspective to our understanding of this multifaceted protein.
Collapse
|
30
|
Conn KL, Hendzel MJ, Schang LM. The differential mobilization of histones H3.1 and H3.3 by herpes simplex virus 1 relates histone dynamics to the assembly of viral chromatin. PLoS Pathog 2013; 9:e1003695. [PMID: 24130491 PMCID: PMC3795045 DOI: 10.1371/journal.ppat.1003695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 08/26/2013] [Indexed: 12/12/2022] Open
Abstract
During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly. H3.1 is typically assembled into chromatin during DNA replication-dependent chromatin assembly. However, histones undergo exchange with those not bound in chromatin. During such exchanges, DNA replication-independent chromatin assembly incorporates histone variants, such as H3.3. The HSV-1 genomes are chromatinized, albeit in unstable nucleosomes. The viral genomes initially associate with H3.3, then associate with H3.1 only after HSV-1 DNA replication initiates. These differential interactions are consistent with the DNA replication-independent or -dependent assembly of H3.3 or H3.1, respectively, in cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, but the significance of this mobilization remained unknown. We now find that H3.3 and H3.1 are also mobilized during infection. H3.3 is mobilized to a similar extent before or after HSV-1 DNA replication, which is consistent with its DNA replication-independent assembly into HSV-1 chromatin. In contrast, H3.1 mobilization decreases during HSV-1 DNA replication, which is consistent with the assembly of previously mobilized H3.1 into HSV-1 chromatin concomitant with HSV-1 DNA replication. The mobilizations of H3.1 and H3.3 are consistent with their kinetics of association with HSV-1 genomes, providing the first indication that histone mobilization relates to the assembly of viral chromatin.
Collapse
Affiliation(s)
- Kristen L Conn
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
31
|
Chromatin dynamics during lytic infection with herpes simplex virus 1. Viruses 2013; 5:1758-86. [PMID: 23863878 PMCID: PMC3738960 DOI: 10.3390/v5071758] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 12/26/2022] Open
Abstract
Latent HSV-1 genomes are chromatinized with silencing marks. Since 2004, however, there has been an apparent inconsistency in the studies of the chromatinization of the HSV-1 genomes in lytically infected cells. Nuclease protection and chromatin immunoprecipitation assays suggested that the genomes were not regularly chromatinized, having only low histone occupancy. However, the chromatin modifications associated with transcribed and non-transcribed HSV-1 genes were those associated with active or repressed transcription, respectively. Moreover, the three critical HSV-1 transcriptional activators all had the capability to induce chromatin remodelling, and interacted with critical chromatin modifying enzymes. Depletion or overexpression of some, but not all, chromatin modifying proteins affected HSV-1 transcription, but often in unexpected manners. Since 2010, it has become clear that both cellular and HSV-1 chromatins are highly dynamic in infected cells. These dynamics reconcile the weak interactions between HSV-1 genomes and chromatin proteins, detected by nuclease protection and chromatin immunoprecipitation, with the proposed regulation of HSV-1 gene expression by chromatin, supported by the marks in the chromatin in the viral genomes and the abilities of the HSV-1 transcription activators to modulate chromatin. It also explains the sometimes unexpected results of interventions to modulate chromatin remodelling activities in infected cells.
Collapse
|
32
|
Guise AJ, Budayeva HG, Diner BA, Cristea IM. Histone deacetylases in herpesvirus replication and virus-stimulated host defense. Viruses 2013; 5:1607-32. [PMID: 23807710 PMCID: PMC3738950 DOI: 10.3390/v5071607] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence highlights a critical role for protein acetylation during herpesvirus infection. As prominent modulators of protein acetylation, histone deacetylases (HDACs) are essential transcriptional and epigenetic regulators. Not surprisingly, viruses have evolved a wide array of mechanisms to subvert HDAC functions. Here, we review the mechanisms underlying HDAC regulation during herpesvirus infection. We next discuss the roles of acetylation in host defense against herpesvirus infection. Finally, we provide a perspective on the contribution of current mass spectrometry-based “omic” technologies to infectious disease research, offering a systems biology view of infection.
Collapse
Affiliation(s)
| | | | | | - Ileana M. Cristea
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-609-258-9417; Fax: +1-609-258-4575
| |
Collapse
|
33
|
A conserved gammaherpesvirus protein kinase targets histone deacetylases 1 and 2 to facilitate viral replication in primary macrophages. J Virol 2013; 87:7314-25. [PMID: 23616648 DOI: 10.1128/jvi.02713-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gammaherpesviruses are ubiquitious pathogens that establish lifelong infection and are associated with several malignancies. All gammaherpesviruses encode a conserved protein kinase that facilitates viral replication and chronic infection and thus represents an attractive therapeutic target. In this study, we identify a novel function of gammaherpesvirus protein kinase as a regulator of class I histone deacetylases (HDAC). Mouse gammaherpesvirus 68 (MHV68)-encoded protein kinase orf36 interacted with HDAC1 and 2 and prevented association of these HDACs with the viral promoter driving expression of RTA, a critical immediate early transcriptional activator. Furthermore, the ability to interact with HDAC1 and 2 was not limited to the MHV68 orf36, as BGLF4, a related viral protein kinase encoded by Epstein-Barr virus, interacted with HDAC1 in vitro. Importantly, targeting of HDAC1 and 2 by orf36 was independent of the kinase's enzymatic activity. Additionally, orf36 expression, but not its enzymatic activity, induced changes in the global deacetylase activity observed in infected primary macrophages. Combined deficiency of HDAC1 and 2 rescued attenuated replication and viral DNA synthesis of the orf36 null MHV68 mutant, indicating that the regulation of HDAC1 and 2 by orf36 was relevant for viral replication. Understanding the mechanism by which orf36 facilitates viral replication, including through HDAC targeting, will facilitate the development of improved therapeutics against gammaherpesvirus kinases.
Collapse
|
34
|
Boutell C, Everett RD. Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J Gen Virol 2012; 94:465-481. [PMID: 23239572 DOI: 10.1099/vir.0.048900-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is important for the regulation of lytic and latent viral infection. Like the related proteins expressed by other alphaherpesviruses, ICP0 has a zinc-stabilized RING finger domain that confers E3 ubiquitin ligase activity. This domain is essential for the core functions of ICP0 and its activity leads to the degradation of a number of cellular proteins, some of which are involved in cellular defences that restrict viral infection. The article reviews recent advances in ICP0-related research, with an emphasis on the mechanisms by which ICP0 and related proteins counteract antiviral restriction and the roles in this process of cellular nuclear substructures known as ND10 or PML nuclear bodies. We also summarize recent advances in the understanding of the biochemical aspects of ICP0 activity. These studies highlight the importance of the SUMO conjugation pathway in both intrinsic resistance to HSV-1 infection and in substrate targeting by ICP0. The topics discussed in this review are relevant not only to HSV-1 infection, but also to cellular intrinsic resistance against herpesviruses more generally and the mechanisms by which viruses can evade this restriction.
Collapse
Affiliation(s)
- Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, UK
| | - Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, UK
| |
Collapse
|
35
|
HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog 2012; 8:e1002852. [PMID: 22912575 PMCID: PMC3415458 DOI: 10.1371/journal.ppat.1002852] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/26/2012] [Indexed: 02/04/2023] Open
Abstract
Major human pathologies are caused by nuclear replicative viruses establishing life-long latent infection in their host. During latency the genomes of these viruses are intimately interacting with the cell nucleus environment. A hallmark of herpes simplex virus type 1 (HSV-1) latency establishment is the shutdown of lytic genes expression and the concomitant induction of the latency associated (LAT) transcripts. Although the setting up and the maintenance of the latent genetic program is most likely dependent on a subtle interplay between viral and nuclear factors, this remains uninvestigated. Combining the use of in situ fluorescent-based approaches and high-resolution microscopic analysis, we show that HSV-1 genomes adopt specific nuclear patterns in sensory neurons of latently infected mice (28 days post-inoculation, d.p.i.). Latent HSV-1 genomes display two major patterns, called “Single” and “Multiple”, which associate with centromeres, and with promyelocytic leukemia nuclear bodies (PML-NBs) as viral DNA-containing PML-NBs (DCP-NBs). 3D-image reconstruction of DCP-NBs shows that PML forms a shell around viral genomes and associated Daxx and ATRX, two PML partners within PML-NBs. During latency establishment (6 d.p.i.), infected mouse TGs display, at the level of the whole TG and in individual cells, a substantial increase of PML amount consistent with the interferon-mediated antiviral role of PML. “Single” and “Multiple” patterns are reminiscent of low and high-viral genome copy-containing neurons. We show that LAT expression is significantly favored within the “Multiple” pattern, which underlines a heterogeneity of LAT expression dependent on the viral genome copy number, pattern acquisition, and association with nuclear domains. Infection of PML-knockout mice demonstrates that PML/PML-NBs are involved in virus nuclear pattern acquisition, and negatively regulate the expression of the LAT. This study demonstrates that nuclear domains including PML-NBs and centromeres are functionally involved in the control of HSV-1 latency, and represent a key level of host/virus interaction. After an initial lytic infection, many viruses establish a lifelong latent infection that hides them from the host immune system activity until reactivation. To understand the resurgence of the associated diseases, it is indispensable to acquire a better knowledge of the different mechanisms involved in the antiviral defense. During latency, viral genomes of nuclear-replicative viruses, such as herpes simplex virus type 1 (HSV-1), are stored in the nucleus of host cells in a non-integrated form. Latency establishment is associated with a drastic change in HSV-1 gene expression program that is maintained until reactivation occurs. The last two decades of research has revealed that the functional organization of the cell nucleus, so-called nuclear architecture, is a major factor of regulation of cellular genes expression. Nonetheless, the role of nuclear architecture on HSV-1 gene expression has been widely overlooked. Here we describe that the genome of HSV-1 selectively interacts with two major nuclear structures, the promyelocytic nuclear bodies (PMLNBs or ND10) and the centromeres. We provide evidence supporting that these nuclear domains directly influence the behavior of latent viral genomes and their transcriptional activity. Overall, this study demonstrates that nuclear architecture is a major parameter driving the highly complex HSV-1 latency process.
Collapse
|
36
|
Herpes simplex virus 1 DNA is in unstable nucleosomes throughout the lytic infection cycle, and the instability of the nucleosomes is independent of DNA replication. J Virol 2012; 86:11287-300. [PMID: 22875975 DOI: 10.1128/jvi.01468-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection.
Collapse
|
37
|
Hafezi W, Lorentzen EU, Eing BR, Müller M, King NJC, Klupp B, Mettenleiter TC, Kühn JE. Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLoS Pathog 2012; 8:e1002679. [PMID: 22589716 PMCID: PMC3349744 DOI: 10.1371/journal.ppat.1002679] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/21/2012] [Indexed: 12/12/2022] Open
Abstract
Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons. Upon primary infection of the oronasal mucosa, herpes simplex virus type 1 (HSV-1) rapidly reaches the ganglia of the peripheral nervous system via axonal transport and establishes lifelong latency in surviving neurons. Central to the establishment of latency is the ability of HSV-1 to reliably switch from productive, lytic spread in epithelia to nonproductive, latent infection in sensory neurons. It is not fully understood what specifically disposes incoming particles of a highly cytopathogenic, fast-replicating alphaherpesvirus to nonproductive, latent infection in sensory neurons. The present study shows that selective entry of HSV-1 into the distal axons of trigeminal neurons strongly favors the establishment of a nonproductive, latent infection, whereas nonselective infection of neurons still enables HSV-1 to induce lytic gene expression. Our data support a model of latency establishment in which the site of entry is an important determinant of the lytic/latent decision in the infected neuron. Productive infection of the neuron ensues if particles enter the soma of the neuron directly. In contrast, previous retrograde axonal transport of incoming viral particles creates a distinct scenario that abrogates VP16-dependent transactivation of immediate-early gene expression and precludes the expression of lytic genes to an extent sufficient to prevent the initiation of massive productive infection of trigeminal neurons.
Collapse
Affiliation(s)
- Wali Hafezi
- University Hospital Münster, Institute of Medical Microbiology - Clinical Virology, Münster, Germany
- Interdisciplinary Center of Clinical Research (IZKF), Münster, Germany
| | - Eva U. Lorentzen
- University Hospital Münster, Institute of Medical Microbiology - Clinical Virology, Münster, Germany
| | - Bodo R. Eing
- University Hospital Münster, Institute of Medical Microbiology - Clinical Virology, Münster, Germany
| | - Marcus Müller
- University Hospital Bonn, Department of Neurology, Bonn, Germany
| | - Nicholas J. C. King
- University of Sydney, Sydney Medical School, Department of Pathology, Bosch Institute for Medical Research, New South Wales, Australia
| | - Barbara Klupp
- Friedrich-Loeffler-Institut, Institute of Molecular Biology, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Institute of Molecular Biology, Greifswald-Insel Riems, Germany
| | - Joachim E. Kühn
- University Hospital Münster, Institute of Medical Microbiology - Clinical Virology, Münster, Germany
- Interdisciplinary Center of Clinical Research (IZKF), Münster, Germany
- * E-mail:
| |
Collapse
|
38
|
The potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1. Protein Cell 2012; 3:372-82. [PMID: 22544561 DOI: 10.1007/s13238-012-2021-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/19/2012] [Indexed: 01/28/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a common human pathogen causing cold sores and even more serious diseases. It can establish a latent stage in sensory ganglia after primary epithelial infections, and reactivate in response to stress or sunlight. Previous studies have demonstrated that viral immediate-early protein ICP0 plays a key role in regulating the balance between lytic and latent infection. Recently, It has been determined that promyelocytic leukemia (PML) nuclear bodies (NBs), small nuclear sub-structures, contribute to the repression of HSV-1 infection in the absence of functional ICP0. In this review, we discuss the fundamentals of the interaction between ICP0 and PML NBs, suggesting a potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1.
Collapse
|
39
|
Van Opdenbosch N, Favoreel H, Van de Walle GR. Histone modifications in herpesvirus infections. Biol Cell 2012; 104:139-64. [PMID: 22188068 DOI: 10.1111/boc.201100067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/02/2011] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, gene expression is not only regulated by transcription factors but also by several epigenetic mechanisms including post-translational modifications of histone proteins. There are numerous histone modifications described to date and methylation, acetylation, ubiquitination and phosphorylation are amongst the best studied. In parallel, certain viruses interact with the very same regulatory mechanisms, hereby manipulating the normal epigenetic landscape of the host cell, to fit their own replication needs. This review concentrates on herpesviruses specifically and how they interfere with the histone-modifying enzymes to regulate their replication cycles. Herpesviruses vary greatly with respect to the cell types they infect and the clinical diseases they cause, yet they share various common features including their capacity to encode viral proteins which affect and interfere with the normal functions of histone-modifying enzymes. Studying the epigenetic manipulation/dysregulation of herpesvirus-host interactions not only generates novel insights into the pathogenesis of these viruses but may also have important therapeutic implications.
Collapse
Affiliation(s)
- Nina Van Opdenbosch
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | |
Collapse
|
40
|
Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 2012; 36:684-705. [PMID: 22150699 PMCID: PMC3492847 DOI: 10.1111/j.1574-6976.2011.00320.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency.
Collapse
Affiliation(s)
- Michael P Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
41
|
Abstract
The deubiquitylating enzyme USP7 (HAUSP) sits at a critical node regulating the activities of numerous proteins broadly characterized as tumor suppressors, DNA repair proteins, immune responders, viral proteins, and epigenetic modulators. Aberrant USP7 activity may promote oncogenesis and viral disease making it a compelling target for therapeutic intervention. Disclosed drug discovery programs have identified inhibitors of USP7 such as P005091 with cellular proof of concept and anti-proliferative activity in cancer models. Taken together, USP7 inhibitors hold promise as a new strategy for the treatment of disease.
Collapse
|
42
|
Smith MC, Boutell C, Davido DJ. HSV-1 ICP0: paving the way for viral replication. Future Virol 2011; 6:421-429. [PMID: 21765858 DOI: 10.2217/fvl.11.24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) has two distinct phases of its viral life cycle: lytic and latent. One viral immediate-early protein that is responsible for determining the balance between productive lytic replication and reactivation from latency is infected cell protein 0 (ICP0). ICP0 is a 775-amino acid really interesting new gene (RING)-finger-containing protein that possesses E3 ubiquitin ligase activity, which is required for ICP0 to activate HSV-1 gene expression, disrupt nuclear domain (ND) 10 structures, mediate the degradation of cellular proteins, and evade the host cell's intrinsic and innate antiviral defenses. This article examines our current understanding of ICP0's transactivating, E3 ubiquitin ligase, and antihost defense activities and their inter-relationships to one another. Lastly, we will discuss how these properties of ICP0 may be utilized as possible targets for HSV-1 antiviral therapies.
Collapse
Affiliation(s)
- Miles C Smith
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, 7047 Haworth Hall, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
43
|
Activities of ICP0 involved in the reversal of silencing of quiescent herpes simplex virus 1. J Virol 2011; 85:4993-5002. [PMID: 21411540 DOI: 10.1128/jvi.02265-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ICP0 is a transcriptional activating protein required for the efficient replication and reactivation of latent herpes simplex virus 1 (HSV-1). Multiple regions of ICP0 contribute its activity, the most prominent of which appears to be the RING finger, which confers E3 ubiquitin ligase activity. A region in the C terminus of ICP0 has also been implicated in several activities, including the disruption of a cellular repressor complex, REST/CoREST/HDAC1/2/LSD1. We used quiescent infection of MRC-5 cells with a virus that does not express immediate-early proteins, followed by superinfection with various viral mutants to quantify the ability of ICP0 variants to reactivate gene expression and alter chromatin structure. Superinfection with wild-type virus resulted in a 400-fold increase in expression from the previously quiescent d109 genome, the removal of heterochromatin and histones from the viral genome, and an increase in histone marks associated with activated transcription. RING finger mutants were unable to reactivate transcription or remove heterochromatin from d109, while mutants that are unable to bind CoREST activate gene expression from quiescent d109, albeit to a lesser degree than the wild-type virus. One such mutant, R8507, resulted in the partial removal of heterochromatin. Infection with R8507 did not result in the hyperacetylation of H3 and H4. The results demonstrate that (i) consistent with previous findings, the RING finger domain of ICP0 is required for the activation of quiescent genomes, (ii) the RF domain is also crucial for the ultimate removal of repressive chromatin, (iii) activities or interactions specified by the carboxy-terminal region of ICP0 significantly contribute to activation, and (iv) while the effects of the R8507 on chromatin are consistent with a role for REST/CoREST/HDAC1/2/LSD1 in the repression of quiescent genomes, the mutation may also affect other activities involved in derepression.
Collapse
|
44
|
Penkert RR, Kalejta RF. Tegument protein control of latent herpesvirus establishment and animation. HERPESVIRIDAE 2011; 2:3. [PMID: 21429246 PMCID: PMC3063196 DOI: 10.1186/2042-4280-2-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/08/2011] [Indexed: 12/18/2022]
Abstract
Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Institute for Molecular Virology, McArdle Laboratory for Cancer Research, and Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | | |
Collapse
|
45
|
Reversal of heterochromatic silencing of quiescent herpes simplex virus type 1 by ICP0. J Virol 2010; 85:3424-35. [PMID: 21191021 DOI: 10.1128/jvi.02263-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Persisting latent herpes simplex virus genomes are to some degree found in a heterochromatic state, and this contributes to reduced gene expression resulting in quiescence. We used a relatively long-term quiescent infection model in human fibroblasts, followed by provision of ICP0 in trans, to determine the effects of ICP0 on the viral chromatin state as gene expression is reactivated. Expression of ICP0, even at low levels, results in a reduction of higher-order chromatin structure and heterochromatin on quiescent viral genomes, and this effect precedes an increase in transcription. Concurrent with transcriptional activation, high levels of ICP0 expression result in the reduction of the heterochromatin mark trimethylated H3K9, removal of histones H3 and H4 from the quiescent genome, and hyperacetylation of the remaining histones. In contrast, low levels of ICP0 did not appreciably change the levels of histones on the viral genome. These results indicate that ICP0 activity ultimately affects chromatin structure of quiescent genomes at multiple levels, including higher-order chromatin structure, histone modifications, and histone association. Additionally, the level of ICP0 expression affected its ability to change chromatin structure but not to reactivate gene expression. While these observations suggest that some of the effects on chromatin structure are possibly not direct, they also suggest that ICP0 exerts its effects through multiple mechanisms.
Collapse
|
46
|
Terhune SS, Moorman NJ, Cristea IM, Savaryn JP, Cuevas-Bennett C, Rout MP, Chait BT, Shenk T. Human cytomegalovirus UL29/28 protein interacts with components of the NuRD complex which promote accumulation of immediate-early RNA. PLoS Pathog 2010; 6:e1000965. [PMID: 20585571 PMCID: PMC2891856 DOI: 10.1371/journal.ppat.1000965] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/25/2010] [Indexed: 12/31/2022] Open
Abstract
Histone deacetylation plays a pivotal role in regulating human cytomegalovirus gene expression. In this report, we have identified candidate HDAC1-interacting proteins in the context of infection by using a method for rapid immunoisolation of an epitope-tagged protein coupled with mass spectrometry. Putative interactors included multiple human cytomegalovirus-coded proteins. In particular, the interaction of pUL38 and pUL29/28 with HDAC1 was confirmed by reciprocal immunoprecipitations. HDAC1 is present in numerous protein complexes, including the HDAC1-containing nucleosome remodeling and deacetylase protein complex, NuRD. pUL38 and pUL29/28 associated with the MTA2 component of NuRD, and shRNA-mediated knockdown of the RBBP4 and CHD4 constituents of NuRD inhibited HCMV immediate-early RNA and viral DNA accumulation; together this argues that multiple components of the NuRD complex are needed for efficient HCMV replication. Consistent with a positive acting role for the NuRD elements during viral replication, the growth of pUL29/28- or pUL38-deficient viruses could not be rescued by treating infected cells with the deacetylase inhibitor, trichostatin A. Transient expression of pUL29/28 enhanced activity of the HCMV major immediate-early promoter in a reporter assay, regardless of pUL38 expression. Importantly, induction of the major immediate-early reporter activity by pUL29/28 required functional NuRD components, consistent with the inhibition of immediate-early RNA accumulation within infected cells after knockdown of RBBP4 and CHD4. We propose that pUL29/28 modifies the NuRD complex to stimulate the accumulation of immediate-early RNAs. A key event in regulating gene expression involves changes in the acetylation status of core histones. Regulation is accomplished by a balance between the addition of acetyl groups by histone acetyltransferase enzymes and removal of the moieties by deacetylases. These changes are essential in regulating cellular differentiation and proliferation and, likewise, disruption results in a variety of pathologies, including cancer. In addition, these key regulators are targeted by herpesviruses to ensure persistent infection during the life of the host. In the case of the herpesvirus human cytomegalovirus (HCMV), changes in histone acetylation have been implicated in the choice between latent and acute phases of infection. We have used a focused proteomics approach to identify proteins that are interacting with and regulating the histone deacetylase 1 (HDAC1) protein during acute cytomegalovirus infection. Our studies identified numerous cellular and viral proteins including HCMV pUL29/28. This protein bound to components of the nucleosome remodeling and deacetylase complex, NuRD, and functional NuRD components were necessary for HCMV gene expression and infection. Our study demonstrates a new tool for studying host-pathogen interactions as well as provides new insights into the complex regulation of HDAC1 during HCMV replication.
Collapse
Affiliation(s)
- Scott S. Terhune
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Microbiology and Molecular Genetics & Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nathaniel J. Moorman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, United States of America
| | - John Paul Savaryn
- Department of Microbiology and Molecular Genetics & Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Christian Cuevas-Bennett
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, United States of America
| | - Brian T. Chait
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
The double-stranded DNA genomes of herpesviruses exist in at least three alternative global chromatin states characterised by distinct nucleosome content. When encapsidated in virus particles, the viral DNA is devoid of any nucleosomes. In contrast, within latently infected nuclei herpesvirus genomes are believed to form regular nucleosomal structures resembling cellular chromatin. Finally, during productive infection nuclear viral DNA appears to adopt a state of intermediate chromatin formation with irregularly spaced nucleosomes. Nucleosome occupancy coupled with posttranslational histone modifications and other epigenetic marks may contribute significantly to the extent and timing of transcription from the viral genome and, consequently, to the outcome of infection. Recent research has provided first insights into the viral and cellular mechanisms that either maintain individual herpesvirus chromatin states or mediate transition between them. Here, we summarise and discuss both early work and new developments pointing towards common principles pertinent to the dynamic structure and epigenetic regulation of herpesvirus chromatin. Special emphasis is given to the emerging similarities in nucleosome assembly and disassembly processes on herpes simplex virus type 1 and human cytomegalovirus genomes over the course of the viral productive replication cycle and during the switch between latent and lytic infectious stages.
Collapse
Affiliation(s)
- Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | | | | |
Collapse
|
48
|
Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J, Panier S, Everett RD, Stewart GS, Durocher D, Weitzman MD. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 2010; 29:943-55. [PMID: 20075863 PMCID: PMC2837166 DOI: 10.1038/emboj.2009.400] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/10/2009] [Indexed: 12/18/2022] Open
Abstract
The ICP0 protein of herpes simplex virus type 1 is an E3 ubiquitin ligase and transactivator required for the efficient switch between latent and lytic infection. As DNA damaging treatments are known to reactivate latent virus, we wished to explore whether ICP0 modulates the cellular response to DNA damage. We report that ICP0 prevents accumulation of repair factors at cellular damage sites, acting between recruitment of the mediator proteins Mdc1 and 53BP1. We identify RNF8 and RNF168, cellular histone ubiquitin ligases responsible for anchoring repair factors at sites of damage, as new targets for ICP0-mediated degradation. By targeting these ligases, ICP0 expression results in loss of ubiquitinated forms of H2A, mobilization of DNA repair proteins and enhanced viral fitness. Our study raises the possibility that the ICP0-mediated control of histone ubiquitination may link DNA repair, relief of transcriptional repression, and activation of latent viral genomes.
Collapse
Affiliation(s)
- Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mira S Chaurushiya
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA, USA
| | - Chris Boutell
- MRC Virology Unit, University of Glasgow, Glasgow, Scotland, UK
| | - Sebastien Landry
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Junghae Suh
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Stephanie Panier
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Roger D Everett
- MRC Virology Unit, University of Glasgow, Glasgow, Scotland, UK
| | - Grant S Stewart
- CRUK Institute for Cancer Studies, Birmingham University, Birmingham, UK
| | - Daniel Durocher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
49
|
de Souza RF, Iyer LM, Aravind L. Diversity and evolution of chromatin proteins encoded by DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:302-18. [PMID: 19878744 PMCID: PMC3243496 DOI: 10.1016/j.bbagrm.2009.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/23/2022]
Abstract
Double-stranded DNA viruses display a great variety of proteins that interact with host chromatin. Using the wealth of available genomic and functional information, we have systematically surveyed chromatin-related proteins encoded by dsDNA viruses. The distribution of viral chromatin-related proteins is primarily influenced by viral genome size and the superkingdom to which the host of the virus belongs. Smaller viruses usually encode multifunctional proteins that mediate several distinct interactions with host chromatin proteins and viral or host DNA. Larger viruses additionally encode several enzymes, which catalyze manipulations of chromosome structure, chromatin remodeling and covalent modifications of proteins and DNA. Among these viruses, it is also common to encounter transcription factors and DNA-packaging proteins such as histones and IHF/HU derived from cellular genomes, which might play a role in constituting virus-specific chromatin states. Through all size ranges a subset of domains in viral chromatin proteins appears to have been derived from those found in host proteins. Examples include the Zn-finger domains of the E6 and E7 proteins of papillomaviruses, SET domain methyltransferases and Jumonji-related demethylases in certain nucleocytoplasmic large DNA viruses and BEN domains in poxviruses and polydnaviruses. In other cases, chromatin-interacting modules, such as the LXCXE motif, appear to have been widely disseminated across distinct viral lineages, resulting in similar retinoblastoma targeting strategies. Viruses, especially those with large linear genomes, have evolved a number of mechanisms to manipulate viral chromosomes in the process of replication-associated recombination. These include topoisomerases, Rad50/SbcC-like ABC ATPases and a novel recombinase system in bacteriophages utilizing RecA and Rad52 homologs. Larger DNA viruses also encode SWI2/SNF2 and A18-like ATPases which appear to play specialized roles in transcription and recombination. Finally, it also appears that certain domains of viral provenance have given rise to key functions in eukaryotic chromatin such as a HEH domain of chromosome tethering proteins and the TET/JBP-like cytosine and thymine hydroxylases.
Collapse
Affiliation(s)
- Robson F. de Souza
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| |
Collapse
|
50
|
Lilley CE, Chaurushiya MS, Weitzman MD. Chromatin at the intersection of viral infection and DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:319-27. [PMID: 19616655 PMCID: PMC2838936 DOI: 10.1016/j.bbagrm.2009.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022]
Abstract
During infection, viruses cause global disruption to nuclear architecture in their attempt to take over the cell. In turn, the host responds with various defenses, which include chromatin-mediated silencing of the viral genome and activation of DNA damage signaling pathways. Dynamic exchanges at chromatin, and specific post-translational modifications on histones have recently emerged as master controllers of DNA damage signaling and repair. Studying viral control of chromatin modifications is identifying histones as important players in the battle between host and virus for control of cell cycle and gene expression. These studies are revealing new complexities of the virus-host interaction, uncovering the potential of chromatin as an anti-viral defense mechanism, and also providing unique insights into the role of chromatin in DNA repair.
Collapse
Affiliation(s)
- Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|