1
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
2
|
Uddin MK, Watanabe T, Arata M, Sato Y, Kimura H, Murata T. Epstein-Barr Virus BBLF1 Mediates Secretory Vesicle Transport to Facilitate Mature Virion Release. J Virol 2023; 97:e0043723. [PMID: 37195206 PMCID: PMC10308924 DOI: 10.1128/jvi.00437-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023] Open
Abstract
Enveloped viruses undergo a complex multistep process of assembly, maturation, and release into the extracellular space utilizing host secretory machinery. Several studies of the herpesvirus subfamily have shown that secretory vesicles derived from the trans-Golgi network (TGN) or endosomes transport virions into the extracellular space. However, the regulatory mechanism underlying the release of Epstein-Barr virus, a human oncovirus, remains unclear. We demonstrate that disruption of BBLF1, a tegument component, suppressed viral release and resulted in the accumulation of viral particles on the inner side of the vesicular membrane. Organelle separation revealed the accumulation of infectious viruses in fractions containing vesicles derived from the TGN and late endosomes. Deficiency of an acidic amino acid cluster in BBLF1 reduced viral secretion. Moreover, truncational deletion of the C-terminal region of BBLF1 increased infectious virus production. These findings suggest that BBLF1 regulates the viral release pathway and reveal a new aspect of tegument protein function. IMPORTANCE Several viruses have been linked to the development of cancer in humans. Epstein-Barr virus (EBV), the first identified human oncovirus, causes a wide range of cancers. Accumulating literature has demonstrated the role of viral reactivation in tumorigenesis. Elucidating the functions of viral lytic genes induced by reactivation, and the mechanisms of lytic infection, is essential to understanding pathogenesis. Progeny viral particles synthesized during lytic infection are released outside the cell after the assembly, maturation, and release steps, leading to further infection. Through functional analysis using BBLF1-knockout viruses, we demonstrated that BBLF1 promotes viral release. The acidic amino acid cluster in BBLF1 was also important for viral release. Conversely, mutants lacking the C terminus exhibited more efficient virus production, suggesting that BBLF1 is involved in the fine-tuning of progeny release during the EBV life cycle.
Collapse
Affiliation(s)
- Md Kamal Uddin
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masataka Arata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
3
|
Fukushi N, Badr Y, Fukushi H. The N-terminal glycine of EHV-1 UL11 is essential for the localization of UL11 and EHV-1 replication in cultured cells. J Gen Virol 2023; 104. [PMID: 36748631 DOI: 10.1099/jgv.0.001798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Equine herpesvirus type 1 (EHV-1) UL11 is a 74-amino-acid (aa) protein encoded by ORF51. UL11 is modified by acylation including myristoylation and palmitoylation. Myristoylation of EHV-1 UL11 is assumed to occur on the N-terminal glycine, while palmitoylation is assumed to occur on the seventh and ninth cysteines. ORF51, which encodes the first 24 aa, overlaps ORF50 encoding UL12. We previously demonstrated that UL11 was essential for EHV-1 replication in cultured cells and that UL11 was localized at the Golgi apparatus where herpesviruses obtain their final envelope. It is unclear whether the acylation is related to the localization of EHV-1 UL11 and viral replication. In this study, we investigated the role of UL11 acylation in the intracellular localization and viral growth and replication of EHV-1. We constructed seven UL11 acylation mutant plasmids and seven UL11 acylation mutant BAC DNAs; then, we analysed the localizations of the mutant UL11s and attempted virus rescue. We found that both the N-terminal glycine and the seventh or ninth cysteine, especially N-terminal glycine, were involved in the localization of UL11 and viral replication. Taken together, these results suggest that EHV-1 viral growth requires that UL11 is modified by myristoylation of an N-terminal glycine and by palmitoylation of at least one of the cysteines, and that UL11 is localized at the Golgi apparatus. This study shows that a single amino acid in EHV-1 can determine the fate of viral replication.
Collapse
Affiliation(s)
- Noriko Fukushi
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yassien Badr
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Animal Medicine (Branch of Infectious Disease), Faculty of Veterinary Medicine, Damanhour University, El-Beheira 2251, Egypt
| | - Hideto Fukushi
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
4
|
Yang L, Wang M, Cheng A, Yang Q, Wu Y, Huang J, Tian B, Jia R, Liu M, Zhu D, Chen S, Zhao X, Zhang S, Ou X, Mao S, Gao Q, Sun D. Features and Functions of the Conserved Herpesvirus Tegument Protein UL11 and Its Binding Partners. Front Microbiol 2022; 13:829754. [PMID: 35722336 PMCID: PMC9205190 DOI: 10.3389/fmicb.2022.829754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The herpesvirus UL11 protein is encoded by the UL11 gene and is a membrane-anchored protein with multiple functions. In the last stage of viral replication, UL11 participates in the secondary envelopment process. It also plays a key role in primary envelopment, the transportation of newly assembled viral particles through cytoplasmic vesicles, and virion egress from the cell. UL11 is an important accessory protein and sometimes cooperates with other proteins that participate in virus-induced cell fusion. Cell fusion is necessary for cell-to-cell transmissions. This review summarizes the latest literature and discusses the roles of UL11 in viral assembly, primary and secondary envelopment, and cell-to-cell transmission to obtain a better understanding of the UL11 protein in the life cycle of herpesviruses and to serve as a reference for studying other viruses. Additionally, some recently discovered characteristics of UL11 are summarized.
Collapse
Affiliation(s)
- Linjiang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
5
|
Phosphorylation of tegument protein pp28 contributes to trafficking to the assembly compartment in human cytomegalovirus infection. J Microbiol 2020; 58:624-631. [PMID: 32594457 DOI: 10.1007/s12275-020-0263-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Human cytomegalovirus (HCMV) UL99 encodes a late tegument protein pp28 that is essential for envelopment and production of infectious virus. This protein is localized to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) in transfected cells but it localizes to the cytoplasmic assembly compartment (AC) in HCMV-infected cells. Trafficking of pp28 to the AC is required for the assembly of infectious virus. The N-terminal domain (aa 1-61) of pp28 is sufficient for trafficking and function of the wild type protein during viral infection. However, residues required for authentic pp28 trafficking with the exception of the acidic cluster in the N-terminal domain of pp28 remain undefined. Monitoring protein migration on SDS-PAGE, we found that pp28 is phosphorylated in the virus-infected cells and dephosphorylated in the viral particles. By generating substitution mutants of pp28, we showed that three serine residues (aa 41-43) and a tyrosine residue (aa 34) account for its phosphorylation. The mutant forms of pp28 were localized to the plasma membrane as well as the ERGIC in transfected cells. Likewise, these mutant proteins were localized to the plasma membrane as well as the AC in virus-infected cells. These results suggested that phosphorylation of pp28 contributes to its intracellular trafficking and efficient viral assembly and incorporation.
Collapse
|
6
|
Close WL, Anderson AN, Pellett PE. Betaherpesvirus Virion Assembly and Egress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:167-207. [PMID: 29896668 DOI: 10.1007/978-981-10-7230-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. Virions need to be assembled reliably and efficiently, be released from infected cells, survive in the extracellular environment during transmission, recognize and then trigger entry of appropriate target cells, and disassemble in an orderly manner during initiation of a new infection. The betaherpesvirus subfamily includes four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 6B, and 7), as well as viruses that are the basis of important animal models of infection and immunity. Similar to other herpesviruses, betaherpesvirus virions consist of four main parts (in order from the inside): the genome, capsid, tegument, and envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels that contain one copy of the dsDNA viral genome. The tegument is a collection of several thousand protein and RNA molecules packed into the space between the envelope and the capsid for delivery and immediate activity upon cellular entry at the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers studded with virus-encoded glycoproteins; they protect the virion during transmission and mediate virion entry during initiation of new infections. Here, we summarize the mechanisms of betaherpesvirus virion assembly, including how infection modifies, reprograms, hijacks, and otherwise manipulates cellular processes and pathways to produce virion components, assemble the parts into infectious virions, and then transport the nascent virions to the extracellular environment for transmission.
Collapse
Affiliation(s)
- William L Close
- Department of Microbiology & Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley N Anderson
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip E Pellett
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
7
|
Watanabe T, Sakaida K, Yoshida M, Masud HMAA, Sato Y, Goshima F, Kimura H, Murata T. The C-Terminus of Epstein-Barr Virus BRRF2 Is Required for its Proper Localization and Efficient Virus Production. Front Microbiol 2017; 8:125. [PMID: 28197146 PMCID: PMC5281634 DOI: 10.3389/fmicb.2017.00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/18/2017] [Indexed: 02/02/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with several malignancies. We reported previously that an EBV lytic gene product BRRF2 is involved in the maturation of progeny virus. To analyze the domain(s) needed for efficient production of progeny, we prepared a series of deletion mutants and found two functional domains in the N- and C-terminal regions by complementation assays. Immunofluorescence analyses revealed that BRRF2 lacking the C-terminal region demonstrated aberrant localization in both the nucleus and cytoplasm, whereas wild-type BRRF2 was localized predominantly in the cytoplasm. We also confirmed that wild-type BRRF2 co-localized with Rab5, an endosomal marker, at least partly. Additionally, serine 511 of BRRF2 was phosphorylated during lytic infection; however, a mutant in which the serine was substituted with alanine still augmented the yield as efficiently as did wild-type BRRF2. These results showed that the C-terminal region of BRRF2 is involved in the predominant localization of BRRF2 to the cytoplasm and in the efficient production of infectious virus.
Collapse
Affiliation(s)
- Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Keiya Sakaida
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Masahiro Yoshida
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | | | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Fumi Goshima
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| |
Collapse
|
8
|
Seo JY, Jeon H, Hong S, Britt WJ. Distinct functional domains within the acidic cluster of tegument protein pp28 required for trafficking and cytoplasmic envelopment of human cytomegalovirus. J Gen Virol 2016; 97:2677-2683. [PMID: 27450273 DOI: 10.1099/jgv.0.000565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus UL99-encoded tegument protein pp28 contains a 16 aa acidic cluster that is required for pp28 trafficking to the assembly compartment (AC) and the virus assembly. However, functional signals within the acidic cluster of pp28 remain undefined. Here, we demonstrated that an acidic cluster rather than specific sorting signals was required for trafficking to the AC. Recombinant viruses with chimeric pp28 proteins expressing non-native acidic clusters exhibited delayed viral growth kinetics and decreased production of infectious virus, indicating that the native acidic cluster of pp28 was essential for wild-type virus assembly. These results suggested that the acidic cluster of pp28 has distinct functional domains required for trafficking and for efficient virus assembly. The first half (aa 44-50) of the acidic cluster was sufficient for pp28 trafficking, whereas the native acidic cluster consisting of aa 51-59 was required for the assembly of wild-type levels of infectious virus.
Collapse
Affiliation(s)
- Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyejin Jeon
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sookyung Hong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - William J Britt
- Departments of Pediatrics and Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Wu JJ, Avey D, Li W, Gillen J, Fu B, Miley W, Whitby D, Zhu F. ORF33 and ORF38 of Kaposi's Sarcoma-Associated Herpesvirus Interact and Are Required for Optimal Production of Infectious Progeny Viruses. J Virol 2016; 90:1741-56. [PMID: 26637455 PMCID: PMC4734004 DOI: 10.1128/jvi.02738-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/23/2015] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED We recently showed that the interaction between Kaposi's sarcoma-associated herpesvirus (KSHV) tegument proteins ORF33 and ORF45 is crucial for progeny virion production, but the exact functions of KSHV ORF33 during lytic replication were unknown (J. Gillen, W. Li, Q. Liang, D. Avey, J. Wu, F. Wu, J. Myoung, and F. Zhu, J Virol 89:4918-4931, 2015, http://dx.doi.org/10.1128/JVI.02925-14). Therefore, here we investigated the relationship between ORF33 and ORF38, whose counterparts in both alpha- and betaherpesviruses interact with each other. Using specific monoclonal antibodies, we found that both proteins are expressed during the late lytic cycle with similar kinetics and that both are present in mature virions as components of the tegument. Furthermore, we confirmed that ORF33 interacts with ORF38. Interestingly, we observed that ORF33 tightly associates with the capsid, whereas ORF38 associates with the envelope. We generated ORF33-null, ORF38-null, and double-null mutants and found that these mutants apparently have identical phenotypes: the mutations caused no apparent effect on viral gene expression but reduced the yield of progeny virion by about 10-fold. The progeny virions also lack certain virion component proteins, including ORF45. During viral lytic replication, the virions associate with cytoplasmic vesicles. We also observed that ORF38 associates with the membranes of vesicles and colocalizes with the Golgi membrane or early endosome membrane. Further analyses of ORF33/ORF38 mutants revealed the reduced production of virion-containing vesicles, suggesting that ORF33 and ORF38 are involved in the transport of newly assembled viral particles into cytoplasmic vesicles, a process important for viral maturation and egress. IMPORTANCE Herpesvirus assembly is an essential step in virus propagation that leads to the generation of progeny virions. It is a complicated process that depends on the delicate regulation of interactions among virion proteins. We previously revealed an essential role of ORF45-ORF33 binding for virus assembly. Here, we report that ORF33 and its binding partner, ORF38, are required for infectious virus production due to their important role in the tegumentation process. Moreover, we found that both ORF33 and ORF38 are involved in the transportation of virions through vesicles during maturation and egress. Our results provide new insights into the important roles of ORF33 and ORF38 during viral assembly, a process critical for virus propagation that is intimately linked to KSHV pathobiology.
Collapse
Affiliation(s)
- Jian-Jun Wu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Wenwei Li
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Joseph Gillen
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Bishi Fu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
10
|
Leroy B, Gillet L, Vanderplasschen A, Wattiez R. Structural Proteomics of Herpesviruses. Viruses 2016; 8:v8020050. [PMID: 26907323 PMCID: PMC4776205 DOI: 10.3390/v8020050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/27/2022] Open
Abstract
Herpesviruses are highly prevalent viruses associated with numerous pathologies both in animal and human populations. Until now, most of the strategies used to prevent or to cure these infections have been unsuccessful because these viruses have developed numerous immune evasion mechanisms. Therefore, a better understanding of their complex lifecycle is needed. In particular, while the genome of numerous herpesviruses has been sequenced, the exact composition of virions remains unknown for most of them. Mass spectrometry has recently emerged as a central method and has permitted fundamental discoveries in virology. Here, we review mass spectrometry-based approaches that have recently allowed a better understanding of the composition of the herpesvirus virion. In particular, we describe strategies commonly used for proper sample preparation and fractionation to allow protein localization inside the particle but also to avoid contamination by nonstructural proteins. A collection of other important data regarding post-translational modifications or the relative abundance of structural proteins is also described. This review also discusses the poorly studied importance of host proteins in herpesvirus structural proteins and the necessity to develop a quantitative workflow to better understand the dynamics of the structural proteome. In the future, we hope that this collaborative effort will assist in the development of new strategies to fight these infections.
Collapse
Affiliation(s)
- Baptiste Leroy
- Laboratory of Proteomic and Microbiology, Research Institute of Biosciences, University of MONS, 4000 Mons, Belgium.
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium.
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium.
| | - Ruddy Wattiez
- Laboratory of Proteomic and Microbiology, Research Institute of Biosciences, University of MONS, 4000 Mons, Belgium.
| |
Collapse
|
11
|
Goodwin CM, Xu S, Munger J. Stealing the Keys to the Kitchen: Viral Manipulation of the Host Cell Metabolic Network. Trends Microbiol 2015; 23:789-798. [PMID: 26439298 PMCID: PMC4679435 DOI: 10.1016/j.tim.2015.08.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/23/2022]
Abstract
Host cells possess the metabolic assets required for viral infection. Recent studies indicate that control of the host's metabolic resources is a core host–pathogen interaction. Viruses have evolved mechanisms to usurp the host's metabolic resources, funneling them towards the production of virion components as well as the organization of specialized compartments for replication, maturation, and dissemination. Consequently, hosts have developed a variety of metabolic countermeasures to sense and resist these viral changes. The complex interplay between virus and host over metabolic control has only just begun to be deconvoluted. However, it is clear that virally induced metabolic reprogramming can substantially impact infectious outcomes, highlighting the promise of targeting these processes for antiviral therapeutic development. Numerous viruses modulate host-cell metabolic processes to ensure successful infection. The host-cell metabolic network contributes the energy, precursors, and specialized components necessary to produce infectious virions. Viruses deploy host-cell metabolic activities to organize viral maturation compartments. Metabolic control is a host–pathogen interaction that can sway the outcome of viral infection.
Collapse
Affiliation(s)
- Christopher M Goodwin
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shihao Xu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
12
|
Diefenbach RJ. Conserved tegument protein complexes: Essential components in the assembly of herpesviruses. Virus Res 2015; 210:308-17. [PMID: 26365681 DOI: 10.1016/j.virusres.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
Abstract
One of the structural components of herpesviruses is a protein layer called the tegument. Several of the tegument proteins are highly conserved across the herpesvirus family and serve as a logical focus for defining critical interactions required for viral assembly. A number of studies have helped to elucidate a role for conserved tegument proteins in the process of secondary envelopment during the course of herpesviral assembly. This review highlights how these tegument proteins directly contribute to bridging the nucleocapsid and envelope of virions during secondary envelopment.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
13
|
Gambarino S, Callea S, Rizzo G, Montanari P, Loiacono E, Bergallo M. Evaluation of UL99 transcript as a target for antiviral treatment efficacy. J Virol Methods 2014; 207:104-9. [PMID: 24977314 DOI: 10.1016/j.jviromet.2014.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/31/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
Abstract
Human cytomegalovirus (HCMV) is a virus belonging to the Beta Herpes virus family. Its genome contains many different genes clustered in immediate early, early and late genes. This last cluster includes UL99, a late gene that encodes for a tegument protein called pp28. In immunocompetent patients, HCMV infection occurs asymptomatically, while its reactivation in immunocompromised patients can be a cause of pneumonia, retinitis and gastrointestinal diseases. To prevent or to contrast HCMV infection, several drugs (such as Ganciclovir, Acyclovir, Foscarnet) are available, and their efficiency is evaluated by HCMV DNA load monitoring, as also for antiviral resistance onset that may occur after the therapy. In this study is described the development of a Real Time PCR for the detection and quantification of UL99 transcript and the clearance of this target compared to HCMV DNA, both in vitro and in vivo on bronchoalveolar lavage samples.
Collapse
Affiliation(s)
- Stefano Gambarino
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| | - Stefano Callea
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Giovanna Rizzo
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Elisa Loiacono
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| |
Collapse
|
14
|
Pogoda M, Bosse JB, Conzelmann KK, Koszinowski UH, Ruzsics Z. A modified screening system for loss-of-function and dominant negative alleles of essential MCMV genes. PLoS One 2014; 9:e94918. [PMID: 24733555 PMCID: PMC3986410 DOI: 10.1371/journal.pone.0094918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/21/2014] [Indexed: 11/30/2022] Open
Abstract
Inactivation of gene products by dominant negative mutants is a valuable tool to assign functions to yet uncharacterized proteins, to map protein-protein interactions or to dissect physiological pathways. Detailed functional and structural knowledge about the target protein would allow the construction of inhibitory mutants by targeted mutagenesis. Yet, such data are limited for the majority of viral proteins, so that the target gene needs to be subjected to random mutagenesis to identify suitable mutants. However, for cytomegaloviruses this requires a two-step screening approach, which is time-consuming and labor-intensive. Here, we report the establishment of a high-throughput suitable screening system for the identification of inhibitory alleles of essential genes of the murine cytomegalovirus (MCMV). In this screen, the site-specific recombination of a specifically modified MCMV genome was transferred from the bacterial background to permissive host cells, thereby combining the genetic engineering and the rescue test in one step. Using a reference set of characterized pM53 mutants it was shown that the novel system is applicable to identify non-complementing as well as inhibitory mutants in a high-throughput suitable setup. The new cis-complementation assay was also applied to a basic genetic characterization of pM99, which was identified as essential for MCMV growth. We believe that the here described novel genetic screening approach can be adapted for the genetic characterization of essential genes of any large DNA viruses.
Collapse
Affiliation(s)
- Madlen Pogoda
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Munich, Germany
- DZIF - German Center for Infection Research, Munich, Germany
| | - Jens B. Bosse
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | - Zsolt Ruzsics
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Munich, Germany
- DZIF - German Center for Infection Research, Munich, Germany
| |
Collapse
|
15
|
Smith RM, Kosuri S, Kerry JA. Role of human cytomegalovirus tegument proteins in virion assembly. Viruses 2014; 6:582-605. [PMID: 24509811 PMCID: PMC3939473 DOI: 10.3390/v6020582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 11/26/2022] Open
Abstract
Like other herpesviruses, human cytomegalovirus (HCMV) contains a unique proteinaceous layer between the virion envelope and capsid, termed the tegument. Upon infection, the contents of the tegument layer are delivered to the host cell, along with the capsid and the viral genome, where they facilitate the initial stages of virus replication. The tegument proteins also play important roles in virion assembly and this dual nature makes them attractive potential targets for antiviral therapies. While our knowledge regarding tegument protein function during the initiation of infection has been the subject of intense study, their roles in assembly are much less well understood. In this review, we will focus on recent studies that highlight the functions of HCMV tegument proteins during assembly, and pose key questions for further investigation.
Collapse
Affiliation(s)
- Rebecca Marie Smith
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | - Srivenkat Kosuri
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | - Julie Anne Kerry
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
16
|
Tandon R, Mocarski ES. Viral and host control of cytomegalovirus maturation. Trends Microbiol 2012; 20:392-401. [PMID: 22633075 PMCID: PMC3408842 DOI: 10.1016/j.tim.2012.04.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
Abstract
Maturation in herpesviruses initiates in the nucleus of the infected cell, with encapsidation of viral DNA to form nucleocapsids, and concludes with envelopment in the cytoplasm to form infectious virions that egress the cell. The entire process of virus maturation is orchestrated by protein-protein interactions and enzymatic activities of viral and host origin. Viral tegument proteins play important roles in maintaining the structural stability of capsids and directing the acquisition of virus envelope. Envelopment occurs at modified host membranes and exploits host vesicular trafficking. In this review, we summarize current knowledge of and concepts in human cytomegalovirus (HCMV) maturation and their parallels in other herpesviruses, with an emphasis on viral and host factors that regulate this process.
Collapse
Affiliation(s)
- Ritesh Tandon
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
17
|
Interaction between the human cytomegalovirus tegument proteins UL94 and UL99 is essential for virus replication. J Virol 2012; 86:9995-10005. [PMID: 22761384 DOI: 10.1128/jvi.01078-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) virions are structurally complex, and the mechanisms by which they are assembled are poorly understood, especially with respect to the cytoplasmic phase of assembly, during which the majority of the tegument is acquired and final envelopment occurs. These processes occur at a unique cytoplasmic structure called the assembly complex, which is formed through a reorganization of the cellular secretory apparatus. The HCMV tegument protein UL99 (pp28) is essential for viral replication at the stage of secondary envelopment. We previously demonstrated that UL99 interacts with the essential tegument protein UL94 in infected cells as well as in the absence of other viral proteins. Here we show that UL94 and UL99 alter each other's localization and that UL99 stabilizes UL94 in a binding-dependent manner. We have mapped the interaction between UL94 and UL99 to identify the amino acids of each protein that are required for their interaction. Mutation of these amino acids in the context of the viral genome demonstrates that HCMV is completely defective for replication in the absence of the interaction between UL94 and UL99. Further, we demonstrate that in the absence of their interaction, both UL94 and UL99 exhibit aberrant localization and do not accumulate at the assembly complex during infection. Taken together, our data suggest that the interaction between UL94 and UL99 is essential for the proper localization of each protein to the assembly complex and thus for the production of infectious virus.
Collapse
|
18
|
Liu Y, Zhang Z, Zhao X, Wei H, Deng J, Cui Z, Zhang XE. Human cytomegalovirus UL94 is a nucleocytoplasmic shuttling protein containing two NLSs and one NES. Virus Res 2012; 166:31-42. [PMID: 22414299 DOI: 10.1016/j.virusres.2012.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/22/2012] [Accepted: 02/22/2012] [Indexed: 11/17/2022]
Abstract
The tegument protein UL94 is a human cytomegalovirus (HCMV) late protein and its function has yet to be determined. Using live cell fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) imaging, we found that UL94 is able to shuttle between the nucleus and cytoplasm. Analysis of UL94 mutants fused to EGFP showed that two newly characterized nuclear localization sequences (NLSs) and amino acid 343 play key roles in UL94 nuclear localization. Mutation of these sequences can alter the intracellular distribution of UL94 and disrupt its nucleocytoplasmic shuttling. Amino acid 343 of UL94 was also found to be crucial for its interaction with another HCMV tegument protein pp28. Furthermore, one nuclear export sequence (NES) was identified within UL94. Mutation of the key amino acids in the NES can also alter the intracellular distribution of UL94 and disrupt its shuttling function. Like other proteins containing a leucine-rich export signal, nuclear export of the UL94 was affected by leptomycin B, indicating that it is exported via the Crm1-dependent pathway. Our data provide a basis for further understanding the character and function of HCMV UL94.
Collapse
Affiliation(s)
- Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication. J Virol 2011; 85:5814-24. [PMID: 21471234 DOI: 10.1128/jvi.02630-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that human cytomegalovirus (HCMV) infection induces large-scale changes to host cell glycolytic, nucleic acid, and phospholipid metabolism. Here we explore the viral mechanisms involved in fatty acid biosynthetic activation. Our results indicate that HCMV targets ACC1, the rate-limiting enzyme of fatty acid biosynthesis, through multiple mechanisms. HCMV infection was found to activate ACC1 expression, increasing the abundance of both ACC1 mRNA and protein. Viral gene expression but not viral DNA replication was found to be necessary for HCMV-mediated induction of ACC1 levels. HCMV infection was also found to increase the proteolytic processing of SREBP-2, a transcription factor whose proteolytic cleavage is known to activate a variety of phospholipid metabolic genes. Processing of SREBP-2 was found to be dependent on mTOR activity; pharmaceutical inhibition of mTOR blocked HCMV-induced SREBP-2 processing and prevented the induction of fatty acid biosynthesis and ACC1 expression. Independent of the increases in ACC1 expression, HCMV infection also induced ACC1's enzymatic activity. Inhibition of ACC1 through either RNA interference (RNAi) or inhibitor treatment was found to attenuate HCMV replication, and HCMV replication was sensitive to ACC1 inhibition even at the later stages of infection, suggesting a late role for fatty acid biosynthesis during HCMV replication. These findings indicate that HCMV infection actively modulates numerous functional aspects of a key metabolic regulatory enzyme that is important for high-titer viral replication.
Collapse
|
20
|
Human cytomegalovirus UL97 kinase and nonkinase functions mediate viral cytoplasmic secondary envelopment. J Virol 2011; 85:3375-84. [PMID: 21248036 DOI: 10.1128/jvi.01952-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have revealed critical roles for the human cytomegalovirus (HCMV) UL97 kinase in viral nuclear maturation events. We have shown recently that UL97 affects the morphology of the viral cytoplasmic assembly compartment (AC) (M. Azzeh, A. Honigman, A. Taraboulos, A. Rouvinski, and D. G. Wolf, Virology 354:69-79, 2006). Here, we employed a comprehensive ultrastructural analysis to dissect the impact of UL97 on cytoplasmic steps of HCMV assembly. Using UL97 deletion (ΔUL97) and kinase-null (K355M) mutants, as well as the UL97 kinase inhibitor NGIC-I, we demonstrated that the loss of UL97 kinase activity resulted in a unique combination of cytoplasmic features: (i) the formation of pp65-rich aberrant cytoplasmic tegument aggregates, (ii) distorted intracytoplasmic membranes, which replaced the normal architecture of the AC, and (iv) a paucity of cytoplasmic tegumented capsids and dense bodies (DBs). We further showed that these abnormal assembly intermediates did not result from impaired nuclear capsid maturation and egress per se by using 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl) benzimidizole (BDCRB) to induce the artificial inhibition of nuclear maturation and the nucleocytoplasmic translocation of capsids. The specific abrogation of UL97 kinase activity under low-multiplicity-of-infection conditions resulted in the improved release of extracellular virus compared to that of ΔUL97, despite similar rates of viral DNA accumulation and similar effects on nuclear capsid maturation and egress. The only ultrastructural correlate of the growth difference was a higher number of cytoplasmic DBs, tegumented capsids, and clustered viral particles observed upon the specific abrogation of UL97 kinase activity compared to that of ΔUL97. These combined findings reveal a novel role for UL97 in HCMV cytoplasmic secondary envelopment steps, with a further distinction of kinase-mediated function in the formation of the virus-induced AC and a nonkinase function enhancing the efficacy of viral tegumentation and release.
Collapse
|
21
|
Guo H, Shen S, Wang L, Deng H. Role of tegument proteins in herpesvirus assembly and egress. Protein Cell 2010; 1:987-98. [PMID: 21153516 DOI: 10.1007/s13238-010-0120-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022] Open
Abstract
Morphogenesis and maturation of viral particles is an essential step of viral replication. An infectious herpesviral particle has a multilayered architecture, and contains a large DNA genome, a capsid shell, a tegument and an envelope spiked with glycoproteins. Unique to herpesviruses, tegument is a structure that occupies the space between the nucleocapsid and the envelope and contains many virus encoded proteins called tegument proteins. Historically the tegument has been described as an amorphous structure, but increasing evidence supports the notion that there is an ordered addition of tegument during virion assembly, which is consistent with the important roles of tegument proteins in the assembly and egress of herpesviral particles. In this review we first give an overview of the herpesvirus assembly and egress process. We then discuss the roles of selected tegument proteins in each step of the process, i.e., primary envelopment, de-envelopment, secondary envelopment and transport of viral particles. We also suggest key issues that should be addressed in the near future.
Collapse
Affiliation(s)
- Haitao Guo
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
22
|
Moorman NJ, Sharon-Friling R, Shenk T, Cristea IM. A targeted spatial-temporal proteomics approach implicates multiple cellular trafficking pathways in human cytomegalovirus virion maturation. Mol Cell Proteomics 2010; 9:851-60. [PMID: 20023299 PMCID: PMC2871419 DOI: 10.1074/mcp.m900485-mcp200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/16/2009] [Indexed: 11/06/2022] Open
Abstract
The assembly of infectious virus particles is a complex event. For human cytomegalovirus (HCMV) this process requires the coordinated expression and localization of at least 60 viral proteins that comprise the infectious virion. To gain insight into the mechanisms controlling this process, we identified protein binding partners for two viral proteins, pUL99 (also termed pp28) and pUL32 (pp150), which are essential for HCMV virion assembly. We utilized HCMV strains expressing pUL99 or pUL32 carboxyl-terminal green fluorescent protein fusion proteins from their native location in the HCMV genome. Based on the presence of ubiquitin in the pUL99 immunoisolation, we discovered that this viral protein colocalizes with components of the cellular endosomal sorting complex required for transport (ESCRT) pathway during the initial stages of virion assembly. We identified the nucleocapsid and a large number of tegument proteins as pUL32 binding partners, suggesting that events controlling trafficking of this viral protein in the cytoplasm regulate nucleocapsid/tegument maturation. The finding that pUL32, but not pUL99, associates with clathrin led to the discovery that the two viral proteins traffic via distinct pathways during the early stages of virion assembly. Additional investigation revealed that the majority of the major viral glycoprotein gB initially resides in a third compartment. Analysis of the trafficking of these three viral proteins throughout a time course of virion assembly allowed us to visualize their merger into a single large cytoplasmic structure during the late stages of viral assembly. We propose a model of HCMV virion maturation in which multiple components of the virion traffic independently of one another before merging.
Collapse
Affiliation(s)
- Nathaniel J. Moorman
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Ronit Sharon-Friling
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Thomas Shenk
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Ileana M. Cristea
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
23
|
Krzyzaniak MA, Mach M, Britt WJ. HCMV-encoded glycoprotein M (UL100) interacts with Rab11 effector protein FIP4. Traffic 2010; 10:1439-57. [PMID: 19761540 DOI: 10.1111/j.1600-0854.2009.00967.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The envelope of human cytomegalovirus (HCMV) consists of a large number of glycoproteins. The most abundant glycoprotein in the HCMV envelope is the glycoprotein M (UL100), which together with glycoprotein N (UL73) form the gM/gN protein complex. Using yeast two-hybrid screening, we found that the gM carboxy-terminal cytoplasmic tail (gM-CT) interacts with FIP4, a Rab11-GTPase effector protein. Depletion of FIP4 expression in HCMV-infected cells resulted in a decrease in infectious virus production that was also associated with an alteration of the HCMV assembly compartment (AC) phenotype. A similar phenotype was also observed in HCMV-infected cells that expressed dominant negative Rab11(S25N). Recently, it has been shown that FIP4 interactions with Rab11 and additionally with Arf6/Arf5 are important for the vesicular transport of proteins in the endosomal recycling compartment (ERC) and during cytokinesis. Surprisingly, FIP4 interaction with gM-CT limited binding of FIP4 with Arf5/Arf6; however, FIP4 interaction with gM-CT did not prevent recruitment of Rab11 into the ternary complex. These data argued for a contribution of the ERC during cytoplasmic envelopment of HCMV and showed a novel FIP4 function independent of Arf5 or Arf6 activity.
Collapse
Affiliation(s)
- Magdalena A Krzyzaniak
- Department of Microbiology, University of Alabama at Birmingham, CHB160, Birmingham, AL 35233, USA
| | | | | |
Collapse
|
24
|
Bicaudal D1-dependent trafficking of human cytomegalovirus tegument protein pp150 in virus-infected cells. J Virol 2010; 84:3162-77. [PMID: 20089649 DOI: 10.1128/jvi.01776-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) virion assembly takes place in the nucleus and cytoplasm of infected cells. The HCMV virion tegument protein pp150 (ppUL32) is an essential protein of HCMV and has been suggested to play a role in the cytoplasmic phase of HCMV assembly. To further define its role in viral assembly and to identify host cell proteins that interact with pp150 during viral assembly, we utilized yeast two-hybrid analyses to detect an interaction between pp150 and Bicaudal D1 (BicD1), a protein thought to play a role in trafficking within the secretory pathway. BicD1 is known to interact with the dynein motor complex and the Rab6 GTPase. The interaction between pp150 and BicD1 was confirmed by coimmunoprecipitation and fluorescence resonance energy transfer. Depletion of BicD1 with short hairpin RNA (shRNA) caused decreased virus yield and a defect in trafficking of pp150 to the cytoplasmic viral assembly compartment (AC), without altering trafficking to the AC of another essential tegument protein, pp28, or the viral glycoprotein complex gM/gN. The C terminus of BicD1 has been previously shown to interact with the GTPase Rab6, suggesting a potential role for Rab6-mediated vesicular trafficking in HCMV assembly. Finally, overexpression of the N terminus of truncated BicD1 acts in a dominant-negative manner and leads to disruption of the AC and a decrease in the assembly of infectious virus. This phenotype was similar to that observed following overexpression of dynamitin (p50) and provided additional evidence that morphogenesis of the AC and virus assembly were dynein dependent.
Collapse
|
25
|
Cepeda V, Esteban M, Fraile-Ramos A. Human cytomegalovirus final envelopment on membranes containing both trans-Golgi network and endosomal markers. Cell Microbiol 2009; 12:386-404. [PMID: 19888988 DOI: 10.1111/j.1462-5822.2009.01405.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human cytomegalovirus (HCMV) has been shown to complete its final envelopment on cytoplasmic membranes prior to its secretion to the extracellular medium. However, the nature of these membranes has not been characterized. It is thought that HCMV acquires its final envelope from the trans-Golgi network (TGN), though we and others have previously reported a role for endocytic membranes. Here we studied the localization of cellular markers in HCMV-infected cells and in isolated viruses. Immunofluorescence staining indicated that HCMV induces the recruitment of TGN and endosomal markers to the virus factory. Immuno-gold labelling of isolated viral particles and electron microscopy demonstrated the incorporation of TGN46, endosomal markers early endosomal antigen 1, annexin I, transferrin receptor and CD63, and the cation-independent mannose 6-phosphate receptor, which traffics between the TGN and endosomes into the viral envelope. Virus immunoprecipitation assays demonstrated that virions containing TGN46 and CD63 were infectious. This study reconciles the apparent controversy regarding the nature of the HCMV assembly site and suggests that HCMV has the ability to generate a novel membrane compartment containing markers for both TGN and endosomes, or that the membranes that HCMV uses for its envelope may be vesicles in transit between the TGN and endosomes.
Collapse
Affiliation(s)
- Victoria Cepeda
- Cell Biology of Herpesvirus Laboratory, Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autonoma, Madrid 28049, Spain
| | | | | |
Collapse
|
26
|
The endoplasmic reticulum chaperone BiP/GRP78 is important in the structure and function of the human cytomegalovirus assembly compartment. J Virol 2009; 83:11421-8. [PMID: 19741001 DOI: 10.1128/jvi.00762-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated that the endoplasmic reticulum (ER) chaperone BiP functions in human cytomegalovirus (HCMV) assembly and egress. Here, we show that BiP localizes in two cytoplasmic structures in infected cells. Antibodies to the extreme C terminus, which includes BiP's KDEL ER localization sequence, detect BiP in regions of condensed ER near the periphery of the cell. Antibodies to the full length, N terminus, or larger portion of the C terminus detect BiP in the assembly compartment. This inability of C-terminal antibodies to detect BiP in the assembly compartment suggests that BiP's KDEL sequence is occluded in the assembly compartment. Depletion of BiP causes the condensed ER and assembly compartments to dissociate, indicating that BiP is important for their integrity. BiP and pp28 are in association in the assembly compartment, since antibodies that detect BiP in the assembly compartment coimmunoprecipitate pp28 and vice versa. In addition, BiP and pp28 copurify with other assembly compartment components on sucrose gradients. BiP also coimmunoprecipitates TRS1. Previous data show that cells infected with a TRS1-deficient virus have cytoplasmic and assembly compartment defects like those seen when BiP is depleted. We show that a fraction of TRS1 purifies with the assembly compartment. These findings suggest that BiP and TRS1 share a function in assembly compartment maintenance. In summary, BiP is diverted from the ER to associate with pp28 and TRS1, contributing to the integrity and function of the assembly compartment.
Collapse
|
27
|
Liu Y, Cui Z, Zhang Z, Wei H, Zhou Y, Wang M, Zhang XE. The tegument protein UL94 of human cytomegalovirus as a binding partner for tegument protein pp28 identified by intracellular imaging. Virology 2009; 388:68-77. [PMID: 19345970 DOI: 10.1016/j.virol.2009.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 11/19/2022]
Abstract
The tegument protein pp28 of human cytomegalovirus (HCMV) is essential for the assembly of infectious HCMV virions, but how it functions during the process of HCMV tegumentation and envelopment remains unclear. By using live cell fluorescence resonance energy transfer (FRET) microscopy and yeast two-hybrid assays, we found that another HCMV tegument protein, UL94, was a specific binding partner for pp28. The interaction between pp28 and UL94 was imaged in a punctuate, juxtanuclear compartment, previously designated as the virus assembly compartment (AC). Amino acids 22-43 of pp28 were identified as being responsible for its binding with UL94, while no linear binding site could be found within UL94. The interaction between pp28 and UL94 may serve as a link in the sequential processes of HCMV capsidation, tegumentation and envelopment. This study provides a foundation for further studies into how the HCMV tegument proteins act in the assembly of HCMV virions.
Collapse
Affiliation(s)
- Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
SUMMARY Human cytomegalovirus (HCMV) is a common, medically relevant human herpesvirus. The tegument layer of herpesvirus virions lies between the genome-containing capsids and the viral envelope. Proteins within the tegument layer of herpesviruses are released into the cell upon entry when the viral envelope fuses with the cell membrane. These proteins are fully formed and active and control viral entry, gene expression, and immune evasion. Most tegument proteins accumulate to high levels during later stages of infection, when they direct the assembly and egress of progeny virions. Thus, viral tegument proteins play critical roles at the very earliest and very last steps of the HCMV lytic replication cycle. This review summarizes HCMV tegument composition and structure as well as the known and speculated functions of viral tegument proteins. Important directions for future investigation and the challenges that lie ahead are identified and discussed.
Collapse
|
29
|
Control of cytoplasmic maturation events by cytomegalovirus tegument protein pp150. J Virol 2008; 82:9433-44. [PMID: 18653449 DOI: 10.1128/jvi.00533-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cytomegalovirus replication depends upon a betaherpesvirus-conserved 150-kDa tegument phosphoprotein (pp150; encoded by UL32) that supports the final steps in virion maturation at cytoplasmic assembly compartments. Amino acid substitutions were introduced into conserved region 1 (CR1) and CR2 of pp150, affecting a region that may interact with nucleocapsids. Two independent CR2 point mutants (N201A and G207A) failed to support viral replication in evaluations by a transient complementation assay or after reconstruction into recombinant viruses. An assembly compartment-like cytoplasmic inclusion developed in UL32 mutant virus-infected cells that was similar to that of wild-type virus-infected cells. The cellular localization of the trans-Golgi marker Golgin-97 suggested differences in the organization of the assembly compartment compared to that of wild-type virus-infected cells. Replication-defective CR2 point mutants exhibited the same phenotype as that of a virus carrying a complete deletion of the UL32 open reading frame in these assays. Electron micrographs of fibroblasts at 3 or 5 days postinfection with a deletion mutant (DeltaUL32) grown on UL32-complementing cells showed a similar number and morphology of capsids in the nucleus, but the cytoplasmic region associated with virion assembly appeared highly vesiculated and contained few recognizable nucleocapsids or complete virus particles. These data demonstrate that the principle role of pp150 is to retain nucleocapsid organization through secondary envelopment at the assembly compartment.
Collapse
|
30
|
Shen W, Westgard E, Huang L, Ward MD, Osborn JL, Chau NH, Collins L, Marcum B, Koach MA, Bibbs J, Semmes OJ, Kerry JA. Nuclear trafficking of the human cytomegalovirus pp71 (ppUL82) tegument protein. Virology 2008; 376:42-52. [PMID: 18423509 DOI: 10.1016/j.virol.2008.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 01/12/2023]
Abstract
The human cytomegalovirus tegument protein pp71 localizes to the nucleus immediately upon infection, and functions to initiate viral gene expression. Analysis of a series of random insertion mutations revealed that sequences within the mid region (MR) of pp71 are important for localization to the nucleus. Fusion of MR sequences with eGFP revealed that amino acids 94 to 300 were sufficient to target proteins to the nucleus. Random substitution mutagenesis within this domain resulted in two double substitution mutants, pp71P203T/T223M and pp71T228M/L275Q, with a predominantly cytoplasmic localization. Disruption of nuclear targeting resulted in relocalization of the fusion proteins to a distinct perinuclear region. Using tandem mass spectrometry, we determined that threonine 223 can be phosphorylated. Mutation of this residue to a phosphomimetic amino acid resulted in abrogation of nuclear targeting. These results strongly suggest that the intracellular trafficking of pp71 is regulated by phosphorylation.
Collapse
Affiliation(s)
- Weiping Shen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Multimerization of tegument protein pp28 within the assembly compartment is required for cytoplasmic envelopment of human cytomegalovirus. J Virol 2008; 82:6272-87. [PMID: 18385241 DOI: 10.1128/jvi.02345-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) UL99-encoded pp28 is an essential tegument protein required for envelopment and production of infectious virus. Nonenveloped virions accumulate in the cytoplasm of cells infected with recombinant viruses with the UL99 gene deleted. Previous results have suggested that a key function of pp28 in the envelopment of infectious HCMV is expressed after the protein localizes in the assembly compartment (AC). In this study, we investigated the potential role of pp28 multimerization in the envelopment of the infectious virion. Our results indicated that pp28 multimerized during viral infection and that interacting domains responsible for self-interaction were localized in the amino terminus of the protein (amino acids [aa] 1 to 43). The results from transient-expression and/or infection assays indicated that the self-interaction took place in the AC. A mutant pp28 molecule containing only the first 35 aa failed to accumulate in the AC, did not interact with pp28 in the AC, and could not support virus replication. In contrast, the first 50 aa of pp28 was sufficient for the self-interaction within the AC and the assembly of infectious virus. Recombinant viruses encoding an in-frame deletion of aa 26 to 33 of pp28 were replication competent, whereas infectious virus was not recovered from HCMV BACs lacking aa 26 to 43. These findings suggested that the accumulation of pp28 was a prerequisite for multimerization of pp28 within the AC and that pp28 multimerization in the AC represented an essential step in the envelopment and production of infectious virions.
Collapse
|
32
|
Sanchez V, Mahr JA, Orazio NI, Spector DH. Nuclear export of the human cytomegalovirus tegument protein pp65 requires cyclin-dependent kinase activity and the Crm1 exporter. J Virol 2007; 81:11730-6. [PMID: 17715235 PMCID: PMC2168781 DOI: 10.1128/jvi.02760-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 08/09/2007] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that treatment of human cytomegalovirus-infected cells with the cyclin-dependent kinase (cdk) inhibitor roscovitine has significant effects on several stages of the virus life cycle depending on the time of addition (V. Sanchez, A. K. McElroy, J. Yen, S. Tamrakar, C. L. Clark, R. A. Schwartz, and D. H. Spector, J. Virol. 78:11219-11232, 2004; V. Sanchez and D. Spector, J. Virol. 80:5886-5896, 2006). In this report, we add to these findings by demonstrating alterations in the phosphorylation and localization of pp65 (UL83) in cells treated with roscovitine. We observed that inhibition of cdk activity causes the retention of pp65 within the nucleus at late times postinfection. At the same time, we observed a change in the phosphorylation pattern of the protein. Interestingly, mutation of potential cdk phosphorylation sites did not affect the ability of pp65 to localize to the nucleus or to relocalize to the cytoplasm late in infection. However, we found that the cytoplasmic accumulation of pp65 late in infection was sensitive to the Crm1 inhibitor leptomycin B.
Collapse
Affiliation(s)
- Veronica Sanchez
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
33
|
Sadaoka T, Yoshii H, Imazawa T, Yamanishi K, Mori Y. Deletion in open reading frame 49 of varicella-zoster virus reduces virus growth in human malignant melanoma cells but not in human embryonic fibroblasts. J Virol 2007; 81:12654-65. [PMID: 17855513 PMCID: PMC2169031 DOI: 10.1128/jvi.01183-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ORF49 gene product (ORF49p) of the varicella-zoster virus (VZV) is likely a myristylated tegument protein, and its homologs are conserved across the herpesvirus subfamilies. The UL11 gene of herpes simplex virus type 1 and of pseudorabies virus and the UL99 gene of human cytomegalovirus are the homologs of ORF49 and have been well characterized by using mutant viruses; however, little research on the VZV ORF49 gene has been reported. Here we report on VZV ORF49p expression, subcellular localization, and effect on viral spread in vitro. ORF49p was expressed during the late phase of infection and located in the juxtanuclear region of the cytoplasm, where it colocalized mainly with the trans-Golgi network-associated protein. ORF49p was incorporated into virions and showed a molecular mass of 13 kDa in VZV-infected cells and virions. To elucidate the role of the ORF49 gene, we constructed a mutant virus that lacked a functional ORF49. No differences in plaque size or cell-cell spread were observed in human embryonic fibroblast cells, MRC-5 cells, infected with the wild-type or the mutant virus. However, the mutant virus showed diminished cell-cell infection in a human malignant melanoma cell line, MeWo cells. Therefore, VZV ORF49p is important for virus growth in MeWo cells, but not in MRC-5 cells. VZV may use different mechanisms for virus growth in MeWo and MRC-5 cells. If so, understanding the role of ORF49p should help elucidate how VZV accomplishes cell-cell infections in different cell types.
Collapse
Affiliation(s)
- Tomohiko Sadaoka
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka, Japan
| | | | | | | | | |
Collapse
|
34
|
Seo JY, Britt WJ. Sequence requirements for localization of human cytomegalovirus tegument protein pp28 to the virus assembly compartment and for assembly of infectious virus. J Virol 2007; 80:5611-26. [PMID: 16699042 PMCID: PMC1472139 DOI: 10.1128/jvi.02630-05] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus UL99 open reading frame encodes a 190-amino-acid (aa) tegument protein, pp28, that is myristoylated and phosphorylated. pp28 is essential for assembly of infectious virus, and nonenveloped virions accumulate in the cytoplasm of cells infected with recombinant viruses with a UL99 deletion. pp28 is localized to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) in transfected cells, while in infected cells, it is localized together with other virion proteins in a juxtanuclear compartment termed the assembly compartment (AC). We investigated the sequence requirements for pp28 trafficking to the AC and assembly of infectious virus. Our studies indicated that the first 30 to 35 aa were required for localization of pp28 to the ERGIC in transfected cells. Mutant forms of pp28 containing only the first 35 aa localized with other virion structural proteins to cytoplasmic compartments early in infection, but localization to the AC at late times required a minimum of 50 aa. In agreement with previous reports, we demonstrated that the deletion of a cluster of acidic amino acids (aa 44 to 59) prevented wild-type trafficking of pp28 and recovery of infectious virus. A recombinant virus expressing only the first 50 aa was replication competent, and this mutant, pp28, localized to the AC in cells infected with this virus. These findings argued that localization of pp28 to the AC was essential for assembly of infectious virus and raised the possibility that amino acids in the amino terminus of pp28 have additional roles in the envelopment and assembly of the virion other than simply localizing pp28 to the AC.
Collapse
Affiliation(s)
- Jun-Young Seo
- Department of Microbiology, School of Medicine, University of Alabama in Birmingham, Birmingham, AL 35233, USA
| | | |
Collapse
|
35
|
Seo JY, Britt WJ. Cytoplasmic envelopment of human cytomegalovirus requires the postlocalization function of tegument protein pp28 within the assembly compartment. J Virol 2007; 81:6536-47. [PMID: 17392372 PMCID: PMC1900121 DOI: 10.1128/jvi.02852-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The assembly of herpesvirus remains incompletely defined due to the structural complexity of these viruses. Although the assembly of the capsid of these large DNA viruses is well studied and reasonably well conserved for all members of this diverse family of viruses, the cytoplasmic processes of tegumentation and envelopment are not well understood. The virion of the largest human herpesvirus, human cytomegalovirus (HCMV), contains over 70 virus-encoded proteins that are incorporated during a nuclear and cytoplasmic phase of assembly. Envelopment of this virus requires the function of at least one tegument protein, pp28, the product of the UL99 open reading frame. However, the role of pp28 in the envelopment of HCMV remains undefined. We have generated a pp28 mutant virus that encodes only the first 50 amino acids (aa) of this 190-aa virion protein. This virus is replication impaired and is defective in virus assembly. Characterization of both intracellular and extracellular virions from cells infected with this viral mutant indicated that the decrease in production of infectious virus was secondary to a defect in envelopment and the accumulation of tegumented, noninfectious intracellular particles. Image analysis using fluorescence recovery after photobleaching indicated that the pp28 mutant protein encoded by this virus failed to efficiently accumulate in the virus assembly compartment (AC). Our results suggest that pp28 must accumulate in the AC for efficient envelopment of the particle and provide evidence for a direct role of this tegument protein in the late stages of assembly, such as envelopment.
Collapse
Affiliation(s)
- Jun-Young Seo
- Department of Microbiology, University of Alabama School of Medicine, and Department of Pediatrics, Children's Hospital, 1600 7th Ave. South, Birmingham, AL 35233, USA
| | | |
Collapse
|
36
|
AuCoin DP, Smith GB, Meiering CD, Mocarski ES. Betaherpesvirus-conserved cytomegalovirus tegument protein ppUL32 (pp150) controls cytoplasmic events during virion maturation. J Virol 2006; 80:8199-210. [PMID: 16873276 PMCID: PMC1563810 DOI: 10.1128/jvi.00457-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The UL32 gene of human cytomegalovirus (CMV) encodes a prominent betaherpesvirus-conserved virion tegument protein, called pp150 (basic phosphoprotein/ppUL32), that accumulates within a cytoplasmic inclusion adjacent to the nucleus at late times during infection. Using a UL32 deletion mutant (DeltaUL32-BAC) (where BAC is bacterial artificial chromosome), we demonstrate that pp150 is critical for virion maturation in the cytoplasmic compartment. Cotransfection of a pp150 expression plasmid with DeltaUL32-BAC DNA led to complementation of the replication defect with focus formation due to secondary spread. Deletion of the amino terminus of pp150 or disruption of the betaherpesvirus conserved regions, CR1 and CR2, revealed these regions to be critical for replication. In contrast, deletion of the carboxyl terminus only partially compromised maturation while disruption of glycosylation sites had no effect. An African green monkey CMV UL32 homolog complemented DeltaUL32-BAC replication but murine CMV M32 failed to complement, consistent with evolutionary divergence of rodent and primate cytomegaloviruses. Infection with DeltaUL32-BAC showed normal expression of all kinetic classes of viral genes and replication of viral DNA, with accumulation of viral DNA-containing particles in the cytoplasm; however, mutant virus did not spread to adjacent cells. In contrast to this block in virion infectivity, cell-to-cell transfer of pp65-containing particles was observed, suggesting that release of dense bodies continued in the absence of pp150. These observations demonstrate that pp150 is critical for virion egress, possibly at the stage of final envelopment.
Collapse
Affiliation(s)
- David P AuCoin
- Department of Microbiology and Immunology, Fairchild Science Building, 299 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | | | | | | |
Collapse
|
37
|
Loomis JS, Courtney RJ, Wills JW. Packaging determinants in the UL11 tegument protein of herpes simplex virus type 1. J Virol 2006; 80:10534-41. [PMID: 16928743 PMCID: PMC1641780 DOI: 10.1128/jvi.01172-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The UL11 gene of herpes simplex virus type 1 encodes a 96-amino-acid tegument protein that is myristylated, palmitylated, and phosphorylated and is found on the cytoplasmic faces of nuclear, Golgi apparatus-derived, and plasma membranes of infected cells. Although this protein is thought to play a role in virus budding, its specific function is unknown. Purified virions were found to contain approximately 700 copies of the UL11 protein per particle, making it an abundant component of the tegument. Moreover, comparisons of cell-associated and virion-associated UL11 showed that packaging is selective for underphosphorylated forms, as has been reported for several other tegument proteins. Although the mechanism by which UL11 is packaged is unknown, previous studies have identified several sequence motifs in the protein that are important for membrane binding, intracellular trafficking, and interaction with UL16, another tegument protein. To ascertain whether any of these motifs are needed for packaging, a transfection/infection-based assay was used in which mutant forms of the protein must compete with the wild type. In this assay, the entire C-terminal half of UL11 was found to be dispensable. In the N-terminal half, the sites of myristylation and palmitylation, which enable membrane-binding and Golgi apparatus-specific targeting, were found to be essential for efficient packaging. The acidic cluster motif, which is not needed for Golgi apparatus-specific targeting but is involved in recycling the protein from the plasma membrane and for the interaction with UL16, was found to be essential, too. Thus, something other than mere localization of UL11 to Golgi apparatus-derived membranes is needed for packaging. The critical factor is unlikely to be the interaction with UL16 because other mutants that fail to bind this protein (due to removal of the dileucine-like motif or substitutions with foreign acidic clusters) were efficiently packaged. Collectively, these results suggest that UL11 packaging is not driven by a passive mechanism but instead requires trafficking through a specific pathway.
Collapse
Affiliation(s)
- Joshua S Loomis
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Dr., P.O. Box 850, Hershey, PA 17033, USA
| | | | | |
Collapse
|
38
|
Azzeh M, Honigman A, Taraboulos A, Rouvinski A, Wolf DG. Structural changes in human cytomegalovirus cytoplasmic assembly sites in the absence of UL97 kinase activity. Virology 2006; 354:69-79. [PMID: 16872656 DOI: 10.1016/j.virol.2006.05.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/17/2006] [Accepted: 05/31/2006] [Indexed: 11/24/2022]
Abstract
Studies of human cytomegalovirus (HCMV) UL97 kinase deletion mutant (DeltaUL97) indicated a multi-step role for this kinase in early and late phases of the viral life cycle, namely, in DNA replication, capsid maturation and nuclear egress. Here, we addressed its possible involvement in cytoplasmic steps of HCMV assembly. Using the DeltaUL97 and the UL97 kinase inhibitor NGIC-I, we demonstrate that the absence of UL97 kinase activity results in a modified subcellular distribution of the viral structural protein assembly sites, from compact structures impacting upon the nucleus to diffuse perinuclear structures punctuated by large vacuoles. Infection by either wild type or DeltaUL97 viruses induced a profound reorganization of wheat germ agglutinin (WGA)-positive Golgi-related structures. Importantly, the viral-induced Golgi remodeling along with the reorganization of the nuclear architecture was substantially altered in the absence of UL97 kinase activity. These findings suggest that UL97 kinase activity might contribute to organization of the viral cytoplasmic assembly sites.
Collapse
Affiliation(s)
- Maysa Azzeh
- Department of Clinical Microbiology and Infectious Diseases, Hadassah University Hospital, Jerusalem, Israel 91120
| | | | | | | | | |
Collapse
|
39
|
Das S, Skomorovska-Prokvolit Y, Wang FZ, Pellett PE. Infection-dependent nuclear localization of US17, a member of the US12 family of human cytomegalovirus-encoded seven-transmembrane proteins. J Virol 2006; 80:1191-203. [PMID: 16414996 PMCID: PMC1346967 DOI: 10.1128/jvi.80.3.1191-1203.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human cytomegalovirus (HCMV) US12 gene family is a group of predicted seven-transmembrane, G-protein-coupled receptor-related proteins, about which little is known. Specific rabbit polyclonal antibodies detected US17 and US18 beginning 54 and 36 h after infection, respectively, with expression of both proteins dependent on viral DNA synthesis. While US14 and US18 are expressed exclusively in the cytoplasm, we unexpectedly found abundant expression of US17 in both the cytoplasm and nucleoplasm. N- and C-terminally tagged versions of US17 were readily detected in the cytoplasm of transfected mammalian cells, but not in nuclei, suggesting that nuclear localization involves other viral proteins or an infection-triggered cellular process. There was no specific colocalization between US17 and other nuclear expressed HCMV-encoded proteins (IE-2, DNA polymerase processivity factor, and pp28/UL99). To determine whether the observed nuclear localization might be the product of a process by which a soluble C-terminal segment of the full-length protein is expressed, we constructed a recombinant virus that incorporates a synthetic epitope at its N terminus, which in conjunction with the antipeptide antibody that targets its predicted cytoplasmic C-terminal segment, enables simultaneous independent detection of both termini. In cells infected with the recombinant, the US17 N and C termini had limited colocalization, with the N-terminal segment not detected in nuclei, supporting the segmentation hypothesis. Consistent with this, a fragment with an apparent molecular size of 10 kDa was detected by immunoblotting. We have identified the first viral example of a seven-transmembrane protein that is either segmented or expressed in nuclei. Further study will be required to learn the mechanism by which this occurs and the function of the nuclear localizing segment. This likely represents yet another mechanism by which a virus has hijacked or modified cellular regulatory pathways for its benefit.
Collapse
Affiliation(s)
- Subhendu Das
- Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue NN10, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
40
|
Silva MC, Schröer J, Shenk T. Human cytomegalovirus cell-to-cell spread in the absence of an essential assembly protein. Proc Natl Acad Sci U S A 2005; 102:2081-6. [PMID: 15684067 PMCID: PMC548577 DOI: 10.1073/pnas.0409597102] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human cytomegalovirus UL99-coded pp28 is a myristoylated phosphoprotein located in the virion tegument domain, which resides between the capsid and envelope. A previous study has demonstrated that BADsubUL99, a pp28-deficient mutant virus, fails to assemble enveloped virus particles. Capsids, coated with tegument proteins, accumulate in the cytoplasm of mutant virus-infected cells. This phenotype indicates that pp28 is required for the acquisition of an envelope; it presumably acts by directing tegument-associated capsids to bud through an intracellular membrane derived from the cell's secretory apparatus that has been modified to contain viral transmembrane glycoproteins. Here we demonstrate that BADsubUL99 can spread from cell to cell, even though highly sensitive assays fail to detect infectious virus progeny in cultures of infected fibroblasts. We propose that, in the absence of pp28, tegument-coated capsids might nevertheless bud through cellular membranes, including the plasma membrane. If this suggestion is correct, the enveloped particle could potentially infect an adjacent cell to mediate the cell-to-cell spread that is observed. This mode of spread might also occur after infection with wild-type virus, and it could facilitate immune evasion, assuming that the resulting particles do not have a normal complement of virus-coded envelope glycoproteins.
Collapse
Affiliation(s)
- Maria C Silva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|