1
|
Tan L, Li J, Duan Y, Liu J, Zheng S, Liang X, Fang C, Zuo M, Tian G, Yang Y. Current knowledge on the epidemiology and prevention of Avian leukosis virus in China. Poult Sci 2024; 103:104009. [PMID: 39002365 PMCID: PMC11298916 DOI: 10.1016/j.psj.2024.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Avian leukosis virus (ALV) is an enveloped retrovirus with a single-stranded RNA genome, belonging to the genus Alpharetrovirus within the family Retroviridae. The disease (Avian leukosis, AL) caused by ALV is mainly characterized by tumor development and immunosuppression in chickens, which increases susceptibility to other pathogens and leads to significant economic losses in the Chinese poultry industry. The government and poultry industry have made lots of efforts to eradicate ALV, but the threat of which remains not vanished. This review provides a summary of the updated understanding of ALV in China, which mainly focuses on genetic and molecular biology, epidemiology, and diagnostic methods. Additionally, promising antiviral agents and ALV eradication strategies performed in China are also included.
Collapse
Affiliation(s)
- Lei Tan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China; Yunnan Sino-Science Gene Technology Co. Ltd. Kunming, Yunnan, China
| | - Juan Li
- Yunnan Sino-Science Gene Technology Co. Ltd. Kunming, Yunnan, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Yuqing Duan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Jing Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Shiling Zheng
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Xiongyan Liang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Chun Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Mengting Zuo
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Guangming Tian
- College of Animal Science and Technology, Yangtze University, Jingzhou, China.
| | - Yuying Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China.
| |
Collapse
|
2
|
Matoušková M, Plachý J, Kučerová D, Pecnová Ľ, Reinišová M, Geryk J, Karafiát V, Hron T, Hejnar J. Rapid adaptive evolution of avian leukosis virus subgroup J in response to biotechnologically induced host resistance. PLoS Pathog 2024; 20:e1012468. [PMID: 39146367 PMCID: PMC11349186 DOI: 10.1371/journal.ppat.1012468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/27/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Genetic editing of the germline using CRISPR/Cas9 technology has made it possible to alter livestock traits, including the creation of resistance to viral diseases. However, virus adaptability could present a major obstacle in this effort. Recently, chickens resistant to avian leukosis virus subgroup J (ALV-J) were developed by deleting a single amino acid, W38, within the ALV-J receptor NHE1 using CRISPR/Cas9 genome editing. This resistance was confirmed both in vitro and in vivo. In vitro resistance of W38-/- chicken embryonic fibroblasts to all tested ALV-J strains was shown. To investigate the capacity of ALV-J for further adaptation, we used a retrovirus reporter-based assay to select adapted ALV-J variants. We assumed that adaptive mutations overcoming the cellular resistance would occur within the envelope protein. In accordance with this assumption, we isolated and sequenced numerous adapted virus variants and found within their envelope genes eight independent single nucleotide substitutions. To confirm the adaptive capacity of these substitutions, we introduced them into the original retrovirus reporter. All eight variants replicated effectively in W38-/- chicken embryonic fibroblasts in vitro while in vivo, W38-/- chickens were sensitive to tumor induction by two of the variants. Importantly, receptor alleles with more extensive modifications have remained resistant to the virus. These results demonstrate an important strategy in livestock genome engineering towards antivirus resistance and illustrate that cellular resistance induced by minor receptor modifications can be overcome by adapted virus variants. We conclude that more complex editing will be necessary to attain robust resistance.
Collapse
Affiliation(s)
- Magda Matoušková
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Plachý
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Dana Kučerová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ľubomíra Pecnová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Reinišová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Geryk
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Vít Karafiát
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Hron
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Hejnar
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Residues E53, L55, H59, and G70 of the cellular receptor protein Tva mediate cell binding and entry of the novel subgroup K avian leukosis virus. J Biol Chem 2023; 299:102962. [PMID: 36717079 PMCID: PMC9974445 DOI: 10.1016/j.jbc.2023.102962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
Subgroup K avian leukosis virus (ALV-K) is a novel subgroup of ALV isolated from Chinese native chickens. As for a retrovirus, the interaction between its envelope protein and cellular receptor is a crucial step in ALV-K infection. Tva, a protein previously determined to be associated with vitamin B12/cobalamin uptake, has been identified as the receptor of ALV-K. However, the molecular mechanism underlying the interaction between Tva and the envelope protein of ALV-K remains unclear. In this study, we identified the C-terminal loop of the LDL-A module of Tva as the minimal functional domain that directly interacts with gp85, the surface component of the ALV-K envelope protein. Further point-mutation analysis revealed that E53, L55, H59, and G70, which are exposed on the surface of Tva and are spatially adjacent, are key residues for the binding of Tva and gp85 and facilitate the entry of ALV-K. Homology modeling analysis indicated that the substitution of these four residues did not significantly impact the Tva structure but impaired the interaction between Tva and gp85 of ALV-K. Importantly, the gene-edited DF-1 cell line with precisely substituted E53, L55, H59, and G70 was completely resistant to ALV-K infection and did not affect vitamin B12/cobalamin uptake. Collectively, these findings not only contribute to a better understanding of the mechanism of ALV-K entry into host cells but also provide an ideal gene-editing target for antiviral study.
Collapse
|
4
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
5
|
Mo G, Wei P, Hu B, Nie Q, Zhang X. Advances on genetic and genomic studies of ALV resistance. J Anim Sci Biotechnol 2022; 13:123. [PMID: 36217167 PMCID: PMC9550310 DOI: 10.1186/s40104-022-00769-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Avian leukosis (AL) is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus (ALV). No vaccine or drug is currently available for the disease. Therefore, the disease can result in severe economic losses in poultry flocks. Increasing the resistance of poultry to ALV may be one effective strategy. In this review, we provide an overview of the roles of genes associated with ALV infection in the poultry genome, including endogenous retroviruses, virus receptors, interferon-stimulated genes, and other immune-related genes. Furthermore, some methods and techniques that can improve ALV resistance in poultry are discussed. The objectives are willing to provide some valuable references for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530001, Guangxi, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
6
|
Abstract
The receptor of the subgroup A avian leukosis virus (ALV-A) in chicken is Tva, which is the homologous protein of human CD320 (huCD320), contains a low-density lipoprotein (LDL-A) module and is involved in the uptake of transcobalamin bound vitamin B12/cobalamin (Cbl). To map the functional determinants of Tva responsible for ALV-A receptor activity, a series of chimeric receptors were created by swapping the LDL-A module fragments between huCD320 and Tva. These chimeric receptors were then used for virus entry and binding assays to map the minimal ALV-A functional domain of Tva. The results showed that Tva residues 49 to 71 constituted the minimal functional domain that directly interacted with the ALV-A gp85 protein to mediate ALV-A entry. Single-residue substitution analysis revealed that L55 and W69, which were spatially adjacent on the surface of the Tva structure, were key residues that mediate ALV-A entry. Structural alignment results indicated that L55 and W69 substitutions did not affect the Tva protein structure but abolished the interaction force between Tva and gp85. Furthermore, substituting the corresponding residues of huCD320 with L55 and W69 of Tva converted huCD320 into a functional receptor of ALV-A. Importantly, soluble huCD320 harboring Tva L55 and W69 blocked ALV-A entry. Finally, we constructed a Tva gene-edited cell line with L55R and W69L substitutions that could fully resist ALV-A entry, while Cbl uptake was not affected. Collectively, our findings suggested that amino acids L55 and W69 of Tva were key for mediating virus entry. IMPORTANCE Retroviruses bind to cellular receptors through their envelope proteins, which is a crucial step in infection. While most retroviruses require two receptors for entry, ALV-A requires only one. Various Tva alleles conferring resistance to ALV-A, including Tvar1 (C40W substitution), Tvar2 (frame-shifting four-nucleotide insertion), Tvar3, Tvar4, Tvar5, and Tvar6 (deletion in the first intron), are known. However, the detailed entry mechanism of ALV-A in chickens remains to be explored. We demonstrated that Tva residues L55 and W69 were key for ALV-A entry and were important for correct interaction with ALV-A gp85. Soluble Tva and huCD320 harboring the Tva residues L55 and W69 effectively blocked ALV-A infection. Additionally, we constructed gene-edited cell lines targeting these two amino acids, which completely restricted ALV-A entry without affecting Cbl uptake. These findings contribute to a better understanding of the infection mechanism of ALV-A and provided novel insights into the prevention and control of ALV-A.
Collapse
|
7
|
Tang S, Li J, Chang YF, Lin W. Avian Leucosis Virus-Host Interaction: The Involvement of Host Factors in Viral Replication. Front Immunol 2022; 13:907287. [PMID: 35693802 PMCID: PMC9178239 DOI: 10.3389/fimmu.2022.907287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis virus (ALV) causes various diseases associated with tumor formation and decreased fertility. Moreover, ALV induces severe immunosuppression, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. There is growing evidence showing the interaction between ALV and the host. In this review, we will survey the present knowledge of the involvement of host factors in the important molecular events during ALV infection and discuss the futuristic perspectives from this angle.
Collapse
Affiliation(s)
- Shuang Tang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jie Li
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Wencheng Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Li J, Chen J, Dong X, Liang C, Guo Y, Chen X, Huang M, Liao M, Cao W. Residues 140-142, 199-200, 222-223, and 262 in the Surface Glycoprotein of Subgroup A Avian Leukosis Virus Are the Key Sites Determining Tva Receptor Binding Affinity and Infectivity. Front Microbiol 2022; 13:868377. [PMID: 35572683 PMCID: PMC9095613 DOI: 10.3389/fmicb.2022.868377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Subgroup A avian leukosis virus (ALV-A) invades cells through gp85-encoded surface glycoprotein (SU) via specifically recognizing the cellular receptor Tva. To identify the key residues of ALV-A SU that determine the Tva binding affinity and infectivity in DF-1 cells, a strategy of substituting corresponding residues of SU between ALV-A RSA and ALV-E ev-1 (using Tvb as the receptor) was adopted. A series of chimeric soluble gp85 proteins were expressed for co-immunoprecipitation (co-IP) analysis and blocking analysis of viral entry, and various recombinant viruses based on replication-competent avian retrovirus vectors containing Bryan polymerase (RCASBP) were constructed for transfection into DF-1 cells and measurement of the percentage of GFP-positive cells. The results revealed that the substitution of residues V138, W140, Y141, L142, S145, and L154 of host range region 1 (hr1), residues V199, G200, Q202, R222, and R223 of host range region 2 (hr2), and residue G262 of variable region 3 (vr3) reduced the viral infectivity and Tva binding affinity, which was similar to the effects of the −139S, −151N, −155PWVNPF, −201NFD, Δ214–215, and −266S mutations. Our study indicated that hr1 and hr2 contain the principal receptor interaction determinants, with new identified-vr3 also playing a key role in the receptor binding affinity of ALV-A.
Collapse
Affiliation(s)
- Jinqun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Canxin Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanyan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiang Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengyu Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
9
|
Wragg D, Cook EAJ, Latré de Laté P, Sitt T, Hemmink JD, Chepkwony MC, Njeru R, Poole EJ, Powell J, Paxton EA, Callaby R, Talenti A, Miyunga AA, Ndambuki G, Mwaura S, Auty H, Matika O, Hassan M, Marshall K, Connelley T, Morrison LJ, Bronsvoort BMD, Morrison WI, Toye PG, Prendergast JGD. A locus conferring tolerance to Theileria infection in African cattle. PLoS Genet 2022; 18:e1010099. [PMID: 35446841 PMCID: PMC9022807 DOI: 10.1371/journal.pgen.1010099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
East Coast fever, a tick-borne cattle disease caused by the Theileria parva parasite, is among the biggest natural killers of cattle in East Africa, leading to over 1 million deaths annually. Here we report on the genetic analysis of a cohort of Bos indicus (Boran) cattle demonstrating heritable tolerance to infection with T. parva (h2 = 0.65, s.e. 0.57). Through a linkage analysis we identify a 6 Mb genomic region on bovine chromosome 15 that is significantly associated with survival outcome following T. parva exposure. Testing this locus in an independent cohort of animals replicates this association with survival following T. parva infection. A stop gained variant in a paralogue of the FAF1 gene in this region was found to be highly associated with survival across both related and unrelated animals, with only one of the 20 homozygote carriers (T/T) of this change succumbing to the disease in contrast to 44 out of 97 animals homozygote for the reference allele (C/C). Consequently, we present a genetic locus linked to tolerance of one of Africa’s most important cattle diseases, raising the promise of marker-assisted selection for cattle that are less susceptible to infection by T. parva. More than a million cattle die of East Coast fever in Africa each year, the impact of which disproportionately falls onto low-income, smallholder farmers. The lack of a widely accessible vaccine, heavy reliance on chemicals to control the tick vector and inadequate drug treatments means that new approaches for controlling the disease are urgently required. Through a genetic study of an extended pedigree of Boran cattle that are more than three times less likely to succumb to the disease than matched controls, we identify a region on chromosome 15 of the cattle genome associated with a high level of tolerance to the disease. We show that a nonsense variant in a predicted paralogue of FAS-associated factor 1 (FAF1) in this region is also associated with survival in an independent cohort, and is linked to rates of cell expansion during infection. This genetic variant can therefore support marker-assisted selection, allowing farmers to breed tolerant cattle and offers a route to introduce this beneficial DNA to non-native breeds, enabling reduced disease incidence and increased productivity, which would be of benefit to millions of rural smallholder farmers across Africa.
Collapse
Affiliation(s)
- David Wragg
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth A. J. Cook
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- ILRI Kenya, Nairobi, Kenya
| | - Perle Latré de Laté
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- ILRI Kenya, Nairobi, Kenya
| | | | - Johanneke D. Hemmink
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- ILRI Kenya, Nairobi, Kenya
| | | | - Regina Njeru
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- ILRI Kenya, Nairobi, Kenya
| | | | - Jessica Powell
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Edith A. Paxton
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Callaby
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Epidemiology, Economics and Risk Assessment (EEA) Group, Easter Bush Campus, Edinburgh, United Kingdom
| | - Andrea Talenti
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Antoinette A. Miyunga
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- ILRI Kenya, Nairobi, Kenya
| | - Gideon Ndambuki
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- ILRI Kenya, Nairobi, Kenya
| | | | - Harriet Auty
- Institute of Biodiversity Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Oswald Matika
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Musa Hassan
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Marshall
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- ILRI Kenya, Nairobi, Kenya
| | - Timothy Connelley
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - B. Mark deC. Bronsvoort
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - W. Ivan Morrison
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip G. Toye
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
- ILRI Kenya, Nairobi, Kenya
- * E-mail: (PGT); (JGDP)
| | - James G. D. Prendergast
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (PGT); (JGDP)
| |
Collapse
|
10
|
Koslová A, Trefil P, Mucksová J, Krchlíková V, Plachý J, Krijt J, Reinišová M, Kučerová D, Geryk J, Kalina J, Šenigl F, Elleder D, Kožich V, Hejnar J. Knock-Out of Retrovirus Receptor Gene Tva in the Chicken Confers Resistance to Avian Leukosis Virus Subgroups A and K and Affects Cobalamin (Vitamin B 12)-Dependent Level of Methylmalonic Acid. Viruses 2021; 13:v13122504. [PMID: 34960774 PMCID: PMC8708277 DOI: 10.3390/v13122504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023] Open
Abstract
The chicken Tva cell surface protein, a member of the low-density lipoprotein receptor family, has been identified as an entry receptor for avian leukosis virus of classic subgroup A and newly emerging subgroup K. Because both viruses represent an important concern for the poultry industry, we introduced a frame-shifting deletion into the chicken tva locus with the aim of knocking-out Tva expression and creating a virus-resistant chicken line. The tva knock-out was prepared by CRISPR/Cas9 gene editing in chicken primordial germ cells and orthotopic transplantation of edited cells into the testes of sterilized recipient roosters. The resulting tva −/− chickens tested fully resistant to avian leukosis virus subgroups A and K, both in in vitro and in vivo assays, in contrast to their susceptible tva +/+ and tva +/− siblings. We also found a specific disorder of the cobalamin/vitamin B12 metabolism in the tva knock-out chickens, which is in accordance with the recently recognized physiological function of Tva as a receptor for cobalamin in complex with transcobalamin transporter. Last but not least, we bring a new example of the de novo resistance created by CRISPR/Cas9 editing of pathogen dependence genes in farm animals and, furthermore, a new example of gene editing in chicken.
Collapse
Affiliation(s)
- Anna Koslová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Pavel Trefil
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Pohoří-Chotouň 90, 254 49 Jílové u Prahy, Czech Republic; (P.T.); (J.M.); (J.K.)
| | - Jitka Mucksová
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Pohoří-Chotouň 90, 254 49 Jílové u Prahy, Czech Republic; (P.T.); (J.M.); (J.K.)
| | - Veronika Krchlíková
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Jiří Plachý
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 08 Prague, Czech Republic; (J.K.); (V.K.)
| | - Markéta Reinišová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Dana Kučerová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Josef Geryk
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Jiří Kalina
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Pohoří-Chotouň 90, 254 49 Jílové u Prahy, Czech Republic; (P.T.); (J.M.); (J.K.)
| | - Filip Šenigl
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Daniel Elleder
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 08 Prague, Czech Republic; (J.K.); (V.K.)
| | - Jiří Hejnar
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (A.K.); (V.K.); (J.P.); (M.R.); (D.K.); (J.G.); (F.Š.); (D.E.)
- Correspondence:
| |
Collapse
|
11
|
Abstract
Compared to the major histocompatibility complex (MHC) of typical mammals, the chicken BF/BL region is small and simple, with most of the genes playing central roles in the adaptive immune response. However, some genes of the chicken MHC are almost certainly involved in innate immunity, such as the complement component C4 and the lectin-like receptor/ligand gene pair BNK and Blec. The poorly expressed classical class I molecule BF1 is known to be recognised by natural killer (NK) cells and, analogous to mammalian immune responses, the classical class I molecules BF1 and BF2, the CD1 homologs and the butyrophilin homologs called BG may be recognised by adaptive immune lymphocytes with semi-invariant receptors in a so-called adaptate manner. Moreover, the TRIM and BG regions next to the chicken MHC, along with the genetically unlinked Y and olfactory/scavenger receptor regions on the same chromosome, have multigene families almost certainly involved in innate and adaptate responses. On this chicken microchromosome, the simplicity of the adaptive immune gene systems contrasts with the complexity of the gene systems potentially involved in innate immunity.
Collapse
|
12
|
The avian retroviral receptor Tva mediates the uptake of transcobalamin bound vitamin B12 (cobalamin). J Virol 2021; 95:JVI.02136-20. [PMID: 33504597 PMCID: PMC8103681 DOI: 10.1128/jvi.02136-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Avian sarcoma and leukosis viruses (ASLVs) are important chicken pathogens. Some of the virus subgroups, including ASLV-A and K, utilize the Tva receptor for cell entrance. Though Tva was identified three decades ago, its physiological function remains unknown. Previously, we have noted an intriguing resemblance and orthology between the chicken gene coding for Tva and the human gene coding for CD320, a receptor involved in cellular uptake of transcobalamin (TC) in complex with vitamin B12/cobalamin (Cbl).Here we show that both the transmembrane and the glycosylphosphatidylinositol (GPI)-anchored form of Tva in the chicken cell line DF-1 promotes the uptake of Cbl with help of expressed and purified chicken TC. The uptake of TC-Cbl complex was monitored using an isotope- or fluorophore-labeled Cbl. We show that (i) TC-Cbl is internalized in chicken cells; and (ii) the uptake is lower in the Tva-knockout cells and higher in Tva-overexpressing cells when compared with wild type chicken cells. The relation between physiological function of Tva and its role in infection was elaborated by showing that infection with ASLV subgroups (targeting Tva) impairs the uptake of TC-Cbl, while this is not the case for cells infected with ASLV-B (not recognized by Tva). In addition, exposure of the cells to a high concentration of TC-Cbl alleviates the infection with Tva-dependent ASLV.IMPORTANCE: We demonstrate that the ASLV receptor Tva participates in the physiological uptake of TC-Cbl, because the viral infection suppresses the uptake of Cbl and vice versa. Our results pave the road for future studies addressing the issues: (i) whether a virus infection can be inhibited by TC-Cbl complexes in vivo; and (ii) whether any human virus employs the human TC-Cbl receptor CD320. In broader terms, our study sheds light on the intricate interplay between physiological roles of cellular receptors and their involvement in virus infection.
Collapse
|
13
|
The Bipartite Sequence Motif in the N and C Termini of gp85 of Subgroup J Avian Leukosis Virus Plays a Crucial Role in Receptor Binding and Viral Entry. J Virol 2020; 94:JVI.01232-20. [PMID: 32878894 DOI: 10.1128/jvi.01232-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/29/2020] [Indexed: 01/24/2023] Open
Abstract
Subgroup J avian leukemia virus (ALV-J), belonging to the genus Alpharetrovirus, enters cells through its envelope surface unit (gp85) via specifically recognizing the cellular receptor chicken Na+/H+ exchanger type I (chNHE1), the 28 to 39 N-terminal residues of which were characterized as the minimal receptor functional domain in our previous studies. In this study, to further clarify the precise organization and properties of the interaction between ALV-J gp85 and chNHE1, we identified the chNHE1-binding domain of ALV-J gp85 using a series of gp85 mutants with segment substitutions and evaluating their effects on chNHE1 binding in protein-cell binding assays. Our results showed that hemagglutinin (HA) substitutions of amino acids (aa) 38 to 131 (N terminus of gp85) and aa 159 to 283 (C terminus of gp85) significantly inhibited the interaction between gp85 and chNHE1/chNHE1 loop 1. In addition, these HA-substituted chimeric gp85 proteins could not effectively block the entry of ALV-J into chNHE1-expressing cells. Furthermore, analysis of various N-linked glycosylation sites and cysteine mutants in gp85 revealed that glycosylation sites (N6 and N11) and cysteines (C3 and C9) were directly involved in receptor-gp85 binding and important for the entry of ALV-J into cells. Taken together, our findings indicated that the bipartite sequence motif, spanning aa 38 to 131 and aa 159 to 283, of ALV-J gp85 was essential for binding to chNHE1, with its two N-linked glycosylation sites and two cysteines being important for its receptor-binding function and subsequent viral infection steps.IMPORTANCE Infection of a cell by retroviruses requires the attachment and fusion of the host and viral membranes. The specific adsorption of envelope (Env) surface proteins to cell receptors is a key step in triggering infections and has been the target of antiviral drug screening. ALV-J is an economically important avian pathogen that belongs to the genus Alpharetrovirus and has a wider host range than other ALV subgroups. Our results showed that the amino acids 38 to 131 of the N terminus and 159 to 283 of the C terminus of ALV-J gp85 controlled the efficiency of gp85 binding to chNHE1 and were critical for viral infection. In addition, the glycosylation sites (N6 and N11) and cysteines (C3 and C9) of gp85 played a crucial role in the receptor binding and viral entry. These findings might help elucidate the mechanism of the entry of ALV-J into host cells and provide antiviral targets for the control of ALV-J.
Collapse
|
14
|
Herrmann T, Karunakaran MM, Fichtner AS. A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells. Immunol Rev 2020; 298:218-236. [PMID: 32981055 DOI: 10.1111/imr.12919] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023]
Abstract
Both, jawless and jawed vertebrates possess three lymphocyte lineages defined by highly diverse antigen receptors: Two T-cell- and one B-cell-like lineage. In both phylogenetic groups, the theoretically possible number of individual antigen receptor specificities can even outnumber that of lymphocytes of a whole organism. Despite fundamental differences in structure and genetics of these antigen receptors, convergent evolution led to functional similarities between the lineages. Jawed vertebrates possess αβ and γδ T-cells defined by eponymous αβ and γδ T-cell antigen receptors (TCRs). "Conventional" αβ T-cells recognize complexes of Major Histocompatibility Complex (MHC) class I and II molecules and peptides. Non-conventional T-cells, which can be αβ or γδ T-cells, recognize a large variety of ligands and differ strongly in phenotype and function between species and within an organism. This review describes similarities and differences of non-conventional T-cells of various species and discusses ligands and functions of their TCRs. A special focus is laid on Vγ9Vδ2 T-cells whose TCRs act as sensors for phosphorylated isoprenoid metabolites, so-called phosphoantigens (PAg), associated with microbial infections or altered host metabolism in cancer or after drug treatment. We discuss the role of butyrophilin (BTN)3A and BTN2A1 in PAg-sensing and how species comparison can help in a better understanding of this human Vγ9Vδ2 T-cell subset.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
15
|
Mucksová J, Reinišová M, Kalina J, Lejčková B, Hejnar J, Trefil P. Conservation of chicken male germline by orthotopic transplantation of primordial germ cells from genetically distant donors†. Biol Reprod 2020; 101:200-207. [PMID: 30980659 DOI: 10.1093/biolre/ioz064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Successful derivation and cultivation of primordial germ cells (PGCs) opened the way to efficient transgenesis and genome editing in the chicken. Furthermore, implantation of male PGCs from non-chicken galliform species into the chicken embryos resulted in cross-species germline chimeras and viable offspring. We have recently improved the PGC technology by demonstrating that chicken male PGCs transplanted into the testes of adult cockerel recipients mature into functional sperms. However, the availability of this orthotopic transplantation for cross-species transfer remains to be explored. Here we tested the capacity of genetically distant male PGCs to mature in the microenvironment of adult testes. We derived PGCs from the Chinese black-bone Silkie and transplanted them into infertile White Leghorn cockerels. Within 15-18 weeks after transplantation, we observed restoration of spermatogenesis in recipient cockerels and production of healthy progeny derived from the transplanted PGCs. Our findings also indicate the possibility of cross-species orthotopic transplantation of PGCs. Thus, our results might contribute to the preservation of endangered avian species and maintaining the genetic variability of the domestic chicken.
Collapse
Affiliation(s)
- Jitka Mucksová
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Jílové u Prahy, Czech Republic
| | - Markéta Reinišová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Kalina
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Jílové u Prahy, Czech Republic
| | - Barbora Lejčková
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Jílové u Prahy, Czech Republic
| | - Jiří Hejnar
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Trefil
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Jílové u Prahy, Czech Republic
| |
Collapse
|
16
|
Hellmich R, Sid H, Lengyel K, Flisikowski K, Schlickenrieder A, Bartsch D, Thoma T, Bertzbach LD, Kaufer BB, Nair V, Preisinger R, Schusser B. Acquiring Resistance Against a Retroviral Infection via CRISPR/Cas9 Targeted Genome Editing in a Commercial Chicken Line. Front Genome Ed 2020; 2:3. [PMID: 34713212 PMCID: PMC8525359 DOI: 10.3389/fgeed.2020.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/30/2020] [Indexed: 01/30/2023] Open
Abstract
Genome editing technology provides new possibilities for animal breeding and aid in understanding host-pathogen interactions. In poultry, retroviruses display one of the most difficult pathogens to control by conventional strategies such as vaccinations. Avian leukosis virus subgroup J (ALV-J) is an oncogenic, immunosuppressive retrovirus that causes myeloid leukosis and other tumors in chickens. Severe economic losses caused by ALV-J remain an unsolved problem in many parts of the world due to inefficient eradication strategies and lack of effective vaccines. ALV-J attachment and entry are mediated through the specific receptor, chicken Na+/H+ exchanger type 1 (chNHE1). The non-conserved amino acid tryptophan 38 (W38) in chNHE1 is crucial for virus entry, making it a favorable target for the introduction of disease resistance. In this study, we obtained ALV-J-resistance in a commercial chicken line by precise deletion of chNHE1 W38, utilizing the CRISPR/Cas9-system in combination with homology directed repair. The genetic modification completely protected cells from infection with a subgroup J retrovirus. W38 deletion did neither have a negative effect on the development nor on the general health condition of the gene edited chickens. Overall, the generation of ALV-J-resistant birds by precise gene editing demonstrates the immense potential of this approach as an alternative disease control strategy in poultry.
Collapse
Affiliation(s)
- Romina Hellmich
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Hicham Sid
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Kamila Lengyel
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Krzysztof Flisikowski
- Department of Animal Sciences, Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Antonina Schlickenrieder
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Denise Bartsch
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Theresa Thoma
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | | | | | | | | | - Benjamin Schusser
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
- *Correspondence: Benjamin Schusser
| |
Collapse
|
17
|
Suzuki T, Morimoto N, Akaike A, Osakada F. Multiplex Neural Circuit Tracing With G-Deleted Rabies Viral Vectors. Front Neural Circuits 2020; 13:77. [PMID: 31998081 PMCID: PMC6967742 DOI: 10.3389/fncir.2019.00077] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
Neural circuits interconnect to organize large-scale networks that generate perception, cognition, memory, and behavior. Information in the nervous system is processed both through parallel, independent circuits and through intermixing circuits. Analyzing the interaction between circuits is particularly indispensable for elucidating how the brain functions. Monosynaptic circuit tracing with glycoprotein (G) gene-deleted rabies viral vectors (RVΔG) comprises a powerful approach for studying the structure and function of neural circuits. Pseudotyping of RVΔG with the foreign envelope EnvA permits expression of transgenes such as fluorescent proteins, genetically-encoded sensors, or optogenetic tools in cells expressing TVA, a cognate receptor for EnvA. Trans-complementation with rabies virus glycoproteins (RV-G) enables trans-synaptic labeling of input neurons directly connected to the starter neurons expressing both TVA and RV-G. However, it remains challenging to simultaneously map neuronal connections from multiple cell populations and their interactions between intermixing circuits solely with the EnvA/TVA-mediated RV tracing system in a single animal. To overcome this limitation, here, we multiplexed RVΔG circuit tracing by optimizing distinct viral envelopes (oEnvX) and their corresponding receptors (oTVX). Based on the EnvB/TVB and EnvE/DR46-TVB systems derived from the avian sarcoma leukosis virus (ASLV), we developed optimized TVB receptors with lower or higher affinity (oTVB-L or oTVB-H) and the chimeric envelope oEnvB, as well as an optimized TVE receptor with higher affinity (oTVE-H) and its chimeric envelope oEnvE. We demonstrated independence of RVΔG infection between the oEnvA/oTVA, oEnvB/oTVB, and oEnvE/oTVE systems and in vivo proof-of-concept for multiplex circuit tracing from two distinct classes of layer 5 neurons targeting either other cortical or subcortical areas. We also successfully labeled common input of the lateral geniculate nucleus to both cortico-cortical layer 5 neurons and inhibitory neurons of the mouse V1 with multiplex RVΔG tracing. These oEnvA/oTVA, oEnvB/oTVB, and oEnvE/oTVE systems allow for differential labeling of distinct circuits to uncover the mechanisms underlying parallel processing through independent circuits and integrated processing through interaction between circuits in the brain.
Collapse
Affiliation(s)
- Toshiaki Suzuki
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Nao Morimoto
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Akinori Akaike
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.,PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
18
|
Hejnar J, Ruml T. The Current View of Retroviruses as Seen from the Shoulders of a Giant. Viruses 2019; 11:v11090828. [PMID: 31491994 PMCID: PMC6784152 DOI: 10.3390/v11090828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022] Open
Abstract
It has now been more than two years since we said our last goodbye to Jan Svoboda (14 [...].
Collapse
Affiliation(s)
- Jiří Hejnar
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, CZ-14220 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, CZ-166 28 Prague, Czech Republic.
| |
Collapse
|
19
|
The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A. J Virol 2019; 93:JVI.00580-19. [PMID: 31217247 DOI: 10.1128/jvi.00580-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/13/2019] [Indexed: 01/16/2023] Open
Abstract
Avian leukosis virus subgroup K (ALV-K) is composed of newly emerging isolates, which, in sequence analyses, cluster separately from the well-characterized subgroups A, B, C, D, E, and J. However, it remains unclear whether ALV-K represents an independent ALV subgroup with regard to receptor usage, host range, and superinfection interference. In the present study, we examined the host range of the Chinese infectious isolate JS11C1, an ALV-K prototype, and we found substantial overlap of species that were either resistant or susceptible to ALV-A and JS11C1. Ectopic expression of the chicken tva gene in mammalian cells conferred susceptibility to JS11C1, while genetic ablation of the tva gene rendered chicken DF-1 cells resistant to infection by JS11C1. Thus, tva expression is both sufficient and necessary for JS11C1 entry. Receptor sharing was also manifested in superinfection interference, with preinfection of cells with ALV-A, but not ALV-B or ALV-J, blocking subsequent JS11C1 infection. Finally, direct binding of JS11C1 and Tva was demonstrated by preincubation of the virus with soluble Tva, which substantially decreased viral infectivity in susceptible chicken cells. Collectively, these findings indicate that JS11C1 represents a new and bona fide ALV subgroup that utilizes Tva for cell entry and binds to a site other than that for ALV-A.IMPORTANCE ALV consists of several subgroups that are particularly characterized by their receptor usage, which subsequently dictates the host range and tropism of the virus. A few newly emerging and highly pathogenic Chinese ALV strains have recently been suggested to be an independent subgroup, ALV-K, based solely on their genomic sequences. Here, we performed a series of experiments with the ALV-K strain JS11C1, which showed its dependence on the Tva cell surface receptor. Due to the sharing of this receptor with ALV-A, both subgroups were able to interfere with superinfection. Because ALV-K could become an important pathogen and a significant threat to the poultry industry in Asia, the identification of a specific receptor could help in the breeding of resistant chicken lines with receptor variants with decreased susceptibility to the virus.
Collapse
|
20
|
Avian Sarcoma and Leukosis Virus Envelope Glycoproteins Evolve to Broaden Receptor Usage Under Pressure from Entry Competitors †. Viruses 2019; 11:v11060519. [PMID: 31195660 PMCID: PMC6630762 DOI: 10.3390/v11060519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
The subgroup A through E avian sarcoma and leukosis viruses (ASLV(A) through ASLV(E)) are a group of highly related alpharetroviruses that have evolved their envelope glycoproteins to use different receptors to enable efficient virus entry due to host resistance and/or to expand host range. Previously, we demonstrated that ASLV(A) in the presence of a competitor to the subgroup A Tva receptor, SUA-rIgG immunoadhesin, evolved to use other receptor options. The selected mutant virus, RCASBP(A)Δ155–160, modestly expanded its use of the Tvb and Tvc receptors and possibly other cell surface proteins while maintaining the binding affinity to Tva. In this study, we further evolved the Δ155–160 virus with the genetic selection pressure of a soluble form of the Tva receptor that should force the loss of Tva binding affinity in the presence of the Δ155–160 mutation. Viable ASLVs were selected that acquired additional mutations in the Δ155–160 Env hypervariable regions that significantly broadened receptor usage to include Tvb and Tvc as well as retaining the use of Tva as a receptor determined by receptor interference assays. A similar deletion in the hr1 hypervariable region of the subgroup C ASLV glycoproteins evolved to broaden receptor usage when selected on Tvc-negative cells.
Collapse
|
21
|
Yin X, Melder DC, Payne WS, Dodgson JB, Federspiel MJ. Mutations in Both the Surface and Transmembrane Envelope Glycoproteins of the RAV-2 Subgroup B Avian Sarcoma and Leukosis Virus Are Required to Escape the Antiviral Effect of a Secreted Form of the Tvb S3 Receptor †. Viruses 2019; 11:v11060500. [PMID: 31159208 PMCID: PMC6630269 DOI: 10.3390/v11060500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
The subgroup A through E avian sarcoma and leukosis viruses ASLV(A) through ASLV(E) are a group of highly related alpharetroviruses that have evolved to use very different host protein families as receptors. We have exploited genetic selection strategies to force the replication-competent ASLVs to naturally evolve and acquire mutations to escape the pressure on virus entry and yield a functional replicating virus. In this study, evolutionary pressure was exerted on ASLV(B) virus entry and replication using a secreted for of its Tvb receptor. As expected, mutations in the ASLV(B) surface glycoprotein hypervariable regions were selected that knocked out the ability for the mutant glycoprotein to bind the sTvbS3-IgG inhibitor. However, the subgroup B Rous associated virus 2 (RAV-2) also required additional mutations in the C-terminal end of the SU glycoprotein and multiple regions of TM highlighting the importance of the entire viral envelope glycoprotein trimer structure to mediate the entry process efficiently. These mutations altered the normal two-step ASLV membrane fusion process to enable infection.
Collapse
Affiliation(s)
- Xueqian Yin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Deborah C Melder
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - William S Payne
- Department of Microbiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jerry B Dodgson
- Department of Microbiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Mark J Federspiel
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
22
|
Reverse Engineering Provides Insights on the Evolution of Subgroups A to E Avian Sarcoma and Leukosis Virus Receptor Specificity. Viruses 2019; 11:v11060497. [PMID: 31151254 PMCID: PMC6630264 DOI: 10.3390/v11060497] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
The initial step of retrovirus entry—the interaction between the virus envelope glycoprotein trimer and a cellular receptor—is complex, involving multiple, noncontiguous determinants in both proteins that specify receptor choice, binding affinity and the ability to trigger conformational changes in the viral glycoproteins. Despite the complexity of this interaction, retroviruses have the ability to evolve the structure of their envelope glycoproteins to use a different cellular protein as receptors. The highly homologous subgroup A to E Avian Sarcoma and Leukosis Virus (ASLV) glycoproteins belong to the group of class 1 viral fusion proteins with a two-step triggering mechanism that allows experimental access to intermediate structures during the fusion process. We and others have taken advantage of replication-competent ASLVs and exploited genetic selection strategies to force the ASLVs to naturally evolve and acquire envelope glycoprotein mutations to escape the pressure on virus entry and still yield a functional replicating virus. This approach allows for the simultaneous selection of multiple mutations in multiple functional domains of the envelope glycoprotein that may be required to yield a functional virus. Here, we review the ASLV family and experimental system and the reverse engineering approaches used to understand the evolution of ASLV receptor usage.
Collapse
|
23
|
Lee HJ, Park KJ, Lee KY, Yao Y, Nair V, Han JY. Sequential disruption of ALV host receptor genes reveals no sharing of receptors between ALV subgroups A, B, and J. J Anim Sci Biotechnol 2019; 10:23. [PMID: 30976416 PMCID: PMC6444617 DOI: 10.1186/s40104-019-0333-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Previously, we showed that targeted disruption of viral receptor genes in avian leukosis virus (ALV) subgroups using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9))-based genome editing confers resistance to ALV subgroups B and J. Here, we used the same strategy to target the receptor expressed by ALV subgroup A (TVA) and generate chicken cells resistant to infection by this virus. Results CRISPR/Cas9-based disruption of exon 2 within the tva gene of DF-1 fibroblasts conferred resistance to infection by ALV subgroup A regardless of whether frameshift mutations were introduced during editing. Conversely, overexpression of the wild-type TVA receptor (wtTVA) by tva-modified DF-1 clones restored susceptibility to ALV subgroup A. The results confirm that exon 2, which contains the low-density lipoprotein receptor class A domain of TVA, is critical for virus entry. Furthermore, we sequentially modified DF-1 cells by editing the tva, tvb, and Na+/H+ exchange 1 (chNHE1) genes, which are the specific receptors for ALV subgroups A, B, and J, respectively. Conclusions Simultaneous editing of multiple receptors to block infection by different subgroups of ALV confirmed that ALV subgroups A, B, and J do not share host receptors. This strategy could be used to generate cells resistant to multiple viral pathogens that use distinct receptors for cell entry.
Collapse
Affiliation(s)
- Hong Jo Lee
- 1Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Kyung Je Park
- 1Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Kyung Youn Lee
- 1Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Yongxiu Yao
- 2The Pirbright Institute, Woking, Surrey GU24 0NF UK
| | | | - Jae Yong Han
- 1Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
24
|
Koslová A, Kučerová D, Reinišová M, Geryk J, Trefil P, Hejnar J. Genetic Resistance to Avian Leukosis Viruses Induced by CRISPR/Cas9 Editing of Specific Receptor Genes in Chicken Cells. Viruses 2018; 10:E605. [PMID: 30400152 PMCID: PMC6266994 DOI: 10.3390/v10110605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/28/2023] Open
Abstract
Avian leukosis viruses (ALVs), which are pathogens of concern in domestic poultry, utilize specific receptor proteins for cell entry that are both necessary and sufficient for host susceptibility to a given ALV subgroup. This unequivocal relationship offers receptors as suitable targets of selection and biotechnological manipulation with the aim of obtaining virus-resistant poultry. This approach is further supported by the existence of natural knock-outs of receptor genes that segregate in inbred lines of chickens. We used CRISPR/Cas9 genome editing tools to introduce frame-shifting indel mutations into tva, tvc, and tvj loci encoding receptors for the A, C, and J ALV subgroups, respectively. For all three loci, the homozygous frame-shifting indels generating premature stop codons induced phenotypes which were fully resistant to the virus of respective subgroup. In the tvj locus, we also obtained in-frame deletions corroborating the importance of W38 and the four amino-acids preceding it. We demonstrate that CRISPR/Cas9-mediated knock-out or the fine editing of ALV receptor genes might be the first step in the development of virus-resistant chickens.
Collapse
Affiliation(s)
- Anna Koslová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, CZ 14220 Prague 4, Czech Republic.
| | - Dana Kučerová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, CZ 14220 Prague 4, Czech Republic.
| | - Markéta Reinišová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, CZ 14220 Prague 4, Czech Republic.
| | - Josef Geryk
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, CZ 14220 Prague 4, Czech Republic.
| | - Pavel Trefil
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, 254 49 Jílové u Prahy, Czech Republic.
| | - Jiří Hejnar
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
25
|
Weiss RA. Remembering Jan Svoboda: A Personal Reflection. Viruses 2018; 10:v10040203. [PMID: 29670049 PMCID: PMC5923497 DOI: 10.3390/v10040203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
The Czech scientist Jan Svoboda was a pioneer of Rous sarcoma virus (RSV). In the 1960s, before the discovery of reverse transcriptase, he demonstrated the long-term persistence of the viral genome in non-productive mammalian cells, and he supported the DNA provirus hypothesis of Howard Temin. He showed how the virus can be rescued in the infectious form and elucidated the replication-competent nature of the Prague strain of RSV later used for the identification of the src oncogene. His studies straddled molecular oncology and virology, and he remained an active contributor to the field until his death last year. Throughout the 50 years that I was privileged to know Svoboda as my mentor and friend, I admired his depth of scientific inquiry and his steadfast integrity in the face of political oppression.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Li X, Chen W, Zhang H, Li A, Shu D, Li H, Dai Z, Yan Y, Zhang X, Lin W, Ma J, Xie Q. Naturally Occurring Frameshift Mutations in the tvb Receptor Gene Are Responsible for Decreased Susceptibility of Chicken to Infection with Avian Leukosis Virus Subgroups B, D, and E. J Virol 2018; 92:e01770-17. [PMID: 29263268 PMCID: PMC5874434 DOI: 10.1128/jvi.01770-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution.IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced functionality in mediating subgroup B, D, and E ALV infection. Unlike the control of herpesvirus-induced diseases by vaccination, the control of avian leukosis in chickens has relied totally on virus eradication measures and host genetic resistance. This finding enriches the allelic pool of the tvb gene and expands the potential for genetic improvement of ALV resistance in varied chicken populations by selection.
Collapse
Affiliation(s)
- Xinjian Li
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
| | - Weiguo Chen
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, People's Republic of China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Aijun Li
- College of Science and Engineering, Jinan University, Guangzhou, People's Republic of China
| | - Dingming Shu
- Institute of Animal Science, Guangdong Academy of Agriculture Sciences, Guangzhou, People's Republic of China
| | - Hongxing Li
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
| | - Zhenkai Dai
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, People's Republic of China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, People's Republic of China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, People's Republic of China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, People's Republic of China
| |
Collapse
|
27
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
28
|
Residues 28 to 39 of the Extracellular Loop 1 of Chicken Na +/H + Exchanger Type I Mediate Cell Binding and Entry of Subgroup J Avian Leukosis Virus. J Virol 2017; 92:JVI.01627-17. [PMID: 29070685 DOI: 10.1128/jvi.01627-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
Chicken Na+/H+ exchanger type I (chNHE1), a multispan transmembrane protein, is a cellular receptor of the subgroup J avian leukosis virus (ALV-J). To identify the functional determinants of chNHE1 responsible for the ALV-J receptor activity, a series of chimeric receptors was created by exchanging the extracellular loops (ECL) of human NHE1 (huNHE1) and chNHE1 and by ECL replacement with a hemagglutinin (HA) tag. These chimeric receptors then were used in binding and entry assays to map the minimal ALV-J gp85-binding domain of chNHE1. We show that ECL1 of chNHE1 (chECL1) is the critical functional ECL that interacts directly with ALV-J gp85; ECL3 is also involved in ALV-J gp85 binding. Amino acid residues 28 to 39 of the N-terminal membrane-proximal region of chECL1 constitute the minimal domain required for chNHE1 binding of ALV-J gp85. These residues are sufficient to mediate viral entry into ALV-J nonpermissive cells. Point mutation analysis revealed that A30, V33, W38, and E39 of chECL1 are the key residues mediating the binding between chNHE1 and ALV-J gp85. Further, the replacement of residues 28 to 39 of huNHE1 with the corresponding chNHE1 residues converted the nonfunctional ALV-J receptor huNHE1 to a functional one. Importantly, soluble chECL1 and huECL1 harboring chNHE1 residues 28 to 39 both could effectively block ALV-J infection. Collectively, our findings indicate that residues 28 to 39 of chNHE1 constitute a domain that is critical for receptor function and mediate ALV-J entry.IMPORTANCE chNHE1 is a cellular receptor of ALV-J, a retrovirus that causes infections in chickens and serious economic losses in the poultry industry. Until now, the domains determining the chNHE1 receptor function remained unknown. We demonstrate that chECL1 is critical for receptor function, with residues 28 to 39 constituting the minimal functional domain responsible for chNHE1 binding of ALV-J gp85 and efficiently mediating ALV-J cell entry. These residues are located in the membrane-proximal region of the N terminus of chECL1, suggesting that the binding site of ALV-J gp85 on chNHE1 is probably located on the apex of the molecule; the receptor-binding mode might be different from that of retroviruses. We also found that soluble chECL1, as well as huECL1 harboring chNHE1 residues 28 to 39, effectively blocked ALV-J infection. These findings contribute to a better understanding of the ALV-J infection mechanism and also provide new insights into the control strategies for ALV-J infection.
Collapse
|
29
|
Lee HJ, Lee KY, Jung KM, Park KJ, Lee KO, Suh JY, Yao Y, Nair V, Han JY. Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:340-349. [PMID: 28899753 DOI: 10.1016/j.dci.2017.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J), first isolated in the late 1980s, has caused economic losses to the poultry industry in many countries. As all chicken lines studied to date are susceptible to ALV infection, there is enormous interest in developing resistant chicken lines. The ALV-J receptor, chicken Na+/H+ exchange 1 (chNHE1) and the critical amino acid sequences involved in viral attachment and entry have already been characterized. However, there are no reported attempts to induce resistance to the virus by targeted genome modification of the receptor sequences. In an attempt to induce resistance to ALV-J infection, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated (CRISPR/Cas9)-based genome editing approaches to modify critical residues of the chNHE1 receptor in chicken cells. The susceptibility of the modified cell lines to ALV-J infection was examined using enhanced green fluorescent protein (EGFP)-expressing marker viruses. We showed that modifying the chNHE1 receptor by artificially generating a premature stop codon induced absolute resistance to viral infection, with mutations of the tryptophan residue at position 38 (Trp38) being very critical. Single-stranded oligodeoxynucleotide (ssODN)-mediated targeted recombination of the Trp38 region revealed that deletions involving the Trp38 residue were most effective in conferring resistance to ALV-J. Moreover, protein structure analysis of the chNHE1 receptor sequence suggested that its intrinsically disordered region undergoes local conformational changes through genetic alteration. Collectively, these results demonstrate that targeted mutations on chNHE1 alter the susceptibility to ALV-J and the technique is expected to contribute to develop disease-resistant chicken lines.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Kyung Min Jung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Kyung Je Park
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Ko On Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.
| | - Yongxiu Yao
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom.
| | - Venugopal Nair
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom.
| | - Jae Yong Han
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.
| |
Collapse
|
30
|
Chen W, Liu Y, Li A, Li X, Li H, Dai Z, Yan Y, Zhang X, Shu D, Zhang H, Lin W, Ma J, Xie Q. A premature stop codon within the tvb receptor gene results in decreased susceptibility to infection by avian leukosis virus subgroups B, D, and E. Oncotarget 2017; 8:105942-105956. [PMID: 29285305 PMCID: PMC5739692 DOI: 10.18632/oncotarget.22512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022] Open
Abstract
Avian leukosis virus (ALV) is an oncogenic virus causing a variety of neoplasms in chickens. The group of avian leukosis virus in chickens contains six closely related subgroups, A to E and J. The prevalence of ALVs in hosts may have imposed strong selective pressure toward resistance to ALVs infection. The tvb gene encodes Tvb receptor and determines susceptibility or resistance to the subgroups B, D, and E ALV. In this study, we characterized a novel resistant allele of the tvb receptor gene, tvbr3, which carries a single-nucleotide substitution (c.298C>T) that constitutes a premature termination codon within the fourth exon and leads to the production of a truncated TvbR3 receptor protein. As a result, we observed decreased susceptibility to infection by ALV-B, ALV-D and ALV-E both in vitro and in vivo, and decreased the binding affinity of the TvbR3 receptor for the subgroups B, D, and E ALV envelope glycoproteins. Additionally, we found that the tvbr3 allele was prevalent in Chinese broiler lines. This study demonstrated that premature termination codon in the tvb receptor gene can confer genetic resistance to subgroups B, D, and E ALV in the host, and indicates that tvbr3 could potentially serve as a resistant target against ALV-B, ALV-D and ALV-E infection.
Collapse
Affiliation(s)
- WeiGuo Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Yang Liu
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Aijun Li
- College of Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Xinjian Li
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Hongxing Li
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Zhenkai Dai
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Dingming Shu
- Institute of Animal Science, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, P. R. China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| |
Collapse
|
31
|
Lee HJ, Kim YM, Ono T, Han JY. Genome Modification Technologies and Their Applications in Avian Species. Int J Mol Sci 2017; 18:ijms18112245. [PMID: 29072628 PMCID: PMC5713215 DOI: 10.3390/ijms18112245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/01/2022] Open
Abstract
The rapid development of genome modification technology has provided many great benefits in diverse areas of research and industry. Genome modification technologies have also been actively used in a variety of research areas and fields of industry in avian species. Transgenic technologies such as lentiviral systems and piggyBac transposition have been used to produce transgenic birds for diverse purposes. In recent years, newly developed programmable genome editing tools such as transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) have also been successfully adopted in avian systems with primordial germ cell (PGC)-mediated genome modification. These genome modification technologies are expected to be applied to practical uses beyond system development itself. The technologies could be used to enhance economic traits in poultry such as acquiring a disease resistance or producing functional proteins in eggs. Furthermore, novel avian models of human diseases or embryonic development could also be established for research purposes. In this review, we discuss diverse genome modification technologies used in avian species, and future applications of avian biotechnology.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Young Min Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Tamao Ono
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| | - Jae Yong Han
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| |
Collapse
|
32
|
Lee HJ, Lee KY, Park YH, Choi HJ, Yao Y, Nair V, Han JY. Acquisition of resistance to avian leukosis virus subgroup B through mutations on tvb cysteine-rich domains in DF-1 chicken fibroblasts. Vet Res 2017; 48:48. [PMID: 28903753 PMCID: PMC5598054 DOI: 10.1186/s13567-017-0454-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/19/2017] [Indexed: 01/11/2023] Open
Abstract
Avian leukosis virus (ALV) is a retrovirus that causes tumors in avian species, and its vertical and horizontal transmission in poultry flocks results in enormous economic losses. Despite the discovery of specific host receptors, there have been few reports on the modulation of viral susceptibility via genetic modification. We therefore engineered acquired resistance to ALV subgroup B using CRISPR/Cas9-mediated genome editing technology in DF-1 chicken fibroblasts. Using this method, we efficiently modified the tumor virus locus B (tvb) gene, encoding the TVB receptor, which is essential for ALV subgroup B entry into host cells. By expanding individual DF-1 clones, we established that artificially generated premature stop codons in the cysteine-rich domain (CRD) of TVB receptor confer resistance to ALV subgroup B. Furthermore, we found that a cysteine residue (C80) of CRD2 plays a crucial role in ALV subgroup B entry. These results suggest that CRISPR/Cas9-mediated genome editing can be used to efficiently modify avian cells and establish novel chicken cell lines with resistance to viral infection.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yongxiu Yao
- The Pirbright Institute, Woking, Pirbright, Surrey, GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute, Woking, Pirbright, Surrey, GU24 0NF, UK
| | - Jae Yong Han
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea. .,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
| |
Collapse
|
33
|
Abstract
The surface envelope protein of any virus is major determinant of the host cell that is infected and as a result a major determinant of viral pathogenesis. Retroviruses have a single surface protein named Env. It is a trimer of heterodimers and is responsible for binding to the host cell receptor and mediating fusion between the viral and host membranes. In this review we will discuss the history of the discovery of the avian leukosis virus (ALV) and human immunodeficiency virus type 1 (HIV-1) Env proteins and their receptor specificity, comparing the many differences but having some similarities. Much of the progress in these fields has relied on viral genetics and genetic polymorphisms in the host population. A special feature of HIV-1 is that its persistent infection in its human host, to the point of depleting its favorite target cells, allows the virus to evolve new entry phenotypes to expand its host range into several new cell types. This variety of entry phenotypes has led to confusion in the field leading to the major form of entry phenotype of HIV-1 being overlooked until recently. Thus an important part of this story is the description and naming of the most abundant entry form of the virus: R5 T cell-tropic HIV-1.
Collapse
|
34
|
Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry. Proc Natl Acad Sci U S A 2017; 114:E5148-E5157. [PMID: 28607078 DOI: 10.1073/pnas.1704750114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The extent of virus transmission among individuals and species is generally determined by the presence of specific membrane-embedded virus receptors required for virus entry. Interaction of the viral envelope glycoprotein (Env) with a specific cellular receptor is the first and crucial step in determining host specificity. Using a well-established retroviral model-avian Rous sarcoma virus (RSV)-we analyzed changes in an RSV variant that had repeatedly been able to infect rodents. By envelope gene (env) sequencing, we identified eight mutations that do not match the already described mutations influencing the host range. Two of these mutations-one at the beginning (D32G) of the surface Env subunit (SU) and the other at the end of the fusion peptide region (L378S)-were found to be of critical importance, ensuring transmission to rodent, human, and chicken cells lacking the appropriate receptor. Furthermore, we carried out assays to examine the virus entry mechanism and concluded that these two mutations cause conformational changes in the Env variant and that these changes lead to an activated, or primed, state of Env (normally induced after Env interaction with the receptor). In summary, our results indicate that retroviral host range extension is caused by spontaneous Env activation, which circumvents the need for original cell receptor. This activation is, in turn, caused by mutations in various env regions.
Collapse
|
35
|
Chattaway J, Ramirez-Valdez RA, Chappell PE, Caesar JJE, Lea SM, Kaufman J. Different modes of variation for each BG lineage suggest different functions. Open Biol 2017; 6:rsob.160188. [PMID: 27628321 PMCID: PMC5043582 DOI: 10.1098/rsob.160188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/17/2016] [Indexed: 01/14/2023] Open
Abstract
Mammalian butyrophilins have various important functions, one for lipid binding but others as ligands for co-inhibition of αβ T cells or for stimulation of γδ T cells in the immune system. The chicken BG homologues are dimers, with extracellular immunoglobulin variable (V) domains joined by cysteines in the loop equivalent to complementarity-determining region 1 (CDR1). BG genes are found in three genomic locations: BG0 on chromosome 2, BG1 in the classical MHC (the BF-BL region) and many BG genes in the BG region just outside the MHC. Here, we show that BG0 is virtually monomorphic, suggesting housekeeping function(s) consonant with the ubiquitous tissue distribution. BG1 has allelic polymorphism but minimal sequence diversity, with the few polymorphic residues at the interface of the two V domains, suggesting that BG1 is recognized by receptors in a conserved fashion. Any phenotypic variation should be due to the intracellular region, with differential exon usage between alleles. BG genes in the BG region can generate diversity by exchange of sequence cassettes located in loops equivalent to CDR1 and CDR2, consonant with recognition of many ligands or antigens for immune defence. Unlike the mammalian butyrophilins, there are at least three modes by which BG genes evolve.
Collapse
Affiliation(s)
- John Chattaway
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | - Paul E Chappell
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Joseph J E Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
36
|
Plachý J, Reinišová M, Kučerová D, Šenigl F, Stepanets V, Hron T, Trejbalová K, Elleder D, Hejnar J. Identification of New World Quails Susceptible to Infection with Avian Leukosis Virus Subgroup J. J Virol 2017; 91:e02002-16. [PMID: 27881654 PMCID: PMC5244330 DOI: 10.1128/jvi.02002-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
The J subgroup of avian leukosis virus (ALV-J) infects domestic chickens, jungle fowl, and turkeys. This virus enters the host cell through a receptor encoded by the tvj locus and identified as Na+/H+ exchanger 1. The resistance to avian leukosis virus subgroup J in a great majority of galliform species has been explained by deletions or substitutions of the critical tryptophan 38 in the first extracellular loop of Na+/H+ exchanger 1. Because there are concerns of transspecies virus transmission, we studied natural polymorphisms and susceptibility/resistance in wild galliforms and found the presence of tryptophan 38 in four species of New World quails. The embryo fibroblasts of New World quails are susceptible to infection with avian leukosis virus subgroup J, and the cloned Na+/H+ exchanger 1 confers susceptibility on the otherwise resistant host. New World quails are also susceptible to new avian leukosis virus subgroup J variants but resistant to subgroups A and B and weakly susceptible to subgroups C and D of avian sarcoma/leukosis virus due to obvious defects of the respective receptors. Our results suggest that the avian leukosis virus subgroup J could be transmitted to New World quails and establish a natural reservoir of circulating virus with a potential for further evolution. IMPORTANCE Since its spread in broiler chickens in China and Southeast Asia in 2000, ALV-J remains a major enzootic challenge for the poultry industry. Although the virus diversifies rapidly in the poultry, its spillover and circulation in wild bird species has been prevented by the resistance of most species to ALV-J. It is, nevertheless, important to understand the evolution of the virus and its potential host range in wild birds. Because resistance to avian retroviruses is due particularly to receptor incompatibility, we studied Na+/H+ exchanger 1, the receptor for ALV-J. In New World quails, we found a receptor compatible with virus entry, and we confirmed the susceptibilities of four New World quail species in vitro We propose that a prospective molecular epidemiology study be conducted to identify species with the potential to become reservoirs for ALV-J.
Collapse
Affiliation(s)
- Jiří Plachý
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Markéta Reinišová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dana Kučerová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Filip Šenigl
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Volodymyr Stepanets
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tomáš Hron
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Kateřina Trejbalová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Daniel Elleder
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Hejnar
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
37
|
Wang L, Mei M, Qin A, Ye J, Qian K, Shao H. Membrane-associated GRP78 helps subgroup J avian leucosis virus enter cells. Vet Res 2016; 47:92. [PMID: 27599847 PMCID: PMC5011807 DOI: 10.1186/s13567-016-0373-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023] Open
Abstract
We previously identified chicken Annexin A2 (chANXA2) as a novel receptor for retrovirus avian leucosis virus subgroup J (ALV-J), using a DF1 cell line expressing the viral envelope (env) protein. To further probe whether other proteins participate in virus infection, we investigated several host proteins from co-immunoprecipitation with the DF1 cell line expressing viral env. Mass spectrometry analysis indicates that the chicken glucose-regulation protein 78 (chGRP78) of the DF1 membrane interacted with the ALV-J env protein. The results revealed that antibodies or siRNA to chGRP78 significantly inhibited ALV-J infection and replication, and over-expression of chGRP78 enabled the entry of ALV-J into non-susceptible cells. Taken together, these results are the first to report that chGRP78 functions to help ALV-J enter cells.
Collapse
Affiliation(s)
- Lin Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| | - Mei Mei
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Key Lab of Zoonosis, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| |
Collapse
|
38
|
Affiliation(s)
- David A. Rhodes
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - John Trowsdale
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
39
|
Abstract
This article summarizes the essential steps in understanding the chicken Rous sarcoma virus (RSV) genome association with a nonpermissive rodent host cell genome. This insight was made possible by in-depth study of RSV-transformed rat XC cells, which were called virogenic because they indefinitely carry virus genetic information in the absence of any infectious virus production. However, the virus was rescued by association of XC cells with chicken fibroblasts, allowing cell fusion between both partners. This and additional studies led to the interpretation that the RSV genome gets integrated into the host cell genome as a provirus. Study of additional rodent virogenic cell lines provided evidence that the transcript of oncogene v-src can be transmitted to other retroviruses and produce cell transformation by itself. As discussed in the text, two main questions related to nonpermissiveness to retrovirus infection remain to be solved. The first is changes in the retrovirus envelope gene allowing virus entry into a nonpermissive cell. The second is the nature of the permissive cell functions required by the nonpermissive cell to ensure infectious virus production. Both lines of investigation are being pursued.
Collapse
|
40
|
Reinišová M, Plachý J, Kučerová D, Šenigl F, Vinkler M, Hejnar J. Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species. PLoS One 2016; 11:e0150589. [PMID: 26978658 PMCID: PMC4792377 DOI: 10.1371/journal.pone.0150589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 02/16/2016] [Indexed: 11/30/2022] Open
Abstract
J subgroup avian leukosis virus (ALV-J) infects domestic chicken, jungle fowl, and turkey and enters the host cell through a receptor encoded by tvj locus and identified as Na+/H+ exchanger 1 (NHE1). The resistance to ALV-J in a great majority of examined galliform species was explained by deletions or substitutions of the critical tryptophan 38 in the first extracellular loop of NHE1, and genetic polymorphisms around this site predict the susceptibility or resistance of a given species or individual. In this study, we examined the NHE1 polymorphism in domestic chicken breeds and documented quantitative differences in their susceptibility to ALV-J in vitro. In a panel of chicken breeds assembled with the aim to cover the maximum variability encountered in domestic chickens, we found a completely uniform sequence of NHE1 extracellular loop 1 (ECL1) without any source of genetic variation for the selection of ALV-J-resistant poultry. In parallel, we studied the natural polymorphisms of NHE1 in wild ducks and geese because of recent reports on ALV-J positivity in feral Asian species. In anseriform species, we demonstrate a specific and highly conserved critical ECL1 sequence without any homologue of tryptophan 38 in accordance with the resistance of duck cells to prototype ALV-J. Last, we demonstrated that the new Asian strains of ALV-J have not evolved their envelope glycoprotein to the entry the duck cells. Our results contribute substantially to the current discussion of possible heterotransmission of ALV-J and its spill-over into the wild ducks and geese.
Collapse
Affiliation(s)
- Markéta Reinišová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220, Prague 4, Czech Republic
| | - Jiří Plachý
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220, Prague 4, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220, Prague 4, Czech Republic
| | - Filip Šenigl
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220, Prague 4, Czech Republic
| | - Michal Vinkler
- Charles University in Prague, Faculty of Science, Department of Zoology, Vinicna 7, CZ-12844, Prague 2, Czech Republic
| | - Jiří Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220, Prague 4, Czech Republic
- * E-mail:
| |
Collapse
|
41
|
Avian sarcoma leukosis virus receptor-envelope system for simultaneous dissection of multiple neural circuits in mammalian brain. Proc Natl Acad Sci U S A 2015; 112:E2947-56. [PMID: 25991858 DOI: 10.1073/pnas.1423963112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathway-specific gene delivery is requisite for understanding complex neuronal systems in which neurons that project to different target regions are locally intermingled. However, conventional genetic tools cannot achieve simultaneous, independent gene delivery into multiple target cells with high efficiency and low cross-reactivity. In this study, we systematically screened all receptor-envelope pairs resulting from the combination of four avian sarcoma leukosis virus (ASLV) envelopes (EnvA, EnvB, EnvC, and EnvE) and five engineered avian-derived receptors (TVA950, TVB(S3), TVC, TVB(T), and DR-46TVB) in vitro. Four of the 20 pairs exhibited both high infection rates (TVA-EnvA, 99.6%; TVB(S3)-EnvB, 97.7%; TVC-EnvC, 98.2%; and DR-46TVB-EnvE, 98.8%) and low cross-reactivity (<2.5%). Next, we tested these four receptor-envelope pairs in vivo in a pathway-specific gene-transfer method. Neurons projecting into a limited somatosensory area were labeled with each receptor by retrograde gene transfer. Three of the four pairs exhibited selective transduction into thalamocortical neurons expressing the paired receptor (>98%), with no observed cross-reaction. Finally, by expressing three receptor types in a single animal, we achieved pathway-specific, differential fluorescent labeling of three thalamic neuronal populations, each projecting into different somatosensory areas. Thus, we identified three orthogonal pairs from the list of ASLV subgroups and established a new vector system that provides a simultaneous, independent, and highly specific genetic tool for transferring genes into multiple target cells in vivo. Our approach is broadly applicable to pathway-specific labeling and functional analysis of diverse neuronal systems.
Collapse
|
42
|
Chen W, Liu Y, Li H, Chang S, Shu D, Zhang H, Chen F, Xie Q. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A. Sci Rep 2015; 5:9900. [PMID: 25873518 PMCID: PMC4397534 DOI: 10.1038/srep09900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/17/2015] [Indexed: 12/16/2022] Open
Abstract
The group of avian sarcoma and leukosis virus (ASLV) in chickens contains six highly related subgroups, A to E and J. Four genetic loci, tva, tvb, tvc and tvj, encode for corresponding receptors that determine the susceptibility to the ASLV subgroups. The prevalence of ASLV in hosts may have imposed strong selection pressure toward resistance to ASLV infection, and the resistant alleles in all four receptor genes have been identified. In this study, two new alleles of the tva receptor gene, tvar5 and tvar6, with similar intronic deletions were identified in Chinese commercial broilers. These natural mutations delete the deduced branch point signal within the first intron, disrupting mRNA splicing of the tva receptor gene and leading to the retention of intron 1 and introduction of premature TGA stop codons in both the longer and shorter tva isoforms. As a result, decreased susceptibility to subgroup A ASLV in vitro and in vivo was observed in the subsequent analysis. In addition, we identified two groups of heterozygous allele pairs which exhibited quantitative differences in host susceptibility to ASLV-A. This study demonstrated that defective splicing of the tva receptor gene can confer genetic resistance to ASLV subgroup A in the host.
Collapse
Affiliation(s)
- Weiguo Chen
- College of Animal Science, South China Agricultural University &Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P. R. China
| | - Yang Liu
- College of Animal Science, South China Agricultural University &Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P. R. China
| | - Hongxing Li
- College of Animal Science, South China Agricultural University &Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P. R. China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Dingming Shu
- Institute of Animal Science, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, P. R. China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, U.S.A
| | - Feng Chen
- 1] College of Animal Science, South China Agricultural University &Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P. R. China [2] South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, P. R. China
| | - Qingmei Xie
- 1] College of Animal Science, South China Agricultural University &Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P. R. China [2] Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P. R. China [3] South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, P. R. China
| |
Collapse
|
43
|
Novakovic P, Huang YY, Lockerbie B, Shahriar F, Kelly J, Gordon JR, Middleton DM, Loewen ME, Kidney BA, Simko E. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2015; 79:120-128. [PMID: 25852227 PMCID: PMC4365703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/23/2014] [Indexed: 06/04/2023]
Abstract
F4ac-positive enterotoxigenic Escherichia coli (ETEC) must attach to the intestinal mucosa to cause diarrhea in piglets. Prevention of bacterial attachment to the intestinal mucosa is the most effective defense against ETEC-induced diarrhea. Porcine milk fat globule membranes (MFGM) were shown to be able to inhibit attachment of ETEC to the intestinal brush border; however, the specific components of porcine MFGM that inhibited attachment of ETEC to enterocytes were not identified. Accordingly, the purpose of this study was to identify F4ac-binding MFGM proteins by overlay Western blot and affinity chromatography. The proteome of porcine MFGM was characterized and the following F4ac-binding proteins were detected by overlay Western blot and affinity chromatography: lactadherin, butyrophilin, adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3. The biological function of these proteins was not investigated but it is possible that their interaction with F4ac fimbria interferes with bacterial attachment and colonization.
Collapse
Affiliation(s)
| | - Yanyun Y. Huang
- Address all correspondence to Dr. Y.Y. Huang; telephone: (306) 966-7307; fax: (306) 966-7439; e-mail: or Dr. E. Simko; e-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mei M, Ye J, Qin A, Wang L, Hu X, Qian K, Shao H. Identification of novel viral receptors with cell line expressing viral receptor-binding protein. Sci Rep 2015; 5:7935. [PMID: 25604889 PMCID: PMC4300512 DOI: 10.1038/srep07935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/23/2014] [Indexed: 01/25/2023] Open
Abstract
The viral cell receptors and infection can be blocked by the expression of the viral receptor-binding protein. Thus, the viral cell receptor is an attractive target for anti-viral strategies, and the identification of viral cell receptor is critical for better understanding and controlling viral disease. As a model system for viral entry and anti-retroviral approaches, avian sarcoma/leukosis virus (ASLV, including the A-J ten subgroups) has been studied intensively and many milestone discoveries have been achieved based on work with ASLV. Here, we used a DF1 cell line expressed viral receptor-binding protein to efficiently identify chicken Annexin A2 (chANXA2) as a novel receptor for retrovirus ALV-J (avian leukosis virus subgroup J). Our data demonstrate that antibodies or siRNA to chANXA2 significantly inhibited ALV-J infection and replication, and over-expression of chANXA2 permitted the entry of ALV-J into its non-permissible cells. Our findings have not only identified chANXA2 as a novel biomarker for anti-ALV-J, but also demonstrated that cell lines with the expression of viral receptor-binding protein could be as efficient tools for isolating functional receptors to identify novel anti-viral targets.
Collapse
Affiliation(s)
- Mei Mei
- 1] Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu. 225009, P. R. China [2] Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou. 225009, P. R. China
| | - Jianqiang Ye
- 1] Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu. 225009, P. R. China [2] Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou. 225009, P. R. China
| | - Aijian Qin
- 1] Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu. 225009, P. R. China [2] Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou. 225009, P. R. China [3] Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou. 225009, P. R. China
| | - Lin Wang
- 1] Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu. 225009, P. R. China [2] Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou. 225009, P. R. China
| | - Xuming Hu
- 1] Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu. 225009, P. R. China [2] Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou. 225009, P. R. China
| | - Kun Qian
- 1] Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu. 225009, P. R. China [2] Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou. 225009, P. R. China [3] Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou. 225009, P. R. China
| | - Hongxia Shao
- 1] Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu. 225009, P. R. China [2] Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou. 225009, P. R. China [3] Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou. 225009, P. R. China
| |
Collapse
|
45
|
Elamurugan A, Karthik K, Badasara SK, Hajam IA, Saravanan M. Novel insights into identification of shedders and transmitters of avian leukosis virus. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns. PLoS Genet 2014; 10:e1004417. [PMID: 24901252 PMCID: PMC4046983 DOI: 10.1371/journal.pgen.1004417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 04/14/2014] [Indexed: 11/19/2022] Open
Abstract
Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5′ untranslated regions (5′UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood. Many immune genes are multigene families, presumably in response to pathogen variation. Some multigene families undergo expansion and contraction, leading to copy number variation (CNV), presumably due to more intense selection. Recently, the butyrophilin family in humans and other mammals has come under scrutiny, due to genetic associations with autoimmune diseases as well as roles in immune co-regulation and antigen presentation. Butyrophilin genes exhibit allelic polymorphism, but gene number appears stable within a species. We found that the BG homologues in chickens are very different, with great changes between haplotypes. We characterised one haplotype in detail, showing that there are two single BG genes, one on chromosome 2 and the other in the major histocompatibility complex (BF-BL region) on chromosome 16, and a family of BG genes in a tandem array in the BG region nearby. These genes have specific expression in cells and tissues, but overall are expressed in either haemopoietic cells or tissues. The two singletons have relatively stable evolutionary histories, but the BG region undergoes dynamic expansion and contraction, with the production of hybrid genes. Thus, chicken BG genes appear to evolve much more quickly than their closest homologs in mammals, presumably due to increased pressure from pathogens.
Collapse
|
47
|
Kucerová D, Plachy J, Reinisová M, Senigl F, Trejbalová K, Geryk J, Hejnar J. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species. J Virol 2013; 87:8399-407. [PMID: 23698309 PMCID: PMC3719790 DOI: 10.1128/jvi.03180-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/14/2013] [Indexed: 11/20/2022] Open
Abstract
Subgroup J avian leukosis virus (ALV-J) is unique among the avian sarcoma and leukosis viruses in using the multimembrane-spanning cell surface protein Na(+)/H(+) exchanger type 1 (NHE1) as a receptor. The precise localization of amino acids critical for NHE1 receptor activity is key in understanding the virus-receptor interaction and potential interference with virus entry. Because no resistant chicken lines have been described until now, we compared the NHE1 amino acid sequences from permissive and resistant galliform species. In all resistant species, the deletion or substitution of W38 within the first extracellular loop was observed either alone or in the presence of other incidental amino acid changes. Using the ectopic expression of wild-type or mutated chicken NHE1 in resistant cells and infection with a reporter recombinant retrovirus of subgroup J specificity, we studied the effect of individual mutations on the NHE1 receptor capacity. We suggest that the absence of W38 abrogates binding of the subgroup J envelope glycoprotein to ALV-J-resistant cells. Altogether, we describe the functional importance of W38 for virus entry and conclude that natural polymorphisms in NHE1 can be a source of host resistance to ALV-J.
Collapse
Affiliation(s)
- Dana Kucerová
- Department of Cellular and Viral Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
48
|
Mazari PM, Roth MJ. Library screening and receptor-directed targeting of gammaretroviral vectors. Future Microbiol 2013; 8:107-21. [PMID: 23252496 DOI: 10.2217/fmb.12.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene- and cell-based therapies hold great potential for the advancement of the personalized medicine movement. Gene therapy vectors have made dramatic leaps forward since their inception. Retroviral-based vectors were the first to gain clinical attention and still offer the best hope for the long-term correction of many disorders. The fear of nonspecific transduction makes targeting a necessary feature for most clinical applications. However, this remains a difficult feature to optimize, with specificity often coming at the expense of efficiency. The aim of this article is to discuss the various methods employed to retarget retroviral entry. Our focus will lie on the modification of gammaretroviral envelope proteins with an in-depth discussion of the creation and screening of envelope libraries.
Collapse
Affiliation(s)
- Peter M Mazari
- University of Medicine & Dentistry of NJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
49
|
Abstract
The retrovirus family contains several important human and animal pathogens, including the human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). Studies with retroviruses were instrumental to our present understanding of the cellular entry of enveloped viruses in general. For instance, studies with alpharetroviruses defined receptor engagement, as opposed to low pH, as a trigger for the envelope protein-driven membrane fusion. The insights into the retroviral entry process allowed the generation of a new class of antivirals, entry inhibitors, and these therapeutics are at present used for treatment of HIV/AIDS. In this chapter, we will summarize key concepts established for entry of avian sarcoma and leukosis virus (ASLV), a widely used model system for retroviral entry. We will then review how foamy virus and HIV, primate- and human retroviruses, enter target cells, and how the interaction of the viral and cellular factors involved in the cellular entry of these viruses impacts viral tropism, pathogenesis and approaches to therapy and vaccine development.
Collapse
|
50
|
Reinišová M, Plachý J, Trejbalová K, Šenigl F, Kučerová D, Geryk J, Svoboda J, Hejnar J. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. J Virol 2012; 86:2021-30. [PMID: 22171251 PMCID: PMC3302400 DOI: 10.1128/jvi.05771-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/30/2011] [Indexed: 01/10/2023] Open
Abstract
The group of closely related avian sarcoma and leukosis viruses (ASLVs) evolved from a common ancestor into multiple subgroups, A to J, with differential host range among galliform species and chicken lines. These subgroups differ in variable parts of their envelope glycoproteins, the major determinants of virus interaction with specific receptor molecules. Three genetic loci, tva, tvb, and tvc, code for single membrane-spanning receptors from diverse protein families that confer susceptibility to the ASLV subgroups. The host range expansion of the ancestral virus might have been driven by gradual evolution of resistance in host cells, and the resistance alleles in all three receptor loci have been identified. Here, we characterized two alleles of the tva receptor gene with similar intronic deletions comprising the deduced branch-point signal within the first intron and leading to inefficient splicing of tva mRNA. As a result, we observed decreased susceptibility to subgroup A ASLV in vitro and in vivo. These alleles were independently found in a close-bred line of domestic chicken and Indian red jungle fowl (Gallus gallus murghi), suggesting that their prevalence might be much wider in outbred chicken breeds. We identified defective splicing to be a mechanism of resistance to ASLV and conclude that such a type of mutation could play an important role in virus-host coevolution.
Collapse
Affiliation(s)
- Markéta Reinišová
- Department of Cellular and Viral Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|