1
|
Kroh K, te Marvelde MR, van Greuningen LW, Laksono BM, Koopmans MPG, Kuiken T, GeurtsvanKessel CH, Embregts CWE. A comparative analysis of the dendritic cell response upon exposure to different rabies virus strains. PLoS Negl Trop Dis 2025; 19:e0012994. [PMID: 40208887 PMCID: PMC12017532 DOI: 10.1371/journal.pntd.0012994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/23/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025] Open
Abstract
Rabies is a viral zoonotic disease that causes over 60,000 human deaths annually worldwide. Natural infections lack a virus-specific immune response, leading to a near 100% fatality rate unless immediately treated. Rabies virus (RABV) is typically transmitted through bites from rabid dogs or other carnivores to humans and may initially interact with innate immune cells such as dendritic cells at the site of infection. This study investigates the in vitro response of human monocyte-derived dendritic cells (moDCs) exposed to two pathogenic RABV strains-silver-haired bat rabies virus (SHBRV) and dog-related rabies virus (dogRV)-and an attenuated vaccine strain (SAD P5). MoDCs were susceptible only to high doses of SHBRV and SAD P5, resulting in a more mature and migratory phenotype within the infected moDC populations. No infection was observed in moDCs exposed to dogRV. In co-culture with T cells, the presence of RABV-exposed moDCs, regardless of the strain, did not enhance T cell activation. Additionally, RABV exposure did not hinder LPS-induced moDC maturation; instead, high doses of SHBRV and SAD P5 even boosted activation levels. Overall, the findings suggest varied capabilities of RABV strains to infect and activate moDCs in vitro. However, exposure to any RABV strain did not provoke a clear antiviral state or suppression of moDC responsiveness. This lack of activation may contribute to the absence of an effective adaptive immune response in natural RABV infections.
Collapse
Affiliation(s)
- Keshia Kroh
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Brigitta M. Laksono
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
2
|
Castellan M, Zamperin G, Foiani G, Zorzan M, Priore MF, Drzewnioková P, Melchiotti E, Vascellari M, Monne I, Crovella S, Leopardi S, De Benedictis P. Immunological findings of West Caucasian bat virus in an accidental host. J Virol 2025; 99:e0191424. [PMID: 39846740 PMCID: PMC11853057 DOI: 10.1128/jvi.01914-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
The Lyssavirus genus includes seventeen viral species able to cause rabies, an acute and almost invariably fatal encephalomyelitis of mammals. Rabies virus (RABV), which represents the type species of the genus, is a multi-host pathogen that over the years has undergone multiple events of host-switching, thus occupying several geographical and ecological niches. In contrast, non-RABV lyssaviruses are mainly confined within a single natural host with rare spillover events. In this scenario, unveiling the mechanisms underlying the host immune response against a virus is crucial to understand the dynamics of infection and to predict the probability of colonization/adaptation to a new target species. Presently, the host response to lyssaviruses has only been partially explored, with the majority of data extrapolated from RABV infection. West Caucasian bat virus (WCBV), a divergent lyssavirus, has recently been associated with a spillover event to a domestic cat, raising concern about the risks to public health due to the circulation of the virus in its natural host. Through this study we have investigated the immune response determined by the WCBV versus two widely known lyssaviruses. We selected the Syrian hamster as representative of an accidental host, and chose the intramuscular route in order to mimic the natural infection. In hamsters, WCBV was highly pathogenic, determining 100% lethality and mild encephalitis. In comparison with Duvenhage virus (DUVV) and RABV, we found that WCBV displayed an intermediate ability to promote cellular antiviral response, produce pro-inflammatory cytokines, and recruit and activate lymphocytes in the hamsters' central nervous system. IMPORTANCE Although all lyssaviruses cause fatal encephalomyelitis in mammals, they display a different host tropism and pathogenicity, with the ecology of Rabies virus (RABV) continually evolving and adapting to new host species. In 2020, West Caucasian bat virus (WCBV) was identified as the causative agent of rabies in a domestic cat in Italy. This event raised concerns about its public health consequences, due to the absence of biologicals against the infection. Our study investigates the host immune response triggered by WCBV in comparison with a pathogenic strain of RABV and the low pathogenic Duvenhage lyssavirus (DUVV), as a proxy to understand the mechanisms leading to lyssavirus spillover and pathogenicity. We overall confirm that previous evidence indicating an inverse relationship between lyssavirus pathogenicity and immune response is applicable for WCBV as well. Importantly, this work represents the first transcriptomic analysis of the WCBV interaction in the central nervous system with an accidental host.
Collapse
Affiliation(s)
- Martina Castellan
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Gianpiero Zamperin
- Viral Genomics and Transcriptomics Laboratory, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Greta Foiani
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maira Zorzan
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maria Francesca Priore
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Petra Drzewnioková
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Erica Melchiotti
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Marta Vascellari
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Isabella Monne
- Viral Genomics and Transcriptomics Laboratory, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| | - Stefania Leopardi
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Paola De Benedictis
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
3
|
Tang Y, Li Y, Cai X, Yin X. Viral Live-Attenuated Vaccines (LAVs): Past and Future Directions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407241. [PMID: 39639853 PMCID: PMC11744563 DOI: 10.1002/advs.202407241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Viral infections continue to pose a significant threat to the health of both humans and animals. Currently, live attenuated vaccines (LAVs) remain the most efficacious and widely utilized tool for combating viral infections. Conventional LAVs involve the adaptation of virulent viruses to novel hosts, cell cultures, or suboptimal environments, resulting in a reduction in pathogenicity while retaining immunogenicity. This process entails directed evolution of the virus to enhance its replication efficiency under these modified conditions. In this review, the development of traditional animal-adapted and cold-adapted LAVs is specially discussed. Additionally, the factors that contribute to virus attenuation from a viral lifecycle perspective are summarized. Finally, we propose future directions for next-generation LAVs.
Collapse
Affiliation(s)
- Yan‐Dong Tang
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbin150069China
- Heilongjiang Provincial Research Center for Veterinary BiomedicineHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbin150069China
- Heilongjiang Provincial Key Laboratory of Veterinary ImmunologyHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbin150069China
| | - Yuming Li
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJi'nan250117China
- Key Laboratory of Emerging Infectious Diseases in Universities of ShandongShandong First Medical University & Shandong Academy of Medical SciencesTai'an271000China
| | - Xue‐Hui Cai
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbin150069China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbin150069China
| |
Collapse
|
4
|
Zhao J, Wang Q, Liu Z, Sun M, Zhou R, Fu ZF, Zhao L, Zhou M. Z-Ligustilide restricts rabies virus replication by inducing ferroptosis through the ACSL4-LPCAT3-POR pathway. Vet Microbiol 2024; 298:110260. [PMID: 39316946 DOI: 10.1016/j.vetmic.2024.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Rabies, induced by rabies virus (RABV), still threaten global health all over the world, and no effective therapy is available for rabies currently. Recently, a series of natural plant components have been found to inhibit virus production. In this study, Z-Ligustilide, a natural component of Ligusticum chuanxiong Hort, was found to inhibit RABV replication. Initially, the concentration of cytotoxicity 50 % (CC50) of Z-Ligustilide in N2a and BSR cells were 429.9 μM and 335.5 μM, respectively, which both significantly restrict RABV production in a concentration-dependent manner. Moreover, Z-Ligustilide was found to mainly inhibit the replication stage of RABV. Specifically, Z-Ligustilide can suppress lipid droplet (LD) formation via directly inhibiting diacylglycerol acyltransferase 1/2 (DGAT1/2) expression, which can further promote cellular lipid peroxidation, Fe2+ concentration, reactive oxygen species (ROS), and induce ferroptosis ultimately. Furthermore, Z-Ligustilide was demonstrated to increase ferroptosis via Acyl-CoA synthetase long-chain family member 4 (ACSL4)- Lysophosphatidylcholine Acyltransferase 3 (LPCAT3)- Cytochrome P450 Oxidoreductase (POR) pathway. Above all, this study explored the antiviral function of Z-Ligustilide, which provides a novel insight for developing anti-RABV drugs.
Collapse
Affiliation(s)
- Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Qianruo Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhenkun Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Meixin Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| |
Collapse
|
5
|
Sui B, Zhao J, Wang J, Zheng J, Zhou R, Wu D, Zeng Z, Yuan Y, Fu Z, Zhao L, Zhou M. Lyssavirus matrix protein inhibits NLRP3 inflammasome assembly by binding to NLRP3. Cell Rep 2024; 43:114478. [PMID: 38985668 DOI: 10.1016/j.celrep.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/06/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Lyssavirus is a kind of neurotropic pathogen that needs to evade peripheral host immunity to enter the central nervous system to accomplish infection. NLRP3 inflammasome activation is essential for the host to defend against pathogen invasion. This study demonstrates that the matrix protein (M) of lyssavirus can inhibit both the priming step and the activation step of NLRP3 inflammasome activation. Specifically, M of lyssavirus can compete with NEK7 for binding to NLRP3, which restricts downstream apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization. The serine amino acid at the 158th site of M among lyssavirus is critical for restricting ASC oligomerization. Moreover, recombinant lab-attenuated lyssavirus rabies (rabies lyssavirus [RABV]) with G158S mutation at M decreases interleukin-1β (IL-1β) production in bone-marrow-derived dendritic cells (BMDCs) to facilitate lyssavirus invasion into the brain thereby elevating pathogenicity in mice. Taken together, this study reveals a common mechanism by which lyssavirus inhibits NLRP3 inflammasome activation to evade host defenses.
Collapse
Affiliation(s)
- Baokun Sui
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiao Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxin Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonghui Zeng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueming Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenfang Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Aouadi W, Najburg V, Legendre R, Varet H, Kergoat L, Tangy F, Larrous F, Komarova AV, Bourhy H. Comparative analysis of rabies pathogenic and vaccine strains detection by RIG-I-like receptors. Microbes Infect 2024; 26:105321. [PMID: 38461968 DOI: 10.1016/j.micinf.2024.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Rabies virus (RABV) is a lethal neurotropic virus that causes 60,000 human deaths every year globally. RABV infection is characterized by the suppression of the interferon (IFN)-mediated antiviral response. However, molecular mechanisms leading to RABV sensing by RIG-I-like receptors (RLR) that initiates IFN signaling currently remain elusive. Here, we showed that RABV RNAs are primarily recognized by the RIG-I RLR, resulting in an IFN response in the infected cells, but this response varied according to the type of RABV used. Pathogenic RABV strain RNAs, Tha, were poorly detected in the cytosol by RIG-I and therefore caused a weak antiviral response. However, we revealed a strong IFN activity triggered by the attenuated RABV vaccine strain RNAs, SAD, mediated by RIG-I. We characterized two major 5' copy-back defective interfering (5'cb DI) genomes generated during SAD replication. Furthermore, we identified an interaction between 5'cb DI genomes, and RIG-I correlated with a high stimulation of the type I IFN signaling. This study indicates that wild-type RABV RNAs poorly activate the RIG-I pathway, while the presence of 5'cb DIs in the live-attenuated vaccine strain serves as an intrinsic adjuvant that strengthens its efficiency by enhancing RIG-I detection thus strongly stimulates the IFN response.
Collapse
Affiliation(s)
- Wahiba Aouadi
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France
| | - Valérie Najburg
- Institut Pasteur, Université Paris Cité, Vaccines-innovation Laboratory, 75015 Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Hub Bioinformatics, and Biostatistics, 75015 Paris, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Hub Bioinformatics, and Biostatistics, 75015 Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Université Paris Cité, Vaccines-innovation Laboratory, 75015 Paris, France
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France
| | - Anastassia V Komarova
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity Laboratory, 75015 Paris, France.
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France.
| |
Collapse
|
7
|
Muangsanit P, Chailangkarn T, Tanwattana N, Wongwanakul R, Lekcharoensuk P, Kaewborisuth C. Hydrogel-based 3D human iPSC-derived neuronal culture for the study of rabies virus infection. Front Cell Infect Microbiol 2023; 13:1215205. [PMID: 37692167 PMCID: PMC10485840 DOI: 10.3389/fcimb.2023.1215205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Background Rabies is a highly fatal infectious disease that poses a significant threat to human health in developing countries. In vitro study-based understanding of pathogenesis and tropism of different strains of rabies virus (RABV) in the central nervous system (CNS) is limited due to the lack of suitable culture models that recapitulate the complex communication pathways among host cells, extracellular matrices, and viruses. Therefore, a three-dimensional (3D) cell culture that mimics cell-matrix interactions, resembling in vivo microenvironment, is necessary to discover relevant underlying mechanisms of RABV infection and host responses. Methods The 3D collagen-Matrigel hydrogel encapsulating hiPSC-derived neurons for RABV infection was developed and characterized based on cell viability, morphology, and gene expression analysis of neuronal markers. The replication kinetics of two different strains of RABV [wild-type Thai (TH) and Challenge Virus Standard (CVS)-11 strains] in both 2D and 3D neuronal cultures were examined. Differential gene expression analysis (DEG) of the neuropathological pathway of RABV-infected 2D and 3D models was also investigated via NanoString analysis. Results The 3D hiPSC-derived neurons revealed a more physiologically interconnected neuronal network as well as more robust and prolonged maturation and differentiation than the conventional 2D monolayer model. TH and CVS-11 exhibited distinct growth kinetics in 3D neuronal model. Additionally, gene expression analysis of the neuropathological pathway observed during RABV infection demonstrated a vast number of differentially expressed genes (DEGs) in 3D model. Unlike 2D neuronal model, 3D model displayed more pronounced cellular responses upon infection with CVS-11 when compared to the TH-infected group, highlighting the influence of the cell environment on RABV-host interactions. Gene ontology (GO) enrichment of DEGs in the infected 3D neuronal culture showed alterations of genes associated with the inflammatory response, apoptotic signaling pathway, glutamatergic synapse, and trans-synaptic signaling which did not significantly change in 2D culture. Conclusion We demonstrated the use of a hydrogel-based 3D hiPSC-derived neuronal model, a highly promising technology, to study RABV infection in a more physiological environment, which will broaden our understanding of RABV-host interactions in the CNS.
Collapse
Affiliation(s)
- Papon Muangsanit
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nathiphat Tanwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Ratjika Wongwanakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Porntippa Lekcharoensuk
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok, Thailand
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
8
|
Zhang D, Irving AT. Antiviral effects of interferon-stimulated genes in bats. Front Cell Infect Microbiol 2023; 13:1224532. [PMID: 37661999 PMCID: PMC10472940 DOI: 10.3389/fcimb.2023.1224532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
The interferon pathway is the first line of defense in viral infection in all mammals, and its induction stimulates broad expression of interferon-stimulated genes (ISGs). In mice and also humans, the antiviral function of ISGs has been extensively studied. As an important viral reservoir in nature, bats can coexist with a variety of pathogenic viruses without overt signs of disease, yet only limited data are available for the role of ISGs in bats. There are multiple species of bats and work has begun deciphering the differences and similarities between ISG function of human/mouse and different bat species. This review summarizes the current knowledge of conserved and bat-specific-ISGs and their known antiviral effector functions.
Collapse
Affiliation(s)
- Dan Zhang
- Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Aaron T. Irving
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Infection, Immunity & Cancer, Zhejiang University-University of Edinburgh Institute, Haining, China
- BIMET - Biomedical and Health Translational Research Centre of Zhejiang Province, China
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Zhang B, Cai T, He H, Huang X, Luo Y, Huang S, Luo J, Guo X. TRIM25 Suppresses Rabies Virus Fixed HEP-Flury Strain Production by Activating RIG-1-Mediated Type I Interferons. Genes (Basel) 2023; 14:1555. [PMID: 37628607 PMCID: PMC10454932 DOI: 10.3390/genes14081555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Rabies remains a great threat to public health worldwide. So far, the mechanism of rabies virus (RABV) infection is not fully understood, and there is no effective treatment for rabies. Identifying more host restriction factors of RABV will spur the development of novel therapeutic interventions against rabies. Accumulating studies suggest that tripartite motif-containing (TRIM) proteins have great effects on virus replication. TRIMs control the antiviral responses through either direct interaction with viral proteins or indirect regulation of innate immune signaling molecules in the host. The role of TRIM25 in rabies virus (RABV) infection is poorly understood. Using next-generation sequencing, we found that TRIM25 is upregulated during HEP-Flury infection. Knockdown of TRIM25 enhances HEP-Flury production, while overexpression of TRIM25 suppresses HEP-Flury replication. Knockdown of interferon α and interferon β weakens the anti-RABV response induced by TRIM25 overexpression, and potentiates RABV production. Furthermore, we found that TRIM25 regulates type-I interferon response by targeting retinoic acid-inducible gene I (RIG-I) during HEP-Flury infection. Knockdown of RIG-I weakens the anti-HEP-Flury response induced by TRIM25 overexpression, indicating that TRIM25 regulates RABV production via the RIG-I-IFN axis. In addition, we observed that TRIM25 does not directly interact with HEP-Flury structural proteins, suggesting that TRIM25 regulates HEP-Flury production indirectly. Taken together, our work identifies TRIM25 as a new host factor involved in HEP-Flury infection, which may be a potential target for the development of antiviral drugs against RABV.
Collapse
Affiliation(s)
- Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Ting Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Xuezhe Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| |
Collapse
|
10
|
Zhang B, Cai T, He H, Huang X, Chen G, Lai Y, Luo Y, Huang S, Luo J, Guo X. TRIM21 Promotes Rabies Virus Production by Degrading IRF7 through Ubiquitination. Int J Mol Sci 2023; 24:10892. [PMID: 37446070 PMCID: PMC10341556 DOI: 10.3390/ijms241310892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins participates in the host's regulation of viral replication. Studies have demonstrated the upregulated expression of tripartite-motif protein 21 (TRIM21) in the brain tissue of mice infected with the rabies virus. Related studies have shown that TRIM21 knockdown inhibits RABV replication, while overexpression of TRIM21 exerted the opposite effect. Knockdown of interferon-alpha and interferon-beta modulates the inhibition of RABV replication caused by TRIM21 knockdown and promotes the replication of the virus. Furthermore, our previous study revealed that TRIM21 regulates the secretion of type I interferon during RABV infection by targeting interferon regulatory factor 7 (IRF7). IRF7 knockdown reduced the inhibition of RABV replication caused by the knockdown of TRIM21 and promoted viral replication. TRIM21 regulates RABV replication via the IRF7-IFN axis. Our study identified TRIM21 as a novel host factor required by RABV for replication. Thus, TRIM21 is a potential target for rabies treatment or management.
Collapse
Affiliation(s)
- Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Ting Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Xuezhe Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Guie Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Yanqin Lai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| |
Collapse
|
11
|
Harazim M, Perrot J, Varet H, Bourhy H, Lannoy J, Pikula J, Seidlová V, Dacheux L, Martínková N. Transcriptomic responses of bat cells to European bat lyssavirus 1 infection under conditions simulating euthermia and hibernation. BMC Immunol 2023; 24:7. [PMID: 37085747 PMCID: PMC10120247 DOI: 10.1186/s12865-023-00542-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
Collapse
Affiliation(s)
- Markéta Harazim
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia.
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137, Brno, Czechia.
| | - Juliette Perrot
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité Bioinformatics and Biostatistics Hub, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Veronika Seidlová
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia
- RECETOX, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| |
Collapse
|
12
|
Lee H, Ciabatti E, González-Rueda A, Williams E, Nugent F, Mookerjee S, Morgese F, Tripodi M. Combining long-term circuit mapping and network transcriptomics with SiR-N2c. Nat Methods 2023; 20:580-589. [PMID: 36864202 PMCID: PMC7614628 DOI: 10.1038/s41592-023-01787-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 01/23/2023] [Indexed: 03/04/2023]
Abstract
An exciting frontier in circuit neuroscience lies at the intersection between neural network mapping and single-cell genomics. Monosynaptic rabies viruses provide a promising platform for the merger of circuit mapping methods with -omics approaches. However, three key limitations have hindered the extraction of physiologically meaningful gene expression profiles from rabies-mapped circuits: inherent viral cytotoxicity, high viral immunogenicity and virus-induced alteration of cellular transcriptional regulation. These factors alter the transcriptional and translational profiles of infected neurons and their neighboring cells. To overcome these limitations we applied a self-inactivating genomic modification to the less immunogenic rabies strain, CVS-N2c, to generate a self-inactivating CVS-N2c rabies virus (SiR-N2c). SiR-N2c not only eliminates undesired cytotoxic effects but also substantially reduces gene expression alterations in infected neurons and dampens the recruitment of innate and acquired immune responses, thus enabling open-ended interventions on neural networks and their genetic characterization using single-cell genomic approaches.
Collapse
Affiliation(s)
- Hassal Lee
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ernesto Ciabatti
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | | - Elena Williams
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fiona Nugent
- IMAXT Laboratory, Cancer Research UK Cambridge Institute, Cambridge, UK
| | | | - Fabio Morgese
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marco Tripodi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
13
|
Immune Functions of Astrocytes in Viral Neuroinfections. Int J Mol Sci 2023; 24:ijms24043514. [PMID: 36834929 PMCID: PMC9960577 DOI: 10.3390/ijms24043514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Neuroinfections of the central nervous system (CNS) can be triggered by various pathogens. Viruses are the most widespread and have the potential to induce long-term neurologic symptoms with potentially lethal outcomes. In addition to directly affecting their host cells and inducing immediate changes in a plethora of cellular processes, viral infections of the CNS also trigger an intense immune response. Regulation of the innate immune response in the CNS depends not only on microglia, which are fundamental immune cells of the CNS, but also on astrocytes. These cells align blood vessels and ventricle cavities, and consequently, they are one of the first cell types to become infected after the virus breaches the CNS. Moreover, astrocytes are increasingly recognized as a potential viral reservoir in the CNS; therefore, the immune response initiated by the presence of intracellular virus particles may have a profound effect on cellular and tissue physiology and morphology. These changes should be addressed in terms of persisting infections because they may contribute to recurring neurologic sequelae. To date, infections of astrocytes with different viruses originating from genetically distinct families, including Flaviviridae, Coronaviridae, Retroviridae, Togaviridae, Paramyxoviridae, Picomaviridae, Rhabdoviridae, and Herpesviridae, have been confirmed. Astrocytes express a plethora of receptors that detect viral particles and trigger signaling cascades, leading to an innate immune response. In this review, we summarize the current knowledge on virus receptors that initiate the release of inflammatory cytokines from astrocytes and depict the involvement of astrocytes in immune functions of the CNS.
Collapse
|
14
|
Motta GH, Guimarães LP, Fernandes ER, Guedes F, de Sá LRM, Dos Ramos Silva S, Ribeiro OG, Katz ISS. Rabies virus isolated from insectivorous bats induces different inflammatory responses in experimental model. J Neuroimmunol 2022; 373:577974. [PMID: 36270078 DOI: 10.1016/j.jneuroim.2022.577974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Rabies virus (RABV) is a neurotropic virus that causes fatal neuroinflammation in mammals. The insectivorous bat RABV strains are less pathogenic for mice than strains associated with other reservoirs. We characterized the tissue inflammatory response in the CNS of RABV isolated from insectivorous bats. Eptesicus furinalis (EPBRV)-infected mice had a robust inflammatory response and a greater amount of IL-1β, IL-6 and TNF-α, while Myotis nigricans (MNBRV)-infected mice showed a higher expression of IL-17 and greater activation of IFN-β. New approaches to understand the inflammatory response to different mechanisms of action may provide insights for the development of novel therapies for rabies.
Collapse
Affiliation(s)
| | | | | | - Fernanda Guedes
- Pasteur Institute, Av. Paulista 393, São Paulo CEP 01311-000, Brazil
| | | | | | - Orlando Garcia Ribeiro
- Laboratory of Immunogenetics, Butantan Institute, Av. Vital Brasil 1500, São Paulo CEP 05503-900, Brazil
| | | |
Collapse
|
15
|
Shi C, Tian L, Zheng W, Zhu Y, Sun P, Liu L, Liu W, Song Y, Xia X, Xue X, Zheng X. Recombinant adeno-associated virus serotype 9 AAV-RABVG expressing a Rabies Virus G protein confers long-lasting immune responses in mice and non-human primates. Emerg Microbes Infect 2022; 11:1439-1451. [PMID: 35579916 PMCID: PMC9154782 DOI: 10.1080/22221751.2022.2078226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three or four intramuscular doses of the inactivated human rabies virus vaccines are needed for pre- or post-exposure prophylaxis in humans. This procedure has made a great contribution to prevent human rabies deaths, which bring huge economic burdens in developing countries. Herein, a recombinant adeno-associated virus serotype 9, AAV9-RABVG, harbouring a RABV G gene, was generated to serve as a single dose rabies vaccine candidate. The RABV G protein was stably expressed in the 293T cells infected with AAV9-RABVG. A single dose of 2 × 1011 v.p. of AAV9-RABVG induced robust and long-term positive seroconversions in BALB/c mice with a 100% survival from a lethal RABV challenge. In Cynomolgus Macaques vaccinated with a single dose of 1 × 1013 v.p. of AAV9-RABVG, the titres of rabies VNAs increased remarkably from 2 weeks after immunity, and maintained over 31.525 IU/ml at 52 weeks. More DCs were activated significantly for efficient antigen presentations of RABV G protein, and more B cells were activated to be responsible for antibody responses. Significantly more RABV G specific IFN-γ-secreting CD4+ and CD8+ T cells, and IL-4-secreting CD4+ T cells were activated, and significantly higher levels of IL-2, IFN-γ, IL-4, and IL-10 were secreted to aid immune responses. Overall, the AAV9-RABVG was a single dose rabies vaccine candidate with great promising by inducing robust, long-term humoral responses and both Th1 and Th2 cell-mediated immune responses in mice and non-human primates.
Collapse
Affiliation(s)
- Chenjuan Shi
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yelei Zhu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - Peilu Sun
- Institute of Materia Medical, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenkai Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yanyan Song
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, People's Republic of China
| | - Xianghong Xue
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
16
|
Substitution of S179P in the Lyssavirus Phosphoprotein Impairs Its Interferon Antagonistic Function. J Virol 2022; 96:e0112522. [PMID: 36326274 PMCID: PMC9683011 DOI: 10.1128/jvi.01125-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon (IFN) and the IFN-induced cellular antiviral response constitute the first line of defense against viral invasion. Evading host innate immunity, especially IFN signaling, is the key step required for lyssaviruses to establish infection.
Collapse
|
17
|
Lab-Attenuated Rabies Virus Facilitates Opening of the Blood-Brain Barrier by Inducing Matrix Metallopeptidase 8. J Virol 2022; 96:e0105022. [PMID: 36005758 PMCID: PMC9472762 DOI: 10.1128/jvi.01050-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with laboratory-attenuated rabies virus (RABV), but not wild-type (wt) RABV, can enhance the permeability of the blood-brain barrier (BBB), which is considered a key determinant for RABV pathogenicity. A previous study showed that the enhancement of BBB permeability is directly due not to RABV infection but to virus-induced inflammatory molecules. In this study, the effect of the matrix metallopeptidase (MMP) family on the permeability of the BBB during RABV infection was evaluated. We found that the expression level of MMP8 was upregulated in mice infected with lab-attenuated RABV but not with wt RABV. Lab-attenuated RABV rather than wt RABV activates inflammatory signaling pathways mediated by the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Activated NF-κB (p65) and AP-1 (c-Fos) bind to the MMP8 promoter, resulting in upregulation of its transcription. Analysis of mouse brains infected with the recombinant RABV expressing MMP8 indicated that MMP8 enhanced BBB permeability, leading to infiltration of inflammatory cells into the central nervous system (CNS). In brain-derived endothelial cells, treatment with MMP8 recombinant protein caused the degradation of tight junction (TJ) proteins, and the application of an MMP8 inhibitor inhibited the degradation of TJ proteins after RABV infection. Furthermore, an in vivo experiment using an MMP8 inhibitor during RABV infection demonstrated that BBB opening was diminished. In summary, our data suggest that the infection of lab-attenuated RABV enhances the BBB opening by upregulating MMP8. IMPORTANCE The ability to change BBB permeability was associated with the pathogenicity of RABV. BBB permeability was enhanced by infection with lab-attenuated RABV instead of wt RABV, allowing immune cells to infiltrate into the CNS. We found that MMP8 plays an important role in enhancing BBB permeability by degradation of TJ proteins during RABV infection. Using an MMP8 selective inhibitor restores the reduction of TJ proteins. We reveal that MMP8 is upregulated via the MAPK and NF-κB inflammatory pathways, activated by lab-attenuated RABV infection but not wt RABV. Our findings suggest that MMP8 has a critical role in modulating the opening of the BBB during RABV infection, which provides fresh insight into developing effective therapeutics for rabies and infection with other neurotropic viruses.
Collapse
|
18
|
Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022; 11:pathogens11050522. [PMID: 35631043 PMCID: PMC9145062 DOI: 10.3390/pathogens11050522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.
Collapse
|
19
|
Molecular Basis of Functional Effects of Phosphorylation of the C-Terminal Domain of the Rabies Virus P Protein. J Virol 2022; 96:e0011122. [DOI: 10.1128/jvi.00111-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rabies virus P protein is a multifunctional protein with critical roles in replication and manipulation of host-cell processes, including subversion of immunity. This functional diversity involves interactions of several P protein isoforms with the cell nucleus and microtubules.
Collapse
|
20
|
Appolinário CM, Daly JM, Emes RD, Marchi FA, Ribeiro BLD, Megid J. Gene Expression Profile Induced by Two Different Variants of Street Rabies Virus in Mice. Viruses 2022; 14:v14040692. [PMID: 35458422 PMCID: PMC9031335 DOI: 10.3390/v14040692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022] Open
Abstract
Pathogenicity and pathology of rabies virus (RABV) varies according to the variant, but the mechanisms are not completely known. In this study, gene expression profile in brains of mice experimentally infected with RABV isolated from a human case of dog rabies (V2) or vampire bat-acquired rabies (V3) were analyzed. In total, 138 array probes associated with 120 genes were expressed differentially between mice inoculated with V2 and sham-inoculated control mice at day 10 post-inoculation. A single probe corresponding to an unannotated gene was identified in V3 versus control mice. Gene ontology (GO) analysis revealed that all of the genes upregulated in mice inoculated with V2 RABV were involved in the biological process of immune defense against pathogens. Although both variants are considered pathogenic, inoculation by the same conditions generated different gene expression results, which is likely due to differences in pathogenesis between the dog and bat RABV variants. This study demonstrated the global gene expression in experimental infection due to V3 wild-type RABV, from the vampire bat Desmodus rotundus, an important source of infection for humans, domestic animals and wildlife in Latin America.
Collapse
Affiliation(s)
- Camila M. Appolinário
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Julio de Mesquita Filho, Distrito de Rubião Júnior, s/n, CEP, Botucatu 18618-970, SP, Brazil;
- Correspondence: (C.M.A.); (J.M.)
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (J.M.D.); (R.D.E.)
| | - Richard D. Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (J.M.D.); (R.D.E.)
| | | | - Bruna Leticia Devidé Ribeiro
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Julio de Mesquita Filho, Distrito de Rubião Júnior, s/n, CEP, Botucatu 18618-970, SP, Brazil;
| | - Jane Megid
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Julio de Mesquita Filho, Distrito de Rubião Júnior, s/n, CEP, Botucatu 18618-970, SP, Brazil;
- Correspondence: (C.M.A.); (J.M.)
| |
Collapse
|
21
|
Zhang J, Li Z, Lu H, Shi J, Gao R, Ma Y, Lan Y, Guan J, Zhao K, Gao F, He W. Evidence of Microglial Immune Response Following Coronavirus PHEV Infection of CNS. Front Immunol 2022; 12:804625. [PMID: 35082791 PMCID: PMC8784595 DOI: 10.3389/fimmu.2021.804625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic coronavirus that invades the host central nervous system (CNS) and causes neurological dysfunction. Microglia are key immune cells in the CNS, however, whether and how they response to PHEV infection remains unclear. Herein, microglial activation and proliferation were detected in the CNS of PHEV-infected mice, as along with the proinflammatory response. Moreover, the production of proinflammatory cytokines induced by moderately activated microglia limited viral replication in the early stage of infection. Microglial depletion assays showed that during late infection, excess activation of microglia aggravated neurological symptoms, BBB destruction, and peripheral monocyte/macrophage infiltration into the CNS. Using an in vitro brain slice model, PHEV was identified to specifically and moderately induce microglial activation in the absence of peripheral immune cells infiltration. Consistently, macrophage clearance from circulating blood indicated that peripheral monocytes/macrophages crossing the BBB of mice were responsible for excess activation of microglia and CNS damage in late PHEV infection. Overall, our findings provide evidence supporting a dual role for microglia in the host CNS in response to coronavirus PHEV invasion.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Junchao Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
22
|
Farr RJ, Godde N, Cowled C, Sundaramoorthy V, Green D, Stewart C, Bingham J, O'Brien CM, Dearnley M. Machine Learning Identifies Cellular and Exosomal MicroRNA Signatures of Lyssavirus Infection in Human Stem Cell-Derived Neurons. Front Cell Infect Microbiol 2022; 11:783140. [PMID: 35004351 PMCID: PMC8739477 DOI: 10.3389/fcimb.2021.783140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Despite being vaccine preventable, rabies (lyssavirus) still has a significant impact on global mortality, disproportionally affecting children under 15 years of age. This neurotropic virus is deft at avoiding the immune system while travelling through neurons to the brain. Until recently, research efforts into the role of non-coding RNAs in rabies pathogenicity and detection have been hampered by a lack of human in vitro neuronal models. Here, we utilized our previously described human stem cell-derived neural model to investigate the effect of lyssavirus infection on microRNA (miRNA) expression in human neural cells and their secreted exosomes. Conventional differential expression analysis identified 25 cellular and 16 exosomal miRNAs that were significantly altered (FDR adjusted P-value <0.05) in response to different lyssavirus strains. Supervised machine learning algorithms determined 6 cellular miRNAs (miR-99b-5p, miR-346, miR-5701, miR-138-2-3p, miR-651-5p, and miR-7977) were indicative of lyssavirus infection (100% accuracy), with the first four miRNAs having previously established roles in neuronal function, or panic and impulsivity-related behaviors. Another 4-miRNA signatures in exosomes (miR-25-3p, miR-26b-5p, miR-218-5p, miR-598-3p) can independently predict lyssavirus infected cells with >99% accuracy. Identification of these robust lyssavirus miRNA signatures offers further insight into neural lineage responses to infection and provides a foundation for utilizing exosome miRNAs in the development of next-generation molecular diagnostics for rabies.
Collapse
Affiliation(s)
- Ryan J Farr
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Nathan Godde
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Christopher Cowled
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Vinod Sundaramoorthy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Diane Green
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Cameron Stewart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Megan Dearnley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| |
Collapse
|
23
|
Liu W, Yang Y, Zeng Z, Tian Y, Wu Q, Zhou M, Fu ZF, Zhao L. G protein-coupled receptor 17 restricts rabies virus replication via BAK-mediated apoptosis. Vet Microbiol 2021; 265:109326. [PMID: 34979406 DOI: 10.1016/j.vetmic.2021.109326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023]
Abstract
Rabies, caused by rabies virus (RABV), is an ancient zoonotic disease that significantly affects human and animal health throughout the world. RABV causes acute encephalitis in mammals with a high fatality rate in developing countries. G protein-coupled receptor 17 (GPR17) is a vital gene in the central nervous system (CNS) that plays important roles in demyelinating diseases and ischemia brain. However, it is still unclear whether GPR17 participates in the regulation of RABV infection. Here, we found that upregulation or activation of GPR17 can reduce the virus titer; conversely, the inactivation or silence of GPR17 led to increased RABV replication in N2a cells. The recombinant RABV expressing GPR17 (rRABV-GPR17) showed reduced replication capacity compared to the parent virus rRABV. Moreover, overexpression of GPR17 can attenuate RABV pathogenicity in mice. Further study demonstrated that GPR17 suppressed RABV replication via BAK-mediated apoptosis. Our findings uncover an unappreciated role of GPR17 in suppressing RABV infection, where GPR17 mediates cell apoptosis to limit RABV replication and may be an attractive candidate for new therapeutic interventions in the treatment of rabies.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghui Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Kim S, Larrous F, Varet H, Legendre R, Feige L, Dumas G, Matsas R, Kouroupi G, Grailhe R, Bourhy H. Early Transcriptional Changes in Rabies Virus-Infected Neurons and Their Impact on Neuronal Functions. Front Microbiol 2021; 12:730892. [PMID: 34970230 PMCID: PMC8713068 DOI: 10.3389/fmicb.2021.730892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Rabies is a zoonotic disease caused by rabies virus (RABV). As rabies advances, patients develop a variety of severe neurological symptoms that inevitably lead to coma and death. Unlike other neurotropic viruses that can induce symptoms of a similar range, RABV-infected post-mortem brains do not show significant signs of inflammation nor the structural damages on neurons. This suggests that the observed neurological symptoms possibly originate from dysfunctions of neurons. However, many aspects of neuronal dysfunctions in the context of RABV infection are only partially understood, and therefore require further investigation. In this study, we used differentiated neurons to characterize the RABV-induced transcriptomic changes at the early time-points of infection. We found that the genes modulated in response to the infection are particularly involved in cell cycle, gene expression, immune response, and neuronal function-associated processes. Comparing a wild-type RABV to a mutant virus harboring altered matrix proteins, we found that the RABV matrix protein plays an important role in the early down-regulation of host genes, of which a significant number is involved in neuronal functions. The kinetics of differentially expressed genes (DEGs) are also different between the wild type and mutant virus datasets. The number of modulated genes remained constant upon wild-type RABV infection up to 24 h post-infection, but dramatically increased in the mutant condition. This result suggests that the intact viral matrix protein is important to control the size of host gene modulation. We then examined the signaling pathways previously studied in relation to the innate immune responses against RABV, and found that these pathways contribute to the changes in neuronal function-associated processes. We further examined a set of regulated genes that could impact neuronal functions collectively, and demonstrated in calcium imaging that indeed the spontaneous activity of neurons is influenced by RABV infection. Overall, our findings suggest that neuronal function-associated genes are modulated by RABV early on, potentially through the viral matrix protein-interacting signaling molecules and their downstream pathways.
Collapse
Affiliation(s)
- Seonhee Kim
- Technology Development Platform, Institut Pasteur Korea, Seongnam, South Korea
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
- Université de Paris, Doctoral School Bio Sorbonne Paris Cité, Paris, France
| | - Florence Larrous
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Hugo Varet
- Institut Pasteur, Université de Paris, Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Paris, France
- Institut Pasteur, Université de Paris, Plate-Forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université de Paris, Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Paris, France
- Institut Pasteur, Université de Paris, Plate-Forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Lena Feige
- Technology Development Platform, Institut Pasteur Korea, Seongnam, South Korea
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
- Université de Paris, Doctoral School Bio Sorbonne Paris Cité, Paris, France
| | - Guillaume Dumas
- Department of Psychiatry, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Mila, Quebec Artificial Intelligence Institute, University of Montreal, Montreal, QC, Canada
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam, South Korea
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| |
Collapse
|
25
|
Comprehensive analysis of protein acetylation and glucose metabolism inmouse brains infected with rabies virus. J Virol 2021; 96:e0194221. [PMID: 34878915 DOI: 10.1128/jvi.01942-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed that high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infection and suggest that OAA treatment could be a potential strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy-dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to the energy requirements after RABV infection. Our study also indicates the potential role OAA could play in neuronal protection by suppressing excessive neuroinflammation.
Collapse
|
26
|
Bohmwald K, Andrade CA, Gálvez NMS, Mora VP, Muñoz JT, Kalergis AM. The Causes and Long-Term Consequences of Viral Encephalitis. Front Cell Neurosci 2021; 15:755875. [PMID: 34916908 PMCID: PMC8668867 DOI: 10.3389/fncel.2021.755875] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Reports regarding brain inflammation, known as encephalitis, have shown an increasing frequency during the past years. Encephalitis is a relevant concern to public health due to its high morbidity and mortality. Infectious or autoimmune diseases are the most common cause of encephalitis. The clinical symptoms of this pathology can vary depending on the brain zone affected, with mild ones such as fever, headache, confusion, and stiff neck, or severe ones, such as seizures, weakness, hallucinations, and coma, among others. Encephalitis can affect individuals of all ages, but it is frequently observed in pediatric and elderly populations, and the most common causes are viral infections. Several viral agents have been described to induce encephalitis, such as arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumovirus, and coronaviruses, among others. Once a neurotropic virus reaches the brain parenchyma, the resident cells such as neurons, astrocytes, and microglia, can be infected, promoting the secretion of pro-inflammatory molecules and the subsequent immune cell infiltration that leads to brain damage. After resolving the viral infection, the local immune response can remain active, contributing to long-term neuropsychiatric disorders, neurocognitive impairment, and degenerative diseases. In this article, we will discuss how viruses can reach the brain, the impact of viral encephalitis on brain function, and we will focus especially on the neurocognitive sequelae reported even after viral clearance.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Mora
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T Muñoz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Feige L, Sáenz-de-Santa-María I, Regnault B, Lavenir R, Lepelletier A, Halacu A, Rajerison R, Diop S, Nareth C, Reynes JM, Buchy P, Bourhy H, Dacheux L. Transcriptome Profile During Rabies Virus Infection: Identification of Human CXCL16 as a Potential New Viral Target. Front Cell Infect Microbiol 2021; 11:761074. [PMID: 34804996 PMCID: PMC8602097 DOI: 10.3389/fcimb.2021.761074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Rabies virus (RABV), the causative agent for rabies disease is still presenting a major public health concern causing approximately 60,000 deaths annually. This neurotropic virus (genus Lyssavirus, family Rhabdoviridae) induces an acute and almost always fatal form of encephalomyelitis in humans. Despite the lethal consequences associated with clinical symptoms of rabies, RABV limits neuro-inflammation without causing major histopathological lesions in humans. Nevertheless, information about the mechanisms of infection and cellular response in the central nervous system (CNS) remain scarce. Here, we investigated the expression of inflammatory genes involved in immune response to RABV (dog-adapted strain Tha) in mice, the most common animal model used to study rabies. To better elucidate the pathophysiological mechanisms during natural RABV infection, we compared the inflammatory transcriptome profile observed at the late stage of infection in the mouse brain (cortex and brain stem/cerebellum) with the ortholog gene expression in post-mortem brain biopsies of rabid patients. Our data indicate that the inflammatory response associated with rabies is more pronounced in the murine brain compared to the human brain. In contrast to murine transcription profiles, we identified CXC motif chemokine ligand 16 (CXCL16) as the only significant differentially expressed gene in post-mortem brains of rabid patients. This result was confirmed in vitro, in which Tha suppressed interferon alpha (IFN-α)-induced CXCL16 expression in human CNS cell lines but induced CXCL16 expression in IFN-α-stimulated murine astrocytes. We hypothesize that RABV-induced modulation of the CXCL16 pathway in the brain possibly affects neurotransmission, natural killer (NK) and T cell recruitment and activation. Overall, we show species-specific differences in the inflammatory response of the brain, highlighted the importance of understanding the potential limitations of extrapolating data from animal models to humans.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | | | | | - Rachel Lavenir
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | - Anthony Lepelletier
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | - Ala Halacu
- National Agency for Public Health, Chișinău, Moldova
| | | | - Sylvie Diop
- Infectious Diseases Department, National and University Hospital Center of Fann-Dakar, Dakar, Senegal
| | | | - Jean-Marc Reynes
- Virology Unit, Institut Pasteur de Madagascar, Tananarive, Madagascar
| | - Philippe Buchy
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| |
Collapse
|
28
|
Lipid droplets are beneficial for rabies virus replication by facilitating viral budding. J Virol 2021; 96:e0147321. [PMID: 34757839 DOI: 10.1128/jvi.01473-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies is an old zoonotic disease caused by rabies virus (RABV), but the pathogenic mechanism of RABV is still not completely understood. Lipid droplets have been reported to play a role in pathogenesis of several viruses. However, its role on RABV infection remains unclear. Here, we initially found that RABV infection upregulated lipid droplet (LD) production in multiple cells and mouse brains. After the treatment of atorvastatin, a specific inhibitor of LD, RABV replication in N2a cells decreased. Then we found that RABV infection could upregulate N-myc downstream regulated gene-1 (NDRG1), which in turn enhance the expression of diacylglycerol acyltransferase 1/2 (DGAT1/2). DGAT1/2 could elevate cellular triglycerides synthesis and ultimately promote intracellular LD formation. Furthermore, we found that RABV-M and RABV-G, which were mainly involved in the viral budding process, could colocalize with LDs, indicating that RABV might utilize LDs as a carrier to facilitate viral budding and eventually increase virus production. Taken together, our study reveals that lipid droplets are beneficial for RABV replication and their biogenesis is regulated via NDRG1-DGAT1/2 pathway, which provides novel potential targets for developing anti-RABV drugs. IMPORTANCE Lipid droplets have been proven to play an important role in viral infections, but its role in RABV infection has not yet been elaborated. Here, we find that RABV infection upregulates the generation of LDs by enhancing the expression of N-myc downstream regulated gene-1 (NDRG1). Then NDRG1 elevated cellular triglycerides synthesis by increasing the activity of diacylglycerol acyltransferase 1/2 (DGAT1/2), which promotes the biogenesis of LDs. RABV-M and RABV-G, which are the major proteins involved in viral budding, could utilize LDs as a carrier and transport to cell membrane, resulting in enhanced virus budding. Our findings will extend the knowledge of lipid metabolism in RABV infection and help to explore potential therapeutic targets for RABV.
Collapse
|
29
|
Piontkivska H, Wales-McGrath B, Miyamoto M, Wayne ML. ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biol Evol 2021; 13:evab240. [PMID: 34694399 PMCID: PMC8586724 DOI: 10.1093/gbe/evab240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine Deaminases that Act on RNA (ADARs) are RNA editing enzymes that play a dynamic and nuanced role in regulating transcriptome and proteome diversity. This editing can be highly selective, affecting a specific site within a transcript, or nonselective, resulting in hyperediting. ADAR editing is important for regulating neural functions and autoimmunity, and has a key role in the innate immune response to viral infections, where editing can have a range of pro- or antiviral effects and can contribute to viral evolution. Here we examine the role of ADAR editing across a broad range of viral groups. We propose that the effect of ADAR editing on viral replication, whether pro- or antiviral, is better viewed as an axis rather than a binary, and that the specific position of a given virus on this axis is highly dependent on virus- and host-specific factors, and can change over the course of infection. However, more research needs to be devoted to understanding these dynamic factors and how they affect virus-ADAR interactions and viral evolution. Another area that warrants significant attention is the effect of virus-ADAR interactions on host-ADAR interactions, particularly in light of the crucial role of ADAR in regulating neural functions. Answering these questions will be essential to developing our understanding of the relationship between ADAR editing and viral infection. In turn, this will further our understanding of the effects of viruses such as SARS-CoV-2, as well as many others, and thereby influence our approach to treating these deadly diseases.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences, Kent State University, Ohio, USA
- School of Biomedical Sciences, Kent State University, Ohio, USA
- Brain Health Research Institute, Kent State University, Ohio, USA
| | | | - Michael Miyamoto
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Beier KT. The Serendipity of Viral Trans-Neuronal Specificity: More Than Meets the Eye. Front Cell Neurosci 2021; 15:720807. [PMID: 34671244 PMCID: PMC8521040 DOI: 10.3389/fncel.2021.720807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Trans-neuronal viruses are frequently used as neuroanatomical tools for mapping neuronal circuits. Specifically, recombinant one-step rabies viruses (RABV) have been instrumental in the widespread application of viral circuit mapping, as these viruses have enabled labs to map the direct inputs onto defined cell populations. Within the neuroscience community, it is widely believed that RABV spreads directly between neurons via synaptic connections, a hypothesis based principally on two observations. First, the virus labels neurons in a pattern consistent with known anatomical connectivity. Second, few glial cells appear to be infected following RABV injections, despite the fact that glial cells are abundant in the brain. However, there is no direct evidence that RABV can actually be transmitted through synaptic connections. Here we review the immunosubversive mechanisms that are critical to RABV’s success for infiltration of the central nervous system (CNS). These include interfering with and ultimately killing migratory T cells while maintaining levels of interferon (IFN) signaling in the brain parenchyma. Finally, we critically evaluate studies that support or are against synaptically-restricted RABV transmission and the implications of viral-host immune responses for RABV transmission in the brain.
Collapse
Affiliation(s)
- Kevin Thomas Beier
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
31
|
Huang F, Ren M, Pei J, Mei H, Sui B, Wu Q, Chai B, Yang R, Zhou M, Fu ZF, Zhou H, Zhao L. Preexposure and Postexposure Prophylaxis of Rabies With Adeno-Associated Virus Expressing Virus-Neutralizing Antibody in Rodent Models. Front Microbiol 2021; 12:702273. [PMID: 34489891 PMCID: PMC8417364 DOI: 10.3389/fmicb.2021.702273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Rabies, a fatal disease in humans and other mammals, is caused by the rabies virus (RABV), and it poses a public health threat in many parts of the world. Once symptoms of rabies appear, the mortality is near 100%. There is currently no effective treatment for rabies. In our study, two human-derived RABV-neutralizing antibodies (RVNA), CR57 and CR4098, were cloned into adeno-associated virus (AAV) vectors, and recombinant AAVs expressing RVNA were evaluated for postexposure prophylaxis after intrathecal injection into RABV-infected rats. At 4days post-infection with a lethal dose of RABV, 60% of the rats that received an intrathecal injection of AAV-CR57 survived, while 100% of the rats inoculated with AAV-enhanced green fluorescent protein (EGFP) succumbed to rabies. Overall, these results demonstrate that AAV-encoding RVNA can be utilized as a potential human rabies postexposure prophylaxis.
Collapse
Affiliation(s)
- Fei Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meishen Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jie Pei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hong Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Benjie Chai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huiping Zhou
- School of Basic Medicine, Hubei University of Science and Technology, Xianning, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Farahtaj F, Gholami A, Khosravy MS, Gharibzadeh S, Niknam HM, Ghaemi A. Enhancement of immune responses by co-stimulation of TLR3 - TLR7 agonists as a potential therapeutics against rabies in mouse model. Microb Pathog 2021; 157:104971. [PMID: 34029660 DOI: 10.1016/j.micpath.2021.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/18/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Rabies is always fatal, when post-exposure prophylaxis is administered after the onset of clinical symptoms. To date, there is no effective treatment of rabies once clinical symptoms has initiated. Therefore, we aimed to provide evidences which indicate the promising effects of combination treatment with TLR agonists following rabies infection. Four groups of rabies infected-mice (10-mice/group) were treated with PolyI:C 50 μg (a TLR3 agonist), Imiquimod50 μg (a TLR7 agonist), (Poly + Imi)25 μg and (Poly + Imi)50 μg respectively. The immune responses in each experimental groups were investigated in the brain through evaluation of GFAP, MAP2, CD4, HSP70, TLR3, TLR7 and apoptotic cell expression as well as determination of IFN-γ, TNF-α and IL-4, levels. The treatment with combination of agonists (Poly + Imi)50 μg/mouse resulted a 75% decrease of mortality rate and better extended survival time following street rabies virus infection. Higher number of CD4+T cells, TLR3 and TLR7 expression in the brain parenchyma observed in the groups receiving both combined agonist therapies at the levels of 25 μg and 50 μg. In spite of decreased number of neuronal cell, significant higher number of astrocytes was shown in the group given (Poly + Imi)25 μg. The obtained results also pointed to the dramatic decrease of HSP70 expression in all groups of infected mice whereas higher number of apoptotic cells and Caspase 8 expression were recorded in (Poly + Imi)25 μg treated group. Furthermore, the cytokine profile consisting the increased levels of TNF-α, IFN-γ and IL-4 revealed that both humoral and cellular responses were highly modulated in combination therapy of 50 μg of Imiquimod and Poly I:C. Reduced viral load as quantified by real-time PCR of rabies N gene expression in the brain also correlated with the better survival of agonist-treated groups of mice. Based on obtained results, we have presented evidences of beneficial utilization of combined agonist therapy composed of TLR3/TLR7 ligands. This treatment regimen extended survival of infected mice and decreased significantly their mortality rate. We believe that the results of synergy-inducing protection of both TLR3/TLR7 agonists lead to the enhancement of innate immune responses cells residing in the CNS which warrant the studies to further understanding of crosstalk mechanisms in cellular immunity against rabies in the future.
Collapse
Affiliation(s)
- Firouzeh Farahtaj
- Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Gholami
- Viral Vaccine Production, Pasteur Institute of Iran, Karaj, Iran
| | | | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging of Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
33
|
te Kamp V, Friedrichs V, Freuling CM, Vos A, Potratz M, Klein A, Zaeck LM, Eggerbauer E, Schuster P, Kaiser C, Ortmann S, Kretzschmar A, Bobe K, Knittler MR, Dorhoi A, Finke S, Müller T. Comparable Long-Term Rabies Immunity in Foxes after IntraMuscular and Oral Application Using a Third-Generation Oral Rabies Virus Vaccine. Vaccines (Basel) 2021; 9:vaccines9010049. [PMID: 33466701 PMCID: PMC7828770 DOI: 10.3390/vaccines9010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
The live genetically-engineered oral rabies virus (RABV) variant SPBN GASGAS induces long-lasting immunity in foxes and protection against challenge with an otherwise lethal dose of RABV field strains both after experimental oral and parenteral routes of administration. Induction of RABV-specific binding antibodies and immunoglobulin isotypes (IgM, total IgG, IgG1, IgG2) were comparable in orally and parenterally vaccinated foxes. Differences were only observed in the induction of virus-neutralizing (VNA) titers, which were significantly higher in the parenterally vaccinated group. The dynamics of rabies-specific antibodies pre- and post-challenge (365 days post vaccination) suggest the predominance of type-1 immunity protection of SPBN GASGAS. Independent of the route of administration, in the absence of IgG1 the immune response to SPBN GAGAS was mainly IgG2 driven. Interestingly, vaccination with SPBN GASGAS does not cause significant differences in inducible IFN-γ production in vaccinated animals, indicating a relatively weak cellular immune response during challenge. Notably, the parenteral application of SPBN GASGAS did not induce any adverse side effects in foxes, thus supporting safety studies of this oral rabies vaccine in various species.
Collapse
Affiliation(s)
- Verena te Kamp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
- Boehringer Ingelheim GmbH, 55216 Ingelheim am Rhein, Germany
| | - Virginia Friedrichs
- Institute of Immunology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (V.F.); (M.R.K.); (A.D.)
| | - Conrad M. Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
| | - Ad Vos
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Madlin Potratz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
| | - Antonia Klein
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
- Thüringer Landesamt für Verbraucherschutz, 99947 Bad Langensalza, Germany
| | - Peter Schuster
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Christian Kaiser
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Steffen Ortmann
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Antje Kretzschmar
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Katharina Bobe
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Michael R. Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (V.F.); (M.R.K.); (A.D.)
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (V.F.); (M.R.K.); (A.D.)
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
- Correspondence: ; Tel.: +49-38351-71659
| |
Collapse
|
34
|
Sui B, Chen D, Liu W, Tian B, Lv L, Pei J, Wu Q, Zhou M, Fu ZF, Zhang Y, Zhao L. Comparison of lncRNA and mRNA expression in mouse brains infected by a wild-type and a lab-attenuated Rabies lyssavirus. J Gen Virol 2020; 102. [PMID: 33284098 DOI: 10.1099/jgv.0.001538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a lethal disease caused by Rabies lyssavirus, commonly known as rabies virus (RABV), and results in nearly 100 % death once clinical symptoms occur in human and animals. Long non-coding RNAs (lncRNAs) have been reported to be associated with viral infection. But the role of lncRNAs involved in RABV infection is still elusive. In this study, we performed global transcriptome analysis of both of lncRNA and mRNA expression profiles in wild-type (WT) and lab-attenuated RABV-infected mouse brains by using next-generation sequencing. The differentially expressed lncRNAs and mRNAs were analysed by using the edgeR package. We identified 1422 differentially expressed lncRNAs and 4475 differentially expressed mRNAs by comparing WT and lab-attenuated RABV-infected brains. Then we predicted the enriched biological pathways by the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) database based on the differentially expressed lncRNAs and mRNAs. Our analysis revealed the relationships between lncRNAs and RABV-infection-associated immune response and ion transport-related pathways, which provide a fresh insight into the potential role of lncRNA in immune evasion and neuron injury induced by WT RABV.
Collapse
Affiliation(s)
- Baokun Sui
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dong Chen
- ABLife BioBigData Institute, Wuhan, 430075, PR China
| | - Wei Liu
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Bin Tian
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lei Lv
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jie Pei
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiong Wu
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ming Zhou
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhen F Fu
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, 430075, PR China
| | - Ling Zhao
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
35
|
Liu SQ, Xie Y, Gao X, Wang Q, Zhu WY. Inflammatory response and MAPK and NF-κB pathway activation induced by natural street rabies virus infection in the brain tissues of dogs and humans. Virol J 2020; 17:157. [PMID: 33081802 PMCID: PMC7576862 DOI: 10.1186/s12985-020-01429-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Street rabies virus (RABV) usually infects hosts at peripheral sites and migrates from motor or sensory nerves to the central nervous system. Several studies have found that inflammation is mild in a mouse model of street RABV infection. However, the pathogenetic mechanisms of street RABV in naturally infected dogs or humans are not well understood. METHODS Brain tissues collected from 3 dogs and 3 humans were used; these tissue samples were collected under the natural condition of rabies-induced death. The inflammatory response and pathway activation in the brain tissue samples of dogs and humans were evaluated by HE, IHC, ARY006, WB and ELISA. The clinical isolate street RABV strains CGS-17 and CXZ-15 from 30 six-week-old ICR mice were used to construct the mouse infection model presented here. RESULTS Neuronal degeneration and increased lymphocyte infiltration in the cerebral cortex, especially marked activation of microglia, formation of glial nodules, and neuronophagy, were observed in the dogs and humans infected with the street RABV strains. The various levels of proinflammatory chemokines, particularly CXCL1, CXCL12, CCL2, and CCL5, were increased significantly in the context of infection with street RABV strains in dogs and humans in relation to healthy controls, and the levels of MAPK and NF-κB phosphorylation were also increased in dogs and humans with natural infection. We also found that the degrees of pathological change, inflammatory response, MAPK and NF-κB signaling pathway activation were obviously increased during natural infection in dogs and humans compared with artificial model infection in mice. CONCLUSION The data obtained here provide direct evidence for the RABV-induced activation of the inflammatory response in a dog infection model, which is a relatively accurate reflection of the pathogenic mechanism of human street RABV infection. These observations provide insight into the precise roles of underlying mechanisms in fatal natural RABV infection.
Collapse
Affiliation(s)
- Shu Qing Liu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206 People’s Republic of China
| | - Yuan Xie
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206 People’s Republic of China
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875 People’s Republic of China
| | - Xin Gao
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206 People’s Republic of China
- Pathogenic Microbiology Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011 People’s Republic of China
| | - Qian Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206 People’s Republic of China
| | - Wu Yang Zhu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206 People’s Republic of China
| |
Collapse
|
36
|
Interferon-Inducible GTPase 1 Impedes the Dimerization of Rabies Virus Phosphoprotein and Restricts Viral Replication. J Virol 2020; 94:JVI.01203-20. [PMID: 32796066 DOI: 10.1128/jvi.01203-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is an ancient zoonosis and still a major public health problem for humans, especially in developing countries. RABV can be recognized by specific innate recognition receptors, resulting in the production of hundreds of interferon-stimulated genes (ISGs), which can inhibit viral replication at different stages. Interferon-inducible GTPase 1 (IIGP1) is a mouse-specific ISG and belongs to the immunity-related GTPases (IRGs) family. IIGP is reported to constrain intracellular parasite infection by disrupting the parasitophorous vacuole membrane. However, the role of IIGP1 in restricting viral replication has not been reported. In this present study, we found that IIGP1 was upregulated in cells and mouse brains upon RABV infection. Overexpression of IIGP1 limited RABV replication in cell lines and reduced viral pathogenicity in a mouse model. Consistently, deficiency of IIGP1 enhanced RABV replication in different parts of mouse brains. Furthermore, we found that IIGP1 could interact with RABV phosphoprotein (P protein). Mutation and immunoprecipitation analyses revealed that the Y128 site of P protein is critical for its interaction with IIGP1. Further study demonstrated that this interaction impeded the dimerization of P protein and thus suppressed RABV replication. Collectively, our findings for the first reveal a novel role of IIGP1 in restricting a typical neurotropic virus, RABV, which will provide fresh insight into the function of this mouse-specific ISG.IMPORTANCE Interferon and its downstream products, ISGs, are essential in defending against pathogen invasion. One of the ISGs, IIGP1, has been found to constrain intracellular parasite infection by disrupting their vacuole membranes. However, the role of IIGP1 in limiting viral infection is unclear. In this study, we show that infection with a typical neurotropic virus, RABV, can induce upregulation of IIGP1, which, in turn, suppresses RABV by interacting with its phosphoprotein (P protein) and thus blocking the dimerization of P protein. Our study provides the first evidence that IIGP1 functions in limiting viral infection and provides a basis for comprehensive understanding of this important ISG.
Collapse
|
37
|
Scher G, Schnell MJ. Rhabdoviruses as vectors for vaccines and therapeutics. Curr Opin Virol 2020; 44:169-182. [PMID: 33130500 PMCID: PMC8331071 DOI: 10.1016/j.coviro.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/24/2022]
Abstract
Appropriate choice of vaccine vector is crucial for effective vaccine development. Rhabdoviral vectors, such as rabies virus and vesicular stomatitis virus, have been used in a variety of vaccine strategies. These viruses have small, easily manipulated genomes that can stably express foreign glycoproteins due to a well-established reverse genetics system for virus recovery. Both viruses have well-described safety profiles and have been demonstrated to be effective vaccine vectors. This review will describe how these Rhabdoviruses can be manipulated for use as vectors, their various applications as vaccines or therapeutics, and the advantages and disadvantages of their use.
Collapse
Affiliation(s)
- Gabrielle Scher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
38
|
Liu SQ, Gao X, Xie Y, Wang Q, Zhu WY. Rabies viruses of different virulence regulates inflammatory responses both in vivo and in vitro via MAPK and NF-κB pathway. Mol Immunol 2020; 125:70-82. [PMID: 32652362 DOI: 10.1016/j.molimm.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Immune responses and central nervous system dysfunction are two main factors to be considered during rabies virus (RABV) infection. However, the mechanisms by which RABV strains of different virulence regulate with chemokine expression and the signaling pathways responsible for the immune responses in the terminal stage of infection both in vivo and in vitro have not been fully elucidated. In this study, we found low expression levels of proinflammatory chemokines in the mouse brain upon infection with street RABV strains (CXZ17 and HN10) at the late stage of infection. We also examined the difference in inflammatory response upon infection with RABV strains of different virulence in a mouse model. We found that the expression of proinflammatory chemokines increased to a varying degree upon infection with street RABV (CXZ17 and HN10) or laboratory-fixed RABV (CVS-11, aG, and CTN); CXCL10, CCL5, and CCL2 were the most significantly upregulated chemokines in brain tissue and microglial BV-2 cells in response to infection with RABV strains of different virulence. Our data also demonstrate significant activation of the MAPK and NF-κB pathways in mouse brain tissue at the late stage of RABV infection. We also found (i) low phosphorylation signals of MAPK and NF-κB p65 in neuronal cells upon infection with CXZ17 and HN10 in the mouse brain and (ii) strong phosphorylation signals in cerebrovascular endothelial cells and neuronal cells upon CTN or aG infection. Moreover, we quantified the nuclear localization status of MAPK signals and NF-κB p65 upon infection with CVS-11, aG, and CTN in BV-2 cells in vitro. We also found (i) that the activation of the p38, ERK1/2, and NF-κB p65 pathway, which stimulates CXCL10, CCL5, and CCL2 expression upon infection with RABV strains of different virulence (aG, CTN, and CVS-11), is triggered after virus entry into BV-2 cells and (ii) that the expression of CXCL10, CCL5, and CCL2 is required for the activation of NF-κB, p38, and ERK1/2, but not JNK. Overall, our study provides insight into the regulation of inflammatory responses mediated by MAPK and NF-κB in the mouse brain and in microglial cells upon RABV infection of different virulence.
Collapse
Affiliation(s)
- Shu Qing Liu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Xin Gao
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Pathogenic Microbiology Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Yuan Xie
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; College of Global Change and Earth System Science, Beijing Normal University, 100875, Beijing, China
| | - Qian Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wu Yang Zhu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
39
|
Abdulazeez M, Kia GSN, Abarshi MM, Muhammad A, Ojedapo CE, Atawodi JC, Dantong D, Kwaga JKP. Induction of Rabies Virus Infection in Mice Brain may Up and Down Regulate Type II Interferon gamma via epigenetic modifications. Metab Brain Dis 2020; 35:819-827. [PMID: 32172520 PMCID: PMC7223763 DOI: 10.1007/s11011-020-00553-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
As feared and deadly human diseases globally, Rabies virus contrived mechanisms to escape early immune recognition via suppression of the interferon response. This study, preliminarily investigated whether Rabies virus employs epigenetic mechanism for the suppression of the interferon using the Challenge virus standard (CVS) strain and Nigerian street Rabies virus (SRV) strain. Mice were challenged with Rabies virus (RABV) infection, and presence of RABV antigen was assessed by direct fluorescent antibody test (DFAT). A real time quantitative Polymerase chain reaction (qRT-PCR) was used to measure the expression of type II interferon gamma (IFNG) and methylation specific quantitative PCR for methylation analysis of 1FNG promoter region. Accordingly, DNA methyltransferase (DNMT) and histone acetyltransferase (HAT) enzymes activities were determined. RABV antigen was detected in all infected samples. A statistically significant increase (p < 0.05) in mRNA level of IFNG was observed at the onset of the disease and a decrease as the disease progressed. An increase in methylation in the test groups from the control group was observed, with a fluctuation in methylation as the disease progressed. DNMT and HAT activities also agree with methylation as there was an observed increase activity in test group compared with control group. Similar fluctuation pattern was observed in both CVS and SRV groups as the disease progressed with HAT, being the most active proportionally. This study suggests that epigenetic modification via DNA methylation and histone acetylation may have played a role in the expression of type II interferon gamma in Rabies virus infection. Graphical abstract.
Collapse
Affiliation(s)
- Maryam Abdulazeez
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, ZariaKaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Grace S. N. Kia
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- Department of Public health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Musa M. Abarshi
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, ZariaKaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, ZariaKaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Comfort E. Ojedapo
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, ZariaKaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Joy Cecilia Atawodi
- Department of Public health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - David Dantong
- Department of Microbiology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Jacob K. P. Kwaga
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- Department of Public health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
40
|
Yin K, Li Y, Ma Z, Yang Y, Zhao H, Liu C, Jin M, Wudong G, Sun Y, Hang T, Zhang H, Wang F, Wen Y. SNAP25 regulates the release of the Rabies virus in nerve cells via SNARE complex-mediated membrane fusion. Vet Microbiol 2020; 245:108699. [PMID: 32456820 DOI: 10.1016/j.vetmic.2020.108699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
Recent studies have reported that host proteins regulate Rabies virus (RABV) infection via distinct mechanisms. The abnormal neural function caused by RABV infection is related to the abnormal synaptic signal transmission in which the RABV glycoprotein (G) is involved. In the present study, two recombinant Rabies viruses (rRABVs), namely rSAD-SAD-Flag-G and rSAD-CVS-Flag-G, were established and rescued based on rSAD and verified by indirect fluorescence assay (IFA), and western blotting (WB). To investigate how the G protein interacts with synaptosomal-associated protein 25 (SNAP25), primary neuronal cells (PNC) of embryonic mice were cultured and infected with rRABVs. Immunoprecipitation (IP) and LC-MS/MS analysis of glycoprotein-binding proteins, which were flag tagged, were carried out to determine the interaction of G protein and soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins (SNARE) complex in PNC. G protein and the SNARE member SNAP25 were co-expressed in HEK293 cells or primary neuronal cells to investigate their colocalization. Knockdown of SNAP25 with small interfering RNA (siRNA) was conducted on mNA cells, and rRABV replication was observed by IFA, qRT-PCR, and virus titration. The results indicated that rRABVs were successfully rescued and grew well in PNC. Flag-tag IP and confocal microscopy demonstrated that SNAP25 works together with G protein and colocalizes with G on the cytomembrane of HEK293 cells. The downregulation of SNAP25, using RNA interference, resulted in a significant decrease in the number of viral mRNAs, viral proteins, and virus particles. Furthermore, the regression of SNAP25 did not affect the initial infection of the virus but reduced the infectivity of progeny virions.
Collapse
Affiliation(s)
- Kun Yin
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China; State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences CAAS, Changchun, Jilin 130112, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Yiming Li
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Zipeng Ma
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Yang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Hongzhe Zhao
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Chunyu Liu
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Ming Jin
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Gaowa Wudong
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Yuming Sun
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Tianyu Hang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - He Zhang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Fengxue Wang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China.
| | - Yongjun Wen
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China; State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences CAAS, Changchun, Jilin 130112, China
| |
Collapse
|
41
|
Interferon-λ Attenuates Rabies Virus Infection by Inducing Interferon-Stimulated Genes and Alleviating Neurological Inflammation. Viruses 2020; 12:v12040405. [PMID: 32268591 PMCID: PMC7232327 DOI: 10.3390/v12040405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is a fatal neurological disease that still causes more than 59,000 human deaths each year. Type III interferon IFN-λs are cytokines with type I IFN-like antiviral activities. Although IFN-λ can restrict the infection for some viruses, especially intestinal viruses, the inhibitory effect against RABV infection remains undefined. In this study, the function of type III IFN against RABV infection was investigated. Initially, we found that IFN-λ2 and IFN-λ3 could inhibit RABV replication in cells. To characterize the role of IFN-λ in RABV infection in a mouse model, recombinant RABVs expressing murine IFN-λ2 or IFN-λ3, termed as rB2c-IFNλ2 or rB2c-IFNλ3, respectively, were constructed and rescued. It was found that expression of IFN-λ could reduce the pathogenicity of RABV and limit viral spread in the brains by different infection routes. Furthermore, expression of IFN-λ could induce the activation of the JAK-STAT pathway, resulting in the production of interferon-stimulated genes (ISGs). It was also found that rRABVs expressing IFN-λ could reduce the production of inflammatory cytokines in primary astrocytes and microgila cells, restrict the opening of the blood-brain barrier (BBB), and prevent excessive infiltration of inflammatory cells into the brain, which could be responsible for the neuronal damage caused by RABV. Consistently, IFN-λ was found to maintain the integrity of tight junction (TJ) protein ZO-1 of BBB to alleviate neuroinflammation in a transwell model. Our study underscores the role of IFN-λ in inhibiting RABV infection, which potentiates IFN-λ as a possible therapeutic agent for the treatment of RABV infection.
Collapse
|
42
|
Long T, Zhang B, Fan R, Wu Y, Mo M, Luo J, Chang Y, Tian Q, Mei M, Jiang H, Luo Y, Guo X. Phosphoprotein Gene of Wild-Type Rabies Virus Plays a Role in Limiting Viral Pathogenicity and Lowering the Enhancement of BBB Permeability. Front Microbiol 2020; 11:109. [PMID: 32153520 PMCID: PMC7045047 DOI: 10.3389/fmicb.2020.00109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Enhancement of blood–brain barrier (BBB) permeability is necessary for clearing virus in the central nervous system (CNS). It has been reported that only laboratory-attenuated rabies virus (RABV) induces inflammatory response to lead BBB transient breakdown rather than wild-type (wt) strains. As a component of ribonucleoprotein (RNP), phosphoprotein (P) of RABV plays a key role in viral replication and pathogenicity. To our knowledge, the function of RABV P gene during RABV invasion was unclear so far. In order to determine the role of RABV P gene during RABV infection, we evaluated the BBB permeability in vivo after infection with wt RABV strain (GD-SH-01), a lab-attenuated RABV strain (HEP-Flury), and a chimeric RABV strain (rHEP-SH-P) whose P gene cloned from GD-SH-01 was expressed in the genomic backbone of HEP-Flury. We found that rHEP-SH-P caused less enhancement of BBB permeability and was less pathogenic to adult mice than GD-SH-01 and HEP-Flury. In an effort to investigate the mechanism, we found that the replication of rHEP-SH-P has been limited due to the suppressed P protein expression and induced less response to maintain BBB integrity. Our data indicated that the P gene of wt RABV was a potential determinant in hampering viral replication in vivo, which kept BBB integrity. These findings provided an important foundation for understanding the viral invasion and development of novel vaccine.
Collapse
Affiliation(s)
- Teng Long
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuting Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Meijun Mo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiran Chang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qin Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingzhu Mei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - He Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLoS Pathog 2020; 16:e1008343. [PMID: 32069324 PMCID: PMC7048299 DOI: 10.1371/journal.ppat.1008343] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/28/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Neurotropic viral infections continue to pose a serious threat to human and animal wellbeing. Host responses combatting the invading virus in these infections often cause irreversible damage to the nervous system, resulting in poor prognosis. Rabies is the most lethal neurotropic virus, which specifically infects neurons and spreads through the host nervous system by retrograde axonal transport. The key pathogenic mechanisms associated with rabies infection and axonal transmission in neurons remains unclear. Here we studied the pathogenesis of different field isolates of lyssavirus including rabies using ex-vivo model systems generated with mouse primary neurons derived from the peripheral and central nervous systems. In this study, we show that neurons activate selective and compartmentalized degeneration of their axons and dendrites in response to infection with different field strains of lyssavirus. We further show that this axonal degeneration is mediated by the loss of NAD and calpain-mediated digestion of key structural proteins such as MAP2 and neurofilament. We then analysed the role of SARM1 gene in rabies infection, which has been shown to mediate axonal self-destruction during injury. We show that SARM1 is required for the accelerated execution of rabies induced axonal degeneration and the deletion of SARM1 gene significantly delayed axonal degeneration in rabies infected neurons. Using a microfluidic-based ex-vivo neuronal model, we show that SARM1-mediated axonal degeneration impedes the spread of rabies virus among interconnected neurons. However, this neuronal defense mechanism also results in the pathological loss of axons and dendrites. This study therefore identifies a potential host-directed mechanism behind neurological dysfunction in rabies infection. This study also implicates a novel role of SARM1 mediated axonal degeneration in neurotropic viral infection. Lyssaviruses including rabies, still causes devastating loss of human life every year and many victims are children under the age of 15. Rabies infection causes severe neurological dysfunction in the host resulting in paralysis, cognitive deficits and behavioural abnormalities. The mechanism of how rabies infection induces neurological dysfunction in the host remains unclear. This is because unlike other microbial infections, rabies infection rarely causes neuronal cell death and loss of neurons in the host nervous system. In this study, we show that neurons activate specific axonal self-destruction mechanism during rabies infection to prevent the spread of virus. However, this neuronal self-defense mechanism results in the loss of axons and dendrites, the structural components essential for the functioning of neurons. We further show that axonal degeneration in rabies infection is mediated by SARM1 gene, which has been previously shown to mediate defensive self-destruction of axons and dendrites in the event of neuronal injury. In summary, this study identifies a novel molecular mechanism behind neuronal dysfunction in rabies infection. This study also describes a novel intrinsic anti-viral defence mechanism in neurons, which could influence the pathogenesis of neurotropic viral infections.
Collapse
|
44
|
Astrocyte Infection during Rabies Encephalitis Depends on the Virus Strain and Infection Route as Demonstrated by Novel Quantitative 3D Analysis of Cell Tropism. Cells 2020; 9:cells9020412. [PMID: 32053954 PMCID: PMC7072253 DOI: 10.3390/cells9020412] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/25/2022] Open
Abstract
Although conventional immunohistochemistry for neurotropic rabies virus (RABV) usually shows high preference for neurons, non-neuronal cells are also potential targets, and abortive astrocyte infection is considered a main trigger of innate immunity in the CNS. While in vitro studies indicated differences between field and less virulent lab-adapted RABVs, a systematic, quantitative comparison of astrocyte tropism in vivo is lacking. Here, solvent-based tissue clearing was used to measure RABV cell tropism in infected brains. Immunofluorescence analysis of 1 mm-thick tissue slices enabled 3D-segmentation and quantification of astrocyte and neuron infection frequencies. Comparison of three highly virulent field virus clones from fox, dog, and raccoon with three lab-adapted strains revealed remarkable differences in the ability to infect astrocytes in vivo. While all viruses and infection routes led to neuron infection frequencies between 7–19%, striking differences appeared for astrocytes. Whereas astrocyte infection by field viruses was detected independent of the inoculation route (8–27%), only one lab-adapted strain infected astrocytes route-dependently [0% after intramuscular (i.m.) and 13% after intracerebral (i.c.) inoculation]. Two lab-adapted vaccine viruses lacked astrocyte infection altogether (0%, i.c. and i.m.). This suggests a model in which the ability to establish productive astrocyte infection in vivo functionally distinguishes field and attenuated lab RABV strains.
Collapse
|
45
|
Yuan Y, Wang Z, Tian B, Zhou M, Fu ZF, Zhao L. Cholesterol 25-hydroxylase suppresses rabies virus infection by inhibiting viral entry. Arch Virol 2019; 164:2963-2974. [PMID: 31552533 DOI: 10.1007/s00705-019-04415-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Cholesterol-25-hydroxylase (CH25H) is a reticulum-associated membrane protein that catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC). Recent studies have revealed that CH25H is an interferon-stimulated gene (ISG) that suppresses infection by several viruses. In the present study, we found that overexpression of both human and murine CH25H inhibited rabies virus (RABV) infection in HEK-293T (293T) cells. In contrast, silencing of CH25H enhanced RABV replication in 293T cells, and a catalytic mutant of CH25H lost its ability to inhibit RABV infection. Treatment with the oxysterol 25-hydroxycholesterol (25HC), the product of CH25H, dramatically decreased RABV replication in 293T, BSR and N2a cells by inhibiting viral membrane penetration. These data provide insights into the antiviral function of CH25H against RABV infection, which can potentially be used as a therapeutic agent for rabies.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Bin Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Department of Pathology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
46
|
Pentagalloylglucose Inhibits the Replication of Rabies Virus via Mediation of the miR-455/SOCS3/STAT3/IL-6 Pathway. J Virol 2019; 93:JVI.00539-19. [PMID: 31243136 DOI: 10.1128/jvi.00539-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
Our previous study showed that pentagalloylglucose (PGG), a naturally occurring hydrolyzable phenolic tannin, possesses significant anti-rabies virus (RABV) activity. In BHK-21 cells, RABV induced the overactivation of signal transducer and activator of transcription 3 (STAT3) by suppressing the expression of suppressor of cytokine signaling 3 (SOCS3). Inhibition of STAT3 by niclosamide, small interfering RNA, or exogenous expression of SOCS3 all significantly suppressed the replication of RABV. Additionally, RABV-induced upregulation of microRNA 455-5p (miR-455-5p) downregulated SOCS3 by directly binding to the 3' untranslated region (UTR) of SOCS3. Importantly, PGG effectively reversed the expression of miR-455-5p and its following SOCS3/STAT3 signaling pathway. Finally, activated STAT3 elicited the expression of interleukin-6 (IL-6), thereby contributing to RABV-associated encephalomyelitis; however, PGG restored the level of IL-6 in vitro and in vivo in a SOCS3/STAT3-dependent manner. Altogether, these data identify a new miR-455-5p/SOCS3/STAT3 signaling pathway that contributes to viral replication and IL-6 production in RABV-infected cells, with PGG exerting its antiviral effect by inhibiting the production of miR-455-5p and the activation of STAT3.IMPORTANCE Rabies virus causes lethal encephalitis in mammals and poses a serious public health threat in many parts of the world. Numerous strategies have been explored to combat rabies; however, their efficacy has always been unsatisfactory. We previously reported a new drug, PGG, which possesses a potent inhibitory activity on RABV replication. Herein, we describe the underlying mechanisms by which PGG exerts its anti-RABV activity. Our results show that RABV induces overactivation of STAT3 in BHK-21 cells, which facilitates viral replication. Importantly, PGG effectively inhibits the activity of STAT3 by disrupting the expression of miR-455-5p and increases the level of SOCS3 by directly targeting the 3' UTR of SOCS3. Furthermore, the downregulated STAT3 inhibits the production of IL-6, thereby contributing to a reduction in the inflammatory response in vivo Our study indicates that PGG effectively inhibits the replication of RABV by the miR-455-5p/SOCS3/STAT3/IL-6-dependent pathway.
Collapse
|
47
|
Milora KA, Rall GF. Interferon Control of Neurotropic Viral Infections. Trends Immunol 2019; 40:842-856. [PMID: 31439415 DOI: 10.1016/j.it.2019.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/29/2022]
Abstract
Interferons (IFNs) comprise a pleiotropic family of signaling molecules that are often the first line of defense against viral infection. Inflammatory responses induced by IFN are generally well tolerated during peripheral infections; yet, the same degree of inflammation during infection of the central nervous system (CNS) could be catastrophic. Thus, IFN responses must be modified within the CNS to ensure host survival. In this review, we discuss emerging principles highlighting unique aspects of antiviral effects of IFN protection following neurotropic viral infection, chiefly using new techniques in rodent models. Evaluation of these unique responses provides insights into how the immune system eradicates or controls pathogens, while avoiding host damage. Defining these principles may have direct impact on the development of novel clinical approaches.
Collapse
Affiliation(s)
- Katelynn A Milora
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Glenn F Rall
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
48
|
Martina BEE, Smreczak M, Orlowska A, Marzec A, Trebas P, Roose JM, Zmudzinski J, Gerhauser I, Wohlsein P, Baumgärtner W, Osterhaus ADME, Koraka P. Combination drug treatment prolongs survival of experimentally infected mice with silver-haired bat rabies virus. Vaccine 2019; 37:4736-4742. [PMID: 29843998 DOI: 10.1016/j.vaccine.2018.05.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/24/2018] [Accepted: 05/12/2018] [Indexed: 01/06/2023]
Abstract
Rabies is a lethal disease in humans and animals, killing approximately 60,000 people every year. Currently, there is no treatment available, except post-exposure prophylaxis (PEP) that can be administered whenever exposure to a rabid animal took place. Here we describe the beneficial effects of a combination treatment initiated at day 4 post infection, containing anti-viral drugs and immune modulators in infected mice. Combination therapy resulted in significant increase in survival time (P < 0.05) and significantly lowers viral RNA in the brain and spinal cord (P < 0.05). Furthermore, treatment influenced markers of pyroptosis and apoptosis and early inflammatory response as measured by the levels of TNF-α. Morphological lesions were absent in rabies virus infected mice with few signs of inflammation. However, these were not significant between the different groups.
Collapse
Affiliation(s)
- Byron E E Martina
- Artemis One Health Research Foundation, Delft, The Netherlands; Erasmus Medical Centre Rotterdam, The Netherlands
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| | - Anna Orlowska
- Department of Virology, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| | - Anna Marzec
- Department of Virology, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| | - Pawel Trebas
- Department of Virology, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| | - Jouke M Roose
- Artemis One Health Research Foundation, Delft, The Netherlands
| | - Jan Zmudzinski
- Department of Virology, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Albert D M E Osterhaus
- Artemis One Health Research Foundation, Delft, The Netherlands; Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
49
|
Mannitol treatment is not effective in therapy of rabies virus infection in mice. Vaccine 2019; 37:4710-4714. [DOI: 10.1016/j.vaccine.2017.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 11/23/2022]
|
50
|
Koraka P, Martina BE, Smreczak M, Orlowska A, Marzec A, Trebas P, Roose JM, Begeman L, Gerhauser I, Wohlsein P, Baumgärtner W, Zmudzinski J, D.M.E. Osterhaus A. Inhibition of caspase-1 prolongs survival of mice infected with rabies virus. Vaccine 2019; 37:4681-4685. [DOI: 10.1016/j.vaccine.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022]
|