1
|
Warner BM, Chan M, Tailor N, Vendramelli R, Audet J, Meilleur C, Truong T, Garnett L, Willman M, Soule G, Tierney K, Albietz A, Moffat E, Higgins R, Santry LA, Leacy A, Pham PH, Yates JGE, Pei Y, Safronetz D, Strong JE, Susta L, Embury-Hyatt C, Wootton SK, Kobasa D. Mucosal Vaccination with a Newcastle Disease Virus-Vectored Vaccine Reduces Viral Loads in SARS-CoV-2-Infected Cynomolgus Macaques. Vaccines (Basel) 2024; 12:404. [PMID: 38675786 PMCID: PMC11054841 DOI: 10.3390/vaccines12040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged following an outbreak of unexplained viral illness in China in late 2019. Since then, it has spread globally causing a pandemic that has resulted in millions of deaths and has had enormous economic and social consequences. The emergence of SARS-CoV-2 saw the rapid and widespread development of a number of vaccine candidates worldwide, and this never-before-seen pace of vaccine development led to several candidates progressing immediately through clinical trials. Many countries have now approved vaccines for emergency use, with large-scale vaccination programs ongoing. Despite these successes, there remains a need for ongoing pre-clinical and clinical development of vaccine candidates against SARS-CoV-2, as well as vaccines that can elicit strong mucosal immune responses. Here, we report on the efficacy of a Newcastle disease virus-vectored vaccine candidate expressing SARS-CoV-2 spike protein (NDV-FLS) administered to cynomolgus macaques. Macaques given two doses of the vaccine via respiratory immunization developed robust immune responses and had reduced viral RNA levels in nasal swabs and in the lower airway. Our data indicate that NDV-FLS administered mucosally provides significant protection against SARS-CoV-2 infection, resulting in reduced viral burden and disease manifestation, and should be considered as a viable candidate for clinical development.
Collapse
Affiliation(s)
- Bryce M. Warner
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Mable Chan
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Nikesh Tailor
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Robert Vendramelli
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Jonathan Audet
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Courtney Meilleur
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Thang Truong
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Lauren Garnett
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Marnie Willman
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Geoff Soule
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Kevin Tierney
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Alixandra Albietz
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Estella Moffat
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (E.M.); (C.E.-H.)
| | - Rick Higgins
- Department of Radiology, Health Sciences Center, Winnipeg, MB R3A 1S1, Canada;
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Phuc H. Pham
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - David Safronetz
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - James E. Strong
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (E.M.); (C.E.-H.)
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Darwyn Kobasa
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
2
|
Murr M, Freuling C, Pérez-Bravo D, Grund C, Mettenleiter TC, Römer-Oberdörfer A, Müller T, Finke S. Immune response after oral immunization of goats and foxes with an NDV vectored rabies vaccine candidate. PLoS Negl Trop Dis 2024; 18:e0011639. [PMID: 38408125 PMCID: PMC10919857 DOI: 10.1371/journal.pntd.0011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/07/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Vaccination of the reservoir species is a key component in the global fight against rabies. For wildlife reservoir species and hard to reach spillover species (e. g. ruminant farm animals), oral vaccination is the only solution. In search for a novel potent and safe oral rabies vaccine, we generated a recombinant vector virus based on lentogenic Newcastle disease virus (NDV) strain Clone 30 that expresses the glycoprotein G of rabies virus (RABV) vaccine strain SAD L16 (rNDV_GRABV). Transgene expression and virus replication was verified in avian and mammalian cells. To test immunogenicity and viral shedding, in a proof-of-concept study six goats and foxes, representing herbivore and carnivore species susceptible to rabies, each received a single dose of rNDV_GRABV (108.5 TCID50/animal) by direct oral application. For comparison, three animals received the similar dose of the empty viral vector (rNDV). All animals remained clinically inconspicuous during the trial. Viral RNA could be isolated from oral and nasal swabs until four (goats) or seven days (foxes) post vaccination, while infectious NDV could not be re-isolated. After four weeks, three out of six rNDV_GRABV vaccinated foxes developed RABV binding and virus neutralizing antibodies. Five out of six rNDV_GRABV vaccinated goats displayed RABV G specific antibodies either detected by ELISA or RFFIT. Additionally, NDV and RABV specific T cell activity was demonstrated in some of the vaccinated animals by detecting antigen specific interferon γ secretion in lymphocytes isolated from pharyngeal lymph nodes. In conclusion, the NDV vectored rabies vaccine rNDV_GRABV was safe and immunogenic after a single oral application in goats and foxes, and highlight the potential of NDV as vector for oral vaccines in mammals.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Pérez-Bravo
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
4
|
de Swart RL, Belov GA. Advantages and challenges of Newcastle disease virus as a vector for respiratory mucosal vaccines. Curr Opin Virol 2023; 62:101348. [PMID: 37591130 DOI: 10.1016/j.coviro.2023.101348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome. Properties such as the ease of genome modification, respiratory tract tropism, and self-limiting replication in mammals make NDV an attractive vector for vaccine development. Experimental NDV-based vaccines against multiple human and animal pathogens elicited both systemic and mucosal immune responses and were protective in preclinical animal studies, but their real-life efficacy remains to be demonstrated. Only recently, the first results of clinical trials of NDV-based vaccines against SARS-CoV-2 became available, highlighting the challenges that need to be overcome to fully realize the potential of NDV as a platform for the rapid development of economically affordable and effective mucosal vaccines.
Collapse
Affiliation(s)
- Rik L de Swart
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, the Netherlands.
| | - George A Belov
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
5
|
Ponce-de-León S, Torres M, Soto-Ramírez LE, Calva JJ, Santillán-Doherty P, Carranza-Salazar DE, Carreño JM, Carranza C, Juárez E, Carreto-Binaghi LE, Ramírez-Martínez L, Paz De la Rosa G, Vigueras-Moreno R, Ortiz-Stern A, López-Vidal Y, Macías AE, Torres-Flores J, Rojas-Martínez O, Suárez-Martínez A, Peralta-Sánchez G, Kawabata H, González-Domínguez I, Martínez-Guevara JL, Sun W, Sarfati-Mizrahi D, Soto-Priante E, Chagoya-Cortés HE, López-Macías C, Castro-Peralta F, Palese P, García-Sastre A, Krammer F, Lozano-Dubernard B. Interim safety and immunogenicity results from an NDV-based COVID-19 vaccine phase I trial in Mexico. NPJ Vaccines 2023; 8:67. [PMID: 37164959 PMCID: PMC10170424 DOI: 10.1038/s41541-023-00662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
There is still a need for safe, efficient, and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at a low cost, similar to influenza virus vaccines, and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open-label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety, and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe, and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737.
Collapse
Affiliation(s)
- Samuel Ponce-de-León
- Programa Universitario de Investigación en Salud (PUIS), Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Edif. de los Programas Universitarios, Planta Alta. Circuito de la Investigación Científica S/N Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Martha Torres
- Laboratorio de Inmunobiología de la tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cossio Villegas, Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Luis Enrique Soto-Ramírez
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Dominguez, Sección XVI, 14080, Tlalpan, México
- Departamento de Infectología y Vigilancia Epidemiológica, Hospital Médica Sur, S.A.B. de C. V., Puente de Piedra 150, Toriello Guerra, 14050, Tlalpan, México
| | - Juan José Calva
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Dominguez, Sección XVI, 14080, Tlalpan, México
| | - Patricio Santillán-Doherty
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cossio Villegas, Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Dora Eugenia Carranza-Salazar
- ProcliniQ Investigación Clínica, S. A. de C. V., Renato Leduc 155 (Xontepec 91), Toriello Guerra, 14050, Tlalpan, México
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Claudia Carranza
- Laboratorio de Inmunobiología de la tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cossio Villegas, Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Esmeralda Juárez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cossio Villegas, Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Laura E Carreto-Binaghi
- Laboratorio de Inmunobiología de la tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cossio Villegas, Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Luis Ramírez-Martínez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Georgina Paz De la Rosa
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Rosalía Vigueras-Moreno
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Alejandro Ortiz-Stern
- iLS Clinical Research, S. C. (iLS), Matias Romero 102 - 205 Del Valle, Benito Juárez, CP 03100, CDMX, México
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Circuito Interior S/N. Ciudad Universitaria, Coyoacán, CP.04510, México
| | - Alejandro E Macías
- Departamento de Medicina, Universidad de Guanajuato, 20 de Enero 929, C.P 37000, León Guanajuato, México
| | - Jesús Torres-Flores
- Dirección Adjunta de Desarrollo Tecnológico, Vinculación e Innovación, Consejo Nacional de Ciencia y Tecnología (CONACYT), Insurgentes Sur 1582, Crédito Constructor, CP 03940, Benito Juárez, CDMX, México
| | - Oscar Rojas-Martínez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Alejandro Suárez-Martínez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Gustavo Peralta-Sánchez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Hisaaki Kawabata
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Irene González-Domínguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - José Luis Martínez-Guevara
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - David Sarfati-Mizrahi
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Ernesto Soto-Priante
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Héctor Elías Chagoya-Cortés
- Consultora Mextrategy, S.A.S. de C. V. (Mextrategy), Insurgentes Sur 1079 P7-127, Nochebuena, CP 03720, CDMX, Mexico
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica. Hospital de Especialidades del Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Doctores, C.P. 06720, Benito Juárez, CDMX, México
| | - Felipa Castro-Peralta
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
| | - Bernardo Lozano-Dubernard
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico.
| |
Collapse
|
6
|
Park HS, Matsuoka Y, Luongo C, Yang L, Santos C, Liu X, Ahlers LRH, Moore IN, Afroz S, Johnson RF, Lafont BAP, Dorward DW, Fischer ER, Martens C, Samal SK, Munir S, Buchholz UJ, Le Nouën C. Intranasal immunization with avian paramyxovirus type 3 expressing SARS-CoV-2 spike protein protects hamsters against SARS-CoV-2. NPJ Vaccines 2022; 7:72. [PMID: 35764659 PMCID: PMC9240059 DOI: 10.1038/s41541-022-00493-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
Current vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are administered parenterally and appear to be more protective in the lower versus the upper respiratory tract. Vaccines are needed that directly stimulate immunity in the respiratory tract, as well as systemic immunity. We used avian paramyxovirus type 3 (APMV3) as an intranasal vaccine vector to express the SARS-CoV-2 spike (S) protein. A lack of pre-existing immunity in humans and attenuation by host-range restriction make APMV3 a vector of interest. The SARS-CoV-2 S protein was stabilized in its prefusion conformation by six proline substitutions (S-6P) rather than the two that are used in most vaccine candidates, providing increased stability. APMV3 expressing S-6P (APMV3/S-6P) replicated to high titers in embryonated chicken eggs and was genetically stable, whereas APMV3 expressing non-stabilized S or S-2P were unstable. In hamsters, a single intranasal dose of APMV3/S-6P induced strong serum IgG and IgA responses to the S protein and its receptor-binding domain, and strong serum neutralizing antibody responses to SARS-CoV-2 isolate WA1/2020 (lineage A). Sera from APMV3/S-6P-immunized hamsters also efficiently neutralized Alpha and Beta variants of concern. Immunized hamsters challenged with WA1/2020 did not exhibit the weight loss and lung inflammation observed in empty-vector-immunized controls; SARS-CoV-2 replication in the upper and lower respiratory tract of immunized animals was low or undetectable compared to the substantial replication in controls. Thus, a single intranasal dose of APMV3/S-6P was highly immunogenic and protective against SARS-CoV-2 challenge, suggesting that APMV3/S-6P is suitable for clinical development.
Collapse
Affiliation(s)
- Hong-Su Park
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura R H Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sharmin Afroz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David W Dorward
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Craig Martens
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Intranasal vaccination of hamsters with a Newcastle disease virus vector expressing the S1 subunit protects animals against SARS-CoV-2 disease. Sci Rep 2022; 12:10359. [PMID: 35725862 PMCID: PMC9208357 DOI: 10.1038/s41598-022-13560-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2022] [Indexed: 12/31/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic has already claimed millions of lives and remains one of the major catastrophes in the recorded history. While mitigation and control strategies provide short term solutions, vaccines play critical roles in long term control of the disease. Recent emergence of potentially vaccine-resistant and novel variants necessitated testing and deployment of novel technologies that are safe, effective, stable, easy to administer, and inexpensive to produce. Here we developed three recombinant Newcastle disease virus (rNDV) vectored vaccines and assessed their immunogenicity, safety, and protective efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice and hamsters. Intranasal administration of rNDV-based vaccine candidates elicited high levels of neutralizing antibodies. Importantly, the nasally administrated vaccine prevented lung damage, and significantly reduced viral load in the respiratory tract of vaccinated animal which was compounded by profound humoral immune responses. Taken together, the presented NDV-based vaccine candidates fully protected animals against SARS-CoV-2 challenge and warrants evaluation in a Phase I human clinical trial as a promising tool in the fight against COVID-19.
Collapse
|
8
|
Elbehairy MA, Samal SK, Belov GA. Encoding of a transgene in-frame with a Newcastle disease virus protein increases transgene expression and stability. J Gen Virol 2022; 103. [PMID: 35758932 PMCID: PMC10027024 DOI: 10.1099/jgv.0.001761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Newcastle disease virus (NDV) has been extensively explored as a vector for vaccine and oncolytic therapeutic development. In conventional NDV-based vectors, the transgene is arranged as a separate transcription unit in the NDV genome. Here, we expressed haemagglutinin protein (HA) of an avian influenza virus using an NDV vector design in which the transgene ORF is encoded in-frame with the ORF of an NDV gene. This arrangement does not increase the number of transcription units in the NDV genome, and imposes a selection pressure against mutations interrupting the transgene ORF. We placed the HA ORF upstream or downstream of N, M, F and HN ORFs of NDV so that both proteins are encoded in-frame and are separated by either a self-cleaving 2A peptide, furin cleavage site or both. Only constructs in which HA was placed downstream of the NDV HN were viable. These constructs expressed the transgene at a higher level compared to the vector encoding the same transgene in the same position in the NDV genome but as a separate transcription unit. Furthermore, the transgene expressed in one ORF with the NDV protein proved to be more stable over multiple passages. Thus, this design may be useful for applications where the stability of the transgene expression is highly important for a recombinant NDV vector.
Collapse
Affiliation(s)
- Mohamed A Elbehairy
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - George A Belov
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
9
|
Fulber JPC, Kamen AA. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022; 14:975. [PMID: 35632717 PMCID: PMC9143368 DOI: 10.3390/v14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for efficient vaccine platforms that can rapidly be developed and manufactured on a large scale to immunize the population against emerging viruses. Viral-vectored vaccines are prominent vaccine platforms that have been approved for use against the Ebola virus and SARS-CoV-2. The Newcastle Disease Virus is a promising viral vector, as an avian paramyxovirus that infects poultry but is safe for use in humans and other animals. NDV has been extensively studied not only as an oncolytic virus but also a vector for human and veterinary vaccines, with currently ongoing clinical trials for use against SARS-CoV-2. However, there is a gap in NDV research when it comes to process development and scalable manufacturing, which are critical for future approved vaccines. In this review, we summarize the advantages of NDV as a viral vector, describe the steps and limitations to generating recombinant NDV constructs, review the advances in human and veterinary vaccine candidates in pre-clinical and clinical tests, and elaborate on production in embryonated chicken eggs and cell culture. Mainly, we discuss the existing data on NDV propagation from a process development perspective and provide prospects for the next steps necessary to potentially achieve large-scale NDV-vectored vaccine manufacturing.
Collapse
Affiliation(s)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
10
|
Ponce-de-León S, Torres M, Soto-Ramírez LE, Calva JJ, Santillán-Doherty P, Carranza-Salazar DE, Carreño JM, Carranza C, Juárez E, Carreto-Binaghi LE, Ramírez-Martínez L, Paz-De la Rosa G, Vigueras-Moreno R, Ortiz-Stern A, López-Vidal Y, Macías AE, Torres-Flores J, Rojas-Martínez O, Suárez-Martínez A, Peralta-Sánchez G, Kawabata H, González-Domínguez I, Martínez-Guevara JL, Sun W, Sarfati-Mizrahi D, Soto-Priante E, Chagoya-Cortés HE, López-Macías C, Castro-Peralta F, Palese P, García-Sastre A, Krammer F, Lozano-Dubernard B. Safety and immunogenicity of a live recombinant Newcastle disease virus-based COVID-19 vaccine (Patria) administered via the intramuscular or intranasal route: Interim results of a non-randomized open label phase I trial in Mexico. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.02.08.22270676. [PMID: 35169806 PMCID: PMC8845421 DOI: 10.1101/2022.02.08.22270676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is still a need for safe, efficient and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at low cost similar to influenza virus vaccines and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737. Funding was provided by Avimex and CONACYT.
Collapse
Affiliation(s)
- Samuel Ponce-de-León
- Programa Universitario de Investigación en Salud (PUIS)., Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Edif. de los Programas Universitarios, Planta Alta. Circuito de la Investigación Científica S/N Ciudad Universitaria, Ciudad de México, C.P. 04510. México
| | - Martha Torres
- Laboratorio de Inmunobiología de la tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Luis Enrique Soto-Ramírez
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Vasco de Quiroga 15, Belisario Dominguez, Sección XVI, 14080, Tlalpan, México
- Departamento de Infectología y Vigilancia Epidemiológica, Hospital Médica Sur, S.A.B. de C. V., Puente de Piedra 150, Toriello Guerra, 14050, Tlalpan, México
| | - Juan José Calva
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Vasco de Quiroga 15, Belisario Dominguez, Sección XVI, 14080, Tlalpan, México
| | - Patricio Santillán-Doherty
- Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Dora Eugenia Carranza-Salazar
- ProcliniQ Investigación Clínica, S. A. de C. V., Renato Leduc 155 (Xontepec 91), Toriello Guerra, 14050, Tlalpan, México
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Claudia Carranza
- Laboratorio de Inmunobiología de la tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Esmeralda Juárez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Laura E. Carreto-Binaghi
- Laboratorio de Inmunobiología de la tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Luis Ramírez-Martínez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Georgina Paz-De la Rosa
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Rosalía Vigueras-Moreno
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Alejandro Ortiz-Stern
- iLS Clinical Research, S. C. (iLS), Matias Romero 102 - 205 Del Valle, Benito Juárez, CP 03100, CDMX, México
| | - Yolanda López-Vidal
- Programa de Inmunobiología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Cirucuito Interior S/N. Ciudad Universitaria. Coyoacán. CP.04510. México
| | - Alejandro E. Macías
- Departamento de Medicina, Universidad de Guanajuato, 20 de Enero 929, C.P 37000, León Guanajuato. México
| | - Jesús Torres-Flores
- Dirección Adjunta de Desarrollo Tecnológico, Vinculación e Innovación, Consejo Nacional de Ciencia y Tecnología (CONACYT), Insurgentes Sur 1582, Crédito Constructor, CP 03940, Benito Juárez, CDMX
| | - Oscar Rojas-Martínez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Alejandro Suárez-Martínez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Gustavo Peralta-Sánchez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Hisaaki Kawabata
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Irene González-Domínguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - José Luis Martínez-Guevara
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - David Sarfati-Mizrahi
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Ernesto Soto-Priante
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Héctor Elías Chagoya-Cortés
- Consultora Mextrategy, S.A.S. de C. V. (Mextrategy), Insurgentes Sur 1079 P7-127, Nochebuena, CP 03720, CDMX, Mexico
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica. Hospital de Especialidades del Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Doctores, C.P. 06720,CDMX, México
| | - Felipa Castro-Peralta
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Bernardo Lozano-Dubernard
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| |
Collapse
|
11
|
Vilela J, Rohaim MA, Munir M. Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines (Basel) 2022; 10:259. [PMID: 35214716 PMCID: PMC8876055 DOI: 10.3390/vaccines10020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Avian orthoavulaviruses type-1 (AOaV-1) have recently transitioned from animal vaccine vector to a bona fide vaccine delivery vehicle in human. Owing to induction of robust innate and adaptive immune responses in mucus membranes in both birds and mammals, AOaVs offer an attractive vaccine against respiratory pathogens. The unique features of AOaVs include over 50 years of safety profile, stable expression of foreign genes, high infectivity rates in avian and mammalian hosts, broad host spectrum, limited possibility of recombination and lack of pre-existing immunity in humans. Additionally, AOaVs vectors allow the production of economical and high quantities of vaccine antigen in chicken embryonated eggs and several GMP-grade mammalian cell lines. In this review, we describe the biology of AOaVs and define protocols to manipulate AOaVs genomes in effectively designing vaccine vectors. We highlighted the potential and established portfolio of AOaV-based vaccines for multiple respiratory and non-respiratory viruses of veterinary and medical importance. We comment on the limitations of AOaV-based vaccines and propose mitigations strategies. The exploitation of AOaVs vectors is expanding at an exciting pace; thus, we have limited the scope to their use as vaccines against viral pathogens in both animals and humans.
Collapse
Affiliation(s)
- Julianne Vilela
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| |
Collapse
|
12
|
Warner BM, Santry LA, Leacy A, Chan M, Pham PH, Vendramelli R, Pei Y, Tailor N, Valcourt E, Leung A, He S, Griffin BD, Audet J, Willman M, Tierney K, Albietz A, Frost KL, Yates JG, Mould RC, Chan L, Mehrani Y, Knapp JP, Minott JA, Banadyga L, Safronetz D, Wood H, Booth S, Major PP, Bridle BW, Susta L, Kobasa D, Wootton SK. Intranasal vaccination with a Newcastle disease virus-vectored vaccine protects hamsters from SARS-CoV-2 infection and disease. iScience 2021; 24:103219. [PMID: 34632328 PMCID: PMC8492382 DOI: 10.1016/j.isci.2021.103219] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023] Open
Abstract
The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S). Hamsters receiving two doses (prime-boost) of NDV-FLS developed a robust SARS-CoV-2-neutralizing antibody response, with elimination of infectious virus in the lungs and minimal lung pathology at five days post-challenge. Single-dose vaccination with NDV-FLS significantly reduced SARS-CoV-2 replication in the lungs but only mildly decreased lung inflammation. NDV-Δ19S-treated hamsters had a moderate decrease in SARS-CoV-2 titers in lungs and presented with severe microscopic lesions, suggesting that truncation of the spike protein was a less effective strategy. In summary, NDV-vectored vaccines represent a viable option for protection against COVID-19.
Collapse
Affiliation(s)
- Bryce M. Warner
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Mable Chan
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Phuc H. Pham
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Robert Vendramelli
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Nikesh Tailor
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Emelissa Valcourt
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Anders Leung
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Shihua He
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Bryan D. Griffin
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Jonathan Audet
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Marnie Willman
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Alixandra Albietz
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Kathy L. Frost
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Jacob G.E. Yates
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Robert C. Mould
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Lily Chan
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Jason P. Knapp
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | | | - Logan Banadyga
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Stephanie Booth
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
| | - Pierre P. Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Darwyn Kobasa
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, Canada
| |
Collapse
|
13
|
Fulber JPC, Farnós O, Kiesslich S, Yang Z, Dash S, Susta L, Wootton SK, Kamen AA. Process Development for Newcastle Disease Virus-Vectored Vaccines in Serum-Free Vero Cell Suspension Cultures. Vaccines (Basel) 2021; 9:vaccines9111335. [PMID: 34835266 PMCID: PMC8623276 DOI: 10.3390/vaccines9111335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
The ongoing COVID-19 pandemic drew global attention to infectious diseases, attracting numerous resources for development of pandemic preparedness plans and vaccine platforms—technologies with robust manufacturing processes that can quickly be pivoted to target emerging diseases. Newcastle Disease Virus (NDV) has been studied as a viral vector for human and veterinary vaccines, but its production relies heavily on embryonated chicken eggs, with very few studies producing NDV in cell culture. Here, NDV is produced in suspension Vero cells, and analytical assays (TCID50 and ddPCR) are developed to quantify infectious and total viral titer. NDV-GFP and NDV-FLS (SARS-CoV-2 full-length spike protein) constructs were adapted to replicate in Vero and HEK293 suspension cultures using serum-free media, while fine-tuning parameters such as MOI, temperature, and trypsin concentration. Shake flask productions with Vero cells resulted in infectious titers of 1.07 × 108 TCID50/mL for NDV-GFP and 1.33 × 108 TCID50/mL for NDV-FLS. Production in 1 L batch bioreactors also resulted in high titers in culture supernatants, reaching 2.37 × 108 TCID50/mL for NDV-GFP and 3.16 × 107 TCID50/mL for NDV-FLS. This shows effective NDV production in cell culture, building the basis for a scalable vectored-vaccine manufacturing process that can be applied to different targets.
Collapse
Affiliation(s)
- Julia Puppin Chaves Fulber
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada; (J.P.C.F.); (O.F.); (S.K.); (Z.Y.); (S.D.)
| | - Omar Farnós
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada; (J.P.C.F.); (O.F.); (S.K.); (Z.Y.); (S.D.)
| | - Sascha Kiesslich
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada; (J.P.C.F.); (O.F.); (S.K.); (Z.Y.); (S.D.)
| | - Zeyu Yang
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada; (J.P.C.F.); (O.F.); (S.K.); (Z.Y.); (S.D.)
| | - Shantoshini Dash
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada; (J.P.C.F.); (O.F.); (S.K.); (Z.Y.); (S.D.)
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.S.); (S.K.W.)
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.S.); (S.K.W.)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada; (J.P.C.F.); (O.F.); (S.K.); (Z.Y.); (S.D.)
- Correspondence:
| |
Collapse
|
14
|
Lara-Puente JH, Carreño JM, Sun W, Suárez-Martínez A, Ramírez-Martínez L, Quezada-Monroy F, Paz-De la Rosa G, Vigueras-Moreno R, Singh G, Rojas-Martínez O, Chagoya-Cortés HE, Sarfati-Mizrahi D, Soto-Priante E, López-Macías C, Krammer F, Castro-Peralta F, Palese P, García-Sastre A, Lozano-Dubernard B. Safety and Immunogenicity of a Newcastle Disease Virus Vector-Based SARS-CoV-2 Vaccine Candidate, AVX/COVID-12-HEXAPRO (Patria), in Pigs. mBio 2021; 12:e0190821. [PMID: 34544278 PMCID: PMC8546847 DOI: 10.1128/mbio.01908-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed in record time and show excellent efficacy and effectiveness against coronavirus disease 2019 (COVID-19). However, currently approved vaccines cannot meet the global demand. In addition, none of the currently used vaccines is administered intranasally to potentially induce mucosal immunity. Here, we tested the safety and immunogenicity of a second-generation SARS-CoV-2 vaccine that includes a stabilized spike antigen and can be administered intranasally. The vaccine is based on a live Newcastle disease virus vector expressing a SARS-CoV-2 spike protein stabilized in a prefusion conformation with six beneficial proline substitutions (AVX/COVID-12-HEXAPRO; Patria). Immunogenicity testing in the pig model showed that both intranasal and intramuscular application of the vaccine as well as a combination of the two induced strong serum neutralizing antibody responses. Furthermore, substantial reactivity to B.1.1.7, B.1.351, and P.1 spike variants was detected. Finally, no adverse reactions were found in the experimental animals at any dose level or delivery route. These results indicate that the experimental vaccine AVX/COVID-12-HEXAPRO (Patria) is safe and highly immunogenic in the pig model. IMPORTANCE Several highly efficacious vaccines for SARS-CoV-2 have been developed and are used in the population. However, the current production capacity cannot meet the global demand. Therefore, additional vaccines-especially ones that can be produced locally and at low cost-are urgently needed. This work describes preclinical testing of a SARS-CoV-2 vaccine candidate which meets these criteria.
Collapse
Affiliation(s)
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades del Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social (IMSS), Cuauhtémoc, CDMX, Mexico
| | - Florian Krammer
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
15
|
Fakri FZ, Bamouh Z, Elmejdoub S, Elkarhat Z, Tadlaoui K, Chen W, Bu Z, Elharrak M. Long term immunity against Peste Des Petits Ruminants mediated by a recombinant Newcastle disease virus vaccine. Vet Microbiol 2021; 261:109201. [PMID: 34399299 DOI: 10.1016/j.vetmic.2021.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
Peste des Petits Ruminants (PPR) is a highly contagious and often fatal disease of sheep and goats. Conventional live vaccines have been successfully used in endemic countries however, there are not completely safe and not allowing differentiation between vaccinated and infected animals (DIVA). In this study, a recombinant Newcastle disease virus (NDV) expressing the hemagglutinin of PPRV (NDV-PPRVH) was evaluated on small ruminants by serology response in sheep and goats, experimental infection in goats and immunity duration in sheep. The NDV-PPRVH vaccine injected twice at 28 days' interval, provided full protection against challenge with a virulent PPR strain in the most sensitive species and induced significant neutralizing antibodies. Immunological response in goats was slightly higher than sheep and the vaccine injected at 108.0 50 % egg infective dose/mL allowed anti-PPRV antibodies that lasted at least 12 months as shown by antibody response monitoring in sheep. The NDV vector presented a limited replication in the host and vaccinated animals remained negative when tested by cELISA based on PPRV nucleoprotein allowing DIVA. This recombinant vaccine appears to be a promising candidate in a free at risk countries and may be an important component of the global strategy for PPR eradication.
Collapse
Affiliation(s)
- F Z Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - S Elmejdoub
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - K Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - W Chen
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Z Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| |
Collapse
|
16
|
Immunogenicity and protective efficacy of an intranasal live-attenuated vaccine against SARS-CoV-2. iScience 2021; 24:102941. [PMID: 34368648 PMCID: PMC8332743 DOI: 10.1016/j.isci.2021.102941] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/27/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety, and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T-cell-mediated immunity. Hamsters immunized with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic. Vaccine induces high levels of neutralizing Abs and T-cell-mediated immunity Vaccine ameliorates lung inflammation and pathology in hamster induced by SARS-CoV-2 The SARS-CoV-2 remains undetectable in lungs and nasal turbinates of vaccinated hamster Two doses of intranasal vaccine show complete protection against SARS-CoV-2 challenge
Collapse
|
17
|
Meyer M, Gunn BM, Malherbe DC, Gangavarapu K, Yoshida A, Pietzsch C, Kuzmina NA, Saphire EO, Collins PL, Crowe JE, Zhu JJ, Suchard MA, Brining DL, Mire CE, Cross RW, Geisbert JB, Samal SK, Andersen KG, Alter G, Geisbert TW, Bukreyev A. Ebola vaccine-induced protection in nonhuman primates correlates with antibody specificity and Fc-mediated effects. Sci Transl Med 2021; 13:eabg6128. [PMID: 34261800 PMCID: PMC8675601 DOI: 10.1126/scitranslmed.abg6128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Although substantial progress has been made with Ebola virus (EBOV) vaccine measures, the immune correlates of vaccine-mediated protection remain uncertain. Here, five mucosal vaccine vectors based on human and avian paramyxoviruses provided nonhuman primates with varying degrees of protection, despite expressing the same EBOV glycoprotein (GP) immunogen. Each vaccine produced antibody responses that differed in Fc-mediated functions and isotype composition, as well as in magnitude and coverage toward GP and its conformational and linear epitopes. Differences in the degree of protection and comprehensive characterization of the response afforded the opportunity to identify which features and functions were elevated in survivors and could therefore serve as vaccine correlates of protection. Pairwise network correlation analysis of 139 immune- and vaccine-related parameters was performed to demonstrate relationships with survival. Total GP-specific antibodies, as measured by biolayer interferometry, but not neutralizing IgG or IgA titers, correlated with survival. Fc-mediated functions and the amount of receptor binding domain antibodies were associated with improved survival outcomes, alluding to the protective mechanisms of these vaccines. Therefore, functional qualities of the antibody response, particularly Fc-mediated effects and GP specificity, rather than simply magnitude of the response, appear central to vaccine-induced protection against EBOV. The heterogeneity of the response profile between the vaccines indicates that each vaccine likely exhibits its own protective signature and the requirements for an efficacious EBOV vaccine are complex.
Collapse
Affiliation(s)
- Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Delphine C Malherbe
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Asuka Yoshida
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, MD 20742, USA
| | - Colette Pietzsch
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, Galveston, TX 77555, USA
| | | | - Peter L Collins
- RNA Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James J Zhu
- USDA-ARS, FADRU, Plum Island Animal Disease Center, Orient, NY 11957, USA
| | - Marc A Suchard
- Departments of Biomathematics, Biostatistics and Human Genetics, University of California, Los Angeles, CA 90095, USA
| | - Douglas L Brining
- Animal Resource Center, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chad E Mire
- Galveston National Laboratory, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W Cross
- Galveston National Laboratory, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Galveston National Laboratory, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, MD 20742, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Galveston National Laboratory, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
18
|
Chen J, Wang J, Zhang J, Ly H. Advances in Development and Application of Influenza Vaccines. Front Immunol 2021; 12:711997. [PMID: 34326849 PMCID: PMC8313855 DOI: 10.3389/fimmu.2021.711997] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus is one of the most important zoonotic pathogens that can cause severe symptoms and has the potential to cause high number of deaths and great economic loss. Vaccination is still the best option to prevent influenza virus infection. Different types of influenza vaccines, including live attenuated virus vaccines, inactivated whole virus vaccines, virosome vaccines, split-virion vaccines and subunit vaccines have been developed. However, they have several limitations, such as the relatively high manufacturing cost and long production time, moderate efficacy of some of the vaccines in certain populations, and lack of cross-reactivity. These are some of the problems that need to be solved. Here, we summarized recent advances in the development and application of different types of influenza vaccines, including the recent development of viral vectored influenza vaccines. We also described the construction of other vaccines that are based on recombinant influenza viruses as viral vectors. Information provided in this review article might lead to the development of safe and highly effective novel influenza vaccines.
Collapse
Affiliation(s)
- Jidang Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiehuang Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jipei Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, MN, United States
| |
Collapse
|
19
|
A Scalable Topical Vectored Vaccine Candidate against SARS-CoV-2. Vaccines (Basel) 2020; 8:vaccines8030472. [PMID: 32846910 PMCID: PMC7565466 DOI: 10.3390/vaccines8030472] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 01/30/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) caused an ongoing unprecedented global public health crises of coronavirus disease in 2019 (CoVID-19). The precipitously increased death rates, its impact on livelihood and trembling economies warrant the urgent development of a SARS-CoV-2 vaccine which would be safe, efficacious and scalable. Owing to unavailability of the vaccine, we propose a de novo synthesized avian orthoavulavirus 1 (AOaV-1)-based topical respiratory vaccine candidate against CoVID-19. Avirulent strain of AOaV-1 was engineered to express full length spike (S) glycoprotein which is highly neutralizing and a major protective antigen of the SARS-CoV-2. Broad-scale in vitro characterization of a recombinant vaccine candidate demonstrated efficient co-expression of the hemagglutinin-neuraminidase (HN) of AOaV-1 and S protein of SARS-CoV-2, and comparable replication kinetics were observed in a cell culture model. The recombinant vaccine candidate virus actively replicated and spread within cells independently of exogenous trypsin. Interestingly, incorporation of S protein of SARS-CoV-2 into the recombinant AOaV-1 particles attributed the sensitivity to anti-SARS-CoV-2 antiserum and more prominently to anti-AOaV-1 antiserum. Finally, our results demonstrated that the recombinant vaccine vector stably expressed S protein after multiple propagations in chicken embryonated eggs, and this expression did not significantly impact the in vitro growth characteristics of the recombinant. Taken together, the presented respiratory vaccine candidate is highly attenuated in primates per se, safe and lacking pre-existing immunity in human, and carries the potential for accelerated vaccine development against CoVID-19 for clinical studies.
Collapse
|
20
|
Newcastle Disease Virus as a Vaccine Vector for SARS-CoV-2. Pathogens 2020; 9:pathogens9080619. [PMID: 32751194 PMCID: PMC7459537 DOI: 10.3390/pathogens9080619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in more than 16 million infections and more than 600,000 deaths worldwide. There is an urgent need to develop a safe and effective vaccine against SARS-CoV-2. Currently, several strategies are being pursued to develop a safe and effective SARS-CoV-2 vaccine. However, each vaccine strategy has distinct advantages and disadvantages. Therefore, it is important to evaluate multiple vaccine platforms to select the most efficient vaccine platform for SARS-CoV-2. In this regard, Newcastle disease virus (NDV), an avian virus, has several well-suited properties for development of a vector vaccine against SARS-CoV-2. Here, we elaborate on the idea of considering NDV as a vaccine vector for SARS-CoV-2.
Collapse
|
21
|
Hu Z, Ni J, Cao Y, Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines (Basel) 2020; 8:vaccines8020222. [PMID: 32422944 PMCID: PMC7349365 DOI: 10.3390/vaccines8020222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of pathogens have been expressed in the NDV vector to generate novel vaccines for animals and humans, highlighting a great potential of NDV as a vaccine vector. More importantly, the research work also unveils a major problem restraining the NDV vector vaccines in poultry, i.e., the interference from maternally derived antibody (MDA). Although many efforts have been taken to overcome MDA interference, a lack of understanding of the mechanism of vaccination inhibition by MDA in poultry still hinders vaccine improvement. In this review, we outline the history of NDV as a vaccine vector by highlighting some milestones. The recent advances in the development of NDV-vectored vaccines or therapeutics for animals and humans are discussed. Particularly, we focus on the mechanisms and hypotheses of vaccination inhibition by MDA and the efforts to circumvent MDA interference with the NDV vector vaccines. Perspectives to fill the gap of understanding concerning the mechanism of MDA interference in poultry and to improve the NDV vector vaccines are also proposed.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jie Ni
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
Murr M, Hoffmann B, Grund C, Römer-Oberdörfer A, Mettenleiter TC. A Novel Recombinant Newcastle Disease Virus Vectored DIVA Vaccine against Peste des Petits Ruminants in Goats. Vaccines (Basel) 2020; 8:vaccines8020205. [PMID: 32354145 PMCID: PMC7348985 DOI: 10.3390/vaccines8020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Peste des petits ruminants virus (PPRV, species: small ruminant morbillivirus) is the causative agent of the eponymous notifiable disease, the peste des petits ruminants (PPR) in wild and domestic sheep and goats. Mortality rates vary between 50% and 100%, causing significant losses of estimated 1.5 to 2 billion US Dollars per year. Live-attenuated PPRV vaccine strains are used in the field for disease prevention, but the application of a more thermostable vaccine enabling differentiation between infected and vaccinated animals (DIVA) would be highly desirable to achieve the goal of global disease eradication. We generated a recombinant Newcastle disease virus (rNDV) based on the live-attenuated NDV Clone 30 that expresses the surface protein hemagglutinin (H) of PPRV strain Kurdistan/11 (rNDV_HKur). In vitro analyses confirmed transgene expression as well as virus replication in avian, caprine, and ovine cells. Two consecutive subcutaneous vaccinations of German domestic goats with rNDV_HKur prevented clinical signs and hematogenic dissemination after an intranasal challenge with virulent PPRV Kurdistan/11. Virus shedding by different routes was reduced to a similar extent as after vaccination with the live-attenuated PPRV strain Nigeria 75/1. Goats that were either not vaccinated or inoculated with parental rNDV were used as controls. In summary, we demonstrate in a proof-of-concept study that an NDV vectored vaccine can protect against PPR. Furthermore, it provides DIVA-applicability and a high thermal tolerance.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Correspondence: ; Tel.: +49-38351-7-1629
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
23
|
Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Jibril AH, Peeters BPH, Omar AR. Exploring the Prospects of Engineered Newcastle Disease Virus in Modern Vaccinology. Viruses 2020; 12:v12040451. [PMID: 32316317 PMCID: PMC7232247 DOI: 10.3390/v12040451] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Many traditional vaccines have proven to be incapable of controlling newly emerging infectious diseases. They have also achieved limited success in the fight against a variety of human cancers. Thus, innovative vaccine strategies are highly needed to overcome the global burden of these diseases. Advances in molecular biology and reverse genetics have completely restructured the concept of vaccinology, leading to the emergence of state-of-the-art technologies for vaccine design, development and delivery. Among these modern vaccine technologies are the recombinant viral vectored vaccines, which are known for their incredible specificity in antigen delivery as well as the induction of robust immune responses in the vaccinated hosts. Although a number of viruses have been used as vaccine vectors, genetically engineered Newcastle disease virus (NDV) possesses some useful attributes that make it a preferable candidate for vectoring vaccine antigens. Here, we review the molecular biology of NDV and discuss the reverse genetics approaches used to engineer the virus into an efficient vaccine vector. We then discuss the prospects of the engineered virus as an efficient vehicle of vaccines against cancer and several infectious diseases of man and animals.
Collapse
Affiliation(s)
- Muhammad Bashir Bello
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, Sokoto 2346, Nigeria;
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
| | - Khatijah Yusoff
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Aini Ideris
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, Selangor 43400, Malaysia
| | - Mohd Hair-Bejo
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, Selangor 43400, Malaysia
| | - Abdurrahman Hassan Jibril
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, Sokoto 2346, Nigeria;
| | - Ben P. H. Peeters
- Department of Virology, Wageningen Bioveterinary Research, POB 65, NL8200 Lelystad, The Netherlands;
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, Selangor 43400, Malaysia
- Correspondence: ; Tel.:+603-89472111
| |
Collapse
|
24
|
Ogonczyk Makowska D, Hamelin MÈ, Boivin G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens 2020; 9:E135. [PMID: 32093057 PMCID: PMC7168645 DOI: 10.3390/pathogens9020135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Human metapneumovirus (HMPV) is an important human pathogen that, along with respiratory syncytial virus (RSV), is a major cause of respiratory tract infections in young infants. Development of an effective vaccine against Pneumoviruses has proven to be particularly difficult; despite over 50 years of research in this field, no vaccine against HMPV or RSV is currently available. Recombinant chimeric viruses expressing antigens of other viruses can be generated by reverse genetics and used for simultaneous immunization against more than one pathogen. This approach can result in the development of promising vaccine candidates against HMPV, and several studies have indeed validated viral vectors expressing HMPV antigens. In this review, we summarize current efforts in generating recombinant chimeric vaccines against HMPV, and we discuss their potential optimization based on the correspondence with RSV studies.
Collapse
Affiliation(s)
| | | | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC G1V 4G2, Canada; (D.O.M.); (M.-È.H.)
| |
Collapse
|
25
|
Shirvani E, Varghese BP, Paldurai A, Samal SK. A recombinant avian paramyxovirus serotype 3 expressing the hemagglutinin protein protects chickens against H5N1 highly pathogenic avian influenza virus challenge. Sci Rep 2020; 10:2221. [PMID: 32042001 PMCID: PMC7010735 DOI: 10.1038/s41598-020-59124-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) is a devastating disease of poultry and a serious threat to public health. Vaccination with inactivated virus vaccines has been applied for several years as one of the major policies to control highly pathogenic avian influenza virus (HPAIV) infections in chickens. Viral-vectored HA protein vaccines are a desirable alternative for inactivated vaccines. However, each viral vector possesses its own advantages and disadvantages for the development of a HA-based vaccine against HPAIV. Recombinant Newcastle disease virus (rNDV) strain LaSota expressing HA protein vaccine has shown promising results against HPAIV; however, its replication is restricted only to the respiratory tract. Therefore, we thought to evaluate avian paramyxovirus serotype 3 (APMV-3) strain Netherlands as a safe vaccine vector against HPAIV, which has high efficiency replication in a greater range of host organs. In this study, we generated rAPMV-3 expressing the HA protein of H5N1 HPAIV using reverse genetics and evaluated the induction of neutralizing antibodies and protection by rAPMV3 and rNDV expressing the HA protein against HPAIV challenge in chickens. Our results showed that immunization of chickens with rAPMV-3 or rNDV expressing HA protein provided complete protection against HPAIV challenge. However, immunization of chickens with rAPMV-3 expressing HA protein induced higher level of neutralizing antibodies compared to that of rNDV expressing HA protein. These results suggest that a rAPMV-3 expressing HA protein might be a better vaccine for mass-vaccination of commercial chickens in field conditions.
Collapse
Affiliation(s)
- Edris Shirvani
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Berin P Varghese
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Anandan Paldurai
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
26
|
Xu L, Qin Z, Qiao L, Wen J, Shao H, Wen G, Pan Z. Characterization of thermostable Newcastle disease virus recombinants expressing the hemagglutinin of H5N1 avian influenza virus as bivalent vaccine candidates. Vaccine 2020; 38:1690-1699. [PMID: 31937412 DOI: 10.1016/j.vaccine.2019.12.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/11/2023]
Abstract
Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene delivery. In the present study, we generated the thermostable recombinant NDV (rNDV) expressing the different forms of hemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) H5N1 based on the full-length cDNA clone of thermostable TS09-C strain. The recombinant thermostable Newcastle disease viruses, rTS-HA, rTS-HA1 and rTS-tPAs/HA1, expressed the HA, HA1 or modified HA1 protein with the tissue plasminogen activator signal sequence (tPAs), respectively. The rNDVs displayed similar thermostability, growth kinetics and pathogenicity compared with the parental TS09-C virus. The tPAs facilitated the expression and secretion of HA1 protein in cells infected with rNDV. Animal studies demonstrated that immunization with rNDVs elicited effective H5N1- and NDV-specific antibody responses and conferred immune protection against lethal H5N1 and NDV challenges in chickens and mice. Importantly, vaccination of rTS-tPAs/HA1 resulted in enhanced protective immunity in chickens and mice. Our study thus provides a novel thermostable NDV-vectored vaccine candidate expressing a soluble form of a heterologous viral protein, which will greatly aid the poultry industry in developing countries.
Collapse
Affiliation(s)
- Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Wen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
27
|
Vijayakumar G, Zamarin D. Design and Production of Newcastle Disease Virus for Intratumoral Immunomodulation. Methods Mol Biol 2020; 2058:133-154. [PMID: 31486036 DOI: 10.1007/978-1-4939-9794-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus that has been extensively studied as an oncolytic agent, in addition to being an economically important pathogen in the poultry industry. The establishment of a reverse genetics system for this virus has enabled the development of genetically modified recombinant NDV viruses with improved oncolytic and immunotherapeutic properties. In this chapter, we describe the materials and methods involved in the in vitro cloning and rescue of NDV expressing murine 4-1BBL as well as the in vivo evaluation of NDV expressing 4-1BBL in a B16-F10 murine melanoma model.
Collapse
Affiliation(s)
- Gayathri Vijayakumar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Medicine, Weil Cornell Medical College, New York, NY, USA. .,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
28
|
Meyer M, Yoshida A, Ramanathan P, Saphire EO, Collins PL, Crowe JE, Samal S, Bukreyev A. Antibody Repertoires to the Same Ebola Vaccine Antigen Are Differentially Affected by Vaccine Vectors. Cell Rep 2019; 24:1816-1829. [PMID: 30110638 PMCID: PMC6145141 DOI: 10.1016/j.celrep.2018.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/14/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
Comparative immune response profiling is important for selecting next-generation vaccines. We comprehensively evaluated the antibody responses from a panel of nine respiratory vaccines against Ebola virus (EBOV) derived from human and avian paramyxoviruses expressing EBOV glycoprotein (GP). Most vaccines were protective in guinea pigs but yielded antibody repertoires that differed in proportion targeting key antigenic regions, avidity, neutralizing antibody specificities, and linear epitope preferences. Competition studies with monoclonal antibodies from human survivors revealed that some epitopes in GP targeted for neutralization were vector dependent, while EBOV-neutralizing titers correlated with the response magnitude toward the receptor-binding domain and GP1/GP2 interface epitopes. While an immunogen determines the breadth of antibody response, distinct vaccine vectors can induce qualitatively different responses, affecting protective efficacy. These data suggest that immune correlates of vaccine protection cannot be generalized for all vaccines against the same pathogen, even if they use the exact same immunogen.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/blood
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antibody Affinity
- Antibody Specificity
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/biosynthesis
- Ebola Vaccines/genetics
- Ebolavirus/drug effects
- Ebolavirus/genetics
- Ebolavirus/immunology
- Ebolavirus/pathogenicity
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Female
- Gene Expression
- Guinea Pigs
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/mortality
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/virology
- Humans
- Immune Sera/chemistry
- Protein Binding
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Survival Analysis
- Vaccination
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA
| | - Asuka Yoshida
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, MD 20742, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter L Collins
- RNA Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Siba Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, MD 20742, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
29
|
Zhang H, Nan F, Li Z, Zhao G, Xie C, Ha Z, Zhang J, Han J, Xiao P, Zhuang X, Wang W, Ge J, Tian M, Lu H, Bu Z, Jin N. Construction and immunological evaluation of recombinant Newcastle disease virus vaccines expressing highly pathogenic porcine reproductive and respiratory syndrome virus GP3/GP5 proteins in pigs. Vet Microbiol 2019; 239:108490. [PMID: 31767075 DOI: 10.1016/j.vetmic.2019.108490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/15/2019] [Accepted: 10/27/2019] [Indexed: 11/29/2022]
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) poses a significant threat to the pig industry, for which vaccination is considered to be an effective means of prevention and control. Here, we developed two recombinant Newcastle disease virus (NDV) LaSota-vectored PRRS candidate vaccines, rLaSota-GP5 and rLaSota-GP3-GP5, using reverse genetic techniques. The two recombinant viruses exhibited a high degree of genetic stability after 10 successive generations in chicken embryos. There was no significant difference in pathogenicity compared with the rLaSota parent strain in poultry, mice and pigs. The recombinant viruses could not be detected in the feeding environment of immunized pigs, but could be detected in the organs and tissues of pigs for no more than 10 days after immunization. Importantly, in contrast to rLaSota-GP5, rLaSota-GP3-GP5 elicited both significant humoral and cellular immune responses in pigs. In particular, the neutralizing antibody titer in the rLaSota-GP3-GP5 group was 1.51 times significantly higher than that of the commercial vaccine group at 42 days post-immunization. At the same time, there was significant difference in the level of IFN-γ between the rLaSota-GP3-GP5 group and the commercial vaccine group. Furthermore, the viral load in the organs and tissues of rLaSota-GP3-GP5-immunized pigs was substantially lower than that of unimmunized pigs after being challenged with HP-PRRS virus GD strain. These results suggest that rLaSota-GP3-GP5 is a safe and promising candidate vaccine, and there is potential for further development of a recombinant virus vaccine for PRRS using NDV.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Fulong Nan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuoxin Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guanyu Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Changzhan Xie
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhuo Ha
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jinyong Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jicheng Han
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; Medical College, Yanbian University, Yanji, China
| | - Pengpeng Xiao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; Institute of Virology, Wenzhou University, Wenzhou, China
| | - Xinyu Zhuang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Wei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jinying Ge
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingyao Tian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Huijun Lu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China.
| | - Zhigao Bu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
30
|
Wang J, Sun H, Zeng Q, Guo XJ, Wang H, Liu HH, Dong ZY. HPV-positive status associated with inflamed immune microenvironment and improved response to anti-PD-1 therapy in head and neck squamous cell carcinoma. Sci Rep 2019; 9:13404. [PMID: 31527697 PMCID: PMC6746709 DOI: 10.1038/s41598-019-49771-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/31/2019] [Indexed: 01/30/2023] Open
Abstract
Chemotherapy and radiotherapy predominantly improve the clinical outcomes of patients with human papillomavirus (HPV)-related head and neck squamous cell carcinoma (HNSCC). Whether this superiority goes on when treated with immune checkpoint inhibitors is still unclear. This study sought to determine the predictive value and potential mechanisms of HPV status for the treatment of programmed cell death 1 (PD-1)/ligand 1(PD-L1) inhibitors. We conducted an integrated analysis of the relationships between HPV status and PD-L1, tumor mutation burden (TMB) and inflammation-related immune cells and molecules, based on the analysis of repository databases and resected HNSCC specimens. The pooled analysis of overall survival (OS) and objective response rate (ORR) suggested that HPV-positive patients benefited more from PD-1/PD-L1 inhibitors than HPV-negative patients (OS: hazard ratio (HR) = 0.71, p = 0.02; ORR: 21.9% vs 14.1%, odds ratio (OR) = 1.79, p = 0.01). Analysis of public databases and resected HNSCC specimens revealed that HPV status was independent of PD-L1 expression and TMB in HNSCC. However, HPV infection significantly increased T-cell infiltration, immune effector cell activation and the diversity of T-cell receptors. Notably, HPV-positivity correlated with increased immune cytolytic activity and a T-cell-inflamed gene expression profile. This work provides evidence that HPV status can be used to predict the effectiveness of PD-1 inhibitors in HNSCC, independently of PD-L1 expression and TMB, and probably results from an inflamed immune microenvironment induced by HPV infection.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Sun
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qin Zeng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Jun Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huan-Huan Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-Yi Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Newcastle Disease Virus-Based Vectored Vaccine against Poliomyelitis. J Virol 2018; 92:JVI.00976-18. [PMID: 29925653 DOI: 10.1128/jvi.00976-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
The poliovirus eradication initiative has spawned global immunization infrastructure and dramatically decreased the prevalence of the disease, yet the original virus eradication goal has not been met. The suboptimal properties of the existing vaccines are among the major reasons why the program has repeatedly missed eradication deadlines. Oral live poliovirus vaccine (OPV), while affordable and effective, occasionally causes the disease in the primary recipients, and the attenuated viruses rapidly regain virulence and can cause poliomyelitis outbreaks. Inactivated poliovirus vaccine (IPV) is safe but expensive and does not induce the mucosal immunity necessary to interrupt virus transmission. While the need for a better vaccine is widely recognized, current efforts are focused largely on improvements to the OPV or IPV, which are still beset by the fundamental drawbacks of the original products. Here we demonstrate a different design of an antipoliovirus vaccine based on in situ production of virus-like particles (VLPs). The poliovirus capsid protein precursor, together with a protease required for its processing, are expressed from a Newcastle disease virus (NDV) vector, a negative-strand RNA virus with mucosal tropism. In this system, poliovirus VLPs are produced in the cells of vaccine recipients and are presented to their immune systems in the context of active replication of NDV, which serves as a natural adjuvant. Intranasal administration of the vectored vaccine to guinea pigs induced strong neutralizing systemic and mucosal antibody responses. Thus, the vectored poliovirus vaccine combines the affordability and efficiency of a live vaccine with absolute safety, since no full-length poliovirus genome is present at any stage of the vaccine life cycle.IMPORTANCE A new, safe, and effective vaccine against poliovirus is urgently needed not only to complete the eradication of the virus but also to be used in the future to prevent possible virus reemergence in a postpolio world. Currently, new formulations of the oral vaccine, as well as improvements to the inactivated vaccine, are being explored. In this study, we designed a viral vector with mucosal tropism that expresses poliovirus capsid proteins. Thus, poliovirus VLPs are produced in vivo, in the cells of a vaccine recipient, and are presented to the immune system in the context of vector virus replication, stimulating the development of systemic and mucosal immune responses. Such an approach allows the development of an affordable and safe vaccine that does not rely on the full-length poliovirus genome at any stage.
Collapse
|
32
|
Yu GM, Zu SL, Zhou WW, Wang XJ, Shuai L, Wang XL, Ge JY, Bu ZG. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels. J Vet Sci 2018; 18:351-359. [PMID: 27515260 PMCID: PMC5583423 DOI: 10.4142/jvs.2017.18.s1.351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/29/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022] Open
Abstract
Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.
Collapse
Affiliation(s)
- Gui Mei Yu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu Long Zu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wei Wei Zhou
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi Jun Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Shuai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue Lian Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin Ying Ge
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi Gao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
33
|
Kuiken T, Buijs P, van Run P, van Amerongen G, Koopmans M, van den Hoogen B. Pigeon paramyxovirus type 1 from a fatal human case induces pneumonia in experimentally infected cynomolgus macaques (Macaca fascicularis). Vet Res 2017; 48:80. [PMID: 29162154 PMCID: PMC5697235 DOI: 10.1186/s13567-017-0486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/08/2017] [Indexed: 12/01/2022] Open
Abstract
Although avian paramyxovirus type 1 is known to cause mild transient conjunctivitis in human beings, there are two recent reports of fatal respiratory disease in immunocompromised human patients infected with the pigeon lineage of the virus (PPMV-1). In order to evaluate the potential of PPMV-1 to cause respiratory tract disease, we inoculated a PPMV-1 isolate (hPPMV-1/Netherlands/579/2003) from an immunocompromised human patient into three healthy cynomolgus macaques (Macaca fascicularis) and examined them by clinical, virological, and pathological assays. In all three macaques, PPMV-1 replication was restricted to the respiratory tract and caused pulmonary consolidation affecting up to 30% of the lung surface. Both alveolar and bronchiolar epithelial cells expressed viral antigen, which co-localized with areas of diffuse alveolar damage. The results of this study demonstrate that PPMV-1 is a primary respiratory pathogen in cynomolgus macaques, and support the conclusion that PPMV-1 may cause fatal respiratory disease in immunocompromised human patients.
Collapse
Affiliation(s)
- Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Pascal Buijs
- Department of Viroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Surgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Geert van Amerongen
- Department of Viroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
34
|
Yan Y, Su C, Hang M, Huang H, Zhao Y, Shao X, Bu X. Recombinant Newcastle disease virus rL-RVG enhances the apoptosis and inhibits the migration of A549 lung adenocarcinoma cells via regulating alpha 7 nicotinic acetylcholine receptors in vitro. Virol J 2017; 14:190. [PMID: 28974241 PMCID: PMC5627431 DOI: 10.1186/s12985-017-0852-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study were to investigate the possible pro-apoptotic mechanisms of the recombinant Newcastle disease virus (NDV) strain rL-RVG, which expresses the rabies virus glycoprotein, in A549 lung adenocarcinoma cells via the regulation of alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) and to analyze the relationships between α7 nAChR expression in lung cancer and the clinical pathological features. METHODS α7 nAChR expression in A549, LΑ795, and small-cell lung carcinoma (SCLC) cells, among others, was detected using reverse transcription polymerase chain reaction (RT-PCR). The optimal α7 nAChR antagonist and agonist concentrations for affecting A549 lung adenocarcinoma cells were detected using MTT assays. The α7 nAChR expression in A549 cells after various treatments was assessed by Western blot, immunofluorescence and RT-PCR analyses. Apoptosis in the various groups was also monitored by Western blot and TUNEL assays, followed by the detection of cell migration via transwell and scratch tests. Furthermore, α7 nAChR expression was examined by immunohistochemistry in lung cancer tissue samples from 130 patients and 40 pericancerous tissue samples, and the apoptotis in lung adenocarcinoma tissue was detected by Tunel assay, Then, the expression levels and clinicopathological characteristics were analyzed. RESULTS Of the A549, LΑ795, SCLC and U251 cell lines, the A549 cells exhibited the highest α7 nAChR expression. The cells infected with rL-RVG exhibited high RVG gene and protein expression. The rL-RVG group exhibited weaker α7 nAChR expression compared with the methyllycaconitine citrate hydrate (MLA, an α7 nAChR antagonist) and NDV groups. At the same time, the MLA and rL-RVG treatments significantly inhibited proliferation and migration and promoted apoptosis in the lung cancer cells (P < 0.05). The expression of α7 nAChR was upregulated in lung cancer tissue compared with pericancerous tissue (P = 0.000) and was significantly related to smoking, clinical tumor-node-metastases stage, and histological differentiation (P < 0.05). The AI in lung adenocarcinoma tissue in high-medium differentiation group was lower than that in low differentiation group (p < 0.01). CONCLUSIONS An antagonist of α7 nAChR may be used as a molecular target for lung adenocarcinoma therapy. Recombinant NDV rL-RVG enhances the apoptosis and inhibits the migration of A549 lung adenocarcinoma cells by regulating α7 nAChR signaling pathways.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Respiratory Medicine, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002 People’s Republic of China
| | - Chunxiang Su
- Department of Respiratory Medicine, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002 People’s Republic of China
| | - Min Hang
- Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013 People’s Republic of China
| | - Hua Huang
- Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013 People’s Republic of China
| | - Yinghai Zhao
- Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013 People’s Republic of China
| | - Xiaomei Shao
- Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013 People’s Republic of China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002 People’s Republic of China
| |
Collapse
|
35
|
Choi KS. Newcastle disease virus vectored vaccines as bivalent or antigen delivery vaccines. Clin Exp Vaccine Res 2017; 6:72-82. [PMID: 28775971 PMCID: PMC5540967 DOI: 10.7774/cevr.2017.6.2.72] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Recent advances in reverse genetics techniques make it possible to manipulate the genome of RNA viruses such as Newcastle disease virus (NDV). Several NDV vaccine strains have been used as vaccine vectors in poultry, mammals, and humans to express antigens of different pathogens. The safety, immunogenicity, and protective efficacy of these NDV-vectored vaccines have been evaluated in pre-clinical and clinical studies. The vaccines are safe in mammals, humans, and poultry. Bivalent NDV-vectored vaccines against pathogens of economic importance to the poultry industry have been developed. These bivalent vaccines confer solid protective immunity against NDV and other foreign antigens. In most cases, NDV-vectored vaccines induce strong local and systemic immune responses against the target foreign antigen. This review summarizes the development of NDV-vectored vaccines and their potential use as a base for designing other effective vaccines for veterinary and human use.
Collapse
Affiliation(s)
- Kang-Seuk Choi
- OIE Reference Laboratory for Newcastle Disease, Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| |
Collapse
|
36
|
Rescue of a recombinant Newcastle disease virus strain R2B expressing green fluorescent protein. Virus Genes 2017; 53:410-417. [DOI: 10.1007/s11262-017-1433-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
|
37
|
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses 2016; 8:v8070183. [PMID: 27384578 PMCID: PMC4974518 DOI: 10.3390/v8070183] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022] Open
Abstract
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.
Collapse
|
38
|
Chen X, Yang J, Ji Y, Okoth E, Liu B, Li X, Yin H, Zhu Q. Recombinant Newcastle disease virus expressing African swine fever virus protein 72 is safe and immunogenic in mice. Virol Sin 2016; 31:150-9. [PMID: 26980334 DOI: 10.1007/s12250-015-3692-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/25/2016] [Indexed: 12/27/2022] Open
Abstract
African swine fever (ASF) is a lethal hemorrhagic disease that affects wild and domestic swine. The etiological agent of ASF is African swine fever virus (ASFV). Since the first case was described in Kenya in 1921, the disease has spread to many other countries. No commercial vaccines are available to prevent ASF. In this study, we generated a recombinant Newcastle disease virus (rNDV) expressing ASFV protein 72 (p72) by reverse genetics and evaluated its humoral and cellular immunogenicity in a mouse model. The recombinant virus, rNDV/p72, replicated well in embryonated chicken eggs and was safe to use in chicks and mice. The p72 gene in rNDV/p72 was stably maintained through ten passages. Mice immunized with rNDV/p72 developed high titers of ASFV p72 specific IgG antibody, and had higher levels of IgG1 than IgG2a. Immunization also elicited T-cell proliferation and secretion of IFN-γ and IL-4. Taken together, these results indicate that rNDV expressing ASFV p72 might be a potential vaccine candidate for preventing ASF.
Collapse
Affiliation(s)
- Xinxin Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yanhong Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Edward Okoth
- International Livestock Research Institute, Nairobi, 00100, Kenya
| | - Bin Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiaoyang Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
39
|
Khattar SK, Palaniyandi S, Samal S, LaBranche CC, Montefiori DC, Zhu X, Samal SK. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 Gag and Env proteins expressed by Newcastle disease virus. Hum Vaccin Immunother 2015; 11:504-15. [PMID: 25695657 DOI: 10.4161/21645515.2014.987006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8(+) T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4(+) T cells. The level of Gag-specific CD8(+) and CD4(+) T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins.
Collapse
Affiliation(s)
- Sunil K Khattar
- a Virginia-Maryland Regional College of Veterinary Medicine ; University of Maryland ; College Park , MD USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Enhanced Immune Responses to HIV-1 Envelope Elicited by a Vaccine Regimen Consisting of Priming with Newcastle Disease Virus Expressing HIV gp160 and Boosting with gp120 and SOSIP gp140 Proteins. J Virol 2015; 90:1682-6. [PMID: 26581986 DOI: 10.1128/jvi.02847-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost.
Collapse
|
41
|
Duan Z, Xu H, Ji X, Zhao J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol 2015; 10:1307-23. [PMID: 26234909 DOI: 10.2217/fmb.15.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.
Collapse
Affiliation(s)
- Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Houqiang Xu
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jiafu Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
42
|
Zhang Z, Zhao W, Li D, Yang J, Zsak L, Yu Q. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism. J Gen Virol 2015; 96:2028-2035. [DOI: 10.1099/vir.0.000142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Zhenyu Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
- United States Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Services, 934 College Station Road, Athens, GA, 30605, USA
| | - Wei Zhao
- United States Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Services, 934 College Station Road, Athens, GA, 30605, USA
- Beijing Centre for Disease Control and Prevention, Beijing 100013, PR China
| | - Deshan Li
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jinlong Yang
- United States Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Services, 934 College Station Road, Athens, GA, 30605, USA
- Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Laszlo Zsak
- United States Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Services, 934 College Station Road, Athens, GA, 30605, USA
| | - Qingzhong Yu
- United States Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Services, 934 College Station Road, Athens, GA, 30605, USA
| |
Collapse
|
43
|
Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges. mBio 2015. [PMID: 26199332 PMCID: PMC4513081 DOI: 10.1128/mbio.01005-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. A safe and effective vaccine that can induce both systemic and mucosal immune responses is needed to control HIV-1. In this study, we showed that coexpression of Env and Gag proteins of HIV-1 performed using a single Newcastle disease virus (NDV) vector led to the formation of HIV-1 virus-like particles (VLPs). Immunization of guinea pigs with recombinant NDVs (rNDVs) elicited potent long-lasting systemic and mucosal immune responses to HIV. Additionally, the rNDVs were efficient in inducing cellular immune responses to HIV and protective immunity to challenge with vaccinia viruses expressing HIV Env and Gag in mice. These results suggest that the use of a single NDV expressing Env and Gag proteins simultaneously is a novel strategy to develop a safe and effective vaccine against HIV.
Collapse
|
44
|
Kim SH, Chen S, Jiang X, Green KY, Samal SK. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein. Virology 2015; 484:163-169. [PMID: 26099695 DOI: 10.1016/j.virol.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Abstract
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans.
Collapse
Affiliation(s)
- Shin-Hee Kim
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Shun Chen
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Xi Jiang
- Division of Infectious Disease, Cincinnati Children׳s Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Kim Y Green
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, DHHS, Bethesda, MD, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
45
|
Gogoi P, Ganar K, Kumar S. Avian Paramyxovirus: A Brief Review. Transbound Emerg Dis 2015; 64:53-67. [DOI: 10.1111/tbed.12355] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 12/01/2022]
Affiliation(s)
- P. Gogoi
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - K. Ganar
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - S. Kumar
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| |
Collapse
|
46
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|
47
|
Zhao W, Zhang Z, Zsak L, Yu Q. P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression. J Gen Virol 2014; 96:40-45. [PMID: 25274858 DOI: 10.1099/vir.0.068437-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease virus (NDV) has been developed as a vector for vaccine and gene therapy purposes. However, the optimal insertion site for foreign gene expression remained to be determined. In the present study, we inserted the green fluorescence protein (GFP) gene into five different intergenic regions of the enterotropic NDV VG/GA vaccine strain using reverse genetics technology. The rescued recombinant viruses retained lentogenic pathotype and displayed delayed growth dynamics, particularly when the GFP gene was inserted between the NP and P genes of the virus. The GFP mRNA level was most abundant when the gene was inserted closer to the 3' end and gradually decreased as the gene was inserted closer to the 5' end. Measurement of the GFP fluorescence intensity in recombinant virus-infected cells demonstrated that the non-coding region between the P and M genes is the optimal insertion site for foreign gene expression in the VG/GA vaccine vector.
Collapse
Affiliation(s)
- Wei Zhao
- Beijing Centre for Disease Control and Prevention, Beijing 100013, PR China.,Southeast Poultry Research Laboratory, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Zhenyu Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.,Southeast Poultry Research Laboratory, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Laszlo Zsak
- Southeast Poultry Research Laboratory, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
48
|
Buijs PRA, van Amerongen G, van Nieuwkoop S, Bestebroer TM, van Run PRWA, Kuiken T, Fouchier RAM, van Eijck CHJ, van den Hoogen BG. Intravenously injected Newcastle disease virus in non-human primates is safe to use for oncolytic virotherapy. Cancer Gene Ther 2014; 21:463-71. [PMID: 25257305 DOI: 10.1038/cgt.2014.51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/29/2014] [Indexed: 12/17/2022]
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus with oncolytic potential. Detailed preclinical information regarding the safety of oncolytic NDV is scarce. In this study, we evaluated the toxicity, biodistribution and shedding of intravenously injected oncolytic NDVs in non-human primates (Macaca fascicularis). Two animals were injected with escalating doses of a non-recombinant vaccine strain, a recombinant lentogenic strain or a recombinant mesogenic strain. To study transmission, naive animals were co-housed with the injected animals. Injection with NDV did not lead to severe illness in the animals or abnormalities in hematologic or biochemistry measurements. Injected animals shed low amounts of virus, but this did not lead to seroconversion of the contact animals. Postmortem evaluation demonstrated no pathological changes or evidence of virus replication. This study demonstrates that NDV generated in embryonated chicken eggs is safe for intravenous administration to non-human primates. In addition, our study confirmed results from a previous report that naïve primate and human sera are able to neutralize egg-generated NDV. We discuss the implications of these results for our study and the use of NDV for virotherapy.
Collapse
Affiliation(s)
- P R A Buijs
- Department of Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | | - S van Nieuwkoop
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - T M Bestebroer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - P R W A van Run
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - T Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - R A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - C H J van Eijck
- Department of Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
49
|
Yan Y, Jia L, Zhang J, Liu Y, Bu X. Effect of recombinant Newcastle disease virus transfection on lung adenocarcinoma A549 cells in vivo.. Oncol Lett 2014; 8:2569-2576. [PMID: 25364430 PMCID: PMC4214503 DOI: 10.3892/ol.2014.2562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 08/29/2014] [Indexed: 11/25/2022] Open
Abstract
Newcastle disease virus (NDV) has been reported to selectively duplicate in and then destroy tumor cells, whilst sparing normal cells. However, the effect of NDV on lung cancer has yet to be elucidated. In the present study, recombinant NDV (rl-RVG) was applied to lung adenocarcinoma A549 cell tumor-bearing mice to explore its effect on the proliferation of the cells and the immune response of the mice. Following rl-RVG transfection, RVG and NDV gene expression, decreased tumor growth, subcutaneous tumor necrosis, tumor apoptosis and an increased number of cluster of differentiation (CD)3−/CD49+ natural killer cells were more evident in the rl-RVG group. The present study demonstrated that rl-RVG transfection effectively restrained lung adenocarcinoma A549 cell growth in vivo, which may have been accomplish by inducing tumor cell apoptosis and regulating the cell immune response.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Lijuan Jia
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China ; Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jin Zhang
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Yang Liu
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| |
Collapse
|
50
|
Kim SH, Paldurai A, Xiao S, Collins PL, Samal SK. Modified Newcastle disease virus vectors expressing the H5 hemagglutinin induce enhanced protection against highly pathogenic H5N1 avian influenza virus in chickens. Vaccine 2014; 32:4428-4435. [PMID: 24968158 PMCID: PMC4794254 DOI: 10.1016/j.vaccine.2014.06.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/18/2014] [Accepted: 06/11/2014] [Indexed: 11/21/2022]
Abstract
Mesogenic Newcastle disease virus (NDV) strain Beaudette C (BC) was modified to enhance the protective efficacy of the foreign antigen. The modified NDV vectors were compared for their ability to express the HA protein of H5N1 HPAIV. The modified NDV vectors expressed enhanced levels of the HPAIV HA protein. Two of the modified NDV vectors induced higher levels of immunogenicity and protective efficacy against HPAIV. Two of the modified vectors were found to be superior to conventional rLaSota vector.
Naturally-occurring attenuated strains of Newcastle disease virus (NDV) are being developed as vaccine vectors for use in poultry and humans. However, some NDV strains, such as Beaudette C (BC), may retain too much virulence in poultry for safe use, and more highly attenuated strains may be suboptimally immunogenic. We therefore modified the BC strain by changing the multibasic cleavage site sequence of the F protein to the dibasic sequence of avirulent strain LaSota. Additionally, the BC, F, and HN proteins were modified in several ways to enhance virus replication. These modified BC-derived vectors and the LaSota strain were engineered to express the hemagglutin (HA) protein of H5N1 highly pathogenic influenza virus (HPAIV). In general, the modified BC-based vectors expressing HA replicated better than LaSota/HA, and expressed higher levels of HA protein. Pathogenicity tests indicated that all the modified viruses were highly attenuated in chickens. Based on in vitro characterization, two of the modified BC vectors were chosen for evaluation in chickens as vaccine vectors against H5N1 HPAIV A/Vietnam/1203/04. Immunization of chickens with rNDV vector vaccines followed by challenge with HPAIV demonstrated high levels of protection against clinical disease and mortality. However, only those chickens immunized with modified BC/HA in which residues 271–330 from the F protein had been replaced with the corresponding sequence from the NDV AKO strain conferred complete protection against challenge virus shedding. Our findings suggest that this modified rNDV can be used safely as a vaccine vector with enhanced replication, expression, and protective efficacy in avian species, and potentially in humans.
Collapse
Affiliation(s)
- Shin-Hee Kim
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD, United States
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD, United States
| | - Sa Xiao
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD, United States
| | - Peter L Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD, United States.
| |
Collapse
|