1
|
Abdelrahman D, Al-Sadeq DW, Smatti MK, Taleb SA, AbuOdeh RO, Al-Absi ES, Al-Thani AA, Coyle PV, Al-Dewik N, Qahtani AAA, Yassine HM, Nasrallah GK. Prevalence and Phylogenetic Analysis of Parvovirus (B19V) among Blood Donors with Different Nationalities Residing in Qatar. Viruses 2021; 13:v13040540. [PMID: 33805034 PMCID: PMC8063948 DOI: 10.3390/v13040540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
Human parvovirus (B19V) is the causative agent of erythema infectiosum in children and is linked to a wide range of clinical manifestations. Studies related to B19V prevalence in the Middle East and North Africa (MENA) region and other parts of Asia are very scarce. The objectives of this study were to estimate the seroprevalence (anti-B19V IgM and IgG), the viremia rate (B19V DNA), and the circulating genotypes of B19V among blood donors in Qatar. Methods: Donors’ blood samples (n = 5026) from different nationalities, mainly from the MENA region and South East Asia, were collected from 2014–2016. Samples were tested for the B19V DNA using RT-PCR. Furthermore, 1000 selected samples were tested to determine the seroprevalence of B19V antibodies using enzyme-linked immunosorbent assay (ELISA). Genotyping was performed on 65 DNA positive samples by sequencing of nested PCR fragments (NS1-VP1u region, 927 nt). Results: Only 1.4% (70/5026) of the samples had detectible B19V DNA in their blood. B19V DNA prevalence statistically decreased with age (p = 0.03). Anti-B19V IgG was detected in 60.3% (561/930) of the tested samples, while only 2.1% (20/930) were IgM-positive and 1.2% (11/930) were both IgM- and IgG-positive. B19V genotyping showed a predominance of Genotype 1 (100%). Sequence analysis of the NS1-VP1u region revealed 139 mutation sites, some of which were amino acid substitutions. Conclusion: Our results indicated a relatively high seroprevalence of B19V in Qatar. Most importantly, B19 DNA was detected among Qatari and non-Qatari blood donors. Therefore, blood banks in Qatar might need to consider screening for B19V, especially when transfusion is intended for high-risk populations, including immunocompromised patients.
Collapse
Affiliation(s)
| | - Duaa W. Al-Sadeq
- Biomedical Research Center, Member of QU Health, Qatar University, Doha, Qatar; (D.W.A.-S.); (M.K.S.); (E.S.A.-A.); (A.A.A.-T.); (H.M.Y.)
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Maria K. Smatti
- Biomedical Research Center, Member of QU Health, Qatar University, Doha, Qatar; (D.W.A.-S.); (M.K.S.); (E.S.A.-A.); (A.A.A.-T.); (H.M.Y.)
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar;
| | - Sara A. Taleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar;
| | - Raed O AbuOdeh
- Medical Laboratory Sciences Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates;
| | - Enas S. Al-Absi
- Biomedical Research Center, Member of QU Health, Qatar University, Doha, Qatar; (D.W.A.-S.); (M.K.S.); (E.S.A.-A.); (A.A.A.-T.); (H.M.Y.)
| | - Asmaa A. Al-Thani
- Biomedical Research Center, Member of QU Health, Qatar University, Doha, Qatar; (D.W.A.-S.); (M.K.S.); (E.S.A.-A.); (A.A.A.-T.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Peter. V. Coyle
- Division of Virology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha, Qatar;
| | - Nader Al-Dewik
- Department of Pediatrics, Clinical and Metabolic Genetics, Hamad Medical Corporation, Doha, Qatar;
| | - Ahmed A. Al Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia;
- Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh 11533, Saudi Arabia
| | - Hadi M. Yassine
- Biomedical Research Center, Member of QU Health, Qatar University, Doha, Qatar; (D.W.A.-S.); (M.K.S.); (E.S.A.-A.); (A.A.A.-T.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Member of QU Health, Qatar University, Doha, Qatar; (D.W.A.-S.); (M.K.S.); (E.S.A.-A.); (A.A.A.-T.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
- Correspondence:
| |
Collapse
|
2
|
Nikishov ON, Kuzin AA, Zobov AE, Lavrentieva IN, Antipova AY, Ostankova YV, Khamitova IV, Nikishov SN. [Results of a study of parvovirus B19 (Parvoviridae, Parvovirinae, Erythroparvovirus, Primate erythroparvovirus 1) prevalence and circulation activity in socially significant categories of the population]. Vopr Virusol 2020; 65:143-149. [PMID: 33533216 DOI: 10.36233/0507-4088-2020-65-3-143-149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022]
Abstract
Currently, along with the increasing need of medical organizations for blood preparations, algorithms for laboratory testing of blood donors are not available for all infections with hemo-contact mechanism of transmission. A representative example is infection caused by parvovirus В19. PURPOSE OF THE STUDY The article presents the results of the original study, the purpose of which was to study the prevalence of antibodies to parvovirus B19 and the activity of the circulation of this virus in socially important categories of the population. MATERIAL AND METHODS The materials of the study were blood samples from blood donors of Saint Petersburg, as well as parvovirus В19 sequences isolated from DNA-positive plasma samples. RESULTS AND DISCUSSION According to the results of the laboratory examination, a high proportion of carriers of virus-specific IgG antibodies was found in studied group of donors, which confirms the previous infection of parvovirus B19 in them and illustrates the high prevalence of infection in this socially significant group. Based on the results of the blood preparations testing, the presence of parvovirus DNA В19 in a significant number of samples was determined by polymerase chain reaction method. This indicates an current parvovirus infection in the examined donors and points to a high epidemiological risk of the blood products obtained from them. Sequencing and phylogenetic analysis of a fragment of the VP1 gene demonstrated that the studied isolates belonged to А1 genotype and its subtype 1А2, which correlates with the genotypes of parvovirus В19 circulating in the European Union and Asia. In addition, two previously unknown В19 parvovirus isolates were isolated, the nucleotide sequences of which were deposited into the international GenBank database. CONCLUSION Based on the results of the study, it is justified to include testing of blood samples for markers of В19 parvovirus infection in existing algorithms of laboratory examination of donors, which will ensure prevention of hemo-contact infection of blood recipients with parvovirus В19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - S N Nikishov
- National Research Mordovian State University named after N.P. Ogarev
| |
Collapse
|
3
|
Roth H, Schneider L, Eberle R, Lausen J, Modlich U, Blümel J, Baylis SA. Zika virus infection studies with CD34 + hematopoietic and megakaryocyte-erythroid progenitors, red blood cells and platelets. Transfusion 2020; 60:561-574. [PMID: 32086956 DOI: 10.1111/trf.15692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/28/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND To date, several cases of transfusion-transmitted ZIKV infections have been confirmed. Multiple studies detected prolonged occurrence of ZIKV viral RNA in whole blood as compared to plasma samples indicating potential ZIKV interaction with hematopoietic cells. Also, infection of cells from the granulocyte/macrophage lineage has been demonstrated. Patients may develop severe thrombocytopenia, microcytic anemia, and a fatal course of disease occurred in a patient with sickle cell anemia suggesting additional interference of ZIKV with erythroid and megakaryocytic cells. Therefore, we analyzed whether ZIKV propagates in or compartmentalizes with hematopoietic progenitor, erythroid, and megakaryocytic cells. METHODS ZIKV RNA replication, protein translation and infectious particle formation in hematopoietic cell lines as well as primary CD34+ HSPCs and ex vivo differentiated erythroid and megakaryocytic cells was monitored using qRT-PCR, FACS, immunofluorescence analysis and infectivity assays. Distribution of ZIKV RNA and infectious particles in spiked red blood cell (RBC) units or platelet concentrates (PCs) was evaluated. RESULTS While subsets of K562 and KU812Ep6EPO cells supported ZIKV propagation, primary CD34+ HSPCs, MEP cells, RBCs, and platelets were non-permissive for ZIKV infection. In spiking studies, ZIKV RNA was detectable for 7 days in all fractions of RBC units and PCs, however, ZIKV infectious particles were not associated with erythrocytes or platelets. CONCLUSION Viral particles from plasma or contaminating leukocytes, rather than purified CD34+ HSPCs or the cellular component of RBC units or PCs, present the greatest risk for transfusion-transmitted ZIKV infections.
Collapse
Affiliation(s)
- Hanna Roth
- Division of Virology, Paul-Ehrlich-Institute, Langen, Hessen, Germany
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Hessen, Germany
| | - Regina Eberle
- Division of Immunology, Paul-Ehrlich-Institute, Langen, Hessen, Germany
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Hessen, Germany.,Department of Genetics of Eukaryotes, Institute of Industrial Genetics, Stuttgart, Baden-Württemberg, Germany
| | - Ute Modlich
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Hessen, Germany
| | - Johannes Blümel
- Division of Virology, Paul-Ehrlich-Institute, Langen, Hessen, Germany
| | - Sally A Baylis
- Division of Virology, Paul-Ehrlich-Institute, Langen, Hessen, Germany
| |
Collapse
|
4
|
Matz B, Kupfer B, Kallies R, Külshammer M, Flötenmeyer M, Kreil TR, Eis-Hübinger AM. Secondary structure of DNA released from purified capsids of human parvovirus B19 under moderate denaturing conditions. J Gen Virol 2019; 100:812-827. [PMID: 30924765 DOI: 10.1099/jgv.0.001253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parvovirus B19 (B19V) possesses a linear single-stranded DNA genome of either positive or negative polarity. Due to intramolecular sequence homologies, either strand may theoretically be folded in several alternative ways. Viral DNA, when extracted from virions by several procedures, presents as linear single-stranded and/or linear double-stranded molecules, except when one particular commercial kit is used. This protocol yields DNA with an aberrant electrophoretic mobility in addition to linear double-stranded molecules, but never any single-stranded molecules. This peculiar kind of DNA was found in all plasma or serum samples tested and so we decided to analyse its secondary structure. In line with our results for one- and two-dimensional electrophoresis, mobility shift assays, DNA preparation by an in-house extraction method with moderate denaturing conditions, density gradient ultracentrifugation, DNA digestion experiments and competition hybridization assays, we conclude that (i) the unique internal portions of this distinctive single-stranded molecules are folded into tight tangles and (ii) the two terminal redundant regions are associated with each other, yielding non-covalently closed pseudo-circular molecules stabilized by a short (18 nucleotides) intramolecular stem, whereas the extreme 3'- and 5'-ends are folded back on themselves, forming a structure resembling a twin hairpin. The question arises as to whether this fairly unstable structure represents the encapsidated genome structure. The answer to this question remains quite relevant in terms of comprehending the initiation and end of B19V genome replication.
Collapse
Affiliation(s)
- Bertfried Matz
- 1Institute of Virology, University of Bonn Medical Centre, Germany
| | - Bernd Kupfer
- 1Institute of Virology, University of Bonn Medical Centre, Germany
| | - René Kallies
- 1Institute of Virology, University of Bonn Medical Centre, Germany.,2Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | - Matthias Flötenmeyer
- 3Max-Planck-Institute for Developmental Biology, Tübingen, Germany.,4Centre for Microscopy and Microanalysis, University of Queensland, St Lucia/Brisbane, Australia
| | | | | |
Collapse
|
5
|
Jain A, Kant R. Genotypes of erythrovirus B19, their geographical distribution & circulation in cases with various clinical manifestations. Indian J Med Res 2018; 147:239-247. [PMID: 29923512 PMCID: PMC6022381 DOI: 10.4103/ijmr.ijmr_1816_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 11/16/2022] Open
Abstract
Erythrovirus B19 (B19V) is one of the erythroviruses known to be pathogenic in humans. B19V is classified into three distinct genotypes; 1, 2 and 3, differing from each other by 2-13 per cent. Genotype 1 consists of the prototype B19V isolates, genotype 2 comprises the A6, LaLi and their related isolates while genotype 3 includes the V9- and V9-related isolates. The classification of genotype 1 into two subtypes (1A and 1B) and genotype 3 into two subtypes (3a and 3b) with an estimated nucleotide difference of about 5 per cent has been done. Predominance of genotype 1 across all the continents is seen followed by genotypes 2 and 3. There are no disease-specific genotypes. All the three genotypes have been found in symptomatic as well as asymptomatic individuals and have been reported from several countries across the world. The prevalence of genotype 2 in older populations and its absence from current circulation in Northern Europe has also been reported. The present review focuses on geographic distribution and association of genotypes of B19V with different clinical manifestations.
Collapse
Affiliation(s)
- Amita Jain
- Department of Microbiology, K.G. Medical University, Lucknow, India
| | - Ravi Kant
- Former Vice-Chancellor, K.G. Medical University, Lucknow, India
| |
Collapse
|
6
|
Structural proteins of Helicoverpa armigera densovirus 2 enhance transcription of viral genes through transactivation. Arch Virol 2017; 162:1745-1750. [PMID: 28210815 DOI: 10.1007/s00705-017-3253-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
Herein, we report the identification of putative promoters for the non-structural proteins (NS) and capsid structural proteins (VP) of Helicoverpa armigera densovirus (HaDV2) as well as a potential mechanism for how these promoters might be regulated. For the first time, we report that VP is able to transactivate the VP promoter and, to a lesser degree, the NS promoter in densoviruses. In addition to this, another promoter-like sequence designated P2, when co-transfected with the VP gene, enhanced luciferase activity by approximately 35 times compared to a control. This suggests that there are two promoters for VP in HaDV2 and that the VP of parvoviruses might play a more important role in viral transcription than previously appreciated.
Collapse
|
7
|
Abstract
Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Ivanova SK, Mihneva ZG, Toshev AK, Kovaleva VP, Andonova LG, Muller CP, Hübschen JM. Insights into epidemiology of human parvovirus B19 and detection of an unusual genotype 2 variant, Bulgaria, 2004 to 2013. ACTA ACUST UNITED AC 2016; 21:30116. [PMID: 26847955 DOI: 10.2807/1560-7917.es.2016.21.4.30116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022]
Abstract
The present study aimed to determine the role of human parvovirus В19 (B19V) as an aetiological agent in measles and rubella negative fever/rash patients from Bulgaria between 2004 and 2013. A total of 1,266 sera from all over the country were tested for B19V IgM antibodies and all positives were further investigated by polymerase chain reaction (PCR). Overall, 280 sera (22%) were B19V IgM positive and 227 of these (81%) were also PCR positive. The highest number of IgM positives was found among five to nine year-old children (27%). Eight infected women gave birth to healthy children; one fetus was aborted with hydrops fetalis. Of the 55 genetic sequences obtained, 54 belonged to genotype 1a and one grouped as a genotype 2 outlier. Phylogenetic analysis of all available genotype 2 sequences covering the 994 nucleotide non-structural protein 1(NS1)/capsid viral protein 1 (VP1) unique region junction, showed that only one other sequence grouped with the outlier strain, forming a clearly distinct and well-supported cluster of genotype 2 (between-group genetic distance: 3.32%). In accordance with B19V nomenclature, this cluster may represent a new subgenotype 2b. The study showed that B19V infections may be falsely identified as rubella or measles in ca 22% of cases, emphasising the need for laboratory confirmation.
Collapse
Affiliation(s)
- Stefka Krumova Ivanova
- National Center of Infectious and Parasitic Diseases, Department Virology, National Reference Laboratory of Measles, Mumps and Rubella, Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
9
|
Nims RW, Zhou SS. Intra-family differences in efficacy of inactivation of small, non-enveloped viruses. Biologicals 2016; 44:456-62. [PMID: 27473770 DOI: 10.1016/j.biologicals.2016.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
The use of specific model viruses for validating viral purification process steps and for assessing the efficacies of viral disinfectants is based, in part, on the assumption that viral susceptibilities to such treatments will be similar for different members, including different genera, within a given viral family. This assumption is useful in cases where cell-based infectivity assays or laboratory strains for the specific viruses of interest might not exist. There are some documented cases, however, where exceptions to this assumption exist. In this paper, we discuss some of the more striking cases of intra-family differences in susceptibilities to inactivation steps used for downstream viral purification steps in biologics manufacture (e.g. heat inactivation, low pH, and guanidinium hydrochloride inactivation) and to specific viral disinfectants (e.g. alcohols, hydrogen peroxide, and quaternary ammonium-containing disinfectants) that might be employed for facility/equipment disinfection. The results suggest that care should be taken when extrapolating viral inactivation susceptibilities from specific model viruses to different genera or even to different members of the same genus. This should be taken into consideration by regulatory agencies and biologics manufacturers designing viral clearance and facility disinfection validation studies, and developers and evaluators of viral disinfectants.
Collapse
Affiliation(s)
- Raymond W Nims
- RMC Pharmaceutical Solutions, Inc., 1851 Lefthand Circle, Suite A, Longmont, CO 80501, USA
| | - S Steve Zhou
- MicroBioTest, A Division of Microbac Laboratories, Inc., 105 Carpenter Drive, Sterling, VA 20164, USA.
| |
Collapse
|
10
|
Betaferon in chronic viral cardiomyopathy (BICC) trial: Effects of interferon-β treatment in patients with chronic viral cardiomyopathy. Clin Res Cardiol 2016; 105:763-73. [DOI: 10.1007/s00392-016-0986-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/08/2016] [Indexed: 01/01/2023]
|
11
|
Shen H, Zhang W, Wang H, Shao S. Identification of recombination in the NS1 and VPs genes of parvovirus B19. J Med Virol 2016; 88:1457-61. [DOI: 10.1002/jmv.24471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Hongxing Shen
- Medical College; Jiangsu University; Zhenjiang P.R. China
| | - Wen Zhang
- Medical College; Jiangsu University; Zhenjiang P.R. China
| | - Hua Wang
- Medical College; Jiangsu University; Zhenjiang P.R. China
| | - Shihe Shao
- Medical College; Jiangsu University; Zhenjiang P.R. China
| |
Collapse
|
12
|
Molenaar-de Backer MWA, de Waal M, Sjerps MC, Koppelman MHGM. Validation of new real-time polymerase chain reaction assays for detection of hepatitis A virus RNA and parvovirus B19 DNA. Transfusion 2015; 56:440-8. [PMID: 26354230 DOI: 10.1111/trf.13334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND To meet European guidelines for plasma for fractionation, plasma fractionators have implemented parvovirus B19 (B19V) and hepatitis A virus (HAV) nucleic acid test (NAT) screening on test pools. In this study we evaluate recently developed in-house NAT assays for B19V DNA and HAV RNA. The B19V NAT was designed to target two different regions of the B19V genome. STUDY DESIGN AND METHODS The B19V DNA and HAV RNA tests were validated according to commonly used guidelines. The performance of the B19V and HAV assays was evaluated during routine screening of more than 2 × 10(6) donations. RESULTS The 95% lower limit of detection (LLD) of the HAV NAT was 1.34 IU/mL. The 95% LLD for B19V was 39.1 IU/mL for the NS1 region and 76.9 IU/mL for the VP2 region. The B19V test showed good accuracy, precision, robustness, and no cross-contamination was observed. Both assays detected B19V Genotypes 1 to 3 and HAV Genotypes I to III. During routine screening 103 donations showed B19V DNA loads of more than 1.25 × 10(6) IU/mL and one donation was reactive in the HAV NAT. CONCLUSION The dual-target B19V polymerase chain reaction (PCR) showed good accuracy (<0.1 log IU/mL) at the crucial concentration of 10 IU/µL for the NS1 and the VP2 region of the B19V genome and detected all known genotypes with similar sensitivity for each genotype. In addition, the dual target format reduces the chance that molecular variants of B19V are wrongly quantified. The HAV RNA assay showed high sensitivity for Genotypes I to III. Both new PCR assays have been successfully introduced for plasma screening in test pools of 480 or 96 donations.
Collapse
Affiliation(s)
| | | | | | - Marco H G M Koppelman
- National Screening Laboratory, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Toppinen M, Norja P, Aaltonen LM, Wessberg S, Hedman L, Söderlund-Venermo M, Hedman K. A new quantitative PCR for human parvovirus B19 genotypes. J Virol Methods 2015; 218:40-5. [DOI: 10.1016/j.jviromet.2015.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/27/2015] [Accepted: 03/09/2015] [Indexed: 11/29/2022]
|
14
|
Luo Y, Qiu J. Human parvovirus B19: a mechanistic overview of infection and DNA replication. Future Virol 2015; 10:155-167. [PMID: 26097496 DOI: 10.2217/fvl.14.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human parvovirus B19 (B19V) is a human pathogen that belongs to genus Erythroparvovirus of the Parvoviridae family, which is composed of a group of small DNA viruses with a linear single-stranded DNA genome. B19V mainly infects human erythroid progenitor cells and causes mild to severe hematological disorders in patients. However, recent clinical studies indicate that B19V also infects nonerythroid lineage cells, such as myocardial endothelial cells, and may be associated with other disease outcomes. Several cell culture systems, including permissive and semipermissive erythroid lineage cells, nonpermissive human embryonic kidney 293 cells and recently reported myocardial endothelial cells, have been used to study the mechanisms underlying B19V infection and B19V DNA replication. This review aims to summarize recent advances in B19V studies with a focus on the mechanisms of B19V tropism specific to different cell types and the cellular pathways involved in B19V DNA replication including cellular signaling transduction and cell cycle arrest.
Collapse
Affiliation(s)
- Yong Luo
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Lavrentyeva IN, Antipova AY. HUMAN PARVOVIRUS В19: VIRUS CHARACTERISTICS, DISTRIBUTION AND DIAGNOSTICS OF PARVOVIRUS INFECTION. ACTA ACUST UNITED AC 2014. [DOI: 10.15789/2220-7619-2013-4-311-322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Norja P, Lassila R, Makris M. Parvovirus transmission by blood products - a cause for concern? Br J Haematol 2012; 159:385-93. [PMID: 23025427 DOI: 10.1111/bjh.12060] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The introduction of dual viral inactivation of clotting factor concentrates has practically eliminated infections by viruses associated with significant pathogenicity over the last 20 years. Despite this, theoretical concerns about transmission of infection have remained, as it is known that currently available viral inactivation methods are unable to eliminate parvovirus B19 or prions from these products. Recently, concern has been raised following the identification of the new parvoviruses, human parvovirus 4 (PARV4) and new genotypes of parvovirus B19, in blood products. Parvoviruses do not cause chronic pathogenicity similar to human immunodeficiency virus or hepatitis C virus, but nevertheless may cause clinical manifestations, especially in immunosuppressed patients. Manufacturers should institute measures, such as minipool polymerase chain reaction testing, to ensure that their products contain no known viruses. So far, human bocavirus, another new genus of parvovirus, has not been detected in fractionated blood products, and unless their presence can be demonstrated, routine testing during manufacture is not essential. Continued surveillance of the patients and of the safety of blood products remains an important ongoing issue.
Collapse
Affiliation(s)
- Päivi Norja
- Department of Virology, Haartman Institute, Helsinki University, Helsinki, Finland
| | | | | |
Collapse
|
17
|
Blümel J, Rinckel LA, Lee DC, Roth NJ, Baylis SA. Inactivation and neutralization of parvovirus B19 Genotype 3. Transfusion 2012; 52:1490-7. [PMID: 22339291 DOI: 10.1111/j.1537-2995.2012.03573.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Parvovirus B19 (B19V) is a common contaminant of human plasma donations. Three B19V genotypes have been defined based on their DNA sequence. Reliable detection of Genotype 3 DNA has proved problematic because of unexpected sequence variability. B19V Genotype 3 is found primarily in West Africa, but was recently detected in plasma from a North American donor. The safety of plasma-derived medicinal products, with respect to B19V, relies on exclusion of high-titer donations, combined with virus clearance at specific manufacturing steps. Studies on inactivation of B19V are difficult to perform and inactivation of Genotype 3 has not yet been investigated. STUDY DESIGN AND METHODS Inactivation of B19V Genotypes 3 and 1 by pasteurization of human serum albumin and incubation at low pH was studied using a cell culture assay for infectious virus particles. Infected cells were detected by reverse transcription-polymerase chain reaction analysis of virus capsid mRNA. Neutralization of B19V Genotype 3 was investigated using human immunoglobulin preparations. RESULTS Genotypes 1 and 3 displayed comparable inactivation kinetics during pasteurization of albumin at 56°C, as well as by incubation at various low-pH conditions (pH 4.2 at 37°C and pH 4.5 at 23°C, respectively) used in immunoglobulin manufacturing. Both Genotypes were readily neutralized by pooled immunoglobulin preparations of North American or European origin. CONCLUSION Pasteurization and low-pH treatment were equally effective in inactivating B19V Genotypes 1 and 3. Neutralization experiments indicated that pooled immunoglobulin of North American or European origin is likely to be equally effective in treatment of disease induced by both genotypes.
Collapse
|
18
|
Baylis SA, Ma L, Padley DJ, Heath AB, Yu MW. Collaborative study to establish a World Health Organization International genotype panel for parvovirus B19 DNA nucleic acid amplification technology (NAT)-based assays. Vox Sang 2011; 102:204-11. [PMID: 21988191 DOI: 10.1111/j.1423-0410.2011.01541.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES The aim of the collaborative study was to evaluate a panel of plasma samples containing different genotypes of parvovirus B19 (B19V) for use in nucleic acid amplification technology (NAT)-based assays. MATERIALS AND METHODS The panel of samples [Center for Biologics Evaluation and Research Parvovirus B19 Genotype Panel 1; National Institute for Biological Standards and Control (NIBSC) code number 09/110] comprises four different members, i.e. Member 1, Member 2, Member 3, and Member 4 (M1-M4); these represent genotypes 1, 2, 3a B19V, and a negative plasma control, respectively. Thirty-five laboratories from 13 different countries participated in the study. Participants assayed the panel members concurrently with the 2nd World Health Organization (WHO) International Standard for B19V DNA (NIBSC code 99/802) on four separate occasions. RESULTS A total of 44 sets of data were returned, 34 from quantitative assays and 10 from qualitative assays. The majority of assays used were in-house and based on real-time PCR. The results showed that all three genotypes were detected consistently by the majority of participants, although a small number of assays detected genotypes 2 and 3 less efficiently, or not at all. Real-time stability studies have indicated that the panel of B19V samples is stable under normal conditions of storage, i.e. ≤-70°C. CONCLUSIONS The four-member panel is intended for use in evaluating the ability of NAT assays to detect different B19V genotypes (M1-M3). Based on the results of the collaborative study, the panel was established as the 1st WHO International Reference Panel for parvovirus B19 genotypes.
Collapse
|
19
|
Tsujikawa M, Nishigaki H, Yoshikawa M, Furuki R, Takahashi K, Adan-Kubo J, Shimamura Y, Urayama T, Hattori S, Sakai K, Yunoki M, Ikuta K. Variability of parvovirus B19 genotype 2 in plasma products with different compositions in the inactivation sensitivity by liquid-heating. Vox Sang 2011; 102:93-9. [PMID: 21781123 DOI: 10.1111/j.1423-0410.2011.01523.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Our previous report showed that parvovirus B19 genotype 1 in different solutions derived from plasma preparations showed different heat-sensitivity patterns during liquid-heating. In this study, we similarly examined B19 genotype 2. MATERIALS AND METHODS Two plasma samples one containing B19 genotype 1 and the other genotype 2 DNA were used. Four process samples collected immediately before the heat treatment step in the manufacture of albumin, immunoglobulin, haptoglobin and antithrombin preparations were spiked with B19 and subsequently treated at 60°C for 10 h. A low pH immunoglobulin solution was also spiked with B19 and treated at room temperature for 14 days. Infectivity was then measured. RESULTS B19 genotype 2, similar to genotype 1, showed three patterns of inactivation: (i) a rapid inactivation in the albumin and immunoglobulin preparations, (ii) a slow inactivation in the haptoglobin preparation and (iii) only limited inactivation in the antithrombin preparation. Its sensitivity in the low pH immunoglobulin solutions also resembled that of genotype 1. CONCLUSION Both genotypes 1 and 2 of B19 varied in sensitivity to liquid-heating and low pH among different plasma preparations.
Collapse
Affiliation(s)
- M Tsujikawa
- Osaka Research Laboratory, Research and Development Division, Benesis Corporation, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Koppelman MHGM, van Swieten P, Cuijpers HTM. Real-time polymerase chain reaction detection of parvovirus B19 DNA in blood donations using a commercial and an in-house assay. Transfusion 2010; 51:1346-54. [PMID: 21175647 DOI: 10.1111/j.1537-2995.2010.02995.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND European regulations require testing of manufacturing plasma for parvovirus B19 (B19) DNA to limit the load of this virus to a maximum acceptable level of 10 IU/µL. To meet this requirement, most manufacturers introduced a test algorithm to identify and eliminate high-load donations before making large manufacturing pools of plasma units. Sanquin screens all donations using a commercial assay from Roche and an in-house assay. STUDY DESIGN AND METHODS Between 2006 and 2009, 6.2 million donations were screened using two different polymerase chain reaction (PCR) assays targeting B19 DNA. Donations with B19 DNA loads of greater than 1 × 10(6) IU/mL showing significant differences in viral load between the two assays were further analyzed by sequencing analysis. RESULTS A total of 396 donations with B19 DNA loads of greater than 1 × 10(6) IU/mL were identified. Fifteen samples (3.8%) had discordant test results; 10 samples (2.5%) were underquantified by the Roche assay, two samples (0.5%) were underquantified by the in-house assay, and three samples (0.8%) were not detected by the Roche assay. Sequencing analysis revealed mismatches in primer and probe-binding regions. Phylogenetic analysis showed that 12 samples were B19 Genotype 1. The three samples not detected by the Roche assay were B19 Genotype 2. CONCLUSION This study shows that 3.8% of the viremic B19 DNA-positive donations are not quantified correctly by the Roche or in-house B19 DNA assays. B19 Genotype 1 isolates showing incorrect test results are more common than B19 Genotype 2 or 3 isolates. Newly designed B19 PCR assays for blood screening should preferably have multiplexed formats targeting multiple regions of the B19 genome.
Collapse
Affiliation(s)
- M H G M Koppelman
- Sanquin Diagnostics, National Screening Laboratory of Sanquin and Viral Serology, Amsterdam, the Netherlands
| | | | | |
Collapse
|
21
|
Grabarczyk P, Kalińska A, Kara M, Wieczorek R, Ejduk A, Sulkowska E, Gołębiowska-Staroszczyk S, Matysiak M, Baylis SA, Brojer E. Identification and characterization of acute infection with parvovirus B19 genotype 2 in immunocompromised patients in Poland. J Med Virol 2010; 83:142-9. [DOI: 10.1002/jmv.21947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Blümel J, Burger R, Drosten C, Gröner A, Gürtler L, Heiden M, Hildebrandt M, Jansen B, Montag-Lessing T, Offergeld R, Pauli G, Seitz R, Schlenkrich U, Schottstedt V, Strobel J, Willkommen H, von König CHW. Parvovirus B19 - Revised. ACTA ACUST UNITED AC 2010; 37:339-350. [PMID: 21483465 DOI: 10.1159/000322190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022]
Affiliation(s)
- Johannes Blümel
- Arbeitskreis Blut, Untergruppe «Bewertung Blutassoziierter Krankheitserreger»
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu MYW, Alter HJ, Virata-Theimer MLA, Geng Y, Ma L, Schechterly CA, Colvin CA, Luban NLC. Parvovirus B19 infection transmitted by transfusion of red blood cells confirmed by molecular analysis of linked donor and recipient samples. Transfusion 2010; 50:1712-21. [PMID: 20158689 DOI: 10.1111/j.1537-2995.2010.02591.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Extremely high viremic levels of parvovirus B19 (B19V) can be found in acutely infected, but asymptomatic donors. However, reports of transmission by single-donor blood components are rare. In this prospective study, paired donor-recipient samples were used to investigate the transfusion risk. STUDY DESIGN AND METHODS Posttransfusion plasma or blood samples from recipients were tested for B19V DNA by polymerase chain reaction, generally at 4 and 8 weeks, and for anti-B19V immunoglobulin (Ig)G by enzyme immunoassay, at 12 and 24 weeks. To rule out infection unrelated to transfusion, pretransfusion samples and linked donor's samples for each B19V DNA-positive recipient were assayed for B19V DNA and anti-B19V IgG and IgM. To confirm transmission, sequencing and phylogenetic analysis were performed. RESULTS A total of 14 of 869 (1.6%) recipients were B19V DNA positive, but only 1 of 869 (0.12%; 95% confidence interval, 0.0029%-0.6409%) was negative for B19V DNA and anti-B19V IgG before transfusion and seroconverted posttransfusion. This newly infected patient received 5 × 10(10) IU B19V DNA in one red blood cell (RBC) unit from an acutely infected anti-B19V-negative donor in addition to RBCs from three other donors that cumulatively contained 1320 IU of anti-B19V IgG. DNA sequencing and phylogenetic analysis showed that sequences from the linked donor and recipient were identical (Genotype 1), thus establishing transfusion transmission. CONCLUSIONS The 0.12% transmission rate documented here, although low, could nonetheless result in hundreds or thousands of infections annually in the United States based on calculated confidence limits. Although most would be asymptomatic, some could have severe clinical outcomes, especially in neonates and those with immunocompromised or hemolytic states.
Collapse
Affiliation(s)
- Mei-Ying W Yu
- Division of Hematology, Center for Biologics Evaluation and Research, FDA, Warren Grant Magnuson Clinical Center, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Genetic variants of human parvovirus B19 in South Africa: cocirculation of three genotypes and identification of a novel subtype of genotype 1. J Clin Microbiol 2009; 48:137-42. [PMID: 19923483 DOI: 10.1128/jcm.00610-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parvovirus B19 comprises three distinct genotypes (1, 2, and 3). The distribution of B19 genotypes has not before been examined in South Africa. Two hundred thirty-nine laboratory samples submitted to a diagnostic virology laboratory for parvovirus DNA detection were analyzed retrospectively. Of the 53 PCR-positive samples investigated, 40 (75.4%) were identified as genotype 1 by genotype-specific PCR or consensus NS1 PCR and sequencing and 3 (5.7%) as genotype 2 and 10 (18.9%) as genotype 3 by analysis of NS1 sequences. Furthermore, phylogenetic analysis identified two genotype 1 sequences which were distinct from the previously described genotypes 1A and 1B. Interestingly, a genotype 2 virus was detected in the serum of an 11-year-old child, providing evidence for its recent circulation. This is the first study to demonstrate the concurrent circulation of all three genotypes of B19 in South Africa and the provisional identification of a novel subtype of genotype 1. The implications of parvovirus B19 variation are discussed.
Collapse
|
25
|
Chen Z, Guan W, Cheng F, Chen AY, Qiu J. Molecular characterization of human parvovirus B19 genotypes 2 and 3. Virology 2009; 394:276-85. [PMID: 19758675 DOI: 10.1016/j.virol.2009.08.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/28/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
We have characterized the transcription profiles of parvovirus B19 (B19V) genotype-2 A6 and genotype-3 V9 variants. The A6 RNA profile differs from that of the prototype B19V in both B19V non-permissive and permissive cells, whereas the overall profile of the V9 RNA in these cells is similar to that of the prototype. A unique feature we have identified is that the genotype-2 A6 variant used only one splice acceptor to remove the first intron. We also demonstrated that the inverted terminal repeats (ITRs) of the prototype B19V support replication of the V9 genome, which produces infectious virus, but not that of the A6 genome, in B19V-permissive cells. Similar to the proapoptotic nature of the prototype B19V large non-structural protein (NS1), the A6 and V9 NS1 proteins also are potent inducers of apoptosis in B19V-permissive cells.
Collapse
Affiliation(s)
- Zhaojun Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | | | | | | | | |
Collapse
|
26
|
Baylis SA, Buchheit KH. A proficiency testing study to evaluate laboratory performance for the detection of different genotypes of parvovirus B19. Vox Sang 2009; 97:13-20. [PMID: 19416495 DOI: 10.1111/j.1423-0410.2009.01170.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES In Europe, it is a regulatory requirement that parvovirus B19 (B19V) DNA nucleic acid amplification technique-based testing is performed on plasma pools for certain classes of plasma-derived medicinal products. This proficiency testing study set out to examine the ability of public quality control laboratories and plasma fractionation organizations to detect different genotypes of B19V using nucleic acid amplification technique-based assays. MATERIALS AND METHODS Laboratories were supplied with cloned DNAs representing the main genotypes of B19V. All samples were adjusted to equivalent copy number and were distributed as part of a routine external quality assessment programme investigating the evaluation of B19V containing plasma samples by these laboratories. The plasmid clones were distributed to 25 laboratories, representing 13 quality control laboratories and 12 manufacturers of plasma derivatives. The criteria for acceptable detection of the different genotypes of B19V DNA was based upon the maximum theoretical efficiency for polymerase chain reaction amplification. Proficient laboratories were deemed to be those reporting results within 1 log(10) dilution for each of the different virus genotypes. RESULTS Data were returned by 23 of the participating laboratories. Some laboratories returned data for more than one type of assay and in total 27 data sets were analysed. Nine of the participating laboratories were able to successfully detect all the virus genotypes according to the applied criteria, all except one used in-house assays. CONCLUSIONS The results of the study highlight that there are still discrepancies in the detection of a broad spectrum of B19V genotypes, with implications for batch release testing.
Collapse
Affiliation(s)
- S A Baylis
- National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK.
| | | |
Collapse
|
27
|
Diversité génétique des Erythrovirus humains. ACTA ACUST UNITED AC 2009; 57:167-74. [DOI: 10.1016/j.patbio.2008.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 02/11/2008] [Indexed: 11/20/2022]
|
28
|
|
29
|
Kühl U, Lassner D, Pauschinger M, Gross UM, Seeberg B, Noutsias M, Poller W, Schultheiss HP. Prevalence of erythrovirus genotypes in the myocardium of patients with dilated cardiomyopathy. J Med Virol 2008; 80:1243-51. [PMID: 18461615 DOI: 10.1002/jmv.21187] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parvovirus B19 (PVB19) is a member of the human erythrovirus family detected frequently in endomyocardial biopsies from patients with dilated cardiomyopathy. Human erythroviruses cluster into three genotypes 1-3 which share a high degree of homology between major structural proteins and may cause indistinguishable infections clinically and serologically. In human cardiac tissue erythrovirus genotypes other than PVB19 have not yet been reported. Three hundred seventeen consecutive patients with symptomatic dilated cardiomyopathy (median left ventricular ejection fraction: 28.6%, range 5-45%) who underwent endomyocardial biopsy for the elucidation of the etiology, were analyzed using a new consensus PCR assay designed for the detection of the three erythrovirus genotype sequences. Endomyocardial biopsies of 151 (47.6%) patients were erythrovirus-positive. Genotype 1 specific sequences were detected in 43/151 (28.5%) of positive biopsy samples, whereas genotype 2-specific sequences so far considered rare in human disease and not yet been described in human heart tissue was identified in 108/151 (71.5%) of virus-positive endomyocardial biopsies with a preference in patients above 50 years of age. In spite of younger age, systolic left ventricular dysfunction of genotype 1-positive patients was significantly reduced as compared to genotype 2-positive patients (24.4+/-10.4% vs. 31.0+/-9.5%, P=0.0001) at the initial presentation. The data show that two genetically distinct erythrovirus variants with a different age distribution are detectable in endomyocardial biopsies of patients with dilated cardiomyopathy. The erythrovirus genotype 2, not described previously in human heart tissue, is highly prevalent in the heart but the less prevalent genotype 1 is associated with more severe disturbed cardiac function.
Collapse
Affiliation(s)
- U Kühl
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité, Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Baylis SA. Standardization of nucleic acid amplification technique (NAT)-based assays for different genotypes of parvovirus B19: a meeting summary. Vox Sang 2008; 94:74-80. [PMID: 18171331 DOI: 10.1111/j.1423-0410.2007.00992.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An extraordinary meeting of the International Working Group on the Standardization of Genome Amplification Techniques for the safety testing of blood, tissues and organs for blood borne pathogens was held on 2 March 2007, at the National Institute for Biological Standards and Control. The aim of the meeting was to investigate ways to harmonize results obtained for the detection and quantification of different genotypes of parvovirus B19 (B19V) DNA by control laboratories and manufacturers of plasma derivatives. The meeting explored issues of B19V such as the classification of B19V strains, the prevalence and distribution of different genotypes, the clinical and biological significance of different genotypes, the detection of different genotypes in plasma-derived products, and their susceptibility to virus-inactivation procedures. At this meeting and through subsequent studies, high titre, high volume samples have been identified representing different genotypes of B19V, which will be evaluated by collaborative study to prepare reference panels for the purposes of assay validation.
Collapse
Affiliation(s)
- S A Baylis
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK.
| |
Collapse
|
31
|
Rawlinson WD, Hall B, Jones CA, Jeffery HE, Arbuckle SM, Graf N, Howard J, Morris JM. Viruses and other infections in stillbirth: what is the evidence and what should we be doing? Pathology 2008; 40:149-60. [PMID: 18203037 DOI: 10.1080/00313020701813792] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Australia, as in other developed countries, approximately 40-50% of stillbirths are of unknown aetiology. Emerging evidence suggests stillbirths are often multifactorial. The absence of a known cause leads to uncertainty regarding the risk of recurrence, which can cause extreme anguish for parents that may manifest as guilt, anger or bewilderment. Further, clinical endeavours to prevent recurrences in future pregnancies are impaired by lack of a defined aetiology. Therefore, efforts to provide an aetiological diagnosis of stillbirth impact upon all aspects of care of the mother, and inform many parts of clinical decision making. Despite the magnitude of the problem, that is 7 stillbirths per 1000 births in Australia, diagnostic efforts to discover viral aetiologies are often minimal. Viruses and other difficult to culture organisms have been postulated as the aetiology of a number of obstetric and paediatric conditions of unknown cause, including stillbirth. Reasons forwarded for testing stillbirth cases for infectious agents are non-medical factors, including addressing all parents' need for diagnostic closure, identifying infectious agents as a sporadic cause of stillbirth to reassure parents and clinicians regarding risk for future pregnancies, and to reduce unnecessary testing. It is clear that viral agents including rubella, human cytomegalovirus (CMV), parvovirus B19, herpes simplex virus (HSV), lymphocytic choriomeningitis virus (LCMV), and varicella zoster virus (VZV) may cause intrauterine deaths. Evidence for many other agents is that minimal or asymptomatic infections also occur, so improved markers of adverse outcomes are needed. The role of other viruses and difficult-to-culture organisms in stillbirth is uncertain, and needs more research. However, testing stillborn babies for some viral agents remains a useful adjunct to histopathological and other examinations at autopsy. Modern molecular techniques such as multiplex PCR, allow searches for multiple agents. Now that such testing is available, it is important to assess the clinical usefulness of such testing.
Collapse
Affiliation(s)
- W D Rawlinson
- Microbiology SEALS, Prince of Wales Hospital, Randwick, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Berting A, Modrof J, Unger U, Gessner M, Klotz A, Poelsler G, Kreil TR. Inactivation of parvovirus B19 during STIM-4 vapor heat treatment of three coagulation factor concentrates. Transfusion 2008; 48:1220-6. [PMID: 18410254 DOI: 10.1111/j.1537-2995.2008.01662.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND To enhance the viral safety margins, nanofiltration has been widely integrated into the manufacturing process of plasma-derived medicinal products. Removal of smaller agents such as parvovirus B19 (B19V) by filtration, however, is typically less efficient. Because recent investigations have demonstrated that B19V may be more heat sensitive than animal parvoviruses, the potential B19V inactivation by a proprietary vapor heating procedure (STIM-4) as incorporated into the manufacturing processes of several nanofiltered coagulation factor concentrates was investigated. STUDY DESIGN AND METHODS An infectivity assay based on quantitative reverse transcription-polymerase chain reaction (TaqMan, Applied Biosystems) detection of B19V mRNA after inoculation of a permissive cell line (UT7 Epo S1 cells) was used to investigate the virus inactivation capacity of the STIM-4 vapor heat treatment as used during the manufacture of nanofiltered second-generation Factor VIII inhibitor-bypassing activity (FEIBA), F IX complex, and FVII products. RESULTS In contrast to animal parvoviruses, both B19V genotypes investigated, that is, 1 and 2, were shown to be surprisingly effectively inactivated by the STIM-4 vapor heat treatment process, with mean log reduction factors of 3.5 to 4.8, irrespective of the product intermediate tested. CONCLUSION The newly demonstrated effective inactivation of B19V by vapor heating, in contrast to the earlier used animal parvoviruses, results in significant B19V safety margins for STIM-4-treated coagulation factor concentrates.
Collapse
Affiliation(s)
- Andreas Berting
- Global Pathogen Safety and Molecular Biology, Baxter BioScience, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
Blümel J, Stühler A, Dichtelmüller H. Kinetics of inactivating human parvovirus B19 and porcine parvovirus by dry-heat treatment. Transfusion 2008; 48:790. [DOI: 10.1111/j.1537-2995.2008.01677.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Schneider B, Höne A, Tolba RH, Fischer HP, Blümel J, Eis-Hübinger AM. Simultaneous persistence of multiple genome variants of human parvovirus B19. J Gen Virol 2008; 89:164-176. [PMID: 18089740 DOI: 10.1099/vir.0.83053-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The species human parvovirus B19 (B19V) can be divided into three genotypes. In this study, we addressed the question as to whether infection of an individual is restricted to one genotype. As viral DNA is detectable in tissue for long times after acute infection, we examined 87 liver specimens from adults for the presence of B19V DNA. Fifty-nine samples were found to be positive, 32 of them for genotype 1, 27 for genotype 2 and four for genotype 3. In four samples, DNA of two genotypes was detected; samples from three individuals were positive for genotypes 1 and 2 and a sample from one individual was positive for genotypes 1 and 3. Surprisingly, significant sequence heterogeneity was observed at approximately 1 % of the nucleotides of the genotype 1 genomes from individuals with double genotype 1 and 2 infection. Controls using different enzymes for genome amplification and dilutions of the template verified that nucleotide heterogeneity was due to the presence of three or more genome variants of genotype 1. In summary, the evidence shows that individuals can be infected with two different genotypes, and B19V DNA can persist as a population of different genomes. The results may have implications for the understanding of the antiviral immune response and the development of vaccines against B19V.
Collapse
Affiliation(s)
- Beate Schneider
- Institute of Virology, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany
| | - Andrea Höne
- Institute of Virology, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany
| | - René H Tolba
- Department of Surgery, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany
| | - Hans-Peter Fischer
- Institute of Pathology, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany
| | - Johannes Blümel
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, D-63225 Langen, Germany
| | - Anna M Eis-Hübinger
- Institute of Virology, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany
| |
Collapse
|
35
|
Mani B, Gerber M, Lieby P, Boschetti N, Kempf C, Ros C. Molecular mechanism underlying B19 virus inactivation and comparison to other parvoviruses. Transfusion 2007; 47:1765-74. [PMID: 17880601 DOI: 10.1111/j.1537-2995.2007.01393.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND B19 virus (B19V) is a human pathogen frequently present in blood specimens. Transmission of the virus occurs mainly via the respiratory route, but it has also been shown to occur through the administration of contaminated plasma-derived products. Parvoviridae are highly resistant to physicochemical treatments; however, B19V is more vulnerable than the rest of parvoviruses. The molecular mechanism governing the inactivation of B19V and the reason for its higher vulnerability remain unknown. STUDY DESIGN AND METHODS After inactivation of B19V by wet heat and low pH, the integrity of the viral capsid was examined by immunoprecipitation with two monoclonal antibodies directed to the N-terminal of VP1 and to a conformational epitope in VP2. The accessibility of the viral DNA was quantitatively analyzed by a hybridization-extension assay and by nuclease treatment. RESULTS The integrity of the viral particles was maintained during the inactivation procedure; however, the capsids became totally depleted of viral DNA. The DNA-depleted capsids, although not infectious, were able to attach to target cells. Comparison studies with other members of the Parvoviridae family revealed a remarkable instability of B19V DNA in its encapsidated state. CONCLUSION Inactivation of B19V by heat or low pH is not mediated by capsid disintegration but by the conversion of the infectious virions into DNA-depleted capsids. The high instability of the viral DNA in its encapsidated state is an exclusive feature of B19V, which explains its lower resistance to inactivation treatments.
Collapse
Affiliation(s)
- Bernhard Mani
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Modrof J, Berting A, Tille B, Klotz A, Forstner C, Rieger S, Aberham C, Gessner M, Kreil TR. Neutralization of human parvovirus B19 by plasma and intravenous immunoglobulins. Transfusion 2007; 48:178-86. [PMID: 17900278 DOI: 10.1111/j.1537-2995.2007.01503.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Human parvovirus B19 (B19V) is a highly prevalent pathogen, and plasma pools for manufacturing of plasma-derived products have been shown to contain antibodies against B19V (B19V immunoglobulin G [IgG]). STUDY DESIGN AND METHODS The megakaryoblastic cell line UT7/Epo-S1 can be infected with B19V Genotype 1 and as demonstrated here by immunocytochemistry, Western blot, and reverse transcription-polymerase chain reaction (RT-PCR) of B19V-specific mRNA, also with the more recently discovered Genotype 2. Based on B19V RT-PCR analysis of infected UT7/Epo-S1 cells, an infectivity assay was established and implemented for a B19V neutralization assay. To investigate the role of B19V neutralization in relation to B19V IgG titers, more than 1,000 manufacturing plasma pools were tested by enzyme-linked immunosorbent assay. RESULTS Plasma pools were found to contain a mean B19V IgG titer of 33 +/- 9 IU per mL, with the lowest titer at 11 IU per mL. These 11 IU per mL B19V IgG neutralized 4.6 log B19V Genotype 1 and greater than 3.9 log Genotype 2 infectivity. Accordingly, a 10 percent intravenous immunoglobulin (IVIG) product prepared from such pools was found to contain an even higher B19V neutralization capacity. CONCLUSION A high capacity of B19V Genotypes 1 and 2 neutralization was demonstrated in plasma pools for fractionation, an inherent feature based on the constantly high titer of B19V IgG in these pools. The neutralizing activity of B19V IgG was shown to be maintained in the 10 percent IVIG product tested.
Collapse
Affiliation(s)
- Jens Modrof
- Global Pathogen Safety and Plasma Control, Baxter BioScience, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fryer JF, Delwart E, Bernardin F, Tuke PW, Lukashov VV, Baylis SA. Analysis of two human parvovirus PARV4 genotypes identified in human plasma for fractionation. J Gen Virol 2007; 88:2162-2167. [PMID: 17622618 DOI: 10.1099/vir.0.82620-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence of the novel parvovirus PARV4 and a related variant, PARV5, was recently demonstrated in pooled plasma used in the manufacture of blood and plasma-derived medicinal products. DNA sequence analysis of nearly full-length genomes of four PARV4 and two PARV5 strains from manufacturing plasma pools is now presented. Like PARV4, PARV5 encodes two non-overlapping open reading frames (ORF1 and ORF2), homologous to the non-structural and capsid proteins of other parvoviruses, respectively. A highly conserved region in ORF2 contains phospholipase A2 motifs involved in parvovirus infectivity. Hybridization of strand-specific probes to DNA extracted from high-titre, PARV4-positive plasma revealed that the positive and negative strands are packaged into PARV4 virions in similar quantities. This extended analysis of nearly full-length PARV4 and PARV5 sequences suggests that they are closely related genotypes and the use of a single virus name, PARV4, comprising genotypes 1 and 2 (previously termed PARV5) is proposed.
Collapse
Affiliation(s)
- Jacqueline F Fryer
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Eric Delwart
- University of California, San Francisco, CA 94118, USA
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Flavien Bernardin
- University of California, San Francisco, CA 94118, USA
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Philip W Tuke
- Department of Virology, University College London Hospital, The Windeyer Building, 46 Cleveland Street, London W1T 4JF, UK
| | - Vladimir V Lukashov
- Laboratory of Immunochemistry, D. I. Ivanovsky Institute of Virology, 123098 Moscow, Russia
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Sally A Baylis
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
38
|
Geng Y, Wu CG, Bhattacharyya SP, Tan D, Guo ZP, Yu MYW. Parvovirus B19 DNA in Factor VIII concentrates: effects of manufacturing procedures and B19 screening by nucleic acid testing. Transfusion 2007; 47:883-9. [PMID: 17465954 DOI: 10.1111/j.1537-2995.2007.01205.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Parvovirus B19 (B19) is a common contaminant, especially in coagulation factors. Because of B19 transmission by pooled plasma, solvent/detergent treated in 1999, some fractionators initiated minipool nucleic acid testing (NAT) to limit the B19 load in manufacturing pools. In this study, the extent of B19 DNA contamination in commercial Factor VIII concentrates, that is, antihemophilic factor (human) (AHF), manufactured before and after B19 NAT screening was implemented, was determined. STUDY DESIGN AND METHODS A total of 284 lots representing six AHF products made during 1993 to 1998 and 2001 to 2004 were assayed for B19 DNA by an in-house NAT procedure. Anti-B19 immunoglobulin G (IgG) was also measured. RESULTS Most lots made during 1993 to 1998 had detectable B19 DNA. The prevalence ranged from 56 to 100 percent and appeared to differ between manufacturers. The highest level of B19 DNA found was 10(6) genome equivalents (geq or international units [IU]) per mL. Forty percent of the lots tested contained 10(3) geq (IU) per mL. In comparison, both prevalence and levels in source plasma-derived AHF products made in 2001 to 2004 were lower. Both, however, remained unchanged in the recovered plasma-derived product because B19 NAT screening had not been implemented. Only an intermediate-purity AHF product was positive for the presence of anti-B19 IgG. CONCLUSION The prevalence and levels of B19 DNA in AHF prepared from B19 NAT unscreened plasma were high but varied among products with different manufacturing procedures. B19 NAT screening of plasma effectively lowered the B19 DNA level in the final products and in the majority of cases rendered it undetectable and hence potentially reduced the risk of B19 transmission.
Collapse
Affiliation(s)
- Yansheng Geng
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
39
|
Koppelman MHGM, Rood IGH, Fryer JF, Baylis SA, Cuypers HTM. Parvovirus B19 genotypes 1 and 2 detection with real-time polymerase chain reaction assays. Vox Sang 2007; 93:208-15. [PMID: 17845257 DOI: 10.1111/j.1423-0410.2007.00957.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Parvovirus B19 (B19V) DNA screening has been introduced to comply with European regulations for certain plasma products. Current commercial and some in-house B19V DNA assays fail to detect or under-quantify the recently identified genotypes 2 and 3. In this report, we describe 2-year experience with B19V DNA screening using the commercial assay from Roche (detecting only genotype 1) combined with an in-house assay (detecting genotypes 1, 2 and 3). This dual testing approach enables the identification of molecular variants of B19V. MATERIALS AND METHODS Between 2005 and 2007, approximately 2.6 million plasma donations were screened for B19V DNA loads exceeding 10(6) IU/ml using the Roche and the in-house real-time polymerase chain reaction assay. RESULTS A total of 232 plasma units were identified with B19V DNA loads above 10(6) IU/ml. Concordant results were observed for the majority of B19V positive samples; however, three of these showed discrepant results between the two assay systems. One was a B19V genotype 2 strain not detected by the Roche assay; another was a B19V genotype 1 strain with a mismatch in the 3'-end of the reverse primer and therefore under-quantified by the Roche assay; and the third one was also a B19V genotype 1 strain that gave an unusual amplification plot in the in-house assay due to a mismatch in the probe-binding site. CONCLUSIONS New, high viral load, B19V genotypes 2 and 3 infections are rare in blood donors tested by Sanquin. One case was found while testing 2.6 million donations. The prevalence of B19V genotype 1 variants not detected by commercial or in-house assays might be in the same range or even higher than the prevalence of B19V genotype 2 viruses, which remain undetected.
Collapse
|
40
|
Abstract
Erythrovirus (parvovirus) B19 (B19) is a common human pathogen. It is a non-enveloped single-strand DNA virus packaging its genome in small tight capsids consisting of viral VP1 and VP2 proteins. It is now accepted that B19 is a relatively quickly evolving virus having diverged in several genetic variants recently identified. The main route of B19 transmission is respiratory, with a majority of infections occurring during childhood and manifesting as erythema infectiousum. B19 can also be transmitted vertically and via blood transfusion and organ transplantation. The majority of adult populations show immunological evidence of previous exposure to B19. Although the immune response is able to clear infection and provide life-long protection against B19, recent data suggest that in some, if not the majority, of individuals the acute phase of infection is followed by viral persistence in the blood or other tissues regardless of the host's immunocompetence. Transmission of B19 by blood and blood products and its resistance to common viral inactivation methods raises several blood safety questions, still unanswered. The diversity of B19 strains and the ability of the virus to persist in the presence of specific antibodies raise the issue of transmissibility by transfusion not so much to immunocompetent recipients but rather to the large proportion of recipients in whom there is some degree of immunodeficiency. The ability of the virus to reactivate in immunodeficient recipients may create difficulties in differentiating between transfusion transmission and reactivation.
Collapse
Affiliation(s)
- A Parsyan
- Division of Transfusion Medicine, Department of Haematology, University of Cambridge, UK.
| | | |
Collapse
|
41
|
Hokynar K, Norja P, Hedman K, Söderlund-Venermo M. Tissue persistence and prevalence of B19 virus types 1–3. Future Virol 2007. [DOI: 10.2217/17460794.2.4.377] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human parvovirus B19 is a minute ssDNA virus that causes a wide variety of diseases, including erythema infectiosum, arthropathy, anemias and fetal death. In addition to the B19 prototype, two new variants (B19 types 2 and 3) have been identified. After primary infection, B19 genomic DNA has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. The viral DNA persists as an intact molecule without persistence-specific mutations, and via a storage mechanism with life-long capacity. Thus, the mere presence of B19 DNA in tissue cannot be used as a diagnostic criterion, although a possible role in the pathology of diseases, for example through mRNA or protein production, cannot be excluded. The molecular mechanism, host-cell type and possible clinical significance of tissue persistence are yet to be elucidated.
Collapse
Affiliation(s)
- Kati Hokynar
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Päivi Norja
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Klaus Hedman
- University of Helsinki & Helsinki University Central Hospital Laboratory, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Maria Söderlund-Venermo
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| |
Collapse
|
42
|
Ekman A, Hokynar K, Kakkola L, Kantola K, Hedman L, Bondén H, Gessner M, Aberham C, Norja P, Miettinen S, Hedman K, Söderlund-Venermo M. Biological and immunological relations among human parvovirus B19 genotypes 1 to 3. J Virol 2007; 81:6927-35. [PMID: 17409158 PMCID: PMC1933287 DOI: 10.1128/jvi.02713-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human parvovirus B19 is now divided into three genotypes: type 1 (prototype), type 2 (A6- and LaLi-like), and type 3 (V9-like). In overall DNA sequence, the three virus types differ by approximately 10%. The most striking DNA dissimilarity, of >20%, is observed within the p6 promoter region. Because of the scarcity of data on the biological activities and pathogenetic potentials of virus types 2 and 3, we examined the functional characteristics of these virus types. We found the activities of the three p6 promoters to be of equal strength and to be most active in B19-permissive cells. Virus type 2 capsid protein VP2, alone or together with VP1, was expressed with the baculovirus system and was shown to assemble into icosahedral parvovirus-like particles, which were reactive in the hemagglutination assay. Furthermore, sera containing DNA of any of the three B19 types were shown to hemagglutinate. The infectivities of these sera were examined in two B19-permissive cell lines. Reverse transcription-PCR revealed synthesis of spliced B19 mRNAs, and immunofluorescence verified the production of NS and VP proteins in the infected cells. All three genotypes showed similar functional characteristics in all experiments performed, showing that the three virus types indeed belong to the same species, i.e., human parvovirus B19. Additionally, the antibody activity in sera from B19 type 1- or type 2-infected subjects (long-term immunity) was examined with homo- and heterologous virus-like particles. Cross-reactivity of 100% was observed, indicating that the two B19 genotypes comprise a single serotype.
Collapse
Affiliation(s)
- Anna Ekman
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Parsyan A, Szmaragd C, Allain JP, Candotti D. Identification and genetic diversity of two human parvovirus B19 genotype 3 subtypes. J Gen Virol 2007; 88:428-431. [PMID: 17251559 DOI: 10.1099/vir.0.82496-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Three genotypes (1-3) of human parvovirus B19 have been identified. Analysis of 13 nearly full-length genotype 3 sequences from Ghana, Europe and Brazil identified two genetically distinct clusters. The classification of genotype 3 strains into two subtypes (B19/3a and B19/3b) is proposed. The rate of evolutionary change of B19 genotype 3 strains (2 x 10(-4) nucleotide substitutions per site per year) was similar to those of B19 genotype 1 and carnivore parvoviruses, supporting the hypothesis that high mutation rates are characteristic of members of the family Parvoviridae. The estimated divergence time between B19/3a and B19/3b is 525 years. In Ghana, subtype B19/3a is predominant.
Collapse
Affiliation(s)
- Armen Parsyan
- Division of Transfusion Medicine, Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Jean-Pierre Allain
- Division of Transfusion Medicine, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Daniel Candotti
- National Blood Service, Cambridge Blood Centre, Cambridge, UK
| |
Collapse
|
44
|
Norja P, Hokynar K, Aaltonen LM, Chen R, Ranki A, Partio EK, Kiviluoto O, Davidkin I, Leivo T, Eis-Hübinger AM, Schneider B, Fischer HP, Tolba R, Vapalahti O, Vaheri A, Söderlund-Venermo M, Hedman K. Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci U S A 2006; 103:7450-3. [PMID: 16651522 PMCID: PMC1464359 DOI: 10.1073/pnas.0602259103] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human erythrovirus is a minute, single-stranded DNA virus causing many diseases, including erythema infectiosum, arthropathy, and fetal death. After primary infection, the viral genomes persist in solid tissues. Besides the prototype, virus type 1, two major variants (virus types 2 and 3) have been identified recently, the clinical significance and epidemiology of which are mostly unknown. We examined 523 samples of skin, synovium, tonsil, or liver (birth year range, 1913-2000), and 1,640 sera, by qualitative and quantitative molecular assays for the DNA of human erythroviruses. Virus types 1 and 2 were found in 132 (25%) and 58 (11%) tissues, respectively. DNA of virus type 1 was found in all age groups, whereas that of type 2 was strictly confined to those subjects born before 1973 (P < 0.001). Correspondingly, the sera from the past two decades contained DNA of type 1 but not type 2 or 3. Our data suggest strongly that the newly identified human erythrovirus type 2 as well as the prototype 1 circulated in Northern and Central Europe in equal frequency, more than half a century ago, whereafter type 2 disappeared from circulation. Type 3 never attained wide occurrence in this area during the past > or =70 years. The erythrovirus DNA persistence in human tissues is lifelong and represents a source of information about our past, the Bioportfolio, which, at the individual level, provides a registry of one's infectious encounters, and at the population level, a database for epidemiological and phylogenetic analyses.
Collapse
Affiliation(s)
- Päivi Norja
- *Department of Virology, Haartman Institute, University of Helsinki, FI-00290, Helsinki, Finland
| | - Kati Hokynar
- *Department of Virology, Haartman Institute, University of Helsinki, FI-00290, Helsinki, Finland
| | | | - Renwei Chen
- *Department of Virology, Haartman Institute, University of Helsinki, FI-00290, Helsinki, Finland
| | - Annamari Ranki
- Dermatology, Helsinki University Central Hospital, Haartmaninkatu, FI-00290, Helsinki, Finland
| | - Esa K. Partio
- Dextra Medical Centre, Raumantie, FI-00350, Helsinki, Finland
| | | | - Irja Davidkin
- Department of Viral Diseases and Immunology, National Public Health Institute, Mannerheimintie 166, FI-00300, Helsinki, Finland; and
| | - Tomi Leivo
- Dermatology, Helsinki University Central Hospital, Haartmaninkatu, FI-00290, Helsinki, Finland
| | | | - Beate Schneider
- **Institute of Medical Microbiology, Immunology, and Parasitology
| | | | - René Tolba
- Department of Surgery, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn, Germany
| | - Olli Vapalahti
- *Department of Virology, Haartman Institute, University of Helsinki, FI-00290, Helsinki, Finland
- Helsinki University Central Hospital Laboratory and Departments of
| | - Antti Vaheri
- *Department of Virology, Haartman Institute, University of Helsinki, FI-00290, Helsinki, Finland
- Helsinki University Central Hospital Laboratory and Departments of
| | - Maria Söderlund-Venermo
- *Department of Virology, Haartman Institute, University of Helsinki, FI-00290, Helsinki, Finland
- Helsinki University Central Hospital Laboratory and Departments of
| | - Klaus Hedman
- *Department of Virology, Haartman Institute, University of Helsinki, FI-00290, Helsinki, Finland
- Helsinki University Central Hospital Laboratory and Departments of
- To whom correspondence should be addressed at:
University of Helsinki, Haartmaninkatu 3, FI-00290, Helsinki, Finland. E-mail:
| |
Collapse
|
45
|
Cohen BJ, Gandhi J, Clewley JP. Genetic variants of parvovirus B19 identified in the United Kingdom: implications for diagnostic testing. J Clin Virol 2006; 36:152-5. [PMID: 16569510 DOI: 10.1016/j.jcv.2006.01.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND Discrepant results in diagnostic parvovirus B19 PCR assays have been observed with strains showing nucleotide sequence variation. OBJECTIVES AND STUDY DESIGN To perform phylogenetic analysis on two parvovirus B19 strains that gave discrepant PCR results. RESULTS One strain was found to be genotype 2; the second strain was genotype 3. CONCLUSIONS Parvovirus B19 genotypes 2 and 3 strains were identified in diagnostic samples of UK origin following the investigation of discrepant PCR results. More structured investigations are needed to estimate the prevalence of these variants. In the meantime, diagnostic PCR results should be interpreted cautiously when they are at variance with serological testing. Manufacturers of PCR kits for the detection of B19 sequences will need to consider re-designing their primers.
Collapse
Affiliation(s)
- B J Cohen
- Virus Reference Department, Centre for Infections, Health Protection Agency, Colindale Avenue, London NW9 5EQ, UK
| | | | | |
Collapse
|