1
|
Gao J, Huang X, Zhu Q, He H, Zhang J, Chen J, Wei C, Luo S, Yang S, Xie Z. Mtb/HIV co-infection immune microenvironment subpopulations heterogeneity. Int Immunopharmacol 2024; 143:113341. [PMID: 39405943 DOI: 10.1016/j.intimp.2024.113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The co-infection of human immunodeficiency virus type 1 (HIV-1) and tuberculosis poses a lethal threat. Currently, our understanding of the altered immune responses and diverse immune cell subpopulations triggered by dual pathogen infections remains inadequate. METHODS We utilized single-cell RNA sequencing data from the Gene Expression Omnibus database and the China National GeneBank Nucleotide Sequence Archive to study peripheral blood mononuclear cells from individuals infected with HIV-1 and those co-infected with Mycobacterium tuberculosis (Mtb)/HIV. We investigated cellular components, signaling pathways, biological functions, developmental trajectories, and gene regulatory networks among different cells to determine cellular heterogeneity in the progression of Mtb/HIV co-infection. RESULTS We constructed a single-cell global transcriptional landscape of Mtb/HIV co-infection, revealing heterogeneity among various cell subpopulations. CD4+ T_RACK1_STAT1 subpopulation may participate in the JAK-STAT signaling pathway through RACK1-mediated transcriptional regulation of STAT1, potentially mediating the immune response in patients. Targeting CD8+ T_RACK1_TIGIT subpopulation via RACK1 may help restore the effector capacity of CD8+ T cells. Additionally, Mono_HSP90AA1 and Mono_APOBEC3A subpopulations were positioned at the endpoints of monocyte differentiation trajectories in different patients, suggesting their significant roles in distinct types of immune responses. CTL_GNLY and NK_HSPA1A subpopulations were specifically enriched in three distinct HIV-infected patient groups, indicating their crucial roles in the immune cytotoxicity associated with Mtb/HIV co-infection. CONCLUSION The immune system disruptions caused by HIV-1 infection are further exacerbated by co-infection with Mtb. This compounded effect leads to significant heterogeneity in immune cell subpopulations among co-infected individuals, promoting immune system dysfunction.
Collapse
Affiliation(s)
- Jiamin Gao
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China; Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China.
| | - Xianzhen Huang
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China; Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Qingdong Zhu
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China; Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Huawei He
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Jie Zhang
- Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Jieling Chen
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Cailing Wei
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Shunda Luo
- Department of Clinical Laboratory, The Fourth People's Hospital of Nanning, Nanning 530023, China
| | - Shixiong Yang
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China; Administrative Office, The Fourth People's Hospital of Nanning, Nanning 530023, China.
| | - Zhouhua Xie
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning 530023, China; Department of Tuberculosis, The Fourth People's Hospital of Nanning, Nanning 530023, China; Administrative Office, The Fourth People's Hospital of Nanning, Nanning 530023, China.
| |
Collapse
|
2
|
Hiner CR, Mueller AL, Su H, Goldstein H. Interventions during Early Infection: Opening a Window for an HIV Cure? Viruses 2024; 16:1588. [PMID: 39459922 PMCID: PMC11512236 DOI: 10.3390/v16101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although combination antiretroviral therapy (ART) has been a landmark achievement for the treatment of human immunodeficiency virus (HIV), an HIV cure has remained elusive. Elimination of latent HIV reservoirs that persist throughout HIV infection is the most challenging barrier to an HIV cure. The progressive HIV infection is marked by the increasing size and diversity of latent HIV reservoirs until an effective immune response is mobilized, which can control but not eliminate HIV infection. The stalemate between HIV replication and the immune response is manifested by the establishment of a viral set point. ART initiation during the early stage limits HIV reservoir development, preserves immune function, improves the quality of life, and may lead to ART-free viral remission in a few people living with HIV (PLWH). However, for the overwhelming majority of PLWH, early ART initiation alone does not cure HIV, and lifelong ART is needed to sustain viral suppression. A critical area of research is focused on determining whether HIV could be functionally cured if additional treatments are provided alongside early ART. Several HIV interventions including Block and Lock, Shock and Kill, broadly neutralizing antibody (bNAb) therapy, adoptive CD8+ T cell therapy, and gene therapy have demonstrated delayed viral rebound and/or viral remission in animal models and/or some PLWH. Whether or not their application during early infection can improve the success of HIV remission is less studied. Herein, we review the current state of clinical and investigative HIV interventions and discuss their potential to improve the likelihood of post-treatment remission if initiated during early infection.
Collapse
Affiliation(s)
- Christopher R. Hiner
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - April L. Mueller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Hang Su
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Janssens J, Kim P, Kim SJ, Wedrychowski A, Kadiyala GN, Hunt PW, Deeks SG, Wong JK, Yukl SA. Mechanisms and efficacy of small molecule latency-promoting agents to inhibit HIV reactivation ex vivo. JCI Insight 2024; 9:e183084. [PMID: 39163135 PMCID: PMC11466185 DOI: 10.1172/jci.insight.183084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Drugs that inhibit HIV transcription and/or reactivation of latent HIV have been proposed as a strategy to reduce HIV-associated immune activation or to achieve a functional cure, yet comparative studies are lacking. We evaluated 26 drugs, including drugs previously reported to inhibit HIV transcription (inhibitors of Tat-dependent HIV transcription, Rev, HSF-1/PTEF-b, HSP90, Jak/Stat, or SIRT1/Tat deacetylation) and other agents that were not tested before (inhibitors of PKC, NF-κB, SP-1, or histone acetyltransferase; NR2F1 agonists), elongation (inhibitors of CDK9/ PTEF-b), completion (inhibitors of PolyA-polymerase), or splicing (inhibitors of human splice factors). To investigate if those drugs would vary in their ability to affect different blocks to HIV transcription, we measured levels of initiated, elongated, midtranscribed, completed, and multiply spliced HIV RNA in PBMCs from antiretroviral therapy-suppressed individuals following ex vivo treatment with each drug and subsequent T cell activation. We identified new drugs that prevent HIV reactivation, including CDK and splicing inhibitors. While some drugs inhibited 1 or 2 steps, other drugs (CDK inhibitors, splicing inhibitors, tanespimycin, and triptolide) inhibited multiple stages of HIV transcription and blocked the production of supernatant viral RNA. These drugs and targets deserve further study in strategies aimed at reducing HIV-associated immune activation or achieving a functional cure.
Collapse
Affiliation(s)
- Julie Janssens
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peggy Kim
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Sun Jin Kim
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Adam Wedrychowski
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gayatri N. Kadiyala
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Peter W. Hunt
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Joseph K. Wong
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Steven A. Yukl
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
4
|
Hossain T, Lungu C, de Schrijver S, Kuali M, Crespo R, Reddy N, Ngubane A, Kan TW, Reddy K, Rao S, Palstra RJ, Madlala P, Ndung'u T, Mahmoudi T. Specific quantification of inducible HIV-1 reservoir by RT-LAMP. COMMUNICATIONS MEDICINE 2024; 4:123. [PMID: 38918506 PMCID: PMC11199587 DOI: 10.1038/s43856-024-00553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Strategies toward HIV-1 cure aim to clear, inactivate, reduce, or immunologically control the virus from a pool of latently infected cells such that combination antiretroviral therapy (cART) can be safely interrupted. In order to assess the impact of any putative curative interventions on the size and inducibility of the latent HIV-1 reservoir, robust and scalable assays are needed to precisely quantify the frequency of infected cells containing inducible HIV-1. METHODS We developed Specific Quantification of Inducible HIV-1 by RT-LAMP (SQuHIVLa), leveraging the high sensitivity and specificity of RT-LAMP, performed in a single reaction, to detect and quantify cells expressing tat/rev HIV-1 multiply spliced RNA (msRNA) upon activation. The LAMP primer/probe used in SQuHIVLa was designed to exclusively detect HIV-1 tat/rev msRNA and adapted for different HIV-1 subtypes. RESULTS Using SQuHIVLa, we successfully quantify the inducible viral reservoir in CD4+ T cells from people living with HIV-1 subtypes B and C on cART. The assay demonstrates high sensitivity, specificity, and reproducibility. CONCLUSIONS SQuHIVLa offers a high throughput, scalable, and specific HIV-1 reservoir quantification tool that is amenable to resource-limited settings. This assay poses remarkable potential in facilitating the evaluation of potential interventional strategies toward achieving HIV-1 cure.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cynthia Lungu
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sten de Schrijver
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mamokoena Kuali
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole Reddy
- Africa Health Research Institute, Durban, South Africa
| | - Ayanda Ngubane
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Tsung Wai Kan
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert-Jan Palstra
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paradise Madlala
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Rahmberg AR, Markowitz TE, Mudd JC, Ortiz AM, Brenchley JM. SIV infection and ARV treatment reshape the transcriptional and epigenetic profile of naïve and memory T cells in vivo. J Virol 2024; 98:e0028324. [PMID: 38780248 PMCID: PMC11237756 DOI: 10.1128/jvi.00283-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Human and simian immunodeficiency viruses (HIV and SIV) are lentiviruses that reverse transcribe their RNA genome with subsequent integration into the genome of the target cell. How progressive infection and administration of antiretrovirals (ARVs) longitudinally influence the transcriptomic and epigenetic landscape of particular T cell subsets, and how these may influence the genetic location of integration are unclear. Here, we use RNAseq and ATACseq to study the transcriptomics and epigenetic landscape of longitudinally sampled naïve and memory CD4+ and CD8+ T cells in two species of non-human primates prior to SIV infection, during chronic SIV infection, and after administration of ARVs. We find that SIV infection leads to significant alteration to the transcriptomic profile of all T cell subsets that are only partially reversed by administration of ARVs. Epigenetic changes were more apparent in animals with longer periods of untreated SIV infection and correlated well with changes in corresponding gene expression. Known SIV integration sites did not vary due to SIV status but did contain more open chromatin in rhesus macaque memory T cells, and the expression of proteasome-related genes at the pre-SIV timepoint correlated with subsequent viremia.IMPORTANCEChronic inflammation during progressive human and simian immunodeficiency virus (HIV and SIV) infections leads to significant co-morbidities in infected individuals with significant consequences. Antiretroviral (ARV)-treated individuals also manifest increased levels of inflammation which are associated with increased mortalities. These data will help guide rational development of modalities to reduce inflammation observed in people living with HIV and suggest mechanisms underlying lentiviral integration site preferences.
Collapse
Affiliation(s)
- Andrew R. Rahmberg
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | - Joseph C. Mudd
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Armani-Tourret M, Bone B, Tan TS, Sun W, Bellefroid M, Struyve T, Louella M, Yu XG, Lichterfeld M. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat Rev Microbiol 2024; 22:328-344. [PMID: 38337034 PMCID: PMC11131351 DOI: 10.1038/s41579-024-01010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.
Collapse
Affiliation(s)
- Marie Armani-Tourret
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Bone
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Toong Seng Tan
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Weiwei Sun
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maxime Bellefroid
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tine Struyve
- HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Michael Louella
- Community Advisory Board, Delaney AIDS Research Enterprise (DARE), San Francisco, CA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Fombellida-Lopez C, Berkhout B, Darcis G, Pasternak AO. Persistent HIV-1 transcription during ART: time to reassess its significance? Curr Opin HIV AIDS 2024; 19:124-132. [PMID: 38502547 PMCID: PMC10990031 DOI: 10.1097/coh.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and reignite viral replication if therapy is interrupted. Persistence of the viral reservoir in people with HIV-1 (PWH) is the main obstacle to an HIV-1 cure. The reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. Here, we review the recent progress in the characterization of persistent HIV-1 transcription during ART. RECENT FINDINGS Evidence from several studies indicates that, although cell-associated unspliced (US) HIV-1 RNA is abundantly expressed in ART-treated PWH, intact full-length US transcripts are rare and most US RNA is derived from defective proviruses. The transcription- and translation-competent defective proviruses, previously considered irrelevant, are increasingly being linked to residual HIV-1 pathogenesis under suppressive ART. Recent data suggest a continuous crosstalk between the residual HIV-1 activity under ART and the immune system. Persistent HIV-1 transcription on ART, despite being mostly derived from defective proviruses, predicts viral rebound upon therapy interruption, suggesting its role as an indicator of the strength of the host antiviral immune response that is shaping the viral rebound. SUMMARY In light of the recent findings, the significance of persistent HIV-1 transcription during ART for the long-term health of PWH and the cure research should be reassessed.
Collapse
Affiliation(s)
- Céline Fombellida-Lopez
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gilles Darcis
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, Liège, Belgium
| | - Alexander O. Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Pellaers E, Denis A, Debyser Z. New latency-promoting agents for a block-and-lock functional cure strategy. Curr Opin HIV AIDS 2024; 19:95-101. [PMID: 38457209 PMCID: PMC10990034 DOI: 10.1097/coh.0000000000000844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Currently, HIV-infected patients are treated with antiretroviral therapy. However, when the treatment is interrupted, viral rebound occurs from latently infected cells. Therefore, scientists aim to develop an HIV-1 cure which eradicates or permanently silences the latent reservoir. RECENT FINDINGS Previously, scientists focused on the shock-and-kill cure strategy, which aims to eradicate the latent reservoir using latency-reactivating agents. Limited success shifts the interest towards the block-and-lock cure approach, which aims to achieve a functional cure by "blocking" HIV-1 transcription and "locking" the provirus in a deep latent state, resistant to treatment-interruption. In this strategy, latency promoting agents are used to induce transcriptional silencing and alter the epigenetics environment at the HIV promotor. SUMMARY For the block-and-lock cure strategy to succeed more investigation into the transcriptional and epigenetic regulation of HIV-1 gene expression is necessary to design optimal latency-promoting agents. In this review, we will discuss the latency promoting agents that have been described in literature during the past 2 years (2022-2023).
Collapse
Affiliation(s)
- Eline Pellaers
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | | | | |
Collapse
|
9
|
Bone B, Lichterfeld M. "Block and lock" viral integration sites in persons with drug-free control of HIV-1 infection. Curr Opin HIV AIDS 2024; 19:110-115. [PMID: 38457193 DOI: 10.1097/coh.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Elite controllers (ECs) and Posttreatment controllers (PTCs) represent a small subset of individuals who are capable of maintaining drug-free control of HIV plasma viral loads despite the persistence of a replication-competent viral reservoir. This review aims to curate recent experimental studies evaluating viral reservoirs that distinguish EC/PTC and may contribute to their ability to maintain undetectable viral loads in the absence of antiretroviral therapy. RECENT FINDINGS Recent studies on ECs have demonstrated that integration sites of intact proviruses in EC/PTC are markedly biased towards heterochromatin regions; in contrast, intact proviruses in accessible and permissive chromatin were profoundly underrepresented. Of note, no such biases were noted when CD4 + T cells from EC were infected directly ex vivo, suggesting that the viral reservoir profile in EC is not related to altered integration site preferences during acute infection, but instead represents the result of immune-mediated selection mechanisms that can eliminate proviruses in transcriptionally-active euchromatin regions while promoting preferential persistence of intact proviruses in nonpermissive genome regions. Proviral transcription in such "blocked and locked" regions may be restricted through epigenetic mechanisms, protecting them from immune-recognition but presumably limiting their ability to drive viral rebound. While the exact immune mechanisms driving this selection process remain undefined, recent single-cell analytic approaches support the hypothesis that HIV reservoir cells are subject to immune selection pressure by host factors. SUMMARY A "blocked and locked" viral reservoir profile may constitute a structural virological correlate of a functional cure of HIV-1 infection. Further research into the immunological mechanism promoting HIV-1 reservoir selection and evolution in EC/PTC is warranted and could inform foreseeable cure strategies.
Collapse
Affiliation(s)
- Benjamin Bone
- Infectious Disease Division, Brigham Women's Hospital, Boston
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham Women's Hospital, Boston
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Armani-Tourret M, Gao C, Hartana CA, Sun W, Carrere L, Vela L, Hochroth A, Bellefroid M, Sbrolla A, Shea K, Flynn T, Roseto I, Rassadkina Y, Lee C, Giguel F, Malhotra R, Bushman FD, Gandhi RT, Yu XG, Kuritzkes DR, Lichterfeld M. Selection of epigenetically privileged HIV-1 proviruses during treatment with panobinostat and interferon-α2a. Cell 2024; 187:1238-1254.e14. [PMID: 38367616 PMCID: PMC10903630 DOI: 10.1016/j.cell.2024.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.
Collapse
Affiliation(s)
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ciputra Adijaya Hartana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - WeiWei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Vela
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Amy Sbrolla
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrina Shea
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Theresa Flynn
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Carole Lee
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francoise Giguel
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rajeev Malhotra
- Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Mohammadi A, Etemad B, Zhang X, Li Y, Bedwell GJ, Sharaf R, Kittilson A, Melberg M, Crain CR, Traunbauer AK, Wong C, Fajnzylber J, Worrall DP, Rosenthal A, Jordan H, Jilg N, Kaseke C, Giguel F, Lian X, Deo R, Gillespie E, Chishti R, Abrha S, Adams T, Siagian A, Dorazio D, Anderson PL, Deeks SG, Lederman MM, Yawetz S, Kuritzkes DR, Lichterfeld MD, Sieg S, Tsibris A, Carrington M, Brumme ZL, Castillo-Mancilla JR, Engelman AN, Gaiha GD, Li JZ. Viral and host mediators of non-suppressible HIV-1 viremia. Nat Med 2023; 29:3212-3223. [PMID: 37957382 PMCID: PMC10719098 DOI: 10.1038/s41591-023-02611-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Valley Health System, Las Vegas, NV, USA
| | - Behzad Etemad
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | - Yijia Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory J Bedwell
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Radwa Sharaf
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Autumn Kittilson
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meghan Melberg
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles R Crain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Anna K Traunbauer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colline Wong
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesse Fajnzylber
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Alex Rosenthal
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah Jordan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaus Jilg
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Francoise Giguel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Rinki Deo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rida Chishti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Abrha
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor Adams
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail Siagian
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dominic Dorazio
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Peter L Anderson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Michael M Lederman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sigal Yawetz
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mathias D Lichterfeld
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Scott Sieg
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Athe Tsibris
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Jose R Castillo-Mancilla
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan N Engelman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gaurav D Gaiha
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Więcek K, Chen HC. Understanding latent HIV-1 reservoirs through host genomics approaches. iScience 2023; 26:108342. [PMID: 38026212 PMCID: PMC10665824 DOI: 10.1016/j.isci.2023.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Genetically intact HIV-1 proviruses are a major concern with regard to curing infection because they cause viral rebound after the cessation of antiretroviral therapy. However, intact proviruses are not prevalent in HIV-1 reservoirs. As such, it is essential to precisely determine the position of these proviruses before putting forward a better antiretroviral cure. Recently, a revised HIV-1 deeply latent reservoir concept has been proposed, stating that the progress of the establishment of HIV-1 reservoirs is influenced by immune-mediated selection during the course of infection. This selection force leads to the persistence of genetically intact proviruses as those with the best fit to avoid clearance. This hypothesis refreshes our understanding of HIV-1 latent reservoirs. For this reason, we reviewed current studies relevant to this theme and provide our perspectives to reinforce the overall understanding of HIV-1 latency in the context of the host genome.
Collapse
Affiliation(s)
- Kamil Więcek
- Epigenetics of Infectious Diseases Research Group, Population Diagnostics Center, Lukasiewicz Research Network – PORT Polish Center for Technology Development, Stablowicka 147, 54-066 Wroclaw, Poland
| | - Heng-Chang Chen
- Epigenetics of Infectious Diseases Research Group, Population Diagnostics Center, Lukasiewicz Research Network – PORT Polish Center for Technology Development, Stablowicka 147, 54-066 Wroclaw, Poland
| |
Collapse
|
13
|
Pasternak AO, Berkhout B. HIV persistence: silence or resistance? Curr Opin Virol 2023; 59:101301. [PMID: 36805974 DOI: 10.1016/j.coviro.2023.101301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 02/19/2023]
Abstract
Despite decades of suppressive antiretroviral therapy, human immunodeficiency virus (HIV) reservoirs in infected individuals persist and fuel viral rebound once therapy is interrupted. The persistence of viral reservoirs is the main obstacle to achieving HIV eradication or a long-term remission. The last decade has seen a profound change in our understanding of the mechanisms behind HIV persistence, which appears to be much more complex than originally assumed. In addition to the persistence of transcriptionally silent proviruses in a stable latent reservoir that is invisible to the immune system, HIV is increasingly recognized to persist by resistance to the immune clearance, which appears to play a surprisingly prominent role in shaping the reservoir. In this review, we discuss some emerging insights into the mechanisms of HIV persistence, as well as their implications for the development of strategies towards an HIV cure.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
14
|
Mohammadi A, Etemad B, Zhang X, Li Y, Bedwell GJ, Sharaf R, Kittilson A, Melberg M, Wong C, Fajnzylber J, Worrall DP, Rosenthal A, Jordan H, Jilg N, Kaseke C, Giguel F, Lian X, Deo R, Gillespie E, Chishti R, Abrha S, Adams T, Siagian A, Anderson PL, Deeks SG, Lederman MM, Yawetz S, Kuritzkes DR, Lichterfeld MD, Tsibris A, Carrington M, Brumme ZL, Castillo-Mancilla JR, Engelman AN, Gaiha GD, Li JZ. Viral and Host Mediators of Non-Suppressible HIV-1 Viremia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287124. [PMID: 37034605 PMCID: PMC10081408 DOI: 10.1101/2023.03.30.23287124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Behzad Etemad
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Zhang
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yijia Li
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Radwa Sharaf
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Autumn Kittilson
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meghan Melberg
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Colline Wong
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesse Fajnzylber
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Alex Rosenthal
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah Jordan
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaus Jilg
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Francoise Giguel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaodong Lian
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rinki Deo
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rida Chishti
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Abrha
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor Adams
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail Siagian
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter L. Anderson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Michael M. Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sigal Yawetz
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mathias D. Lichterfeld
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Athe Tsibris
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Jose R. Castillo-Mancilla
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alan N. Engelman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gaurav D. Gaiha
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Pellaers E, Bhat A, Christ F, Debyser Z. Determinants of Retroviral Integration and Implications for Gene Therapeutic MLV-Based Vectors and for a Cure for HIV-1 Infection. Viruses 2022; 15:32. [PMID: 36680071 PMCID: PMC9861059 DOI: 10.3390/v15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
To complete their replication cycle, retroviruses need to integrate a DNA copy of their RNA genome into a host chromosome. Integration site selection is not random and is driven by multiple viral and cellular host factors specific to different classes of retroviruses. Today, overwhelming evidence from cell culture, animal experiments and clinical data suggests that integration sites are important for retroviral replication, oncogenesis and/or latency. In this review, we will summarize the increasing knowledge of the mechanisms underlying the integration site selection of the gammaretrovirus MLV and the lentivirus HIV-1. We will discuss how host factors of the integration site selection of retroviruses may steer the development of safer viral vectors for gene therapy. Next, we will discuss how altering the integration site preference of HIV-1 using small molecules could lead to a cure for HIV-1 infection.
Collapse
Affiliation(s)
| | | | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|