1
|
Abdel-Mohsen M, Deeks S, Giron L, Hong KY, Goldman A, Zhang L, Huang SSY, Verrill D, Guo S, Selzer L, de Vries CR, Vendrame E, SenGupta D, Wallin JJ, Cai Y. Circulating immune and plasma biomarkers of time to HIV rebound in HIV controllers treated with vesatolimod. Front Immunol 2024; 15:1405348. [PMID: 38979421 PMCID: PMC11229794 DOI: 10.3389/fimmu.2024.1405348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Background Antiretroviral therapy (ART) for HIV-1 treatment has improved lifespan but requires lifelong adherence for people living with HIV (PLWH), highlighting the need for a cure. Evaluation of potential cure strategies requires analytic treatment interruption (ATI) with close monitoring of viral rebound. Predictive biomarkers for HIV-1 rebound and/or duration of control during ATI will facilitate these HIV cure trials while minimizing risks. Available evidence suggests that host immune, glycomic, lipid, and metabolic markers of inflammation may be associated with HIV-1 persistence in PLWH who are treated during chronic HIV-1 infection. Methods We conducted post-hoc analysis of HIV controllers who could maintain low levels of plasma HIV-1 without ART in a phase 1b vesatolimod trial. Baseline and pre-ATI levels of immune, glycomic, lipidomic, and metabolomic markers were tested for association with ATI outcomes (time of HIV-1 rebound to 200 copies/mL and 1,000 copies/mL, duration of HIV-1 RNA ≤400 copies/mL and change in intact proviral HIV-1 DNA during ATI) using Spearman's correlation and Cox proportional hazards model. Results Higher levels of CD69+CD8+ T-cells were consistently associated with shorter time to HIV-1 rebound at baseline and pre-ATI. With few exceptions, baseline fucosylated, non-galactosylated, non-sialylated, bisecting IgG N-glycans were associated with shorter time to HIV rebound and duration of control as with previous studies. Baseline plasma MPA and HPA binding glycans and non-galactosylated/non-sialylated glycans were associated with longer time to HIV rebound, while baseline multiply-galactosylated glycans and sialylated glycans, GNA-binding glycans, NPA-binding glycans, WGA-binding glycans, and bisecting GlcNAc glycans were associated with shorter time to HIV rebound and duration of control. Fourteen bioactive lipids had significant baseline associations with longer time to rebound and duration of control, and larger intact proviral HIV-1 DNA changes; additionally, three baseline bioactive lipids were associated with shorter time to first rebound and duration of control. Conclusion Consistent with studies in HIV non-controllers, proinflammatory glycans, lipids, and metabolites were generally associated with shorter duration of HIV-1 control. Notable differences were observed between HIV controllers vs. non-controllers in some specific markers. For the first time, exploratory biomarkers of ATI viral outcomes in HIV-controllers were investigated but require further validation.
Collapse
Affiliation(s)
- Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Leila Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kai Ying Hong
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Aaron Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
| | - Liao Zhang
- Clinical Bioinformatics and Exploratory Analytics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Susie S. Y. Huang
- Clinical Bioinformatics and Exploratory Analytics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Donovan Verrill
- Statistical Programming, Gilead Sciences, Inc., Foster City, CA, United States
| | - Susan Guo
- Biostatistics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Lisa Selzer
- Clinical Virology, Gilead Sciences, Inc., Foster City, CA, United States
| | | | - Elena Vendrame
- Clinical Development, Gilead Sciences, Inc., Foster City, CA, United States
| | - Devi SenGupta
- Clinical Development, Gilead Sciences, Inc., Foster City, CA, United States
| | - Jeffrey J. Wallin
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| | - Yanhui Cai
- Biomarker Sciences and Diagnostics, Gilead Sciences, Inc., Foster City, CA, United States
| |
Collapse
|
2
|
Liu Z, Julius P, Mudenda V, Kang G, Del Valle L, West JT, Wood C. Limited HIV-associated neuropathologies and lack of immune activation in sub-saharan African individuals with late-stage subtype C HIV-1 infection. J Neurovirol 2024; 30:303-315. [PMID: 38943022 DOI: 10.1007/s13365-024-01219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Although previous studies have suggested that subtype B HIV-1 proviruses in the brain are associated with physiological changes and immune activation accompanied with microgliosis and astrogliosis, and indicated that both HIV-1 subtype variation and geographical location might influence the neuropathogenicity of HIV-1 in the brain. The natural course of neuropathogenesis of the most widespread subtype C HIV-1 has not been adequately investigated, especially for people living with HIV (PLWH) in sub-Saharan Africa. To characterize the natural neuropathology of subtype C HIV-1, postmortem frontal lobe and basal ganglia tissues were collected from nine ART-naïve individuals who died of late-stage AIDS with subtype C HIV-1 infection, and eight uninfected deceased individuals as controls. Histological staining was performed on all brain tissues to assess brain pathologies. Immunohistochemistry (IHC) against CD4, p24, Iba-1, GFAP, and CD8 in all brain tissues was conducted to evaluate potential viral production and immune activation. Histological results showed mild perivascular cuffs of lymphocytes only in a minority of the infected individuals. Viral capsid p24 protein was only detected in circulating immune cells of one infected individual, suggesting a lack of productive HIV-1 infection of the brain even at the late-stage of AIDS. Notably, similar levels of Iba-1 or GFAP between HIV + and HIV- brain tissues indicated a lack of microgliosis and astrogliosis, respectively. Similar levels of CD8 + cytotoxic T lymphocyte (CTL) infiltration between HIV + and HIV- brain tissues indicated CTL were not likely to be involved within subtype C HIV-1 infected participants of this cohort. Results from this subtype C HIV-1 study suggest that there is a lack of productive infection and limited neuropathogenesis by subtype C HIV-1 even at late-stage disease, which is in contrast to what was reported for subtype B HIV-1 by other investigators.
Collapse
Affiliation(s)
- Zhou Liu
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Peter Julius
- Department of Pathology and Microbiology, University of Zambia School of Medicine, Lusaka, Zambia
| | - Victor Mudenda
- Department of Pathology, University Teaching Hospital, Lusaka, Zambia
| | - Guobin Kang
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Luis Del Valle
- Department of Pathology and Medicine, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - John T West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Charles Wood
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- , 1700 Tulane Avenue, LCRC Rm 614, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Fombellida-Lopez C, Berkhout B, Darcis G, Pasternak AO. Persistent HIV-1 transcription during ART: time to reassess its significance? Curr Opin HIV AIDS 2024; 19:124-132. [PMID: 38502547 PMCID: PMC10990031 DOI: 10.1097/coh.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and reignite viral replication if therapy is interrupted. Persistence of the viral reservoir in people with HIV-1 (PWH) is the main obstacle to an HIV-1 cure. The reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. Here, we review the recent progress in the characterization of persistent HIV-1 transcription during ART. RECENT FINDINGS Evidence from several studies indicates that, although cell-associated unspliced (US) HIV-1 RNA is abundantly expressed in ART-treated PWH, intact full-length US transcripts are rare and most US RNA is derived from defective proviruses. The transcription- and translation-competent defective proviruses, previously considered irrelevant, are increasingly being linked to residual HIV-1 pathogenesis under suppressive ART. Recent data suggest a continuous crosstalk between the residual HIV-1 activity under ART and the immune system. Persistent HIV-1 transcription on ART, despite being mostly derived from defective proviruses, predicts viral rebound upon therapy interruption, suggesting its role as an indicator of the strength of the host antiviral immune response that is shaping the viral rebound. SUMMARY In light of the recent findings, the significance of persistent HIV-1 transcription during ART for the long-term health of PWH and the cure research should be reassessed.
Collapse
Affiliation(s)
- Céline Fombellida-Lopez
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gilles Darcis
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, Liège, Belgium
| | - Alexander O. Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Hunt JH, Mwinnyaa G, Patel EU, Grabowski MK, Kagaayi J, Gray RH, Ssekasanvu J, Wawer MJ, Kigozi G, Chang LW, Kalibbala S, Nakalanzi M, Ndyanabo A, Quinn TC, Serwadda D, Reynolds SJ, Galiwango RM, Laeyendecker O. Longitudinal patterns in indeterminate HIV rapid antibody test results: a population-based, prospective cohort study. Microbiol Spectr 2024; 12:e0325323. [PMID: 38189332 PMCID: PMC10845946 DOI: 10.1128/spectrum.03253-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
Rapid HIV tests are critical to HIV surveillance and universal testing and treatment programs. We assessed longitudinal patterns in indeterminate HIV rapid test results in an African population-based cohort. Prospective HIV rapid antibody test results, defined by two parallel rapid tests, among participants aged 15-49 years from three survey rounds of the Rakai Community Cohort Study, Uganda, from 2013 to 2018, were assessed. An indeterminate result was defined as any weak positive result or when one test was negative and the other was positive. A total of 31,405 participants contributed 54,459 person-visits, with 15,713 participants contributing multiple visits and 7,351 participants contributing 3 visits. The prevalence of indeterminate results was 2.7% (1,490/54,469). Of the participants with multiple visits who initially tested indeterminate (n = 591), 40.4% were negative, 18.6% were positive, and 41.0% were indeterminate at the subsequent visit. Of the participants with two consecutive indeterminate results who had a third visit (n = 67), 20.9% were negative, 9.0% were positive, and 70.2% remained indeterminate. Compared to a prior negative result, a prior indeterminate result was strongly associated with a subsequent indeterminate result [adjusted prevalence ratio, 23.0 (95% CI = 20.0-26.5)]. Compared to men, women were more likely to test indeterminate than negative [adjusted odds ratio, 2.3 (95% CI = 2.0-2.6)]. Indeterminate rapid HIV test results are highly correlated within an individual and 0.6% of the population persistently tested indeterminate over the study period. A substantial fraction of people with an indeterminate result subsequently tested HIV positive at the next visit, underscoring the importance of follow-up HIV testing protocols.IMPORTANCERapid HIV tests are a critical tool for expanding HIV testing and treatment to end the HIV epidemic. The interpretation and management of indeterminate rapid HIV test results pose a unique challenge for connecting all people living with HIV to the necessary care and treatment. Indeterminate rapid HIV test results are characterized by any weak positive result or discordant results (when one test is negative and the other is positive). We systematically tested all participants of a Ugandan population-based, longitudinal cohort study regardless of prior test results or HIV status to quantify longitudinal patterns in rapid HIV test results. We found that a substantial fraction (>15%) of participants with indeterminate rapid test results subsequently tested positive upon follow-up testing at the next visit. Our findings demonstrate the importance of follow-up HIV testing protocols for indeterminate rapid HIV test results.
Collapse
Affiliation(s)
- Joanne H. Hunt
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - George Mwinnyaa
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eshan U. Patel
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - M. Kate Grabowski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | - Ronald H. Gray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Maria J. Wawer
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Larry W. Chang
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | | | | | - Thomas C. Quinn
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Serwadda
- Rakai Health Sciences Program, Kalisizo, Uganda
- Makerere University, Kampala, Uganda
| | - Steven J. Reynolds
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | - Oliver Laeyendecker
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Zhou C, Wu Y, Zhang Y, Wang Y, Wu H, Zhang T, Chen G, Huang X. Factors associated with post-treatment control of viral load in HIV-infected patients: a systematic review and meta-analysis. Int J Infect Dis 2023; 129:216-227. [PMID: 36707043 DOI: 10.1016/j.ijid.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the factors associated with maintenance of viral suppression after antiretroviral therapy (ART) discontinuation. METHODS Databases were searched for studies published between January 01, 2011, and July 01, 2022, that correlated the time of virus rebound with treatment interruption (TI). The corresponding data were extracted from these studies. A fixed-effects model was used to calculate pooled estimates. RESULTS Thirty-one studies were included in this analysis. Results showed that patients who started ART during acute or early infection had longer viral control than those who started ART during chronic infection. It has been reported that some broadly neutralizing HIV-1-specific antibodies can significantly prolong viral inhibition. The study also found that approximately 7.2% of patients achieved post-treatment control (PTC) approximately a year after TI. CONCLUSION ART initiation in the acute or early phases can delay viral rebound after TI. Cell-associated HIV RNA and HIV DNA have been difficult to prove as able to predict viral rebound time. Many vaccines and antibodies have also been shown to be effective in prolonging viral control in people without PTC, and more research is needed to develop alternative ART therapies that can effectively inhibit or even eliminate HIV.
Collapse
Affiliation(s)
- Chi Zhou
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China; Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yaxin Wu
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingying Wang
- Department of Internal Medicine, Shenzhen Hospital of the University of Hong Kong, Shenzhen, China
| | - Hao Wu
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaojie Huang
- Clinical and Research Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Etemad B, Sun X, Li Y, Melberg M, Moisi D, Gottlieb R, Ahmed H, Aga E, Bosch RJ, Acosta EP, Yuki Y, Martin MP, Carrington M, Gandhi RT, Jacobson JM, Volberding P, Connick E, Mitsuyasu R, Frank I, Saag M, Eron JJ, Skiest D, Margolis DM, Havlir D, Schooley RT, Lederman MM, Yu XG, Li JZ. HIV post-treatment controllers have distinct immunological and virological features. Proc Natl Acad Sci U S A 2023; 120:e2218960120. [PMID: 36877848 PMCID: PMC10089217 DOI: 10.1073/pnas.2218960120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
HIV post-treatment controllers (PTCs) are rare individuals who maintain low levels of viremia after stopping antiretroviral therapy (ART). Understanding the mechanisms of HIV post-treatment control will inform development of strategies aiming at achieving HIV functional cure. In this study, we evaluated 22 PTCs from 8 AIDS Clinical Trials Group (ACTG) analytical treatment interruption (ATI) studies who maintained viral loads ≤400 copies/mL for ≥24 wk. There were no significant differences in demographics or frequency of protective and susceptible human leukocyte antigen (HLA) alleles between PTCs and post-treatment noncontrollers (NCs, n = 37). Unlike NCs, PTCs demonstrated a stable HIV reservoir measured by cell-associated RNA (CA-RNA) and intact proviral DNA assay (IPDA) during analytical treatment interruption (ATI). Immunologically, PTCs demonstrated significantly lower CD4+ and CD8+ T cell activation, lower CD4+ T cell exhaustion, and more robust Gag-specific CD4+ T cell responses and natural killer (NK) cell responses. Sparse partial least squares discriminant analysis (sPLS-DA) identified a set of features enriched in PTCs, including a higher CD4+ T cell% and CD4+/CD8+ ratio, more functional NK cells, and a lower CD4+ T cell exhaustion level. These results provide insights into the key viral reservoir features and immunological profiles for HIV PTCs and have implications for future studies evaluating interventions to achieve an HIV functional cure.
Collapse
Affiliation(s)
- Behzad Etemad
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Xiaoming Sun
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
| | - Yijia Li
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Meghan Melberg
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Daniela Moisi
- School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Rachel Gottlieb
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Hayat Ahmed
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Evgenia Aga
- Harvard T. H. Chan School of Public Health, Boston, MA02115
| | | | - Edward P. Acosta
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD21702
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20814
| | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD21702
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20814
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD21702
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20814
| | - Rajesh T. Gandhi
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | | | - Paul Volberding
- School of Medicine, University of California San Francisco, San Francisco, CA94143
| | | | - Ronald Mitsuyasu
- School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Ian Frank
- School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michael Saag
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Daniel Skiest
- Department of Medicine, University of Massachusetts Chan Medical School - Baystate, Springfield, MA01199
| | - David M. Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Diane Havlir
- School of Medicine, University of California San Francisco, San Francisco, CA94143
| | - Robert T. Schooley
- Department of Medicine, University of California San Diego, San Diego, CA92103
| | | | - Xu G. Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| |
Collapse
|
7
|
Adams P, Berkhout B, Pasternak AO. Towards a molecular profile of antiretroviral therapy-free HIV remission. Curr Opin HIV AIDS 2022; 17:301-307. [PMID: 35938464 DOI: 10.1097/coh.0000000000000749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To summarize the current status and highlight recent findings on predictive biomarkers for posttreatment HIV control (PTC) and virological remission. While historically, many studies focused on virological markers, there is an increasing tendency to enter immune and metabolic factors into the equation. RECENT FINDINGS On the virological side, several groups reported that cell-associated HIV RNA could predict time to viral rebound. Recent data hints at the possible importance of the genic location and chromatin context of the integrated provirus, although these factors still need to be assessed in relation to PTC and virological remission. Evidence from immunological studies highlighted innate and humoral immunity as important factors for prolonged HIV remission. Interestingly, novel metabolic markers have emerged, which offer additional angles to our understanding of latency and viral rebound. SUMMARY Facilitating PTC and virological remission remain top priorities for the HIV cure research. We advocate for clear and precise definitions for both phenomena in order to avoid misconceptions and to strengthen the conclusions that can be drawn. As no one-size-fits-all marker has emerged yet, more biomarkers are on the horizon, and viral rebound is a complex and heterogeneous process, it is likely that a combination of various biomarkers in cohesion will be necessary for a more accurate prediction of antiretroviral therapy-free HIV remission.
Collapse
Affiliation(s)
- Philipp Adams
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Lau CY, Adan MA, Earhart J, Seamon C, Nguyen T, Savramis A, Adams L, Zipparo ME, Madeen E, Huik K, Grossman Z, Chimukangara B, Wulan WN, Millo C, Nath A, Smith BR, Ortega-Villa AM, Proschan M, Wood BJ, Hammoud DA, Maldarelli F. Imaging and biopsy of HIV-infected individuals undergoing analytic treatment interruption. Front Med (Lausanne) 2022; 9:979756. [PMID: 36072945 PMCID: PMC9441850 DOI: 10.3389/fmed.2022.979756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background HIV persistence during antiretroviral therapy (ART) is the principal obstacle to cure. Lymphoid tissue is a compartment for HIV, but mechanisms of persistence during ART and viral rebound when ART is interrupted are inadequately understood. Metabolic activity in lymphoid tissue of patients on long-term ART is relatively low, and increases when ART is stopped. Increases in metabolic activity can be detected by 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and may represent sites of HIV replication or immune activation in response to HIV replication. Methods FDG-PET imaging will be used to identify areas of high and low metabolic uptake in lymphoid tissue of individuals undergoing long-term ART. Baseline tissue samples will be collected. Participants will then be randomized 1:1 to continue or interrupt ART via analytic treatment interruption (ATI). Image-guided biopsy will be repeated 10 days after ATI initiation. After ART restart criteria are met, image-guided biopsy will be repeated once viral suppression is re-achieved. Participants who continued ART will have a second FDG-PET and biopsies 12–16 weeks after the first. Genetic characteristics of HIV populations in areas of high and low FDG uptake will be assesed. Optional assessments of non-lymphoid anatomic compartments may be performed to evaluate HIV populations in distinct anatomic compartments. Anticipated results We anticipate that PET standardized uptake values (SUV) will correlate with HIV viral RNA in biopsies of those regions and that lymph nodes with high SUV will have more viral RNA than those with low SUV within a patient. Individuals who undergo ATI are expected to have diverse viral populations upon viral rebound in lymphoid tissue. HIV populations in tissues may initially be phylogenetically diverse after ATI, with emergence of dominant viral species (clone) over time in plasma. Dominant viral species may represent the same HIV population seen before ATI. Discussion This study will allow us to explore utility of PET for identification of HIV infected cells and determine whether high FDG uptake respresents areas of HIV replication, immune activation or both. We will also characterize HIV infected cell populations in different anatomic locations. The protocol will represent a platform to investigate persistence and agents that may target HIV populations. Study protocol registration Identifier: NCT05419024.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Chuen-Yen Lau
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jessica Earhart
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cassie Seamon
- Critical Care Medicine Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Thuy Nguyen
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Ariana Savramis
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lindsey Adams
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Mary-Elizabeth Zipparo
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Erin Madeen
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Kristi Huik
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Zehava Grossman
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Benjamin Chimukangara
- Critical Care Medicine Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wahyu Nawang Wulan
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Corina Millo
- PET Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Avindra Nath
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bryan R. Smith
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ana M. Ortega-Villa
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michael Proschan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bradford J. Wood
- Interventional Radiology, Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dima A. Hammoud
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| |
Collapse
|
9
|
Mitchell JL, Pollara J, Dietze K, Edwards RW, Nohara J, N'guessan KF, Zemil M, Buranapraditkun S, Takata H, Li Y, Muir R, Kroon E, Pinyakorn S, Jha S, Manasnayakorn S, Chottanapund S, Thantiworasit P, Prueksakaew P, Ratnaratorn N, Nuntapinit B, Fox L, Tovanabutra S, Paquin-Proulx D, Wieczorek L, Polonis VR, Maldarelli F, Haddad EK, Phanuphak P, Sacdalan CP, Rolland M, Phanuphak N, Ananworanich J, Vasan S, Ferrari G, Trautmann L. Anti-HIV antibody development up to one year after antiretroviral therapy initiation in acute HIV infection. J Clin Invest 2021; 132:150937. [PMID: 34762600 PMCID: PMC8718150 DOI: 10.1172/jci150937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Early initiation of antiretroviral therapy (ART) in acute HIV infection (AHI) is effective at limiting seeding of the HIV viral reservoir, but little is known about how the resultant decreased antigen load affects long-term Ab development after ART. We report here that Env-specific plasma antibody (Ab) levels and Ab-dependent cellular cytotoxicity (ADCC) increased during the first 24 weeks of ART and correlated with Ab levels persisting after 48 weeks of ART. Participants treated in AHI stage 1 had lower Env-specific Ab levels and ADCC activity on ART than did those treated later. Importantly, participants who initiated ART after peak viremia in AHI developed elevated cross-clade ADCC responses that were detectable 1 year after ART initiation, even though clinically undetectable viremia was reached by 24 weeks. These data suggest that there is more germinal center (GC) activity in the later stages of AHI and that Ab development continues in the absence of detectable viremia during the first year of suppressive ART. The development of therapeutic interventions that can enhance earlier development of GCs in AHI and Abs after ART initiation could provide important protection against the viral reservoir that is seeded in individuals treated early in the disease.
Collapse
Affiliation(s)
- Julie L Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, United States of America
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Kenneth Dietze
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - R Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Junsuke Nohara
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Kombo F N'guessan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Supranee Buranapraditkun
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Roshell Muir
- Demartment of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University, Philadelphia, United States of America
| | - Eugene Kroon
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Shalini Jha
- Department of Surgery, Duke University Madical Center, Durham, United States of America
| | - Sopark Manasnayakorn
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthat Chottanapund
- Department of Surgery, Bamrasnaradura Infectious Disease Institute, Nonthaburi, Thailand
| | - Pattarawat Thantiworasit
- Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Bessara Nuntapinit
- Armed Forces Research Institute of Medical Sciences in Bangkok, Bangkok, Thailand
| | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, United States of America
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Victoria R Polonis
- Department of Vaccine Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, United States of America
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI/NIH, Frederick, United States of America
| | - Elias K Haddad
- Demartment of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, United States of America
| | | | | | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | | | | | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, United States of America
| |
Collapse
|
10
|
Pasternak AO, Berkhout B. The Splice of Life: Does RNA Processing Have a Role in HIV-1 Persistence? Viruses 2021; 13:v13091751. [PMID: 34578332 PMCID: PMC8471011 DOI: 10.3390/v13091751] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Antiretroviral therapy (ART) suppresses HIV-1 replication but does not eradicate the virus. Persistence of HIV-1 latent reservoirs in ART-treated individuals is considered the main obstacle to achieving an HIV-1 cure. However, these HIV-1 reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. HIV-1 latency is regulated at the transcriptional and at multiple post-transcriptional levels. Here, we review recent insights into the possible contribution of viral RNA processing to the persistence of HIV-1 reservoirs, and discuss the clinical implications of persistence of viral RNA species in ART-treated individuals.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Despite decades of suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and fuel viral rebound if therapy is interrupted. The persistence of viral reservoirs in infected individuals is the main obstacle to achieving HIV-1 eradication or a long-term remission. Accurate assessment of the viral reservoir size is necessary for monitoring the effectiveness of the curative interventions. Here, we review the recent progress in the development of assays to measure HIV-1 persistence, highlighting their key advantages and limitations. RECENT FINDINGS To estimate the viral reservoir size, a number of assays have been developed that assess different aspects of HIV-1 persistence in ART-treated individuals. These include viral outgrowth assays to measure proviral replication competence, sequencing-based assays to measure genetic intactness of HIV-1 proviruses, and diverse techniques that measure the ability of proviruses to produce viral RNA and/or proteins (transcription and translation competence), with or without ex vivo stimulation. Recent years have seen the development of next-generation reservoir assays that, in addition to measuring viral persistence markers, assess the proviral integration sites and characterize the HIV-1 reservoir cells on the single-cell level. SUMMARY Although no assay yet can measure the HIV-1 reservoir with 100% accuracy, recent technical advances allow reliable estimation of its size and composition.
Collapse
|