1
|
Perfect JR, Kronstad JW. Cryptococcal nutrient acquisition and pathogenesis: dining on the host. Microbiol Mol Biol Rev 2025:e0001523. [PMID: 39927764 DOI: 10.1128/mmbr.00015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYPathogens must acquire essential nutrients to successfully colonize and proliferate in host tissue. Additionally, nutrients provide signals that condition pathogen deployment of factors that promote disease. A series of transcriptomics experiments over the last 20 years, primarily with Cryptococcus neoformans and to a lesser extent with Cryptococcus gattii, provide insights into the nutritional requirements for proliferation in host tissues. Notably, the identified functions include a number of transporters for key nutrients including sugars, amino acids, metals, and phosphate. Here, we first summarize the in vivo gene expression studies and then discuss the follow-up analyses that specifically test the relevance of the identified transporters for the ability of the pathogens to cause disease. The conclusion is that predictions based on transcriptional profiling of cryptococcal cells in infected tissue are well supported by subsequent investigations using targeted mutations. Overall, the combination of transcriptomic and genetic approaches provides substantial insights into the nutritional requirements that underpin proliferation in the host.
Collapse
Affiliation(s)
- John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Kaur A, Singh S, Sharma SC. Unlocking Trehalose's versatility: A comprehensive Journey from biosynthesis to therapeutic applications. Exp Cell Res 2024; 442:114250. [PMID: 39260672 DOI: 10.1016/j.yexcr.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
For over forty years, a sugar of rare configuration known as trehalose (two molecules of glucose linked at their 1-carbons), has been recognised for more than just its roles as a storage compound. The ability of trehalose to protect an extensive range of biological materials, for instance cell lines, tissues, proteins and DNA, has sparked considerable interest in the biotechnology and pharmaceutical industries. Currently, trehalose is now being investigated as a promising therapeutic candidate for human use, as it has shown potential to reduce disease severity in various experimental models. Despite its diverse biological effects, the precise mechanism underlying this observation remain unclear. Therefore, this review delves into the significance of trehalose biosynthesis pathway in the development of novel drug, investigates the inhibitors of trehalose synthesis and evaluates the binding efficiency of T6P with TPS1. Additionally, it also emphasizes the knowledge about the protective effect of trehalose on modulation of autophagy, combating viral infections, addressing the conditions like cancer and neurodegenerative diseases based on the recent advancement. Furthermore, review also highlight the trehalose's emerging role as a surfactant in delivering monoclonal antibodies that will further broadening its potential application in biomedicines.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | - Sukhwinder Singh
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
3
|
Xu N, Zuo J, Li C, Gao C, Guo M. Reconstruction and Analysis of a Genome-Scale Metabolic Model of Acinetobacter lwoffii. Int J Mol Sci 2024; 25:9321. [PMID: 39273268 PMCID: PMC11395192 DOI: 10.3390/ijms25179321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Acinetobacter lwoffii is widely considered to be a harmful bacterium that is resistant to medicines and disinfectants. A. lwoffii NL1 degrades phenols efficiently and shows promise as an aromatic compound degrader in antibiotic-contaminated environments. To gain a comprehensive understanding of A. lwoffii, the first genome-scale metabolic model of A. lwoffii was constructed using semi-automated and manual methods. The iNX811 model, which includes 811 genes, 1071 metabolites, and 1155 reactions, was validated using 39 unique carbon and nitrogen sources. Genes and metabolites critical for cell growth were analyzed, and 12 essential metabolites (mainly in the biosynthesis and metabolism of glycan, lysine, and cofactors) were identified as antibacterial drug targets. Moreover, to explore the metabolic response to phenols, metabolic flux was simulated by integrating transcriptomics, and the significantly changed metabolism mainly included central carbon metabolism, along with some transport reactions. In addition, the addition of substances that effectively improved phenol degradation was predicted and validated using the model. Overall, the reconstruction and analysis of model iNX811 helped to study the antimicrobial systems and biodegradation behavior of A. lwoffii.
Collapse
Affiliation(s)
- Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jiaojiao Zuo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Chenghao Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans: A target for antifungals. Proc Natl Acad Sci U S A 2024; 121:e2314087121. [PMID: 39083421 PMCID: PMC11317593 DOI: 10.1073/pnas.2314087121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.
Collapse
Affiliation(s)
- Erica J. Washington
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC27708
| | - Allen L. Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Matthew Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
- Department of Computer Science, Duke University, Durham, NC27708
| | - Richard G. Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| |
Collapse
|
5
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans : a target for novel antifungals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.530545. [PMID: 36993618 PMCID: PMC10054996 DOI: 10.1101/2023.03.14.530545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of novel drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement towards the catalytic pocket by the N-terminus upon ligand binding and identifies residues required for substrate-binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved amongst Cryptococcal species and closely related Basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto , these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes. Significance Statement Fungal infections are responsible for over a million deaths worldwide each year. Biosynthesis of a disaccharide, trehalose, is required for multiple pathogenic fungi to transition from the environment to the human host. Enzymes in the trehalose biosynthesis pathway are absent in humans and, therefore, are potentially significant targets for novel antifungal therapeutics. One enzyme in the trehalose biosynthesis is trehalose-6-phosphate synthase (Tps1). Here, we describe the cryo-electron microscopy structures of the CnTps1 homo-tetramer in the unliganded form and in complex with a substrate and a product. These structures and subsequent biochemical analysis reveal key details of substrate-binding residues and substrate specificity. These structures should facilitate structure-guided design of inhibitors against CnTps1.
Collapse
|
6
|
Chen Y, Tang L, Jiang Z, Wang S, Qi L, Tian X, Deng H, Kong Z, Gao W, Zhang X, Li S, Chen M, Zhang X, Duan H, Yang J, Peng YL, Wang D, Liu J. Dual-Specificity Inhibitor Targets Enzymes of the Trehalose Biosynthesis Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:209-218. [PMID: 38128269 DOI: 10.1021/acs.jafc.3c06946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
To reduce the risk of resistance development, a novel fungicide with dual specificity is demanded. Trehalose is absent in animals, and its synthases, trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP), are safe fungicide targets. Here, we report the discovery of a dual-specificity inhibitor of MoTps1 (Magnaporthe oryzae Tps1, TPS) and MoTps2 (M. oryzae Tps2, TPP). The inhibitor, named A1-4, was obtained from a virtual screening and subsequent surface plasmon resonance screening. In in vitro assays, A1-4 interacts with MoTps1 and MoTps2-TPP (MoTps2 TPP domain) and inhibits their enzyme activities. In biological activity assays, A1-4 not only inhibits the virulence of M. oryzae on host but also causes aggregation of conidia cytosol, which is a characteristic phenotype of MoTps2. Furthermore, hydrogen/deuterium exchange mass spectrometry assays support the notion that A1-4 binds to the substrate pockets of TPS and TPP. Collectively, A1-4 is a promising hit compound for the development of safe fungicide with dual-target specificity.
Collapse
Affiliation(s)
- Yitong Chen
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liu Tang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shanshan Wang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Linlu Qi
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiwei Kong
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenqiang Gao
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaokang Zhang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Saijie Li
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Meiqing Chen
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dongli Wang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Junfeng Liu
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Jiang Z, Shi D, Chen Y, Li H, Wang J, Lv X, Zi Y, Wang D, Xu Z, Huang J, Liu J, Duan H. Discovery of novel isopropanolamine inhibitors against MoTPS1 as potential fungicides with unique mechanisms. Eur J Med Chem 2023; 260:115755. [PMID: 37672934 DOI: 10.1016/j.ejmech.2023.115755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The resistance and ecotoxicity of fungicides seriously restrict our ability to effectively control Magnaporthe oryzae. Discovering fungicidal agents based on novel targets, including MoTPS1, could efficiently address this situation. Here, we identified a hit VS-10 containing an isopropanolamine fragment as a novel MoTPS1 inhibitor through virtual screening, and forty-four analogs were synthesized by optimizing the structure of VS-10. Utilizing our newly established ion-pair chromatography (IPC) and leaf inoculation methods, we found that compared to VS-10, its analog j11 exhibited substantially greater inhibitory activity against both MoTPS1 and the pathogenicity of M. oryzae. Molecular simulations clarified that the electrostatic interactions between the bridging moiety of isopropanolamine and residue Glu396 of contributed significantly to the binding of j11 and MoTPS1. We preliminarily revealed the unique fungicidal mechanism of j11, which mainly impeded the infection of M. oryzae by decreasing sporulation, killing a small portion of conidia and interfering with the accumulation of turgor pressure in appressoria. Thus, in this study, a novel fungicide candidate with a unique mechanism targeting MoTPS1 was screened and discovered.
Collapse
Affiliation(s)
- Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Yitong Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Huilin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Jin'e Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Xinrui Lv
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Yunjiang Zi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Dongli Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxing Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Junfeng Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Bleem A, Kato R, Kellermyer ZA, Katahira R, Miyamoto M, Niinuma K, Kamimura N, Masai E, Beckham GT. Multiplexed fitness profiling by RB-TnSeq elucidates pathways for lignin-related aromatic catabolism in Sphingobium sp. SYK-6. Cell Rep 2023; 42:112847. [PMID: 37515767 DOI: 10.1016/j.celrep.2023.112847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/21/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023] Open
Abstract
Bioconversion of lignin-related aromatic compounds relies on robust catabolic pathways in microbes. Sphingobium sp. SYK-6 (SYK-6) is a well-characterized aromatic catabolic organism that has served as a model for microbial lignin conversion, and its utility as a biocatalyst could potentially be further improved by genome-wide metabolic analyses. To this end, we generate a randomly barcoded transposon insertion mutant (RB-TnSeq) library to study gene function in SYK-6. The library is enriched under dozens of enrichment conditions to quantify gene fitness. Several known aromatic catabolic pathways are confirmed, and RB-TnSeq affords additional detail on the genome-wide effects of each enrichment condition. Selected genes are further examined in SYK-6 or Pseudomonas putida KT2440, leading to the identification of new gene functions. The findings from this study further elucidate the metabolism of SYK-6, while also providing targets for future metabolic engineering in this organism or other hosts for the biological valorization of lignin.
Collapse
Affiliation(s)
- Alissa Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Ryo Kato
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Masahiro Miyamoto
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Koh Niinuma
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
9
|
Li Y, Xu Y, Wu S, Wang B, Li Y, Liu Y, Wang J. Validamycin Inhibits the Synthesis and Metabolism of Trehalose and Chitin in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel). INSECTS 2023; 14:671. [PMID: 37623381 PMCID: PMC10455558 DOI: 10.3390/insects14080671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a notorious invasive pest that has raised concerns worldwide. Validamycin has been demonstrated to be a very strong inhibitor against trehalase in a variety of organisms. However, whether validamycin can inhibit trehalase activity to suppress trehalose hydrolysis and affect any other relevant physiological pathways in B. dorsalis remains unknown. In this study, the effects of validamycin injection on the synthesis and metabolism of trehalose and chitin were evaluated. The results show that validamycin injection significantly affected trehalase activity and caused trehalose accumulation. In addition, the downstream pathways of trehalose hydrolysis, including the synthesis and metabolism of chitin, were also remarkably affected as the expressions of the key genes in these pathways were significantly regulated and the chitin contents were changed accordingly. Intriguingly, the upstream trehalose synthesis was also affected by validamycin injection due to the variations in the expression levels of key genes, especially BdTPPC1. Moreover, BdTPPC1 was predicted to have a binding affinity to validamycin, and the subsequent in vitro recombinant enzyme activity assay verified the inhibitory effect of validamycin on BdTPPC1 activity for the first time. These findings collectively indicate that validamycin can be considered as a promising potential insecticide for the management of B. dorsalis.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China; (Y.L.); (Y.X.); (S.W.); (B.W.); (Y.L.)
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yonghong Xu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China; (Y.L.); (Y.X.); (S.W.); (B.W.); (Y.L.)
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shunjiao Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China; (Y.L.); (Y.X.); (S.W.); (B.W.); (Y.L.)
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Baohe Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China; (Y.L.); (Y.X.); (S.W.); (B.W.); (Y.L.)
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yaying Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China; (Y.L.); (Y.X.); (S.W.); (B.W.); (Y.L.)
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yinghong Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China; (Y.L.); (Y.X.); (S.W.); (B.W.); (Y.L.)
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jia Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China; (Y.L.); (Y.X.); (S.W.); (B.W.); (Y.L.)
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Robinson KA, St-Jacques AD, Shields SW, Sproule A, Demissie ZA, Overy DP, Loewen MC. Multiple Clonostachys rosea UDP-Glycosyltransferases Contribute to the Production of 15-Acetyl-Deoxynivalenol-3-O-Glycoside When Confronted with Fusarium graminearum. J Fungi (Basel) 2023; 9:723. [PMID: 37504712 PMCID: PMC10381798 DOI: 10.3390/jof9070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Mycotoxins, derived from toxigenic fungi such as Fusarium, Aspergillus, and Penicillium species have impacted the human food chain for thousands of years. Deoxynivalenol (DON), is a tetracyclic sesquiterpenoid type B trichothecene mycotoxin predominantly produced by F. culmorum and F. graminearum during the infection of corn, wheat, oats, barley, and rice. Glycosylation of DON is a protective detoxification mechanism employed by plants. More recently, DON glycosylating activity has also been detected in fungal microparasitic (biocontrol) fungal organisms. Here we follow up on the reported conversion of 15-acetyl-DON (15-ADON) into 15-ADON-3-O-glycoside (15-ADON-3G) in Clonostachys rosea. Based on the hypothesis that the reaction is likely being carried out by a uridine diphosphate glycosyl transferase (UDP-GTase), we applied a protein structural comparison strategy, leveraging the availability of the crystal structure of rice Os70 to identify a subset of potential C. rosea UDP-GTases that might have activity against 15-ADON. Using CRISPR/Cas9 technology, we knocked out several of the selected UDP-GTases in the C. rosea strain ACM941. Evaluation of the impact of knockouts on the production of 15-ADON-3G in confrontation assays with F. graminearum revealed multiple UDP-GTase enzymes, each contributing partial activities. The relationship between these positive hits and other UDP-GTases in fungal and plant species is discussed.
Collapse
Affiliation(s)
- Kelly A Robinson
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Antony D St-Jacques
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Sam W Shields
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0Z2, Canada
| | - Amanda Sproule
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0Z2, Canada
| | - Zerihun A Demissie
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - David P Overy
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0Z2, Canada
| | - Michele C Loewen
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
11
|
A secondary function of trehalose-6-phosphate synthase is required for resistance to oxidative and desiccation stress in Fusarium verticillioides. Fungal Biol 2023; 127:918-926. [PMID: 36906382 DOI: 10.1016/j.funbio.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The disaccharide trehalose has long been recognized for its role as a stress solute, but in recent years some of the protective effects previously ascribed to trehalose have been suggested to arise from a function of the trehalose biosynthesis enzyme trehalose-6-phosphate (T6P) synthase that is distinct from its catalytic activity. In this study, we use the maize pathogenic fungus Fusarium verticillioides as a model to explore the relative contributions of trehalose itself and a putative secondary function of T6P synthase in protection against stress as well as to understand why, as shown in a previous study, deletion of the TPS1 gene coding for T6P synthase reduces pathogenicity against maize. We report that a TPS1-deletion mutant of F. verticillioides is compromised in its ability to withstand exposure to oxidative stress meant to simulate the oxidative burst phase of maize defense and experiences more ROS-induced lipid damage than the wild-type strain. Eliminating T6P synthase expression also reduces resistance to desiccation, but not resistance to phenolic acids. Expression of catalytically-inactive T6P synthase in the TPS1-deletion mutant leads to a partial rescue of the oxidative and desiccation stress-sensitive phenotypes, suggesting the importance of a T6P synthase function that is independent of its role in trehalose synthesis.
Collapse
|
12
|
de Oliveira LP, Navarro BV, de Jesus Pereira JP, Lopes AR, Martins MCM, Riaño-Pachón DM, Buckeridge MS. Bioinformatic analyses to uncover genes involved in trehalose metabolism in the polyploid sugarcane. Sci Rep 2022; 12:7516. [PMID: 35525890 PMCID: PMC9079074 DOI: 10.1038/s41598-022-11508-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Trehalose-6-phosphate (T6P) is an intermediate of trehalose biosynthesis that plays an essential role in plant metabolism and development. Here, we comprehensively analyzed sequences from enzymes of trehalose metabolism in sugarcane, one of the main crops used for bioenergy production. We identified protein domains, phylogeny, and in silico expression levels for all classes of enzymes. However, post-translational modifications and residues involved in catalysis and substrate binding were analyzed only in trehalose-6-phosphate synthase (TPS) sequences. We retrieved 71 putative full-length TPS, 93 trehalose-6-phosphate phosphatase (TPP), and 3 trehalase (TRE) of sugarcane, showing all their conserved domains, respectively. Putative TPS (Classes I and II) and TPP sugarcane sequences were categorized into well-known groups reported in the literature. We measured the expression levels of the sequences from one sugarcane leaf transcriptomic dataset. Furthermore, TPS Class I has specific N-glycosylation sites inserted in conserved motifs and carries catalytic and binding residues in its TPS domain. Some of these residues are mutated in TPS Class II members, which implies loss of enzyme activity. Our approach retrieved many homo(eo)logous sequences for genes involved in trehalose metabolism, paving the way to discover the role of T6P signaling in sugarcane.
Collapse
Affiliation(s)
- Lauana Pereira de Oliveira
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil
| | - Bruno Viana Navarro
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil
| | - João Pedro de Jesus Pereira
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil
| | | | - Marina C M Martins
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório de Biologia Computacional, Centro de Energia Nuclear na Agricultura, Evolutiva e de Sistemas, Universidade de São Paulo, São Paulo, Brazil. .,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil.
| | - Marcos Silveira Buckeridge
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil. .,Instituto Nacional de Ciência e Tecnologia do Bioetanol, São Paulo, Brazil.
| |
Collapse
|
13
|
Shao Y, Molestak E, Su W, Stankevič M, Tchórzewski M. Sordarin - the antifungal antibiotic with a unique modus operandi. Br J Pharmacol 2021; 179:1125-1145. [PMID: 34767248 DOI: 10.1111/bph.15724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Fungal infections cause serious problems in many aspects of human life, in particular infections in immunocompromised patients represent serious problems. Current antifungal antibiotics target various metabolic pathways, predominantly the cell wall or cellular membrane. Numerous compounds are available to combat fungal infections, but their efficacy is far from being satisfactory and some of them display high toxicity. The emerging resistance represents a serious issue as well; hence, there is a considerable need for new anti-fungal compounds with lower toxicity and higher effectiveness. One of the unique antifungal antibiotics is sordarin, the only known compound that acts on the fungal translational machinery per se. Sordarin inhibits protein synthesis at the elongation step of the translational cycle, acting on eukaryotic translation elongation factor 2. In this review, we intend to deliver a robust scientific platform promoting the development of antifungal compounds, in particular focusing on the molecular action of sordarin.
Collapse
Affiliation(s)
- Yutian Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Marek Stankevič
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
14
|
Nguyen HQ, Kim Y, Jang Y. De Novo Transcriptome Analysis Reveals Potential Thermal Adaptation Mechanisms in the Cicada Hyalessa fuscata. Animals (Basel) 2021; 11:ani11102785. [PMID: 34679807 PMCID: PMC8532856 DOI: 10.3390/ani11102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In metropolitan Seoul and its vicinity, cicadas of the species Hyalessa fuscata living in warmer areas could tolerate the heat better than those living in cooler areas, but genetic mechanisms involved in better heat tolerance remained unclear. In this study, we examined differences in gene expression of cicadas living in a warm urban area, a cool urban area and a suburban area in three experimental treatments: no heating, 10 min heating and heating until the cicadas lost their mobility. Cicadas from the warm urban area changed their gene expressions the most. Activated genes were mostly related to heat shock, energy metabolism, and detoxification. These results suggested that under heat stress, cicadas inhabiting warm areas could differentially express genes to increase their thermal tolerance. Abstract In metropolitan Seoul, populations of the cicada Hyalessa fuscata in hotter urban heat islands (“high UHIs”) exhibit higher thermal tolerance than those in cooler UHIs (“low UHIs”). We hypothesized that heat stress may activate the expression of genes that facilitate greater thermal tolerance in high-UHI cicadas than in those from cooler areas. Differences in the transcriptomes of adult female cicadas from high-UHI, low-UHI, and suburban areas were analyzed at the unheated level, after acute heat stress, and after heat torpor. No noticeable differences in unheated gene expression patterns were observed. After 10 min of acute heat stress, however, low-UHI and suburban cicadas expressed more heat shock protein genes than high-UHI counterparts. More specifically, remarkable changes in the gene expression of cicadas across areas were observed after heat torpor stimulus, as represented by a large number of up- and downregulated genes in the heat torpor groups compared with the 10 min acute heat stress and control groups. High-UHI cicadas expressed the most differentially expressed genes, followed by the low-UHI and suburban cicadas. There was a notable increase in the expression of heat shock, metabolism, and detoxification genes; meanwhile, immune-related, signal transduction, and protein turnover genes were downregulated in high-UHI cicadas versus the other cicada groups. These results suggested that under heat stress, cicadas inhabiting high-UHIs could rapidly express genes related to heat shock, energy metabolism, and detoxification to protect cells from stress-induced damage and to increase their thermal tolerance toward heat stress. The downregulation of apoptosis mechanisms in high-UHI cicadas suggested that there was less cellular damage, which likely contributed to their high tolerance of heat stress.
Collapse
Affiliation(s)
- Hoa Quynh Nguyen
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
- Institute of Chemistry, Vietnam Academy of Science and Technology, No. 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 10072, Vietnam
| | - Yuseob Kim
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
| | - Yikweon Jang
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
- Correspondence:
| |
Collapse
|
15
|
Liu F, Liang J, Zhang B, Gao Y, Yang X, Hu T, Yang H, Xu W, Guddat LW, Rao Z. Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. SCIENCE ADVANCES 2020; 6:6/44/eabb9833. [PMID: 33127676 PMCID: PMC7608808 DOI: 10.1126/sciadv.abb9833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/10/2020] [Indexed: 05/04/2023]
Abstract
In bacteria, adenosine 5'-triphosphate (ATP)-binding cassette (ABC) importers are essential for the uptake of nutrients including the nonreducing disaccharide trehalose, a metabolite that is crucial for the survival and virulence of several human pathogens including Mycobacterium tuberculosis SugABC is an ABC transporter that translocates trehalose from the periplasmic lipoprotein LpqY into the cytoplasm of mycobacteria. Here, we report four high-resolution cryo-electron microscopy structures of the mycobacterial LpqY-SugABC complex to reveal how it binds and passes trehalose through the membrane to the cytoplasm. A unique feature observed in this system is the initial mode of capture of the trehalose at the LpqY interface. Uptake is achieved by a pivotal rotation of LpqY relative to SugABC, moving from an open and accessible conformation to a clamped conformation upon trehalose binding. These findings enrich our understanding as to how ABC transporters facilitate substrate transport across the membrane in Gram-positive bacteria.
Collapse
Affiliation(s)
- Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
LeBlanc EV, Polvi EJ, Veri AO, Privé GG, Cowen LE. Structure-guided approaches to targeting stress responses in human fungal pathogens. J Biol Chem 2020; 295:14458-14472. [PMID: 32796038 DOI: 10.1074/jbc.rev120.013731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022] Open
Abstract
Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.
Collapse
Affiliation(s)
- Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert G Privé
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Crystal structures of Magnaporthe oryzae trehalose-6-phosphate synthase (MoTps1) suggest a model for catalytic process of Tps1. Biochem J 2020; 476:3227-3240. [PMID: 31455720 DOI: 10.1042/bcj20190289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022]
Abstract
Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3-β4 loop to α0 helix) and movement of a 'shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a 'closed' state compared with its 'open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.
Collapse
|
18
|
Ryu AJ, Kang NK, Jeon S, Hur DH, Lee EM, Lee DY, Jeong BR, Chang YK, Jeong KJ. Development and characterization of a Nannochloropsis mutant with simultaneously enhanced growth and lipid production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:38. [PMID: 32158502 PMCID: PMC7057510 DOI: 10.1186/s13068-020-01681-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/13/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The necessity to develop high lipid-producing microalgae is emphasized for the commercialization of microalgal biomass, which is environmentally friendly and sustainable. Nannochloropsis are one of the best industrial microalgae and have been widely studied for their lipids, including high-value polyunsaturated fatty acids (PUFAs). Many reports on the genetic and biological engineering of Nannochloropsis to improve their growth and lipid contents have been published. RESULTS We performed insertional mutagenesis in Nannochloropsis salina, and screened mutants with high lipid contents using fluorescence-activated cell sorting (FACS). We isolated a mutant, Mut68, which showed improved growth and a concomitant increase in lipid contents. Mut68 exhibited 53% faster growth rate and 34% higher fatty acid methyl ester (FAME) contents after incubation for 8 days, resulting in a 75% increase in FAME productivity compared to that in the wild type (WT). By sequencing the whole genome, we identified the disrupted gene in Mut68 that encoded trehalose-6-phosphate (T6P) synthase (TPS). TPS is composed of two domains: TPS domain and T6P phosphatase (TPP) domain, which catalyze the initial formation of T6P and dephosphorylation to trehalose, respectively. Mut68 was disrupted at the TPP domain in the C-terminal half, which was confirmed by metabolic analyses revealing a great reduction in the trehalose content in Mut68. Consistent with the unaffected N-terminal TPS domain, Mut68 showed moderate increase in T6P that is known for regulation of sugar metabolism, growth, and lipid biosynthesis. Interestingly, the metabolic analyses also revealed a significant increase in stress-related amino acids, including proline and glutamine, which may further contribute to the Mut68 phenotypes. CONCLUSION We have successfully isolated an insertional mutant showing improved growth and lipid production. Moreover, we identified the disrupted gene encoding TPS. Consistent with the disrupted TPP domain, metabolic analyses revealed a moderate increase in T6P and greatly reduced trehalose. Herein, we provide an excellent proof of concept that the selection of insertional mutations via FACS can be employed for the isolation of mutants with improved growth and lipid production. In addition, trehalose and genes encoding TPS will provide novel targets for chemical and genetic engineering, in other microalgae and organisms as well as Nannochloropsis.
Collapse
Affiliation(s)
- Ae Jin Ryu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Nam Kyu Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: Carl. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Dong Hoon Hur
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Eun Mi Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Byeong-ryool Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
- Present Address: Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Qingdao, 266101 Shandong China
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
19
|
Mycobacterial OtsA Structures Unveil Substrate Preference Mechanism and Allosteric Regulation by 2-Oxoglutarate and 2-Phosphoglycerate. mBio 2019; 10:mBio.02272-19. [PMID: 31772052 PMCID: PMC6879718 DOI: 10.1128/mbio.02272-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mycobacterial infections are a significant source of mortality worldwide, causing millions of deaths annually. Trehalose is a multipurpose disaccharide that plays a fundamental structural role in these organisms as a component of mycolic acids, a molecular hallmark of the cell envelope of mycobacteria. Here, we describe the first mycobacterial OtsA structures. We show mechanisms of substrate preference and show that OtsA is regulated allosterically by 2-oxoglutarate and 2-phosphoglycerate at an interfacial site. These results identify a new allosteric site and provide insight on the regulation of trehalose synthesis through the OtsAB pathway in mycobacteria. Trehalose is an essential disaccharide for mycobacteria and a key constituent of several cell wall glycolipids with fundamental roles in pathogenesis. Mycobacteria possess two pathways for trehalose biosynthesis. However, only the OtsAB pathway was found to be essential in Mycobacterium tuberculosis, with marked growth and virulence defects of OtsA mutants and strict essentiality of OtsB2. Here, we report the first mycobacterial OtsA structures from Mycobacterium thermoresistibile in both apo and ligand-bound forms. Structural information reveals three key residues in the mechanism of substrate preference that were further confirmed by site-directed mutagenesis. Additionally, we identify 2-oxoglutarate and 2-phosphoglycerate as allosteric regulators of OtsA. The structural analysis in this work strongly contributed to define the mechanisms for feedback inhibition, show different conformational states of the enzyme, and map a new allosteric site.
Collapse
|
20
|
Guirao-Abad JP, Pujante V, Sánchez-Fresneda R, Yagüe G, Argüelles JC. Sensitivity of the Candida albicans trehalose-deficient mutants tps1Δ and tps2Δ to amphotericin B and micafungin. J Med Microbiol 2019; 68:1479-1488. [DOI: 10.1099/jmm.0.001053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Vanessa Pujante
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30100, Spain
| | | | - Genoveva Yagüe
- Servicio de Microbiología Clínica, Hospital Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
| | | |
Collapse
|
21
|
Gonçalves LM, Trevisol ETV, de Azevedo Abrahim Vieira B, De Mesquita JF. Trehalose synthesis inhibitor: A molecular in silico drug design. J Cell Biochem 2019; 121:1114-1125. [PMID: 31478225 DOI: 10.1002/jcb.29347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/13/2019] [Indexed: 11/11/2022]
Abstract
Infectious diseases are serious public health problems, affecting a large portion of the world's population. A molecule that plays a key role in pathogenic organisms is trehalose and recently has been an interest in the metabolism of this molecule for drug development. The trehalose-6-phosphate synthase (TPS1) is an enzyme responsible for the biosynthesis of trehalose-6-phosphate (T6P) in the TPS1/TPS2 pathway, which results in the formation of trehalose. Studies carried out by our group demonstrated the inhibitory capacity of T6P in the TPS1 enzyme from Saccharomyces cerevisiae, preventing the synthesis of trehalose. By in silico techniques, we compiled sequences and experimentally determined structures of TPS1. Sequence alignments and molecular modeling were performed. The generated structures were submitted in validation of algorithms, aligned structurally and analyzed evolutionarily. Molecular docking methodology was applied to analyze the interaction between T6P and TPS1 and ADMET properties of T6P were analyzed. The results demonstrated the models created presented sequence and structural similarities with experimentally determined structures. With the molecular docking, a cavity in the protein surface was identified and the molecule T6P was interacting with the residues TYR-40, ALA-41, MET-42, and PHE-372, indicating the possible uncompetitive inhibition mechanism provided by this ligand, which can be useful in directing the molecular design of inhibitors. In ADMET analyses, T6P had acceptable risk values compared with other compounds from World Drug Index. Therefore, these results may present a promising strategy to explore to develop a broad-spectrum antibiotic of this specific target with selectivity, potency, and reduced side effects, leading to a new way to treat infectious diseases like tuberculosis and candidiasis.
Collapse
Affiliation(s)
- Lucas Machado Gonçalves
- Bioinformatics and Computational Biology Group, Federal University of Rio de Janeiro - UNIRIO, RJ, Brazil
| | | | | | - Joelma Freire De Mesquita
- Bioinformatics and Computational Biology Group, Federal University of Rio de Janeiro - UNIRIO, RJ, Brazil
| |
Collapse
|
22
|
Sun M, Zhu Z, Chen J, Yang R, Luo Q, Wu W, Yan X, Chen H. Putative trehalose biosynthesis proteins function as differential floridoside-6-phosphate synthases to participate in the abiotic stress response in the red alga Pyropia haitanensis. BMC PLANT BIOLOGY 2019; 19:325. [PMID: 31324146 PMCID: PMC6642608 DOI: 10.1186/s12870-019-1928-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The heteroside floridoside is a primary photosynthetic product that is known to contribute to osmotic acclimation in almost all orders of Rhodophyta. However, the encoding genes and enzymes responsible for the synthesis of floridoside and its isomeric form, L- or D-isofloridoside, are poorly studied. RESULTS Here, four putative trehalose-6-phosphate synthase (TPS) genes, designated as PhTPS1, PhTPS2, PhTPS3, and PhTPS4, were cloned and characterized from the red alga Pyropia haitanensis (Bangiophyceae). The deduced amino acid sequence is similar to the annotated TPS proteins of other organisms, especially the UDP-galactose substrate binding sites of PhTPS1, 2, which are highly conserved. Of these, PhTPS1, 4 are involved in the biosynthesis of floridoside and isofloridoside, with isofloridoside being the main product. PhTPS3 is an isofloridoside phosphate synthase, while PhTPS2 exhibits no activity. When challenged by desiccation, high temperature, and salt stress, PhTPS members were expressed to different degrees, but the responses to thermal stress and desiccation were stronger. CONCLUSIONS Thus, in P. haitanensis, PhTPSs encode the enzymatical activity of floridoside and isofloridoside phosphate synthase and are crucial for the abiotic stress defense response.
Collapse
Affiliation(s)
- Minxiu Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Post Box 71, Ningbo, 315211 Zhejiang Province China
| | - Zhujun Zhu
- Ningbo Institute of Oceanography, Ningbo, 315832 Zhejiang China
| | - Juanjuan Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Post Box 71, Ningbo, 315211 Zhejiang Province China
| | - Rui Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Post Box 71, Ningbo, 315211 Zhejiang Province China
| | - Qijun Luo
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Post Box 71, Ningbo, 315211 Zhejiang Province China
| | - Wei Wu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Post Box 71, Ningbo, 315211 Zhejiang Province China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Post Box 71, Ningbo, 315211 Zhejiang Province China
| | - Haimin Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Post Box 71, Ningbo, 315211 Zhejiang Province China
| |
Collapse
|
23
|
Artificial Fusion of mCherry Enhances Trehalose Transferase Solubility and Stability. Appl Environ Microbiol 2019; 85:AEM.03084-18. [PMID: 30737350 DOI: 10.1128/aem.03084-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 11/20/2022] Open
Abstract
LeLoir glycosyltransferases are important biocatalysts for the production of glycosidic bonds in natural products, chiral building blocks, and pharmaceuticals. Trehalose transferase (TreT) is of particular interest since it catalyzes the stereo- and enantioselective α,α-(1→1) coupling of a nucleotide sugar donor and monosaccharide acceptor for the synthesis of disaccharide derivatives. Heterologously expressed thermophilic trehalose transferases were found to be intrinsically aggregation prone and are mainly expressed as catalytically active inclusion bodies in Escherichia coli To disfavor protein aggregation, the thermostable protein mCherry was explored as a fluorescent protein tag. The fusion of mCherry to trehalose transferase from Pyrobaculum yellowstonensis (PyTreT) demonstrated increased protein solubility. Chaotropic agents like guanidine or the divalent cations Mn(II), Ca(II), and Mg(II) enhanced the enzyme activity of the fusion protein. The thermodynamic equilibrium constant, K eq, for the reversible synthesis of trehalose from glucose and a nucleotide sugar was determined in both the synthesis and hydrolysis directions utilizing UDP-glucose and ADP-glucose, respectively. UDP-glucose was shown to achieve higher conversions than ADP-glucose, highlighting the importance of the choice of nucleotide sugars for LeLoir glycosyltransferases under thermodynamic control.IMPORTANCE The heterologous expression of proteins in Escherichia coli is of great relevance for their functional and structural characterization and applications. However, the formation of insoluble inclusion bodies is observed in approximately 70% of all cases, and the subsequent effects can range from reduced soluble protein yields to a complete failure of the expression system. Here, we present an efficient methodology for the production and analysis of a thermostable, aggregation-prone trehalose transferase (TreT) from Pyrobaculum yellowstonensis via its fusion with mCherry as a thermostable fluorescent protein tag. This fusion strategy allowed for increased enzyme stability and solubility and could be applied to other (thermostable) proteins, allowing rapid visualization and quantification of the mCherry-fused protein of interest. Finally, we have demonstrated that the enzymatic synthesis of trehalose from glucose and a nucleotide sugar is reversible by approaching the thermodynamic equilibrium in both the synthesis and hydrolysis directions. Our results show that uridine establishes an equilibrium constant which is more in favor of the product trehalose than when adenosine is employed as the nucleotide under identical conditions. The influence of different nucleotides on the reaction can be generalized for all LeLoir glycosyltransferases under thermodynamic control as the position of the equilibrium depends solely on the reaction conditions and is not affected by the nature of the catalyst.
Collapse
|
24
|
Claeys H, Vi SL, Xu X, Satoh-Nagasawa N, Eveland AL, Goldshmidt A, Feil R, Beggs GA, Sakai H, Brennan RG, Lunn JE, Jackson D. Control of meristem determinacy by trehalose 6-phosphate phosphatases is uncoupled from enzymatic activity. NATURE PLANTS 2019; 5:352-357. [PMID: 30936436 PMCID: PMC7444751 DOI: 10.1038/s41477-019-0394-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/26/2019] [Indexed: 05/18/2023]
Abstract
Meristem fate is regulated by trehalose 6-phosphate phosphatases (TPPs), but their mechanism of action remains mysterious. Loss of the maize TPPs RAMOSA3 and TPP4 leads to reduced meristem determinacy and more inflorescence branching. However, analysis of an allelic series revealed no correlation between enzymatic activity and branching, and a catalytically inactive version of RA3 complements the ra3 mutant. Together with their nuclear localization, these findings suggest a moonlighting function for TPPs.
Collapse
Affiliation(s)
- Hannes Claeys
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Son Lang Vi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Agricultural Genetics Institute, Hanoi, Vietnam
| | - Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Namiko Satoh-Nagasawa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- DuPont Pioneer, Wilmington, DE, USA
- Akita Prefectural University, Akita, Japan
| | | | - Alexander Goldshmidt
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Hajime Sakai
- DuPont Pioneer, Wilmington, DE, USA
- Napigen, Wilmington, DE, USA
| | | | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
25
|
Zheng YH, Ma YY, Ding Y, Chen XQ, Gao GX. An insight into new strategies to combat antifungal drug resistance. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3807-3816. [PMID: 30464412 PMCID: PMC6225914 DOI: 10.2147/dddt.s185833] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections especially in immunocompromised patients represent a dominating cause of mortality. The most commonly used antifungal agents can be divided into three broad categories, including triazoles, echinocandins and polyenes. Antifungal resistance is on the increase, posing a growing threat to the stewardship of immunocompromised patients with fungal infections. The paucity of currently available antifungals leads to the rapid emergence of drug resistance and thus aggravates the refractoriness of invasive fungal infections. Therefore, deep exploration into mechanisms of drug resistance and search for new antifungal targets are required. This review highlights the therapeutic strategies targeting Hsp90, calcineurin, trehalose biosynthesis and sphingolipids biosynthesis, in an attempt to provide clinical evidence for overcoming drug resistance and to form the rationale for combination therapy of conventional antifungals and agents with novel mechanisms of action. What’s more, this review also gives a concise introduction of three new-fashioned antifungals, including carboxymethyl chitosan, silver nanoparticles and chromogranin A-N46.
Collapse
Affiliation(s)
- Yan-Hua Zheng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, ;
| | - Yue-Yun Ma
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xie-Qun Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, ;
| | - Guang-Xun Gao
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, ;
| |
Collapse
|
26
|
Wu X, Hou Z, Huang C, Chen Q, Gao W, Zhang J. Cloning, purification and characterization of trehalose-6-phosphate synthase from Pleurotus tuoliensis. PeerJ 2018; 6:e5230. [PMID: 30013854 PMCID: PMC6046196 DOI: 10.7717/peerj.5230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/22/2018] [Indexed: 12/05/2022] Open
Abstract
Pleurotus tuoliensis, a kind of valuable and favorable edible mushroom in China, is always subjected to high environmental temperature during cultivation. In our previous study with P. tuoliensis, trehalose proved to be effective for tolerating heat stress. Trehalose-6-phosphate synthase (TPS; EC2.4.1.15) plays a key role in the biosynthesis of trehalose in fungi. In this study, a full-length of cDNA with 1,665 nucleotides encoding TPS (PtTPS) in P. tuoliensis was cloned. The PtTPS amino acid was aligned with other homologues and several highly conserved regions were analyzed. Thus, the TPS protein was expressed in Escherichia coli and purified by affinity chromatography to test its biochemical properties. The molecular mass of the enzyme is about 60 kDa and the optimum reaction temperature and pH is 30 °C and 7, respectively. The UDP-glucose and glucose-6-phosphate were the optimum substrates among all the tested glucosyl donors and acceptors. Metal cations like Mg2+, Co2+, Mn2+, Ni2+, K+, Ag+ stimulated PtTPS activity significantly. Metal chelators such as sodium citrate, citric acid, EDTA, EGTA and CDTA inhibited enzyme activity. Polyanions like heparin and chondroitin sulfate were shown to stimulate TPS activity.
Collapse
Affiliation(s)
- Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Zhihao Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Qiang Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| |
Collapse
|