1
|
Raheem A, Lu D, Khalid AK, Zhao G, Fu Y, Chen Y, Chen X, Hu C, Chen J, Chen H, Guo A. The Identification of a Novel Nucleomodulin MbovP467 of Mycoplasmopsis bovis and Its Potential Contribution in Pathogenesis. Cells 2024; 13:604. [PMID: 38607043 PMCID: PMC11011252 DOI: 10.3390/cells13070604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Mycoplasmopsis bovis is a causative agent of crucial diseases in both dairy and beef cattle leading to substantial economic losses. However, limited control measures for M. bovis-related diseases exist due to a lack of understanding about the virulence factors of this pathogen, a common challenge in mycoplasma research. Consequently, this study aimed to characterize a novel nucleomodulin as a virulence-related factor of M. bovis. Employing bioinformatic tools, we initially predicted MbovP467 to be a secreted protein with a nuclear localization signal based on SignalP scores and the cNLS (Nuclear Localization Signal) Mapper, respectively. Subsequently, the MbovP467 gene was synthesized and cloned into a pEGFP plasmid with EGFP labeling to obtain a recombinant plasmid (rpEGFP-MbovP467) and then was also cloned in pET-30a with a consideration for an Escherichia coli codon bias and expressed and purified for the production of polyclonal antibodies against the recombinant MbovP467 protein. Confocal microscopy and a Western blotting assay confirmed the nuclear location of MbovP467 in bovine macrophages (BoMacs). RNA-seq data revealed 220 up-regulated and 20 down-regulated genes in the rpEGFP-MbovP467-treated BoMac group compared to the control group (pEGFP). A GO- and KEGG-enrichment analysis identified associations with inflammatory responses, G protein-coupled receptor signaling pathways, nuclear receptor activity, sequence-specific DNA binding, the regulation of cell proliferation, IL-8, apoptotic processes, cell growth and death, the TNF signaling pathway, the NF-κB signaling pathway, pathways in cancer, and protein families of signaling and cellular processes among the differentially expressed up-regulated mRNAs. Further experiments, investigating cell viability and the inflammatory response, demonstrated that MbovP467 reduces BoMac cell viability and induces the mRNA expression of IL-1β, IL-6, IL-8, TNF-α, and apoptosis in BoMac cells. Further, MbovP467 increased the promoter activity of TNF-α. In conclusion, this study identified a new nucleomodulin, MbovP467, for M. bovis, which might have an important role in M. bovis pathogenesis.
Collapse
Affiliation(s)
- Abdul Raheem
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdul Karim Khalid
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yingjie Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.R.); (D.L.); (A.K.K.); (Y.F.); (Y.C.); (X.C.); (C.H.); (J.C.); (H.C.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Pourpre R, Lakisic G, Desgranges E, Cossart P, Pagliuso A, Bierne H. A bacterial virulence factor interacts with the splicing factor RBM5 and stimulates formation of nuclear RBM5 granules. Sci Rep 2022; 12:21961. [PMID: 36535993 PMCID: PMC9763339 DOI: 10.1038/s41598-022-26037-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
L. monocytogenes causes listeriosis, a foodborne disease that is particularly dangerous for immunocompromised individuals and fetuses. Several virulence factors of this bacterial pathogen belong to a family of leucine-rich repeat (LRR)-containing proteins called internalins. Among these, InlP is known for its role in placental infection. We report here a function of InlP in mammalian cell nucleus organization. We demonstrate that bacteria do not produce InlP under in vitro culture conditions. When ectopically expressed in human cells, InlP translocates into the nucleus and changes the morphology of nuclear speckles, which are membrane-less organelles storing splicing factors. Using yeast two-hybrid screen, immunoprecipitation and pull-down experiments, we identify the tumor suppressor and splicing factor RBM5 as a major nuclear target of InlP. InlP inhibits RBM5-induced cell death and stimulate the formation of RBM5-induced nuclear granules, where the SC35 speckle protein redistributes. Taken together, these results suggest that InlP acts as a nucleomodulin controlling compartmentalization and function of RBM5 in the nucleus and that L. monocytogenes has developed a mechanism to target the host cell splicing machinery.
Collapse
Affiliation(s)
- Renaud Pourpre
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Goran Lakisic
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Emma Desgranges
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Pascale Cossart
- grid.428999.70000 0001 2353 6535Institut Pasteur, Paris, France
| | - Alessandro Pagliuso
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Hélène Bierne
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| |
Collapse
|
4
|
Deciphering the virulence potential of Listeria monocytogenes in the Norwegian meat and salmon processing industry by combining whole genome sequencing and in vitro data. Int J Food Microbiol 2022; 383:109962. [DOI: 10.1016/j.ijfoodmicro.2022.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
5
|
Pyz-Łukasik R, Paszkiewicz W, Kiełbus M, Ziomek M, Gondek M, Domaradzki P, Michalak K, Pietras-Ożga D. Genetic Diversity and Potential Virulence of Listeria monocytogenes Isolates Originating from Polish Artisanal Cheeses. Foods 2022; 11:2805. [PMID: 36140933 PMCID: PMC9497517 DOI: 10.3390/foods11182805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Artisanal cheeses can be sources of Listeria monocytogenes and cause disease in humans. This bacterial pathogen is a species of diverse genotypic and phenotypic characteristics. The aim of the study was to characterize 32 isolates of L. monocytogenes isolated in 2014-2018 from artisanal cheeses. The isolates were characterized using whole genome sequencing and bioinformatics analysis. The artisanal cheese isolates resolved to four molecular groups: 46.9% of them to IIa (1/2a-3a), 31.2% to IVb (4ab-4b-4d-4e), 12.5% to IIc (1/2c-3c), and 9.4% to IIb (1/2b-3b-7). Two evolutionary lineages emerged: lineage II having 59.4% of the isolates and lineage I having 40.6%. The sequence types (ST) totaled 18: ST6 (15.6% of the isolates), ST2, ST20, ST26, and ST199 (each 9.4%), ST7 and ST9 (each 6.3%), and ST1, ST3, ST8, ST16, ST87, ST91, ST121, ST122, ST195, ST217, and ST580 (each 3.1%). There were 15 detected clonal complexes (CC): CC6 (15.6% of isolates), CC9 (12.5%), CC2, CC20, CC26, and CC199 (each 9.4%), CC7 and CC8 (each 6.3%), and CC1, CC3, CC14, CC87, CC121, CC195, and CC217 (each 3.1%). The isolates were varied in their virulence genes and the differences concerned: inl, actA, LIPI-3, ami, gtcA, aut, vip, and lntA.
Collapse
Affiliation(s)
- Renata Pyz-Łukasik
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Waldemar Paszkiewicz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Monika Ziomek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Michał Gondek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Piotr Domaradzki
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| |
Collapse
|
6
|
Fan H, Guo Y, Tsai YH, Storey AJ, Kim A, Gong W, Edmondson RD, Mackintosh SG, Li H, Byrum SD, Tackett A, Cai L, Wang GG. A conserved BAH module within mammalian BAHD1 connects H3K27me3 to Polycomb gene silencing. Nucleic Acids Res 2021; 49:4441-4455. [PMID: 33823544 PMCID: PMC8096256 DOI: 10.1093/nar/gkab210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Trimethylation of histone H3 lysine 27 (H3K27me3) is important for gene silencing and imprinting, (epi)genome organization and organismal development. In a prevalent model, the functional readout of H3K27me3 in mammalian cells is achieved through the H3K27me3-recognizing chromodomain harbored within the chromobox (CBX) component of canonical Polycomb repressive complex 1 (cPRC1), which induces chromatin compaction and gene repression. Here, we report that binding of H3K27me3 by a Bromo Adjacent Homology (BAH) domain harbored within BAH domain-containing protein 1 (BAHD1) is required for overall BAHD1 targeting to chromatin and for optimal repression of the H3K27me3-demarcated genes in mammalian cells. Disruption of direct interaction between BAHD1BAH and H3K27me3 by point mutagenesis leads to chromatin remodeling, notably, increased histone acetylation, at its Polycomb gene targets. Mice carrying an H3K27me3-interaction-defective mutation of Bahd1BAH causes marked embryonic lethality, showing a requirement of this pathway for normal development. Altogether, this work demonstrates an H3K27me3-initiated signaling cascade that operates through a conserved BAH 'reader' module within BAHD1 in mammals.
Collapse
Affiliation(s)
- Huitao Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Arum Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, and Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Bierne H, Hamon M. Targeting host epigenetic machinery: The Listeria paradigm. Cell Microbiol 2021; 22:e13169. [PMID: 32185898 DOI: 10.1111/cmi.13169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
By modifying the host cell transcription programme, pathogenic bacteria disrupt a wide range of cellular processes and take control of the host's immune system. Conversely, by mobilising a network of defence genes, the host cells trigger various responses that allow them to tolerate or eliminate invaders. The study of the molecular basis of this crosstalk is crucial to the understanding of infectious diseases. Although research has long focused on the targeting of eukaryotic DNA-binding transcription factors, more recently, another powerful way by which bacteria modify the expression of host genes has emerged: chromatin modifications in the cell nucleus. One of the most prolific bacterial models in this area has been Listeria monocytogenes, a facultative intracellular bacterium responsible for serious food-borne infections. Here, we aim to highlight the contribution of this model to the field of bacteria-mediated chromatin modifications. We will first recall the general principles of epigenetic regulation and then illustrate five mechanisms that mobilise the epigenetic machinery in response to Listeria factors, either through bacterial molecular patterns, a toxin, an invasion protein, or nucleomodulins. Strategies used by Listeria to control the expression of host genes at the chromatin level, by activation of cytosolic signalling pathways or direct targeting of epifactors in the nucleus, have contributed to the emergence of a new discipline combining cellular microbiology and epigenetics: "patho-epigenetics."
Collapse
Affiliation(s)
- Hélène Bierne
- Université Paris Saclay, INRAE, AgroParisTech, Micalis Institute, Epigenetics and Cellular Microbiology Team, Jouy-en-Josas, France
| | - Mélanie Hamon
- G5 Chromatin and Infection, Institut Pasteur, Paris, France
| |
Collapse
|
8
|
Le LHM, Ying L, Ferrero RL. Nuclear trafficking of bacterial effector proteins. Cell Microbiol 2021; 23:e13320. [PMID: 33600054 DOI: 10.1111/cmi.13320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens can subvert host responses by producing effector proteins that directly target the nucleus of eukaryotic cells in animals and plants. Nuclear-targeting proteins are categorised as either: "nucleomodulins," which have epigenetic-modulating activities; or "cyclomodulins," which specifically interfere with the host cell cycle. Bacteria can deliver these effector proteins to eukaryotic cells via a range of strategies. Despite an increasing number of reports describing the effects of bacterial effector proteins on nuclear processes in host cells, the intracellular pathways used by these proteins to traffic to the nucleus have yet to be fully elucidated. This review will describe current knowledge about how nucleomodulins and cyclomodulins enter eukaryotic cells, exploit endocytic pathways and translocate to the nucleus. We will also discuss the secretion of nuclear-targeting proteins or their release in bacterial membrane vesicles and the trafficking pathways employed by each of these forms. Besides their importance for bacterial pathogenesis, some nuclear-targeting proteins have been implicated in the development of chronic diseases and even cancer. A greater understanding of nuclear-targeting proteins and their actions will provide new insights into the pathogenesis of infectious diseases, as well as contribute to advances in the development of novel therapies against bacterial infections and possibly cancer.
Collapse
Affiliation(s)
- Lena Hoang My Le
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Hanford HE, Von Dwingelo J, Abu Kwaik Y. Bacterial nucleomodulins: A coevolutionary adaptation to the eukaryotic command center. PLoS Pathog 2021; 17:e1009184. [PMID: 33476322 PMCID: PMC7819608 DOI: 10.1371/journal.ppat.1009184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Through long-term interactions with their hosts, bacterial pathogens have evolved unique arsenals of effector proteins that interact with specific host targets and reprogram the host cell into a permissive niche for pathogen proliferation. The targeting of effector proteins into the host cell nucleus for modulation of nuclear processes is an emerging theme among bacterial pathogens. These unique pathogen effector proteins have been termed in recent years as "nucleomodulins." The first nucleomodulins were discovered in the phytopathogens Agrobacterium and Xanthomonas, where their nucleomodulins functioned as eukaryotic transcription factors or integrated themselves into host cell DNA to promote tumor induction, respectively. Numerous nucleomodulins were recently identified in mammalian pathogens. Bacterial nucleomodulins are an emerging family of pathogen effector proteins that evolved to target specific components of the host cell command center through various mechanisms. These mechanisms include: chromatin dynamics, histone modification, DNA methylation, RNA splicing, DNA replication, cell cycle, and cell signaling pathways. Nucleomodulins may induce short- or long-term epigenetic modifications of the host cell. In this extensive review, we discuss the current knowledge of nucleomodulins from plant and mammalian pathogens. While many nucleomodulins are already identified, continued research is instrumental in understanding their mechanisms of action and the role they play during the progression of pathogenesis. The continued study of nucleomodulins will enhance our knowledge of their effects on nuclear chromatin dynamics, protein homeostasis, transcriptional landscapes, and the overall host cell epigenome.
Collapse
Affiliation(s)
- Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Juanita Von Dwingelo
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
- Center for Predicative Medicine, College of Medicine, University of Louisville, Kentucky, United States of America
| |
Collapse
|
10
|
Ma Z, Li R, Hu R, Deng X, Xu Y, Zheng W, Yi J, Wang Y, Chen C. Brucella abortus BspJ Is a Nucleomodulin That Inhibits Macrophage Apoptosis and Promotes Intracellular Survival of Brucella. Front Microbiol 2020; 11:599205. [PMID: 33281799 PMCID: PMC7688787 DOI: 10.3389/fmicb.2020.599205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
To date, a variety of Brucella effector proteins have been found to mediate host cell secretion, autophagy, inflammation, and other signal pathways, but nuclear effector proteins have not yet been reported. We identified the first Brucella nucleomodulin, BspJ, and we screened out the BspJ interaction host proteins NME/NM23 nucleoside diphosphate kinase 2 (NME2) and creatine kinase B (CKB) through yeast two-hybrid and co-immunoprecipitation assays. These proteins are related to the host cell energy synthesis, metabolism, and apoptosis pathways. Brucella nucleomodulin BspJ will decrease the expression level of NME2 and CKB. In addition, BspJ gene deletion strains promoted the apoptosis of macrophages and reduced the intracellular survival of Brucella in host cells. In short, we found nucleomodulin BspJ may directly or indirectly regulate host cell apoptosis through the interaction with NME2 and CKB by mediating energy metabolism pathways in response to the intracellular circulation of Brucella infection, but the mechanism needs further study.
Collapse
Affiliation(s)
- Zhongchen Ma
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ruirui Li
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ruirui Hu
- College of Life Science, Shihezi University, Shihezi, China
| | - Xiaoyu Deng
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yimei Xu
- Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Wei Zheng
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jihai Yi
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
11
|
Pourpre R, Naudon L, Meziane H, Lakisic G, Jouneau L, Varet H, Legendre R, Wendling O, Selloum M, Proux C, Coppée JY, Herault Y, Bierne H. BAHD1 haploinsufficiency results in anxiety-like phenotypes in male mice. PLoS One 2020; 15:e0232789. [PMID: 32407325 PMCID: PMC7224496 DOI: 10.1371/journal.pone.0232789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
BAHD1 is a heterochomatinization factor recently described as a component of a multiprotein complex associated with histone deacetylases HDAC1/2. The physiological and patho-physiological functions of BAHD1 are not yet well characterized. Here, we examined the consequences of BAHD1 deficiency in the brains of male mice. While Bahd1 knockout mice had no detectable defects in brain anatomy, RNA sequencing profiling revealed about 2500 deregulated genes in Bahd1-/- brains compared to Bahd1+/+ brains. A majority of these genes were involved in nervous system development and function, behavior, metabolism and immunity. Exploration of the Allen Brain Atlas and Dropviz databases, assessing gene expression in the brain, revealed that expression of the Bahd1 gene was limited to a few territories and cell subtypes, particularly in the hippocampal formation, the isocortex and the olfactory regions. The effect of partial BAHD1 deficiency on behavior was then evaluated on Bahd1 heterozygous male mice, which have no lethal or metabolic phenotypes. Bahd1+/- mice showed anxiety-like behavior and reduced prepulse inhibition (PPI) of the startle response. Altogether, these results suggest that BAHD1 plays a role in chromatin-dependent gene regulation in a subset of brain cells and support recent evidence linking genetic alteration of BAHD1 to psychiatric disorders in a human patient.
Collapse
Affiliation(s)
- Renaud Pourpre
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Micalis Institute, Université Paris-Saclay, CNRS, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Hamid Meziane
- Institut Clinique de la Souris-ICS, Université de Strasbourg, CNRS, INSERM, PHENOMIN, Illkirch, France
| | - Goran Lakisic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hugo Varet
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Paris, France
- Institut Pasteur, Transcriptome and Epigenome Platform, Biomics Pole, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Paris, France
- Institut Pasteur, Transcriptome and Epigenome Platform, Biomics Pole, Paris, France
| | - Olivia Wendling
- Institut Clinique de la Souris-ICS, Université de Strasbourg, CNRS, INSERM, PHENOMIN, Illkirch, France
| | - Mohammed Selloum
- Institut Clinique de la Souris-ICS, Université de Strasbourg, CNRS, INSERM, PHENOMIN, Illkirch, France
| | - Caroline Proux
- Institut Pasteur, Transcriptome and Epigenome Platform, Biomics Pole, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Transcriptome and Epigenome Platform, Biomics Pole, Paris, France
| | - Yann Herault
- Institut Clinique de la Souris-ICS, Université de Strasbourg, CNRS, INSERM, PHENOMIN, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), UMR7104, U1268, Illkirch, France
| | - Hélène Bierne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
12
|
Pathogenic Biohacking: Induction, Modulation and Subversion of Host Transcriptional Responses by Listeria monocytogenes. Toxins (Basel) 2020; 12:toxins12050294. [PMID: 32380645 PMCID: PMC7290974 DOI: 10.3390/toxins12050294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
During infection, the foodborne bacterial pathogen Listeria monocytogenes dynamically influences the gene expression profile of host cells. Infection-induced transcriptional changes are a typical feature of the host-response to bacteria and contribute to the activation of protective genes such as inflammatory cytokines. However, by using specialized virulence factors, bacterial pathogens can target signaling pathways, transcription factors, and epigenetic mechanisms to alter host gene expression, thereby reprogramming the response to infection. Therefore, the transcriptional profile that is established in the host is delicately balanced between antibacterial responses and pathogenesis, where any change in host gene expression might significantly influence the outcome of infection. In this review, we discuss the known transcriptional and epigenetic processes that are engaged during Listeria monocytogenes infection, the virulence factors that can remodel them, and the impact these processes have on the outcome of infection.
Collapse
|
13
|
Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins. Toxins (Basel) 2020; 12:toxins12040220. [PMID: 32244550 PMCID: PMC7232420 DOI: 10.3390/toxins12040220] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
Pathogenic bacteria secrete a variety of proteins that manipulate host cell function by targeting components of the plasma membrane, cytosol, or organelles. In the last decade, several studies identified bacterial factors acting within the nucleus on gene expression or other nuclear processes, which has led to the emergence of a new family of effectors called “nucleomodulins”. In human and animal pathogens, Listeria monocytogenes for Gram-positive bacteria and Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, Legionella pneumophila, Shigella flexneri, and Escherichia coli for Gram-negative bacteria, have led to pioneering discoveries. In this review, we present these paradigms and detail various mechanisms and core elements (e.g., DNA, histones, epigenetic regulators, transcription or splicing factors, signaling proteins) targeted by nucleomodulins. We particularly focus on nucleomodulins interacting with epifactors, such as LntA of Listeria and ankyrin repeat- or tandem repeat-containing effectors of Rickettsiales, and nucleomodulins from various bacterial species acting as post-translational modification enzymes. The study of bacterial nucleomodulins not only generates important knowledge about the control of host responses by microbes but also creates new tools to decipher the dynamic regulations that occur in the nucleus. This research also has potential applications in the field of biotechnology. Finally, this raises questions about the epigenetic effects of infectious diseases.
Collapse
|
14
|
Abstract
The Gram-positive pathogen Listeria monocytogenes is able to promote its entry into a diverse range of mammalian host cells by triggering plasma membrane remodeling, leading to bacterial engulfment. Upon cell invasion, L. monocytogenes disrupts its internalization vacuole and translocates to the cytoplasm, where bacterial replication takes place. Subsequently, L. monocytogenes uses an actin-based motility system that allows bacterial cytoplasmic movement and cell-to-cell spread. L. monocytogenes therefore subverts host cell receptors, organelles and the cytoskeleton at different infection steps, manipulating diverse cellular functions that include ion transport, membrane trafficking, post-translational modifications, phosphoinositide production, innate immune responses as well as gene expression and DNA stability.
Collapse
|
15
|
Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 2018; 16:32-46. [PMID: 29176582 DOI: 10.1038/nrmicro.2017.126] [Citation(s) in RCA: 469] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen responsible for a disease called listeriosis, which is potentially lethal in immunocompromised individuals. This bacterium, first used as a model to study cell-mediated immunity, has emerged over the past 20 years as a paradigm in infection biology, cell biology and fundamental microbiology. In this Review, we highlight recent advances in the understanding of human listeriosis and L. monocytogenes biology. We describe unsuspected modes of hijacking host cell biology, ranging from changes in organelle morphology to direct effects on host transcription via a new class of bacterial effectors called nucleomodulins. We then discuss advances in understanding infection in vivo, including the discovery of tissue-specific virulence factors and the 'arms race' among bacteria competing for a niche in the microbiota. Finally, we describe the complexity of bacterial regulation and physiology, incorporating new insights into the mechanisms of action of a series of riboregulators that are critical for efficient metabolic regulation, antibiotic resistance and interspecies competition.
Collapse
Affiliation(s)
- Lilliana Radoshevich
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- French National Institute for Agricultural Research (INRA), Unité sous-contrat 2020, F-75015 Paris, France
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- French National Institute for Agricultural Research (INRA), Unité sous-contrat 2020, F-75015 Paris, France
| |
Collapse
|
16
|
Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Nat Commun 2017; 8:244. [PMID: 28811474 PMCID: PMC5557760 DOI: 10.1038/s41467-017-00279-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/16/2017] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis PtpA is a secreted effector protein that dephosphorylates several proteins in the host cell cytoplasm, such as p-JNK, p-p38, and p-VPS33B, leading to suppression of host innate immunity. Here we show that, in addition, PtpA enters the nucleus of host cells and regulates the expression of host genes, some of which are known to be involved in host innate immunity or in cell proliferation and migration (such as GADD45A). PtpA can bind directly to the promoter region of GADD45A in vitro. Both phosphatase activity and DNA-binding ability of PtpA are important in suppressing host innate immune responses. Furthermore, PtpA-expressing Mycobacterium bovis BCG promotes proliferation and migration of human lung adenoma A549 cells in vitro and in a mouse xenograft model. Further research is needed to test whether mycobacteria, via PtpA, might affect cell proliferation or migration in humans. Mycobacterium tuberculosis secretes a protein, PtpA, that dephosphorylates proteins in the host cell cytoplasm, weakening immune responses. Here, the authors show that PtpA also enters the nucleus, affects the expression of several host genes, and promotes proliferation and migration of a cancer cell line.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Feng Tian
- Center for Bioinformatics, Peking University, Beijing, 100871, China
| | - Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Mingzhao Zhu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Guangxun Meng
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, 278-0022, Japan
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
17
|
Rolhion N, Cossart P. How the study of Listeria monocytogenes has led to new concepts in biology. Future Microbiol 2017; 12:621-638. [PMID: 28604108 DOI: 10.2217/fmb-2016-0221] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The opportunistic intracellular bacterial pathogen Listeria monocytogenes has in 30 years emerged as an exceptional bacterial model system in infection biology. Research on this bacterium has provided considerable insight into how pathogenic bacteria adapt to mammalian hosts, invade eukaryotic cells, move intracellularly, interfere with host cell functions and disseminate within tissues. It also contributed to unveil features of normal host cell pathways and unsuspected functions of previously known cellular proteins. This review provides an updated overview of our knowledge on this pathogen. In many examples, findings on L. monocytogenes provided the basis for new concepts in bacterial regulation, cell biology and infection processes.
Collapse
Affiliation(s)
- Nathalie Rolhion
- Département de Biologie Cellulaire et Infection, Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France.,INSERM, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Pascale Cossart
- Département de Biologie Cellulaire et Infection, Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France.,INSERM, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| |
Collapse
|
18
|
|
19
|
Dumler JS, Sinclair SH, Pappas-Brown V, Shetty AC. Genome-Wide Anaplasma phagocytophilum AnkA-DNA Interactions Are Enriched in Intergenic Regions and Gene Promoters and Correlate with Infection-Induced Differential Gene Expression. Front Cell Infect Microbiol 2016; 6:97. [PMID: 27703927 PMCID: PMC5028410 DOI: 10.3389/fcimb.2016.00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
Anaplasma phagocytophilum, an obligate intracellular prokaryote, infects neutrophils, and alters cardinal functions via reprogrammed transcription. Large contiguous regions of neutrophil chromosomes are differentially expressed during infection. Secreted A. phagocytophilum effector AnkA transits into the neutrophil or granulocyte nucleus to complex with DNA in heterochromatin across all chromosomes. AnkA binds to gene promoters to dampen cis-transcription and also has features of matrix attachment region (MAR)-binding proteins that regulate three-dimensional chromatin architecture and coordinate transcriptional programs encoded in topologically-associated chromatin domains. We hypothesize that identification of additional AnkA binding sites will better delineate how A. phagocytophilum infection results in reprogramming of the neutrophil genome. Using AnkA-binding ChIP-seq, we showed that AnkA binds broadly throughout all chromosomes in a reproducible pattern, especially at: (i) intergenic regions predicted to be MARs; (ii) within predicted lamina-associated domains; and (iii) at promoters ≤ 3000 bp upstream of transcriptional start sites. These findings provide genome-wide support for AnkA as a regulator of cis-gene transcription. Moreover, the dominant mark of AnkA in distal intergenic regions known to be AT-enriched, coupled with frequent enrichment in the nuclear lamina, provides strong support for its role as a MAR-binding protein and genome “re-organizer.” AnkA must be considered a prime candidate to promote neutrophil reprogramming and subsequent functional changes that belie improved microbial fitness and pathogenicity.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | | | - Valeria Pappas-Brown
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Amol C Shetty
- Informatics Resource Center, Institute for Genome Sciences, University of Maryland Baltimore, MD, USA
| |
Collapse
|
20
|
Lakisic G, Lebreton A, Pourpre R, Wendling O, Libertini E, Radford EJ, Le Guillou M, Champy MF, Wattenhofer-Donzé M, Soubigou G, Ait-Si-Ali S, Feunteun J, Sorg T, Coppée JY, Ferguson-Smith AC, Cossart P, Bierne H. Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism. PLoS Genet 2016; 12:e1005898. [PMID: 26938916 PMCID: PMC4777444 DOI: 10.1371/journal.pgen.1005898] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/04/2016] [Indexed: 11/18/2022] Open
Abstract
BAHD1 is a vertebrate protein that promotes heterochromatin formation and gene repression in association with several epigenetic regulators. However, its physiological roles remain unknown. Here, we demonstrate that ablation of the Bahd1 gene results in hypocholesterolemia, hypoglycemia and decreased body fat in mice. It also causes placental growth restriction with a drop of trophoblast glycogen cells, a reduction of fetal weight and a high neonatal mortality rate. By intersecting transcriptome data from murine Bahd1 knockout (KO) placentas at stages E16.5 and E18.5 of gestation, Bahd1-KO embryonic fibroblasts, and human cells stably expressing BAHD1, we also show that changes in BAHD1 levels alter expression of steroid/lipid metabolism genes. Biochemical analysis of the BAHD1-associated multiprotein complex identifies MIER proteins as novel partners of BAHD1 and suggests that BAHD1-MIER interaction forms a hub for histone deacetylases and methyltransferases, chromatin readers and transcription factors. We further show that overexpression of BAHD1 leads to an increase of MIER1 enrichment on the inactive X chromosome (Xi). In addition, BAHD1 and MIER1/3 repress expression of the steroid hormone receptor genes ESR1 and PGR, both playing important roles in placental development and energy metabolism. Moreover, modulation of BAHD1 expression in HEK293 cells triggers epigenetic changes at the ESR1 locus. Together, these results identify BAHD1 as a core component of a chromatin-repressive complex regulating placental morphogenesis and body fat storage and suggest that its dysfunction may contribute to several human diseases.
Collapse
Affiliation(s)
- Goran Lakisic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| | - Alice Lebreton
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- INSERM U604, Paris, France
- INRA USC2020, Paris, France
| | - Renaud Pourpre
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| | - Olivia Wendling
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Emanuele Libertini
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Elizabeth J. Radford
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom
| | - Morwenna Le Guillou
- CNRS UMR8200 Stabilité génétique et oncogenèse, Université Paris-Saclay, Villejuif, France
| | - Marie-France Champy
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Marie Wattenhofer-Donzé
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Guillaume Soubigou
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | | | - Jean Feunteun
- CNRS UMR8200 Stabilité génétique et oncogenèse, Université Paris-Saclay, Villejuif, France
| | - Tania Sorg
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Jean-Yves Coppée
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | | | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- INSERM U604, Paris, France
- INRA USC2020, Paris, France
| | - Hélène Bierne
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| |
Collapse
|
21
|
Abstract
Our understanding of epigenetics in complex diseases is rapidly advancing and increasingly influencing the practice of medicine. Much is known about disruption of chromatin-modifying enzymes in malignant disease, but knowledge of irregular epigenetics in immune-driven disorders is just emerging. Epigenetic factors, such as DNA or histone modifications, are indispensable for precise gene expression in diverse immune cell types. Thus a disruption of epigenetic landscapes likely has a large impact on immune homeostasis. Moreover, the low concordance rates for most autoimmune diseases suggest that epigenetics contribute to immune tolerance disturbance. Here we review the important role of epigenetics for initiation, maintenance, tolerance, and training of immune responses. We discuss evolving evidence that DNA/histone modifications and chromatin-modifying enzymes are altered in immune-based diseases. Furthermore, we explore the potential of small molecules targeting epigenetic machinery, some of which are already used in oncology, as a way to reset the immune response in disease.
Collapse
|
22
|
Niller HH, Minarovits J. Patho-epigenetics of Infectious Diseases Caused by Intracellular Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:107-130. [PMID: 26659266 DOI: 10.1007/978-3-319-24738-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In multicellular eukaryotes including plants, animals and humans, epigenetic reprogramming may play a role in the pathogenesis of a wide variety of diseases. Recent studies revealed that in addition to viruses, pathogenic bacteria are also capable to dysregulate the epigenetic machinery of their target cells. In this chapter we focus on epigenetic alterations induced by bacteria infecting humans. Most of them are obligate or facultative intracellular bacteria that produce either bacterial toxins and surface proteins targeting the host cell membrane, or synthesise effector proteins entering the host cell nucleus. These bacterial products typically elicit histone modifications, i.e. alter the "histone code". Bacterial pathogens are capable to induce alterations of host cell DNA methylation patterns, too. Such changes in the host cell epigenotype and gene expression pattern may hinder the antibacterial immune response and create favourable conditions for bacterial colonization, growth, or spread. Epigenetic dysregulation mediated by bacterial products may also facilitate the production of inflammatory cytokines and other inflammatory mediators affecting the epigenotype of their target cells. Such indirect epigenetic changes as well as direct interference with the epigenetic machinery of the host cells may contribute to the initiation and progression of malignant tumors associated with distinct bacterial infections.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| |
Collapse
|
23
|
Rennoll-Bankert KE, Garcia-Garcia JC, Sinclair SH, Dumler JS. Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell Microbiol 2015; 17:1640-52. [PMID: 25996657 DOI: 10.1111/cmi.12461] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
Control of host epigenetics is becoming evident as a mechanism by which symbionts and pathogens survive. Anaplasma phagocytophilum, an obligate intracellular bacterium, down-regulates multiple host defence genes where histone deacetylase 1 (HDAC1) binds and histone 3 is deacetylated at their promoters, including the NADPH oxidase component, CYBB. How HDAC1 is targeted to defence gene promoters is unknown. Ankyrin A (AnkA), an A. phagocytophilum type IV secretion system effector, enters the granulocyte nucleus, binds stretches of AT-rich DNA and alters transcription of antimicrobial defence genes, including down-regulation of CYBB. Here we found AnkA binds to a predicted matrix attachment region in the proximal CYBB promoter. Using the CYBB promoter as a model of cis-gene silencing, we interrogated the mechanism of AnkA-mediated CYBB repression. The N-terminus of AnkA was critical for nuclear localization, the central ANK repeats and C-terminus were important for DNA binding, and most promoter activity localized to the central ANK repeats. Furthermore, a direct interaction between AnkA and HDAC1 was detected at the CYBB promoter, and was critical for AnkA-mediated CYBB repression. This novel microbial manipulation of host chromatin and gene expression provides important evidence of the direct effects that prokaryotic nuclear effectors can exert over host transcription and function.
Collapse
Affiliation(s)
- Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Sara H Sinclair
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Stephen Dumler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Organelle targeting during bacterial infection: insights from Listeria. Trends Cell Biol 2015; 25:330-8. [DOI: 10.1016/j.tcb.2015.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
25
|
Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity. Immunol Cell Biol 2015; 93:233-44. [PMID: 25559622 PMCID: PMC4885213 DOI: 10.1038/icb.2014.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/31/2014] [Indexed: 12/14/2022]
Abstract
The interaction of innate immune cells with pathogens leads to changes in gene expression that elicit our body's first line of defense against infection. Although signaling pathways and transcription factors have a central role, it is becoming increasingly clear that epigenetic factors, in the form of DNA or histone modifications, as well as noncoding RNAs, are critical for generating the necessary cell lineage as well as context‐specific gene expression in diverse innate immune cell types. Much of the epigenetic landscape is set during cellular differentiation; however, pathogens and other environmental triggers also induce changes in histone modifications that can either promote tolerance or ‘train’ innate immune cells for a more robust antigen‐independent secondary response. Here we review the important contribution of epigenetic factors to the initiation, maintenance and training of innate immune responses. In addition, we explore how pathogens have hijacked these mechanisms for their benefit and the potential of small molecules targeting chromatin machinery as a way to boost or subdue the innate immune response in disease. The March 2015 issue contains a Special Feature on the epigenetic mechanisms underlying health and disease. Epigenetic modifications to chromatin influence the transcriptional status of our genes. Thus, understanding the epigenetic mechanisms that regulate immune cell fate are of great importance as they will provide insight into not only how to boost immune responses but also alter harmful ones such as autoimmunity and cancer. Immunology and Cell Biology thanks the coordinators of this Special Feature ‐ Rhys Allan ‐ for his planning and input.
Collapse
|
26
|
Cossart P, Lebreton A. A trip in the "New Microbiology" with the bacterial pathogen Listeria monocytogenes. FEBS Lett 2014; 588:2437-45. [PMID: 24911203 DOI: 10.1016/j.febslet.2014.05.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Listeria monocytogenes is a food-borne pathogen causing an opportunistic disease called listeriosis. This bacterium invades and replicates in most cell types, due to its multiple strategies to exploit host molecular mechanisms. Research aiming at unravelling Listeria invasion and intracellular lifestyle has led to a number of key discoveries in infection biology, cell biology and also microbiology. In this review, we report on our most recent advances in understanding the intimate crosstalk between the bacterium and its host, resulting from in-depth studies performed over the past five years. We specifically highlight new concepts in RNA-based regulation in bacteria and discuss important findings in cell biology, including a new role for clathrin and an atypical mitochondrial fragmentation mechanism. We also illustrate the notion that bacterial infection regulates host gene expression at the chromatin level, contributing to an emerging field called patho-epigenetics. This review corresponds to the lecture given by one of us (P.C.) on the occasion of the 2014 FEBS|EMBO Woman in Science Award.
Collapse
Affiliation(s)
- Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Inserm, U604, Paris, France; INRA, USC2020, Paris, France.
| | - Alice Lebreton
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Inserm, U604, Paris, France; INRA, USC2020, Paris, France.
| |
Collapse
|
27
|
Dussurget O, Bierne H, Cossart P. The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons. Front Cell Infect Microbiol 2014; 4:50. [PMID: 24809023 PMCID: PMC4009421 DOI: 10.3389/fcimb.2014.00050] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/04/2014] [Indexed: 12/14/2022] Open
Abstract
Interferons (IFNs) are secreted proteins of the cytokine family that regulate innate and adaptive immune responses to infection. Although the importance of IFNs in the antiviral response has long been appreciated, their role in bacterial infections is more complex and is currently a major focus of investigation. This review summarizes our current knowledge of the role of these cytokines in host defense against the bacterial pathogen Listeria monocytogenes and highlights recent discoveries on the molecular mechanisms evolved by this intracellular bacterium to subvert IFN responses.
Collapse
Affiliation(s)
- Olivier Dussurget
- Unité des Interactions Bactéries-Cellules, Institut PasteurParis, France
- Inserm, U604Paris, France
- INRA, USC2020Paris, France
- University of Paris Diderot, Sorbonne Paris CitéParis, France
| | - Hélène Bierne
- Unité des Interactions Bactéries-Cellules, Institut PasteurParis, France
- Inserm, U604Paris, France
- INRA, USC2020Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut PasteurParis, France
- Inserm, U604Paris, France
- INRA, USC2020Paris, France
| |
Collapse
|