1
|
Böge FL, Ruff S, Hemandhar Kumar S, Selle M, Becker S, Jung K. Combined Analysis of Multi-Study miRNA and mRNA Expression Data Shows Overlap of Selected miRNAs Involved in West Nile Virus Infections. Genes (Basel) 2024; 15:1030. [PMID: 39202390 PMCID: PMC11353516 DOI: 10.3390/genes15081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
The emerging zoonotic West Nile virus (WNV) has serious impact on public health. Thus, understanding the molecular basis of WNV infections in mammalian hosts is important to develop improved diagnostic and treatment strategies. In this context, the role of microRNAs (miRNAs) has been analyzed by several studies under different conditions and with different outcomes. A systematic comparison is therefore necessary. Furthermore, additional information from mRNA target expression data has rarely been taken into account to understand miRNA expression profiles under WNV infections. We conducted a meta-analysis of publicly available miRNA expression data from multiple independent studies, and analyzed them in a harmonized way to increase comparability. In addition, we used gene-set tests on mRNA target expression data to further gain evidence about differentially expressed miRNAs. For this purpose, we also studied the use of target information from different databases. We detected a substantial number of miRNA that emerged as differentially expressed from several miRNA datasets, and from the mRNA target data analysis as well. When using mRNA target data, we found that the targetscan databases provided the most useful information. We demonstrated improved miRNA detection through research synthesis of multiple independent miRNA datasets coupled with mRNA target set testing, leading to the discovery of multiple miRNAs which should be taken into account for further research on the molecular mechanism of WNV infections.
Collapse
Affiliation(s)
- Franz Leonard Böge
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Sergej Ruff
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Shamini Hemandhar Kumar
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Michael Selle
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Stefanie Becker
- Institute of Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30539 Hannover, Germany;
| | - Klaus Jung
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| |
Collapse
|
2
|
Bampali M, Kouvela A, Kesesidis N, Kassela K, Dovrolis N, Karakasiliotis I. West Nile Virus Subgenomic RNAs Modulate Gene Expression in a Neuronal Cell Line. Viruses 2024; 16:812. [PMID: 38793693 PMCID: PMC11125720 DOI: 10.3390/v16050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.B.); (A.K.); (N.K.); (K.K.); (N.D.)
| |
Collapse
|
3
|
Pavesi A, Tiecco G, Rossi L, Sforza A, Ciccarone A, Compostella F, Lovatti S, Tomasoni LR, Castelli F, Quiros-Roldan E. Inflammatory Response Associated with West Nile Neuroinvasive Disease: A Systematic Review. Viruses 2024; 16:383. [PMID: 38543749 PMCID: PMC10976239 DOI: 10.3390/v16030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) infection is a seasonal arbovirosis with the potential to cause severe neurological disease. Outcomes of the infection from WNV depend on viral factors (e.g., lineage) and host-intrinsic factors (e.g., age, sex, immunocompromising conditions). Immunity is essential to control the infection but may also prove detrimental to the host. Indeed, the persistence of high levels of pro-inflammatory cytokines and chemokines is associated with the development of blood-brain barrier (BBB) damage. Due to the importance of the inflammatory processes in the development of West Nile neuroinvasive disease (WNND), we reviewed the available literature on the subject. METHODS According to the 2020 updated PRISMA guidelines, all peer-reviewed articles regarding the inflammatory response associated with WNND were included. RESULTS One hundred and thirty-six articles were included in the data analysis and sorted into three groups (in vitro on-cell cultures, in vivo in animals, and in humans). The main cytokines found to be increased during WNND were IL-6 and TNF-α. We highlighted the generally small quantity and heterogeneity of information about the inflammatory patterns associated with WNND. CONCLUSIONS Further studies are needed to understand the pathogenesis of WNND and to investigate the extent and the way the host inflammatory response either helps in controlling the infection or in worsening the outcomes. This might prove useful both for the development of target therapies and for the development of molecular markers allowing early identification of patients displaying an inflammatory response that puts them at a higher risk of developing neuroinvasive disease and who might thus benefit from early antiviral therapies.
Collapse
Affiliation(s)
- Alessandro Pavesi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Luca Rossi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Anita Sforza
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Andrea Ciccarone
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Federico Compostella
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Sofia Lovatti
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Lina Rachele Tomasoni
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| |
Collapse
|
4
|
Auroni TT, Arora K, Natekar JP, Pathak H, Elsharkawy A, Kumar M. The critical role of interleukin-6 in protection against neurotropic flavivirus infection. Front Cell Infect Microbiol 2023; 13:1275823. [PMID: 38053527 PMCID: PMC10694511 DOI: 10.3389/fcimb.2023.1275823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
West Nile virus (WNV) and Japanese encephalitis virus (JEV) are emerging mosquito-borne flaviviruses causing encephalitis globally. No specific drug or therapy exists to treat flavivirus-induced neurological diseases. The lack of specific therapeutics underscores an urgent need to determine the function of important host factors involved in flavivirus replication and disease progression. Interleukin-6 (IL-6) upregulation has been observed during viral infections in both mice and humans, implying that it may influence the disease outcome significantly. Herein, we investigated the function of IL-6 in the pathogenesis of neurotropic flavivirus infections. First, we examined the role of IL-6 in flavivirus-infected human neuroblastoma cells, SK-N-SH, and found that IL-6 neutralization increased the WNV or JEV replication and inhibited the expression of key cytokines. We further evaluated the role of IL-6 by infecting primary mouse cells derived from IL-6 knockout (IL-6-/-) mice and wild-type (WT) mice with WNV or JEV. The results exhibited increased virus yields in the cells lacking the IL-6 gene. Next, our in vivo approach revealed that IL-6-/- mice had significantly higher morbidity and mortality after subcutaneous infection with the pathogenic WNV NY99 or JEV Nakayama strain compared to WT mice. The non-pathogenic WNV Eg101 strain did not cause mortality in WT mice but resulted in 60% mortality in IL-6-/- mice, indicating that IL-6 is required for the survival of mice after the peripheral inoculation of WNV or JEV. We also observed significantly higher viremia and brain viral load in IL-6-/- mice than in WT mice. Subsequently, we explored innate immune responses in WT and IL-6-/- mice after WNV NY99 infection. Our data demonstrated that the IL-6-/- mice had reduced levels of key cytokines in the serum during early infection but elevated levels of proinflammatory cytokines in the brain later, along with suppressed anti-inflammatory cytokines. In addition, mRNA expression of IFN-α and IFN-β was significantly lower in the infected IL-6-/- mice. In conclusion, these data suggest that the lack of IL-6 exacerbates WNV or JEV infection in vitro and in vivo by causing an increase in virus replication and dysregulating host immune response.
Collapse
Affiliation(s)
| | | | | | | | | | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
5
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
6
|
Nogueira CO, Rocha T, Messor DF, Souza INO, Clarke JR. Fundamental neurochemistry review: Glutamatergic dysfunction as a central mechanism underlying flavivirus-induced neurological damage. J Neurochem 2023; 166:915-927. [PMID: 37603368 DOI: 10.1111/jnc.15935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
The Flaviviridae family comprises positive-sense single-strand RNA viruses mainly transmitted by arthropods. Many of these pathogens are especially deleterious to the nervous system, and a myriad of neurological symptoms have been associated with infections by Zika virus (ZIKV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) in humans. Studies suggest that viral replication in neural cells and the massive release of pro-inflammatory mediators lead to morphological alterations of synaptic spine structure and changes in the balance of excitatory/inhibitory neurotransmitters and receptors. Glutamate is the predominant excitatory neurotransmitter in the brain, and studies propose that either enhanced release or impaired uptake of this amino acid contributes to brain damage in several conditions. Here, we review existing evidence suggesting that glutamatergic dysfunction-induced by flaviviruses is a central mechanism for neurological damage and clinical outcomes of infection. We also discuss current data suggesting that pharmacological approaches that counteract glutamatergic dysfunction show benefits in animal models of such viral diseases.
Collapse
Affiliation(s)
- Clara O Nogueira
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tamires Rocha
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel F Messor
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isis N O Souza
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia R Clarke
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023; 15:v15030806. [PMID: 36992514 PMCID: PMC10053297 DOI: 10.3390/v15030806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can lead to encephalitis and death in susceptible hosts. Cytokines play a critical role in inflammation and immunity in response to WNV infection. Murine models provide evidence that some cytokines offer protection against acute WNV infection and assist with viral clearance, while others play a multifaceted role WNV neuropathogenesis and immune-mediated tissue damage. This article aims to provide an up-to-date review of cytokine expression patterns in human and experimental animal models of WNV infections. Here, we outline the interleukins, chemokines, and tumor necrosis factor superfamily ligands associated with WNV infection and pathogenesis and describe the complex roles they play in mediating both protection and pathology of the central nervous system during or after virus clearance. By understanding of the role of these cytokines during WNV neuroinvasive infection, we can develop treatment options aimed at modulating these immune molecules in order to reduce neuroinflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Emna Benzarti
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy O Murray
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Neural-Cell-Intrinsic NF-κB Signaling Enhances Reovirus Virulence. J Virol 2023; 97:e0144222. [PMID: 36541803 PMCID: PMC9888206 DOI: 10.1128/jvi.01442-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathological effects of apoptosis associated with viral infections of the central nervous system are an important cause of morbidity and mortality. Reovirus is a neurotropic virus that causes apoptosis in neurons, leading to lethal encephalitis in newborn mice. Reovirus-induced encephalitis is diminished in mice with germ line ablation of NF-κB subunit p50. It is not known whether the proapoptotic function of NF-κB is mediated by neural-cell-intrinsic (neural-intrinsic) processes, NF-κB-regulated cytokine production by inflammatory cells, or a combination of both. To determine the contribution of cell type-specific NF-κB signaling in reovirus-induced neuronal injury, we established mice that lack NF-κB p65 expression in neural cells using the Cre/loxP recombination system. Following intracranial inoculation of reovirus, 50% of wild-type (WT) mice succumbed to infection, whereas more than 90% of mice lacking neural cell NF-κB p65 (Nsp65-/-) survived. While viral loads in brains of WT and Nsp65-/- mice were comparable, histological analysis revealed that reovirus antigen-positive areas in the brains of WT mice displayed increased immunoreactivity for cleaved caspase-3, a marker of apoptosis, relative to Nsp65-/- mice. These data suggest that neural-intrinsic NF-κB-dependent factors are essential mediators of reovirus neurovirulence. RNA sequencing analysis of reovirus-infected brain cortices of WT and Nsp65-/- mice suggests that NF-κB activation in neuronal cells upregulates genes involved in innate immunity, inflammation, and cell death following reovirus infection. A better understanding of the contribution of cell type-specific NF-κB-dependent signaling to viral neuropathogenesis could inform development of new therapeutics that target and protect highly vulnerable cell populations. IMPORTANCE Viral encephalitis contributes to illness and death in children and adults worldwide and has limited treatment options. Identifying common host factors upregulated by neurotropic viruses can enhance an understanding of virus-induced neuropathogenesis and aid in development of therapeutics. Although many neurotropic viruses activate NF-κB during infection, mechanisms by which NF-κB regulates viral neuropathogenesis and contributes to viral encephalitis are not well understood. We established mice in which NF-κB expression is ablated in neural tissue to study the function of NF-κB in reovirus neurovirulence and identify genes activated by NF-κB in response to reovirus infection in the central nervous system. Encephalitis following reovirus infection was dampened in mice lacking neural cell NF-κB. Reovirus induced a chemokine profile in the brain that was dependent on NF-κB signaling and was similar to chemokine profiles elicited by other neurotropic viruses. These data suggest common underlying mechanisms of encephalitis caused by neurotropic viruses and potentially shared therapeutic targets.
Collapse
|
9
|
Sharma KB, Chhabra S, Kalia M. Japanese Encephalitis Virus-Infected Cells. Subcell Biochem 2023; 106:251-281. [PMID: 38159231 DOI: 10.1007/978-3-031-40086-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
10
|
Singh K, Martinez MG, Lin J, Gregory J, Nguyen TU, Abdelaal R, Kang K, Brennand K, Grünweller A, Ouyang Z, Phatnani H, Kielian M, Wendel HG. Transcriptional and Translational Dynamics of Zika and Dengue Virus Infection. Viruses 2022; 14:1418. [PMID: 35891396 PMCID: PMC9316442 DOI: 10.3390/v14071418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are members of the Flaviviridae family of RNA viruses and cause severe disease in humans. ZIKV and DENV share over 90% of their genome sequences, however, the clinical features of Zika and dengue infections are very different reflecting tropism and cellular effects. Here, we used simultaneous RNA sequencing and ribosome footprinting to define the transcriptional and translational dynamics of ZIKV and DENV infection in human neuronal progenitor cells (hNPCs). The gene expression data showed induction of aminoacyl tRNA synthetases (ARS) and the translation activating PIM1 kinase, indicating an increase in RNA translation capacity. The data also reveal activation of different cell stress responses, with ZIKV triggering a BACH1/2 redox program, and DENV activating the ATF/CHOP endoplasmic reticulum (ER) stress program. The RNA translation data highlight activation of polyamine metabolism through changes in key enzymes and their regulators. This pathway is needed for eIF5A hypusination and has been implicated in viral translation and replication. Concerning the viral RNA genomes, ribosome occupancy readily identified highly translated open reading frames and a novel upstream ORF (uORF) in the DENV genome. Together, our data highlight both the cellular stress response and the activation of RNA translation and polyamine metabolism during DENV and ZIKV infection.
Collapse
Affiliation(s)
- Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer, Center, Bronx, NY 10461, USA;
| | - Maria Guadalupe Martinez
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
- Global Innovation, Boehringer Ingelheim Animal Health, 69800 Saint-Priest, France
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 and Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - James Gregory
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Trang Uyen Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer, Center, Bronx, NY 10461, USA;
| | - Rawan Abdelaal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
| | - Kristy Kang
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Kristen Brennand
- Division of Molecular Psychiatry, Departments of Psychiatry and Genetics, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany;
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | - Hemali Phatnani
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
11
|
Yu F, Li W, Wang L, Que S, Lu L. Characterization of grass carp FosB, Fosl2, JunD transcription factors in response to GCRV infection. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Stonedahl S, Leser JS, Clarke P, Tyler KL. Depletion of Microglia in an Ex Vivo Brain Slice Culture Model of West Nile Virus Infection Leads to Increased Viral Titers and Cell Death. Microbiol Spectr 2022; 10:e0068522. [PMID: 35412380 PMCID: PMC9045141 DOI: 10.1128/spectrum.00685-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
West Nile virus (WNV) is a major cause of viral encephalitis in the United States. WNV infection of the brain leads to neuroinflammation characterized by activation of microglia, the resident phagocytic cells of the central nervous system (CNS). In this study, depletion of CNS microglia using the CSF1R antagonist PLX5622 increased the viral load in the brain and decreased the survival of mice infected with WNV (strain TX02). PLX5622 was also used in ex vivo brain slice cultures (BSCs) to investigate the role of intrinsic neuroinflammatory responses during WNV infection. PLX5622 effectively depleted microglia (>90% depletion) from BSCs resulting in increased viral titers (3 to 4-fold increase in PLX5622-treated samples) and enhanced virus-induced caspase 3 activity and cell death. Microglia depletion did not result in widespread alterations in cytokine and chemokine production in either uninfected or WNV infected BSCs. The results of this study demonstrated how microglia contribute to limiting viral growth and preventing cell death in WNV infected BSCs but were not required for the cytokine/chemokine response to WNV infection. This study highlighted the importance of microglia in the protection from neuroinvasive WNV infection and demonstrated that microglia responses were independent of WNV-induced peripheral immune responses. IMPORTANCE WNV infections of the CNS are rare but can have devastating long-term effects. There are currently no vaccines or specific antiviral treatments, so a better understanding of the pathogenesis and immune response to this virus is crucial. Previous studies have shown microglia to be important for protection from WNV, but more work is needed to fully comprehend the impact these cells have on neuroinvasive WNV infections. This study used PLX5622 to eliminate microglia in an ex vivo brain slice culture (BSC) model to investigate the role of microglia during a WNV infection. The use of BSCs provided a system in which immune responses innate to the CNS could be studied without interference from peripheral immunity. This study will allow for a better understanding of the complex nature of microglia during viral infections and will likely impact the development of new therapeutics that target microglia.
Collapse
Affiliation(s)
- Sarah Stonedahl
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | | | - Penny Clarke
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- Denver Veteran Affairs Medical Center, Aurora, Colorado, USA
| |
Collapse
|
13
|
Aminoacyl-tRNA Synthetase: A Non-Negligible Molecule in RNA Viral Infection. Viruses 2022; 14:v14030613. [PMID: 35337020 PMCID: PMC8955326 DOI: 10.3390/v14030613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases such as the ongoing coronavirus disease 2019 (COVID-19) continue to have a huge impact on global health, and the host-virus interaction remains incompletely understood. To address the global threat, in-depth investigations in pathogenesis are essential for interventions in infectious diseases and vaccine development. Interestingly, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs), an ancient enzyme family that was once considered to play housekeeping roles in protein synthesis, are involved in multiple viral infectious diseases. Many aaRSs in eukaryotes present as the components of a cytoplasmic depot system named the multi-synthetase complex (MSC). Upon viral infections, several components of the MSC are released and exert nonenzymatic activities. Host aaRSs can also be utilized to facilitate viral entry and replication. In addition to their intracellular roles, some aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are secreted as active cytokines or function as “molecule communicators” on the cell surface. The interactions between aaRSs and viruses ultimately affect host innate immune responses or facilitate virus invasion. In this review, we summarized the latest advances of the interactions between aaRSs and RNA viruses, with a particular emphasis on the therapeutic potentials of aaRSs in viral infectious diseases.
Collapse
|
14
|
Al Shujairi WH, Kris LP, van der Hoek K, Cowell E, Bracho-Granado G, Woodgate T, Beard MR, Carr JM. Viperin is anti-viral in vitro but is dispensable for restricting dengue virus replication or induction of innate and inflammatory responses in vivo. J Gen Virol 2021; 102. [PMID: 34665110 PMCID: PMC8604189 DOI: 10.1099/jgv.0.001669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Viperin has antiviral function against many viruses, including dengue virus (DENV), when studied in cells in culture. Here, the antiviral actions of viperin were defined both in vitro and in a mouse in vivo model of DENV infection. Murine embryonic fibroblasts (MEFs) derived from mice lacking viperin (vip−/−) showed enhanced DENV infection, accompanied by increased IFN-β and induction of ISGs; IFIT1 and CXCL-10 but not IRF7, when compared to wild-type (WT) MEFs. In contrast, subcutaneous challenge of immunocompetent WT and vip−/− mice with DENV did not result in enhanced infection. Intracranial infection with DENV resulted in body weight loss and neurological disease with a moderate increase in mortality in vip−/− compared with WT mice, although this was not accompanied by altered brain morphology, immune cell infiltration or DENV RNA level in the brain. Similarly, DENV induction of IFN-β, IFIT1, CXCL-10, IRF7 and TNF-α was not significantly different in WT and vip−/− mouse brain, although there was a modest but significant increase in DENV induction of IL-6 and IfI27la in the absence of viperin. NanoString nCounter analysis confirmed no significant difference in induction of a panel of inflammatory genes in WT compared to vip−/− DENV-infected mouse brains. Further, polyI:C stimulation of bone marrow-derived macrophages (BMDMs) induced TNF-α, IFN-β, IL-6 and Nos-2, but responses were not different in BMDMs generated from WT or vip−/− mice. Thus, while there is significant evidence of anti-DENV actions of viperin in some cell types in vitro, for DENV infection in vivo a lack of viperin does not affect systemic or brain susceptibility to DENV or induction of innate and inflammatory responses.
Collapse
Affiliation(s)
- Wisam-Hamzah Al Shujairi
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Department of Clinical Laboratory Sciences, College of Pharmacy, University of Babylon, 51001 Hilla, Iraq
| | - Luke P Kris
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kylie van der Hoek
- School of Biological Sciences, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Evangeline Cowell
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Tahlia Woodgate
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Michael R Beard
- School of Biological Sciences, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jillian M Carr
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
15
|
Sharma KB, Chhabra S, Aggarwal S, Tripathi A, Banerjee A, Yadav AK, Vrati S, Kalia M. Proteomic landscape of Japanese encephalitis virus-infected fibroblasts. J Gen Virol 2021; 102. [PMID: 34546869 DOI: 10.1099/jgv.0.001657] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advances in proteomics have enabled a comprehensive understanding of host-pathogen interactions. Here we have characterized Japanese encephalitis virus (JEV) infection-driven changes in the mouse embryonic fibroblast (MEF) proteome. Through tandem mass tagging (TMT)-based mass spectrometry, we describe changes in 7.85 % of the identified proteome due to JEV infection. Pathway enrichment analysis showed that proteins involved in innate immune sensing, interferon responses and inflammation were the major upregulated group, along with the immunoproteasome and poly ADP-ribosylation proteins. Functional validation of several upregulated anti-viral innate immune proteins, including an active cGAS-STING axis, was performed. Through siRNA depletion, we describe a crucial role of the DNA sensor cGAS in restricting JEV replication. Further, many interferon-stimulated genes (ISGs) were observed to be induced in infected cells. We also observed activation of TLR2 and inhibition of TLR2 signalling using TLR1/2 inhibitor CU-CPT22-blocked production of inflammatory cytokines IL6 and TNF-α from virus-infected N9 microglial cells. The major proteins that were downregulated by infection were involved in cell adhesion (collagens), transport (solute carrier and ATP-binding cassette transporters), sterol and lipid biosynthesis. Several collagens were found to be transcriptionally downregulated in infected MEFs and mouse brain. Collectively, our data provide a bird's-eye view into how fibroblast protein composition is rewired following JEV infection.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Suruchi Aggarwal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Aarti Tripathi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Kumar Yadav
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
16
|
Intrinsic Innate Immune Responses Control Viral Growth and Protect against Neuronal Death in an Ex Vivo Model of West Nile Virus-Induced Central Nervous System Disease. J Virol 2021; 95:e0083521. [PMID: 34190599 DOI: 10.1128/jvi.00835-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recruitment of immune cells from the periphery is critical for controlling West Nile virus (WNV) growth in the central nervous system (CNS) and preventing subsequent WNV-induced CNS disease. Neuroinflammatory responses, including the release of proinflammatory cytokines and chemokines by CNS cells, influence the entry and function of peripheral immune cells that infiltrate the CNS. However, these same cytokines and chemokines contribute to tissue damage in other models of CNS injury. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist that inhibits neuroinflammation. We used rosiglitazone in WNV-infected ex vivo brain slice cultures (BSC) to investigate the role of neuroinflammation within the CNS in the absence of peripheral immune cells. Rosiglitazone treatment inhibited WNV-induced expression of proinflammatory chemokines and cytokines, interferon beta (IFN-β), and IFN-stimulated genes (ISG) and also decreased WNV-induced activation of microglia. These decreased neuroinflammatory responses were associated with activation of astrocytes, robust viral growth, increased activation of caspase 3, and increased neuronal loss. Rosiglitazone had a similar effect on in vivo WNV infection, causing increased viral growth, tissue damage, and disease severity in infected mice, even though the number of infiltrating peripheral immune cells was higher in rosiglitazone-treated, WNV-infected mice than in untreated, infected controls. These results indicate that local neuroinflammatory responses are capable of controlling viral growth within the CNS and limiting neuronal loss and may function to keep the virus in check prior to the infiltration of peripheral immune cells, limiting both virus- and immune-mediated neuronal damage. IMPORTANCE West Nile virus is the most common cause of epidemic encephalitis in the United States and can result in debilitating CNS disease. There are no effective vaccines or treatments for WNV-induced CNS disease in humans. The peripheral immune response is critical for protection against WNV CNS infections. We now demonstrate that intrinsic immune responses also control viral growth and limit neuronal loss. These findings have important implications for developing new therapies for WNV-induced CNS disease.
Collapse
|
17
|
Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus infection. Mol Aspects Med 2021; 81:100994. [PMID: 34274157 DOI: 10.1016/j.mam.2021.100994] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus, spread by the bite of carrier Culex mosquitoes. The subsequent disease caused is Japanese encephalitis (JE), which is the leading global cause of virus-induced encephalitis. The disease is predominant in the entire Asia-Pacific region with the potential of global spread. JEV is highly neuroinvasive with symptoms ranging from mild fever to severe encephalitis and death. One-third of JE infections are fatal, and half of the survivors develop permanent neurological sequelae. Disease prognosis is determined by a series of complex and intertwined signaling events dictated both by the virus and the host. All flaviviruses, including JEV replicate in close association with ER derived membranes by channelizing the protein and lipid components of the ER. This leads to activation of acute stress responses in the infected cell-oxidative stress, ER stress, and autophagy. The host innate immune and inflammatory responses also enter the fray, the components of which are inextricably linked to the cellular stress responses. These are especially crucial in the periphery for dendritic cell maturation and establishment of adaptive immunity. The pathogenesis of JEV is a combination of direct virus induced neuronal cell death and an uncontrolled neuroinflammatory response. Here we provide a comprehensive review of the JEV life cycle and how the cellular stress responses dictate the pathobiology and resulting immune response. We also deliberate on how modulation of these stress pathways could be a potential strategy to develop therapeutic interventions, and define the persisting challenges.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
18
|
Maximova OA, Sturdevant DE, Kash JC, Kanakabandi K, Xiao Y, Minai M, Moore IN, Taubenberger J, Martens C, Cohen JI, Pletnev AG. Virus infection of the CNS disrupts the immune-neural-synaptic axis via induction of pleiotropic gene regulation of host responses. eLife 2021; 10:e62273. [PMID: 33599611 PMCID: PMC7891934 DOI: 10.7554/elife.62273] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Treatment for many viral infections of the central nervous system (CNS) remains only supportive. Here we address a remaining gap in our knowledge regarding how the CNS and immune systems interact during viral infection. By examining the regulation of the immune and nervous system processes in a nonhuman primate model of West Nile virus neurological disease, we show that virus infection disrupts the homeostasis of the immune-neural-synaptic axis via induction of pleiotropic genes with distinct functions in each component of the axis. This pleiotropic gene regulation suggests an unintended off-target negative impact of virus-induced host immune responses on the neurotransmission, which may be a common feature of various viral infections of the CNS.
Collapse
Affiliation(s)
- Olga A Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Daniel E Sturdevant
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - John C Kash
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Kishore Kanakabandi
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Jeff Taubenberger
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Craig Martens
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
19
|
Reovirus σ3 Protein Limits Interferon Expression and Cell Death Induction. J Virol 2020; 94:JVI.01485-20. [PMID: 32847863 DOI: 10.1128/jvi.01485-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/20/2020] [Indexed: 01/31/2023] Open
Abstract
Induction of necroptosis by mammalian reovirus requires both type I interferon (IFN)-signaling and viral replication events that lead to production of progeny genomic double-stranded RNA (dsRNA). The reovirus outer capsid protein μ1 negatively regulates reovirus-induced necroptosis by limiting RNA synthesis. To determine if the outer capsid protein σ3, which interacts with μ1, also functions in regulating necroptosis, we used small interfering RNA (siRNA)-mediated knockdown. Similarly to what was observed in diminishment of μ1 expression, knockdown of newly synthesized σ3 enhances necroptosis. Knockdown of σ3 does not impact reovirus RNA synthesis. Instead, this increase in necroptosis following σ3 knockdown is accompanied by an increase in IFN production. Furthermore, ectopic expression of σ3 is sufficient to block IFN expression following infection. Surprisingly, the capacity of σ3 protein to bind dsRNA does not impact its capacity to diminish production of IFN. Consistent with this, infection with a virus harboring a mutation in the dsRNA binding domain of σ3 does not result in enhanced production of IFN or necroptosis. Together, these data suggest that σ3 limits the production of IFN to control innate immune signaling and necroptosis following infection through a mechanism that is independent of its dsRNA binding capacity.IMPORTANCE We use mammalian reovirus as a model to study how virus infection modulates innate immune signaling and cell death induction. Here, we sought to determine how viral factors regulate these processes. Our work highlights a previously unknown role for the reovirus outer capsid protein σ3 in limiting the induction of a necrotic form of cell death called necroptosis. Induction of cell death by necroptosis requires production of interferon. The σ3 protein limits the induction of necroptosis by preventing excessive production of interferon following infection.
Collapse
|
20
|
Han NC, Kelly P, Ibba M. Translational quality control and reprogramming during stress adaptation. Exp Cell Res 2020; 394:112161. [PMID: 32619498 DOI: 10.1016/j.yexcr.2020.112161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
Abstract
Organisms encounter stress throughout their lives, and therefore require the ability to respond rapidly to environmental changes. Although transcriptional responses are crucial for controlling changes in gene expression, regulation at the translational level often allows for a faster response at the protein levels which permits immediate adaptation. The fidelity and robustness of protein synthesis are actively regulated under stress. For example, mistranslation can be beneficial to cells upon environmental changes and also alters cellular stress responses. Additionally, stress modulates both global and selective translational regulation through mechanisms including the change of aminoacyl-tRNA activity, tRNA pool reprogramming and ribosome heterogeneity. In this review, we draw on studies from both the prokaryotic and eukaryotic systems to discuss current findings of cellular adaptation at the level of translation, specifically translational fidelity and activity changes in response to a wide array of environmental stressors including oxidative stress, nutrient depletion, temperature variation, antibiotics and host colonization.
Collapse
Affiliation(s)
- Nien-Ching Han
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA
| | - Paul Kelly
- The Ohio State University Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, 43220, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA.
| |
Collapse
|
21
|
Stonedahl S, Clarke P, Tyler KL. The Role of Microglia during West Nile Virus Infection of the Central Nervous System. Vaccines (Basel) 2020; 8:E485. [PMID: 32872152 PMCID: PMC7563127 DOI: 10.3390/vaccines8030485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
Encephalitis resulting from viral infections is a major cause of hospitalization and death worldwide. West Nile Virus (WNV) is a substantial health concern as it is one of the leading causes of viral encephalitis in the United States today. WNV infiltrates the central nervous system (CNS), where it directly infects neurons and induces neuronal cell death, in part, via activation of caspase 3-mediated apoptosis. WNV infection also induces neuroinflammation characterized by activation of innate immune cells, including microglia and astrocytes, production of inflammatory cytokines, breakdown of the blood-brain barrier, and infiltration of peripheral leukocytes. Microglia are the resident immune cells of the brain and monitor the CNS for signs of injury or pathogens. Following infection with WNV, microglia exhibit a change in morphology consistent with activation and are associated with increased expression of proinflammatory cytokines. Recent research has focused on deciphering the role of microglia during WNV encephalitis. Microglia play a protective role during infections by limiting viral growth and reducing mortality in mice. However, it also appears that activated microglia are triggered by T cells to mediate synaptic elimination at late times during infection, which may contribute to long-term neurological deficits following a neuroinvasive WNV infection. This review will discuss the important role of microglia in the pathogenesis of a neuroinvasive WNV infection. Knowledge of the precise role of microglia during a WNV infection may lead to a greater ability to treat and manage WNV encephalitis.
Collapse
Affiliation(s)
- Sarah Stonedahl
- Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Tyler
- Department of Immunology and Microbiology, Infectious Disease, Medicine and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Besson B, Basset J, Gatellier S, Chabrolles H, Chaze T, Hourdel V, Matondo M, Pardigon N, Choumet V. Comparison of a human neuronal model proteome upon Japanese encephalitis or West Nile Virus infection and potential role of mosquito saliva in neuropathogenesis. PLoS One 2020; 15:e0232585. [PMID: 32374750 PMCID: PMC7202638 DOI: 10.1371/journal.pone.0232585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/18/2020] [Indexed: 12/31/2022] Open
Abstract
Neurotropic flavivirus Japanese encephalitis virus (JEV) and West Nile virus (WNV) are amongst the leading causes of encephalitis. Using label-free quantitative proteomics, we identified proteins differentially expressed upon JEV (gp-3, RP9) or WNV (IS98) infection of human neuroblastoma cells. Data are available via ProteomeXchange with identifier PXD016805. Both viruses were associated with the up-regulation of immune response (IFIT1/3/5, ISG15, OAS, STAT1, IRF9) and the down-regulation of SSBP2 and PAM, involved in gene expression and in neuropeptide amidation respectively. Proteins associated to membranes, involved in extracellular matrix organization and collagen metabolism represented major clusters down-regulated by JEV and WNV. Moreover, transcription regulation and mRNA processing clusters were also heavily regulated by both viruses. The proteome of neuroblastoma cells infected by JEV or WNV was significantly modulated in the presence of mosquito saliva, but distinct patterns were associated to each virus. Mosquito saliva favored modulation of proteins associated with gene regulation in JEV infected neuroblastoma cells while modulation of proteins associated with protein maturation, signal transduction and ion transporters was found in WNV infected neuroblastoma cells.
Collapse
Affiliation(s)
- Benoit Besson
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Justine Basset
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Sandrine Gatellier
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Hélène Chabrolles
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Thibault Chaze
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Véronique Hourdel
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Nathalie Pardigon
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Valérie Choumet
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Roles of aminoacyl-tRNA synthetases in immune regulation and immune diseases. Cell Death Dis 2019; 10:901. [PMID: 31780718 PMCID: PMC6883034 DOI: 10.1038/s41419-019-2145-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) play a vital role in protein synthesis by linking amino acids to their cognate transfer RNAs (tRNAs). This typical function has been well recognized over the past few decades. However, accumulating evidence reveals that ARSs are involved in a wide range of physiological and pathological processes apart from translation. Strikingly, certain ARSs are closely related to different types of immune responses. In this review, we address the infection and immune responses induced by pathogen ARSs, as well as the potential anti-infective compounds that target pathogen ARSs. Meanwhile, we describe the functional mechanisms of ARSs in the development of immune cells. In addition, we focus on the roles of ARSs in certain immune diseases, such as autoimmune diseases, infectious diseases, and tumor immunity. Although our knowledge of ARSs in the immunological context is still in its infancy, research in this field may provide new ideas for the treatment of immune-related diseases.
Collapse
|
24
|
Yu J, Murthy V, Liu SL. Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses 2019; 11:E1060. [PMID: 31739586 PMCID: PMC6893729 DOI: 10.3390/v11111060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor) superfamily protein is a group of molecules that share limited sequence homology but conserved three-fingered structures. Despite diverse cellular functions, such as in regulating host immunity, cell adhesion, and migration, the physiological roles of these factors in vivo remain poorly characterized. Notably, increasing research has focused on the interplays between Ly6/uPAR proteins and viral pathogens, the results of which have provided new insight into viral entry and virus-host interactions. While LY6E (lymphocyte antigen 6 family member E), one key member of the Ly6E/uPAR-family proteins, has been extensively studied, other members have not been well characterized. Here, we summarize current knowledge of Ly6/uPAR proteins related to viral infection, with a focus on uPAR and CD59. Our goal is to provide an up-to-date view of the Ly6/uPAR-family proteins and associated virus-host interaction and viral pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Vaibhav Murthy
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Huang B, West N, Vider J, Zhang P, Griffiths RE, Wolvetang E, Burtonclay P, Warrilow D. Inflammatory responses to a pathogenic West Nile virus strain. BMC Infect Dis 2019; 19:912. [PMID: 31664929 PMCID: PMC6819652 DOI: 10.1186/s12879-019-4471-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022] Open
Abstract
Background West Nile virus (WNV) circulates across Australia and was referred to historically as Kunjin virus (WNVKUN). WNVKUN has been considered more benign than other WNV strains circulating globally. In 2011, a more virulent form of the virus emerged during an outbreak of equine arboviral disease in Australia. Methods To better understand the emergence of this virulent phenotype and the mechanism by which pathogenicity is manifested in its host, cells were infected with either the virulent strain (NSW2012), or less pathogenic historical isolates, and their innate immune responses compared by digital immune gene expression profiling. Two different cell systems were used: a neuroblastoma cell line (SK-N-SH cells) and neuronal cells derived from induced pluripotent stem cells (iPSCs). Results Significant innate immune gene induction was observed in both systems. The NSW2012 isolate induced higher gene expression of two genes (IL-8 and CCL2) when compared with cells infected with less pathogenic isolates. Pathway analysis of induced inflammation-associated genes also indicated generally higher activation in infected NSW2012 cells. However, this differential response was not paralleled in the neuronal cultures. Conclusion NSW2012 may have unique genetic characteristics which contributed to the outbreak. The data herein is consistent with the possibility that the virulence of NSW2012 is underpinned by increased induction of inflammatory genes.
Collapse
Affiliation(s)
- Bixing Huang
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Queensland, Australia
| | - Nic West
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jelena Vider
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Ping Zhang
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Rebecca E Griffiths
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Peter Burtonclay
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Queensland, Australia.
| |
Collapse
|
26
|
Valdez F, Salvador J, Palermo PM, Mohl JE, Hanley KA, Watts D, Llano M. Schlafen 11 Restricts Flavivirus Replication. J Virol 2019; 93:e00104-19. [PMID: 31118262 PMCID: PMC6639263 DOI: 10.1128/jvi.00104-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Schlafen 11 (Slfn11) is an interferon-stimulated gene that controls the synthesis of proteins by regulating tRNA abundance. Likely through this mechanism, Slfn11 has previously been shown to impair human immunodeficiency virus type 1 (HIV-1) infection and the expression of codon-biased open reading frames. Because replication of positive-sense single-stranded RNA [(+)ssRNA] viruses requires the immediate translation of the incoming viral genome, whereas negative-sense single-stranded RNA [(-)ssRNA] viruses carry at infection an RNA replicase that makes multiple translation-competent copies of the incoming viral genome, we reasoned that (+)ssRNA viruses will be more sensitive to the effect of Slfn11 on protein synthesis than (-)ssRNA viruses. To evaluate this hypothesis, we tested the effects of Slfn11 on the replication of a panel of ssRNA viruses in the human glioblastoma cell line A172, which naturally expresses Slfn11. Depletion of Slfn11 significantly increased the replication of (+)ssRNA viruses from the Flavivirus genus, including West Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV), but had no significant effect on the replication of the (-)ssRNA viruses vesicular stomatitis virus (VSV) (Rhabdoviridae family) and Rift Valley fever virus (RVFV) (Phenuiviridae family). Quantification of the ratio of genome-containing viral particles to PFU indicated that Slfn11 impairs WNV infectivity. Intriguingly, Slfn11 prevented WNV-induced downregulation of a subset of tRNAs implicated in the translation of 11.8% of the viral polyprotein. Low-abundance tRNAs might promote optimal protein folding and enhance viral infectivity, as previously reported. In summary, this study demonstrates that Slfn11 restricts flavivirus replication by impairing viral infectivity.IMPORTANCE We provide evidence that the cellular protein Schlafen 11 (Slfn11) impairs replication of flaviviruses, including West Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV). However, replication of single-stranded negative RNA viruses was not affected. Specifically, Slfn11 decreases the infectivity of WNV potentially by preventing virus-induced modifications of the host tRNA repertoire that could lead to enhanced viral protein folding. Furthermore, we demonstrate that Slfn11 is not the limiting factor of this novel broad antiviral pathway.
Collapse
Affiliation(s)
- Federico Valdez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Julienne Salvador
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Pedro M Palermo
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jonathon E Mohl
- Department of Bioinformatics, The University of Texas at El Paso, El Paso, Texas, USA
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | - Douglas Watts
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Manuel Llano
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
27
|
Contemporary Circulating Enterovirus D68 Strains Infect and Undergo Retrograde Axonal Transport in Spinal Motor Neurons Independent of Sialic Acid. J Virol 2019; 93:JVI.00578-19. [PMID: 31167912 DOI: 10.1128/jvi.00578-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/01/2019] [Indexed: 12/25/2022] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging virus that has been identified as a cause of recent outbreaks of acute flaccid myelitis (AFM), a poliomyelitis-like spinal cord syndrome that can result in permanent paralysis and disability. In experimental mouse models, EV-D68 spreads to, infects, and kills spinal motor neurons following infection by various routes of inoculation. The topography of virus-induced motor neuron loss correlates with the pattern of paralysis. The mechanism(s) by which EV-D68 spreads to target motor neurons remains unclear. We sought to determine the capacity of EV-D68 to spread by the neuronal route and to determine the role of known EV-D68 receptors, sialic acid and intracellular adhesion molecule 5 (ICAM-5), in neuronal infection. To do this, we utilized a microfluidic chamber culture system in which human induced pluripotent stem cell (iPSC) motor neuron cell bodies and axons can be compartmentalized for independent experimental manipulation. We found that EV-D68 can infect motor neurons via their distal axons and spread by retrograde axonal transport to the neuronal cell bodies. Virus was not released from the axons via anterograde axonal transport after infection of the cell bodies. Prototypic strains of EV-D68 depended on sialic acid for axonal infection and transport, while contemporary circulating strains isolated during the 2014 EV-D68 outbreak did not. The pattern of infection did not correspond with the ICAM-5 distribution and expression in either human tissue, the mouse model, or the iPSC motor neurons.IMPORTANCE Enterovirus D68 (EV-D68) infections are on the rise worldwide. Since 2014, the United States has experienced biennial spikes in EV-D68-associated acute flaccid myelitis (AFM) that have left hundreds of children paralyzed. Much remains to be learned about the pathogenesis of EV-D68 in the central nervous system (CNS). Herein we investigated the mechanisms of EV-D68 CNS invasion through neuronal pathways. A better understanding of EV-D68 infection in experimental models may allow for better prevention and treatment strategies of EV-D68 CNS disease.
Collapse
|
28
|
Clarke P, Zhuang Y, Berens HM, Leser JS, Tyler KL. Interferon Beta Contributes to Astrocyte Activation in the Brain following Reovirus Infection. J Virol 2019; 93:e02027-18. [PMID: 30814290 PMCID: PMC6498044 DOI: 10.1128/jvi.02027-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/19/2019] [Indexed: 11/20/2022] Open
Abstract
Reovirus encephalitis in mice was used as a model system to investigate astrocyte activation (astrogliosis) following viral infection of the brain. Reovirus infection resulted in astrogliosis, as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and the upregulation of genes that have been previously associated with astrocyte activation. Astrocyte activation occurred in regions of the brain that are targeted by reovirus but extended beyond areas of active infection. Astrogliosis also occurred following reovirus infection of ex vivo brain slice cultures (BSCs), demonstrating that factors intrinsic to the brain are sufficient to activate astrocytes and that this process can occur in the absence of any contribution from the peripheral immune response. In agreement with previous reports, reovirus antigen did not colocalize with GFAP in infected brains, suggesting that reovirus does not infect astrocytes. Reovirus-infected neurons produce interferon beta (IFN-β). IFN-β treatment of primary astrocytes resulted in both the upregulation of GFAP and cytokines that are associated with astrocyte activation. In addition, the ability of media from reovirus-infected BSCs to activate primary astrocytes was blocked by anti-IFN-β antibodies. These results suggest that IFN-β, likely released from reovirus-infected neurons, results in the activation of astrocytes during reovirus encephalitis. In areas where infection and injury were pronounced, an absence of GFAP staining was consistent with activation-induced cell death as a mechanism of inflammation control. In support of this, activated Bak and cleaved caspase 3 were detected in astrocytes within reovirus-infected brains, indicating that activated astrocytes undergo apoptosis.IMPORTANCE Viral encephalitis is a significant cause of worldwide morbidity and mortality, and specific treatments are extremely limited. Virus infection of the brain triggers neuroinflammation; however, the role of neuroinflammation in the pathogenesis of viral encephalitis is unclear. Initial neuroinflammatory responses likely contribute to viral clearance, but prolonged exposure to proinflammatory cytokines released during neuroinflammation may be deleterious and contribute to neuronal death and tissue injury. Activation of astrocytes is a hallmark of neuroinflammation. Here, we show that reovirus infection of the brain results in the activation of astrocytes via an IFN-β-mediated process and that these astrocytes later die by Bak-mediated apoptosis. A better understanding of neuroinflammatory responses during viral encephalitis may facilitate the development of new treatment strategies for these diseases.
Collapse
Affiliation(s)
- Penny Clarke
- Department of Neurology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yonghua Zhuang
- Department of Neurology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Heather M Berens
- Department of Internal Medicine Division of Rheumatology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - J Smith Leser
- Department of Neurology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth L Tyler
- Department of Neurology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
- Denver VA Medical Center, Denver, Colorado, USA
| |
Collapse
|
29
|
Sun X, Li W, Liu E, Huang H, Wang T, Wang X, Shi Y, Yang P, Chen Q. In vivo cellular and molecular study on duck spleen infected by duck Tembusu virus. Vet Microbiol 2018; 230:32-44. [PMID: 30827402 DOI: 10.1016/j.vetmic.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 01/17/2023]
Abstract
Duck Tembusu virus (DTMUV) is a novel member of flavivirus with the highest viral loads in the spleen. Six-month egg-laying shelducks were intramuscularly injected with DTMUV strain XZ-2012. Morphological analysis revealed the presence of vacuolar degeneration in the periellipsoidal lymphatic sheaths (PELS) of spleen white pulp following infection, especially from 12 hpi to 3 dpi. Ultrastructural images showed an obvious swelling of cells and their mitochondria and endoplasmic reticulum. Using RNA-seq analysis, the expression levels of RIG-I like receptors (RLRs), downstream IRF7 and proinflammatory cytokines IL-6 from RIG-I signaling pathway were non-apparently upregulated at 2 hpi and apparently at 3 dpi, while MHC-II expression was obviously downregulated at 2 hpi. The expression levels of downstream antiviral cytokines type-I IFNs, anti-inflammatory cytokines IL-10, cell adhesion molecules (CAMs), chemokines and their receptors associated with lymphocyte homing were significantly upregulated at 3 dpi. The population of lymphocyte was increased at 6 dpi. The immune function of spleen was recovered starting from 9 dpi. These findings of this study suggest that DTMUV invaded into the spleen via RIG-I signaling pathway and enhanced immune evasion by inhibiting MHC-II expression during the early stage of infection. Additionally, DTMUV induced PELS lesions through activating IL-6 expression. Furthermore, DTMUV increased the expression levels of RLRs, antiviral type-I IFNs, lymphocyte homing-related genes and proteins as well as the number of lymphocytes in the infected duck spleen. Taken altogether, this study provides new insights into the cellular and molecular mechanisms of DTMUV infection in duck spleen.
Collapse
Affiliation(s)
- Xuejing Sun
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Wenqian Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Enxue Liu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Haixiang Huang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Taozhi Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Xindong Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Yonghong Shi
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Ping Yang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Qiusheng Chen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
30
|
Lee EY, Kim S, Kim MH. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. Biochem Pharmacol 2018; 154:424-434. [PMID: 29890143 PMCID: PMC7092877 DOI: 10.1016/j.bcp.2018.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Eun-Young Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
31
|
Pharmacologic Depletion of Microglia Increases Viral Load in the Brain and Enhances Mortality in Murine Models of Flavivirus-Induced Encephalitis. J Virol 2018; 92:JVI.00525-18. [PMID: 29899084 DOI: 10.1128/jvi.00525-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Flaviviruses account for most arthropod-borne cases of human encephalitis in the world. However, the exact mechanisms of injury to the central nervous system (CNS) during flavivirus infections remain poorly understood. Microglia are the resident immune cells of the CNS and are important for multiple functions, including control of viral pathogenesis. Utilizing a pharmacologic method of microglia depletion (PLX5622 [Plexxikon Inc.], an inhibitor of colony-stimulating factor 1 receptor), we sought to determine the role of microglia in flaviviral pathogenesis. Depletion of microglia resulted in increased mortality and viral titer in the brain following infection with either West Nile virus (WNV) or Japanese encephalitis virus (JEV). Interestingly, microglial depletion did not prevent virus-induced increases in the expression of relevant cytokines and chemokines at the mRNA level. In fact, the expression of several proinflammatory genes was increased in virus-infected, microglia-depleted mice compared to virus-infected, untreated controls. In contrast, and as expected, expression of the macrophage marker triggering receptor expressed on myeloid cells 2 (TREM2) was decreased in virus-infected, PLX5622-treated mice compared to virus-infected controls.IMPORTANCE As CNS invasion by flaviviruses is a rare but life-threatening event, it is critical to understand how brain-resident immune cells elicit protection or injury during disease progression. Microglia have been shown to be important in viral clearance but may also contribute to CNS injury as part of the neuroinflammatory process. By utilizing a microglial depletion model, we can begin to parse out the exact roles of microglia during flaviviral pathogenesis with hopes of understanding specific mechanisms as potential targets for therapeutics.
Collapse
|
32
|
Kosch R, Delarocque J, Claus P, Becker SC, Jung K. Gene expression profiles in neurological tissues during West Nile virus infection: a critical meta-analysis. BMC Genomics 2018; 19:530. [PMID: 30001706 PMCID: PMC6044103 DOI: 10.1186/s12864-018-4914-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 02/05/2023] Open
Abstract
Background Infections with the West Nile virus (WNV) can attack neurological tissues in the host and alter gene expression levels therein. Several individual studies have analyzed these changes in the transcriptome based on measurements with DNA microarrays. Individual microarray studies produce a high-dimensional data structure with the number of studied genes exceeding the available sample size by far. Therefore, the level of scientific evidence of these studies is rather low and results can remain uncertain. Furthermore, the individual studies concentrate on different types of tissues or different time points after infection. A general statement regarding the transcriptional changes through WNV infection in neurological tissues is therefore hard to make. We screened public databases for transcriptome expression studies related to WNV infections and used different analysis pipelines to perform meta-analyses of these data with the goal of obtaining more stable results and increasing the level of evidence. Results We generated new lists of genes differentially expressed between WNV infected neurological tissues and control samples. A comparison with these genes to findings of a meta-analysis of immunological tissues is performed to figure out tissue-specific differences. While 5.879 genes were identified exclusively in the neurological tissues, 15 genes were found exclusively in the immunological tissues, and 44 genes were commonly detected in both tissues. Most findings of the original studies could be confirmed by the meta-analysis with a higher statistical power, but some genes and GO terms related to WNV were newly detected, too. In addition, we identified gene ontology terms related to certain infection processes, which are significantly enriched among the differentially expressed genes. In the neurological tissues, 17 gene ontology terms were found significantly different, and 2 terms in the immunological tissues. Conclusions A critical discussion of our findings shows benefits but also limitations of the meta-analytic approach. In summary, the produced gene lists, identified gene ontology terms and network reconstructions appear to be more reliable than the results from the individual studies. Our meta-analysis provides a basis for further research on the transcriptional mechanisms by WNV infections in neurological tissues. Electronic supplementary material The online version of this article (10.1186/s12864-018-4914-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robin Kosch
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17p, Hanover, 30559, Germany
| | - Julien Delarocque
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17p, Hanover, 30559, Germany
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Str. 1, Hanover, 30625, Germany
| | - Stefanie C Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, Hanover, 30559, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, Hanover, 30559, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17p, Hanover, 30559, Germany. .,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, Hanover, 30559, Germany.
| |
Collapse
|
33
|
Sun X, Hua S, Chen HR, Ouyang Z, Einkauf K, Tse S, Ard K, Ciaranello A, Yawetz S, Sax P, Rosenberg ES, Lichterfeld M, Yu XG. Transcriptional Changes during Naturally Acquired Zika Virus Infection Render Dendritic Cells Highly Conducive to Viral Replication. Cell Rep 2017; 21:3471-3482. [PMID: 29262327 PMCID: PMC5751936 DOI: 10.1016/j.celrep.2017.11.087] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection.
Collapse
Affiliation(s)
- Xiaoming Sun
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Boston, MA
| | - Stephane Hua
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Boston, MA
| | - Hsiao-Rong Chen
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Boston, MA
| | - Zhengyu Ouyang
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Boston, MA
| | - Kevin Einkauf
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Boston, MA
| | - Samantha Tse
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Boston, MA
| | - Kevin Ard
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA
| | - Andrea Ciaranello
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA
| | - Sigal Yawetz
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA
| | - Paul Sax
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA
| | - Eric S Rosenberg
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Boston, MA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Boston, MA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA.
| |
Collapse
|
34
|
Peromyscus leucopus mouse brain transcriptome response to Powassan virus infection. J Neurovirol 2017; 24:75-87. [PMID: 29147886 PMCID: PMC5790856 DOI: 10.1007/s13365-017-0596-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/29/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.
Collapse
|
35
|
Lim SM, van den Ham HJ, Oduber M, Martina E, Zaaraoui-Boutahar F, Roose JM, van IJcken WFJ, Osterhaus ADME, Andeweg AC, Koraka P, Martina BEE. Transcriptomic Analyses Reveal Differential Gene Expression of Immune and Cell Death Pathways in the Brains of Mice Infected with West Nile Virus and Chikungunya Virus. Front Microbiol 2017; 8:1556. [PMID: 28861067 PMCID: PMC5562671 DOI: 10.3389/fmicb.2017.01556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases.
Collapse
Affiliation(s)
| | | | - Minoushka Oduber
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | | | | | - Jeroen M Roose
- Artemis One Health Research FoundationDelft, Netherlands
| | | | - Albert D M E Osterhaus
- Artemis One Health Research FoundationDelft, Netherlands.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary MedicineHannover, Germany
| | - Arno C Andeweg
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | - Penelope Koraka
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | - Byron E E Martina
- Artemis One Health Research FoundationDelft, Netherlands.,Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| |
Collapse
|
36
|
Viral RNA at Two Stages of Reovirus Infection Is Required for the Induction of Necroptosis. J Virol 2017; 91:JVI.02404-16. [PMID: 28077640 DOI: 10.1128/jvi.02404-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 12/24/2022] Open
Abstract
Necroptosis, a regulated form of necrotic cell death, requires the activation of the RIP3 kinase. Here, we identify that infection of host cells with reovirus can result in necroptosis. We find that necroptosis requires sensing of the genomic RNA within incoming virus particles via cytoplasmic RNA sensors to produce type I interferon (IFN). While these events that occur prior to the de novo synthesis of viral RNA are required for the induction of necroptosis, they are not sufficient. The induction of necroptosis also requires late stages of reovirus infection. Specifically, efficient synthesis of double-stranded RNA (dsRNA) within infected cells is required for necroptosis. These data indicate that viral RNA interfaces with host components at two different stages of infection to induce necroptosis. This work provides new molecular details about events in the viral replication cycle that contribute to the induction of necroptosis following infection with an RNA virus.IMPORTANCE An appreciation of how cell death pathways are regulated following viral infection may reveal strategies to limit tissue destruction and prevent the onset of disease. Cell death following virus infection can occur by apoptosis or a regulated form of necrosis known as necroptosis. Apoptotic cells are typically disposed of without activating the immune system. In contrast, necroptotic cells alert the immune system, resulting in inflammation and tissue damage. While apoptosis following virus infection has been extensively investigated, how necroptosis is unleashed following virus infection is understood for only a small group of viruses. Here, using mammalian reovirus, we highlight the molecular mechanism by which infection with a dsRNA virus results in necroptosis.
Collapse
|
37
|
A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature 2016; 534:538-43. [PMID: 27337340 DOI: 10.1038/nature18283] [Citation(s) in RCA: 454] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 04/25/2016] [Indexed: 01/12/2023]
Abstract
Over 50% of patients who survive neuroinvasive infection with West Nile virus (WNV) exhibit chronic cognitive sequelae. Although thousands of cases of WNV-mediated memory dysfunction accrue annually, the mechanisms responsible for these impairments are unknown. The classical complement cascade, a key component of innate immune pathogen defence, mediates synaptic pruning by microglia during early postnatal development. Here we show that viral infection of adult hippocampal neurons induces complement-mediated elimination of presynaptic terminals in a murine WNV neuroinvasive disease model. Inoculation of WNV-NS5-E218A, a WNV with a mutant NS5(E218A) protein leads to survival rates and cognitive dysfunction that mirror human WNV neuroinvasive disease. WNV-NS5-E218A-recovered mice (recovery defined as survival after acute infection) display impaired spatial learning and persistence of phagocytic microglia without loss of hippocampal neurons or volume. Hippocampi from WNV-NS5-E218A-recovered mice with poor spatial learning show increased expression of genes that drive synaptic remodelling by microglia via complement. C1QA was upregulated and localized to microglia, infected neurons and presynaptic terminals during WNV neuroinvasive disease. Murine and human WNV neuroinvasive disease post-mortem samples exhibit loss of hippocampal CA3 presynaptic terminals, and murine studies revealed microglial engulfment of presynaptic terminals during acute infection and after recovery. Mice with fewer microglia (Il34(-/-) mice with a deficiency in IL-34 production) or deficiency in complement C3 or C3a receptor were protected from WNV-induced synaptic terminal loss. Our study provides a new murine model of WNV-induced spatial memory impairment, and identifies a potential mechanism underlying neurocognitive impairment in patients recovering from WNV neuroinvasive disease.
Collapse
|
38
|
ISG12a Restricts Hepatitis C Virus Infection through the Ubiquitination-Dependent Degradation Pathway. J Virol 2016; 90:6832-45. [PMID: 27194766 DOI: 10.1128/jvi.00352-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Interferons (IFNs) restrict various kinds of viral infection via induction of hundreds of IFN-stimulated genes (ISGs), while the functions of the majority of ISGs are broadly unclear. Here, we show that a high-IFN-inducible gene, ISG12a (also known as IFI27), exhibits a nonapoptotic antiviral effect on hepatitis C virus (HCV) infection. Viral NS5A protein is targeted specifically by ISG12a, which mediates NS5A degradation via a ubiquitination-dependent proteasomal pathway. K374R mutation in NS5A domain III abrogates ISG12a-induced ubiquitination and degradation of NS5A. S-phase kinase-associated protein 2 (SKP2) is identified as an ubiquitin E3 ligase for NS5A. ISG12a functions as a crucial adaptor that promotes SKP2 to interact with and degrade viral protein. Moreover, the antiviral effect of ISG12a is dependent on the E3 ligase activity of SKP2. These findings uncover an intriguing mechanism by which ISG12a restricts viral infection and provide clues for understanding the actions of innate immunity. IMPORTANCE Upon virus invasion, IFNs induce numerous ISGs to control viral spread, while the functions of the majority of ISGs are broadly unclear. The present study shows a novel antiviral mechanism of ISGs and elucidated that ISG12a recruits an E3 ligase, SKP2, for ubiquitination and degradation of viral protein and restricts viral infection. These findings provide important insights into exploring the working principles of innate immunity.
Collapse
|
39
|
Lee KM, Chiu KB, Sansing HA, Didier PJ, Lackner AA, MacLean AG. The flavivirus dengue induces hypertrophy of white matter astrocytes. J Neurovirol 2016; 22:831-839. [PMID: 27273075 DOI: 10.1007/s13365-016-0461-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/09/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022]
Abstract
Flaviviruses, including Zika and dengue (DENV), pose a serious global threat to human health. Of the 50+ million humans infected with DENV annually, approximately 1-3 % progress to severe disease manifestations, dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Several factors are suspected to mediate the course of infection and pathogenesis of DENV infection. DHF and DSS are associated with vascular leakage and neurological sequelae. Our hypothesis was that altered astrocyte activation and morphology would alter the dynamics of the extracellular space and hence, neuronal and vascular function. We investigated the mechanisms of neuropathogenesis DENV infection in rhesus macaques. There were decreased numbers of GFAP immunopositive astrocytes per unit area, although those that remained had increased arbor length and complexity. This was combined with structural hypertrophy of white matter astrocytes in the absence of increased vascular leakage. Combined, these studies show how even low-grade infection with DENV induces measurable changes within the parenchyma of infected individuals.
Collapse
Affiliation(s)
- Kim M Lee
- Program in Biomedical Science, Tulane Medical School, New Orleans, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Kevin B Chiu
- Tulane National Primate Research Center, Covington, LA, USA.,Department of Biomedical Engineering, Covington, LA, USA
| | - Hope A Sansing
- Tulane National Primate Research Center, Covington, LA, USA
| | - Peter J Didier
- Tulane National Primate Research Center, Covington, LA, USA
| | - Andrew A Lackner
- Program in Biomedical Science, Tulane Medical School, New Orleans, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA.,Department of Microbiology and Immunology, Tulane Medical School, New Orleans, LA, USA
| | - Andrew G MacLean
- Program in Biomedical Science, Tulane Medical School, New Orleans, LA, USA. .,Tulane National Primate Research Center, Covington, LA, USA. .,Department of Microbiology and Immunology, Tulane Medical School, New Orleans, LA, USA.
| |
Collapse
|
40
|
Transcriptome Analysis Reveals a Signature Profile for Tick-Borne Flavivirus Persistence in HEK 293T Cells. mBio 2016; 7:mBio.00314-16. [PMID: 27222466 PMCID: PMC4895102 DOI: 10.1128/mbio.00314-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Tick-borne flaviviruses (TBFVs) cause febrile illnesses, which may progress to severe encephalitis and/or death in humans globally. Most people who recover from severe acute disease suffer from debilitating neurological sequelae, which may be due to viral persistence, infection-induced neurological cell damage, host response, or some combination of these. Acute TBFV infection of human embryonic kidney (HEK) 293T cells in vitro results in the death of >95% of infected cells by day 5. However, replacing cell growth medium allows surviving cells to repopulate and become persistently infected for extended periods of time. The mechanisms responsible for initiation and maintenance of viral persistence remain vague. We subjected the HEK 293T cell transcriptome to deep sequencing to identify genes differentially expressed during acute infection and persistent infection. A total of 451 genes showed unique significant differential expression levels in persistently infected cells relative to the acute phase of infection. Ingenuity Pathway Analysis results suggested that the expression of prosurvival oncogenes AKT2 and ERBB2 was upregulated in persistently infected cells, whereas proapoptotic genes, such as Bad and the beta interferon 1 (IFN-β1) gene, were downregulated. Genes encoding antiviral cytokines such as the CCL5, tumor necrosis factor alpha (TNF-α), and CXCL10 genes were upregulated during the acute phase, but the same genes were relatively quiescent in persistently infected cells. Exogenous induction of apoptosis demonstrated that persistently infected cells were resistant to apoptosis in a dose-dependent manner. In summary, the differential transcriptome profiles of acute-phase compared to persistently infected HEK 293T cells demonstrated an evasion of apoptosis, which may be critical for a chronic TBFV infection state. These results provide a basis for further study of the mechanisms of TBFV persistence. IMPORTANCE Tick-borne flaviviruses (TBFVs) cause life-threatening encephalitic disease in humans worldwide. Some people who recover from severe disease may suffer prolonged neurological symptoms due to either virus- or host response-induced cell damage or a combination of the two that are linked to viral persistence. By examining the genes that are significantly differentially expressed in acute TBFV infection versus persistent TBFV infection, we may be able to find the molecular basis of viral persistence. Here we used deep sequencing of the host cell transcriptome to discover that the expression levels of prosurvival genes were upregulated in persistently infected cells relative to acute TBFV infections whereas the expression levels of genes that promote programmed cell death were downregulated. In addition, persistently infected cells were also resistant to exogenous chemical induction of cell death, in a dose-dependent manner, compared to uninfected cells. Our results pave the way for further studies aimed at understanding the precise mechanisms of TBFV persistence.
Collapse
|
41
|
Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis. Sci Rep 2016; 6:26350. [PMID: 27211830 PMCID: PMC4876452 DOI: 10.1038/srep26350] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics.
Collapse
|
42
|
MicroRNA transcriptome profiling of mice brains infected with Japanese encephalitis virus by RNA sequencing. INFECTION GENETICS AND EVOLUTION 2016; 39:249-257. [PMID: 26845346 DOI: 10.1016/j.meegid.2016.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/11/2016] [Accepted: 01/30/2016] [Indexed: 12/11/2022]
Abstract
Japanese encephalitis (JE) is a mosquito borne viral disease, caused by Japanese encephalitis virus (JEV) infection producing severe neuroinflammation in the central nervous system (CNS) with the associated disruption of the blood brain barrier. MicroRNAs (miRNAs) are a family of 21-24 nt small non-coding RNAs that play important post-transcriptional regulatory roles in gene expression and have critical roles in virus pathogenesis. We examined the potential roles of miRNAs in JEV-infected suckling mice brains and found that JEV infection changed miRNA expression profiles when the suckling mice began showing nervous symptoms. A total of 1062 known and 71 novel miRNAs were detected in JEV-infected group, accompanied with 1088 known and 75 novel miRNAs in mock controls. Among these miRNAs, one novel and 25 known miRNAs were significantly differentially expressed, including 18 up-regulated and 8 down-regulated miRNAs which were further confirmed by real-time PCR. Gene ontology (GO) and signaling pathway analysis of the predicted target mRNAs of the modulated miRNAs showed that they are correlated with the regulation of apoptosis, neuron differentiation, antiviral immunity and infiltration of mouse brain, and the validated targets of 12 differentially expressed miRNAs were enriched for the regulation of cell programmed death, proliferation, transcription, muscle organ development, erythrocyte differentiation, gene expression, plasma membrane and protein domain specific binding. KEGG analysis further reveals that the validated target genes were involved in the Pathways in cancer, Neurotrophin signaling pathway, Toll like receptor signaling pathway, Endometrial cancer and Jak-STAT signaling pathway. We constructed the interaction networks of miRNAs and their target genes according to GO terms and KEGG pathways and the expression levels of several target genes were examined. Our data provides a valuable basis for further studies on the regulatory roles of miRNAs in JE pathogenesis.
Collapse
|
43
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
45
|
Lucas TM, Richner JM, Diamond MS. The Interferon-Stimulated Gene Ifi27l2a Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific Manner. J Virol 2015; 90:2600-15. [PMID: 26699642 PMCID: PMC4810731 DOI: 10.1128/jvi.02463-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The mammalian host responds to viral infections by inducing expression of hundreds of interferon-stimulated genes (ISGs). While the functional significance of many ISGs has yet to be determined, their cell type and temporal nature of expression suggest unique activities against specific pathogens. Using a combination of ectopic expression and gene silencing approaches in cell culture, we previously identified Ifi27l2a as a candidate antiviral ISG within neuronal subsets of the central nervous system (CNS) that restricts infection by West Nile virus (WNV), an encephalitic flavivirus of global concern. To investigate the physiological relevance of Ifi27l2a in the context of viral infection, we generated Ifi27l2a(-/-) mice. Although adult mice lacking Ifi27l2a were more vulnerable to lethal WNV infection, the viral burden was greater only within the CNS, particularly in the brain stem, cerebellum, and spinal cord. Within neurons of the cerebellum and brain stem, in the context of WNV infection, a deficiency of Ifi27l2a was associated with less cell death, which likely contributed to sustained viral replication and higher titers in these regions. Infection studies in a primary cell culture revealed that Ifi27l2a(-/-) cerebellar granule cell neurons and macrophages but not cerebral cortical neurons, embryonic fibroblasts, or dendritic cells sustained higher levels of WNV infection than wild-type cells and that this difference was greater under conditions of beta interferon (IFN-β) pretreatment. Collectively, these findings suggest that Ifi27l2a has an antiviral phenotype in subsets of cells and that at least some ISGs have specific inhibitory functions in restricted tissues. IMPORTANCE The interferon-stimulated Ifi27l2a gene is expressed differentially within the central nervous system upon interferon stimulation or viral infection. Prior studies in cell culture suggested an antiviral role for Ifi27l2a during infection by West Nile virus (WNV). To characterize its antiviral activity in vivo, we generated mice with a targeted gene deletion of Ifi27l2a. Based on extensive virological analyses, we determined that Ifi27l2a protects mice from WNV-induced mortality by contributing to the control of infection of the hindbrain and spinal cord, possibly by regulating cell death of neurons. This antiviral activity was validated in granule cell neurons derived from the cerebellum and in macrophages but was not observed in other cell types. Collectively, these data suggest that Ifi27l2a contributes to innate immune restriction of WNV in a cell-type- and tissue-specific manner.
Collapse
Affiliation(s)
- Tiffany M Lucas
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin M Richner
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
46
|
Venkatesan A, Benavides DR. Autoimmune encephalitis and its relation to infection. Curr Neurol Neurosci Rep 2015; 15:3. [PMID: 25637289 DOI: 10.1007/s11910-015-0529-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Encephalitis, an inflammatory condition of the brain that results in substantial morbidity and mortality, has numerous causes. Over the past decade, it has become increasingly recognized that autoimmune conditions contribute significantly to the spectrum of encephalitis causes. Clinical suspicion and early diagnosis of autoimmune etiologies are of particular importance due to the need for early institution of immune suppressive therapies to improve outcome. Emerging clinical observations suggest that the most commonly recognized cause of antibody-mediated autoimmune encephalitis, anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, may in some cases be triggered by herpes virus infection. Other conditions such as Rasmussen's encephalitis (RE) and febrile infection-related epilepsy syndrome (FIRES) have also been posited to be autoimmune conditions triggered by infectious agents. This review focuses on emerging concepts in central nervous system autoimmunity and addresses clinical and mechanistic findings linking autoimmune encephalitis and infections. Particular consideration will be given to anti-NMDA receptor encephalitis and its relation to herpes simplex encephalitis.
Collapse
Affiliation(s)
- Arun Venkatesan
- Johns Hopkins Encephalitis Center, Department of Neurology, Johns Hopkins University School of Medicine, Meyer 6-113, 600 N. Wolfe Street, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
47
|
Application of “Omics” Technologies for Diagnosis and Pathogenesis of Neurological Infections. Curr Neurol Neurosci Rep 2015. [DOI: 10.1007/s11910-015-0580-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Ezzati P, Komher K, Severini G, Coombs KM. Comparative proteomic analyses demonstrate enhanced interferon and STAT-1 activation in reovirus T3D-infected HeLa cells. Front Cell Infect Microbiol 2015; 5:30. [PMID: 25905045 PMCID: PMC4388007 DOI: 10.3389/fcimb.2015.00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/18/2015] [Indexed: 12/28/2022] Open
Abstract
As obligate intracellular parasites, viruses are exclusively and intimately dependent upon their host cells for replication. During replication viruses induce profound changes within cells, including: induction of signaling pathways, morphological changes, and cell death. Many such cellular perturbations have been analyzed at the transcriptomic level by gene arrays and recent efforts have begun to analyze cellular proteomic responses. We recently described comparative stable isotopic (SILAC) analyses of reovirus, strain type 3 Dearing (T3D)-infected HeLa cells. For the present study we employed the complementary labeling strategy of iTRAQ (isobaric tags for relative and absolute quantitation) to examine HeLa cell changes induced by T3D, another reovirus strain, type 1 Lang, and UV-inactivated T3D (UV-T3D). Triplicate replicates of cytosolic and nuclear fractions identified a total of 2375 proteins, of which 50, 57, and 46 were significantly up-regulated, and 37, 26, and 44 were significantly down-regulated by T1L, T3D, and UV-T3D, respectively. Several pathways, most notably the Interferon signaling pathway and the EIF2 and ILK signaling pathways, were induced by virus infection. Western blots confirmed that cells were more strongly activated by live T3D as demonstrated by elevated levels of key proteins like STAT-1, ISG-15, IFIT-1, IFIT-3, and Mx1. This study expands our understanding of reovirus-induced host responses.
Collapse
Affiliation(s)
- Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba Winnipeg, MB, Canada
| | - Krysten Komher
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Giulia Severini
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Kevin M Coombs
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba Winnipeg, MB, Canada ; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada ; Manitoba Institute of Child Health, John Buhler Research Centre Winnipeg, MB, Canada
| |
Collapse
|
49
|
High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. J Proteomics 2015; 120:126-41. [PMID: 25782748 PMCID: PMC7102674 DOI: 10.1016/j.jprot.2015.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 01/14/2023]
Abstract
Global re-emergence of Chikungunya virus (CHIKV) has renewed the interest in its cellular pathogenesis. We subjected CHIKV-infected Human Embryo Kidney cells (HEK293), a widely used cell-based system for CHIKV infection studies, to a high throughput expression proteomics analysis by Liquid Chromatography–tandem mass spectrometry. A total of 1047 differentially expressed proteins were identified in infected cells, consistently in three biological replicates. Proteins involved in transcription, translation, apoptosis and stress response were the major ones among the 209 proteins that had significant up-regulation. In the set of 45 down-regulated proteins, those involved in carbohydrate and lipid metabolism predominated. A STRING network analysis revealed tight interaction of proteins within the apoptosis, stress response and protein synthesis pathways. We short-listed a common set of 30 proteins that can be implicated in cellular pathology of CHIKV infection by comparing our results and results of earlier CHIKV proteomics studies. Modulation of eight proteins selected from this set was re-confirmed at transcript level. One among them, Nucleophosmin, a nuclear chaperone, showed temporal modulation and cytoplasmic aggregation upon CHIKV infection in double immunofluorescence staining and confocal microscopy. The short-listed cellular proteins will be potential candidates for targeted study of the molecular interactions of CHIKV with host cells. Biological significance Chikungunya remained as a neglected tropical disease till its re-emergence in 2005 in the La RéUnion islands and subsequently, in India and many parts of South East Asia. These and the epidemics that followed in subsequent years ran an explosive course leading to extreme morbidity and attributed mortality to this originally benign virus infection. Apart from classical symptoms of acute fever and debilitating polyarthralgia lasting for several weeks, a number of complications were documented. These included aphthous-like ulcers and vesiculo-bullous eruptions on the skin, hepatic involvement, central nervous system complications such as encephalopathy and encephalitis, and transplacental transmission. The disease has recently spread to the Americas with its initial documentation in the Caribbean islands. The Asian genotype of this positive-stranded RNA virus of the Alphavirus genus has been attributed in these outbreaks. However, the disease ran a similar course as the one caused by the East, Central and South African (ECSA) genotype in the other parts of the world. Studies have documented a number of mutations in the re-emerging strains of the virus that enhances mosquito adaptability and modulates virus infectivity. This might support the occurrence of fiery outbreaks in the absence of herd immunity in affected population. Several research groups work to understand the pathogenesis of chikungunya and the mechanisms of complications using cellular and animal models. A few proteomics approaches have been employed earlier to understand the protein level changes in the infected cells. Our present study, which couples a high throughput proteomic analysis and a comparative review of these earlier studies, identifies a few critical molecules as hypothetical candidates that might be important in this infection and for future study. High throughput expression proteomics analysis in HEK293 cells Identified four major cellular pathways affected in Chikungunya virus infection Short-listed 30 key proteins modulated by a comparative review Confirmed modulation of Nucleophosmin and other selected proteins upon infection
Collapse
|
50
|
Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, Traynor D, Johnson RF, Dyall J, Kuhn JH, Olinger GG, Hensley LE, Jahrling PB. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother 2015; 59:1088-99. [PMID: 25487801 PMCID: PMC4335870 DOI: 10.1128/aac.03659-14] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Britini Ork
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Brit J Hart
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Steven Mazur
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Dawn Traynor
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Julie Dyall
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Jens H Kuhn
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Gene G Olinger
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Lisa E Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Peter B Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|