1
|
Mpingabo PI, Ylade M, Aogo RA, Crisostomo MV, Thiono DJ, Daag JV, Agrupis KA, Escoto AC, Raimundi-Rodriguez GL, Odio CD, Fernandez MA, White L, de Silva AM, Deen J, Katzelnick LC. Envelope-dimer epitope-like broadly protective antibodies against dengue in children following natural infection and vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.30.24306574. [PMID: 38746253 PMCID: PMC11092691 DOI: 10.1101/2024.04.30.24306574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cross-reactive antibodies (Abs) to epitopes that span envelope proteins on the virion surface are hypothesized to protect against dengue. Here, we measured Abs targeting the quaternary envelope dimer epitope (EDE) as well as neutralizing and binding Abs and evaluate their association with dengue virus (DENV) infection, vaccine response, and disease outcome in dengue vaccinated and unvaccinated children (n=252) within a longitudinal cohort in Cebu, Philippines (n=2,996). Abs targeting EDE were prevalent and strongly associated with broad neutralization of DENV1-4 in those with baseline multitypic immunity. Subsequent natural infection and vaccination boosted EDE-like, neutralizing, and binding Abs. EDE-like Abs were associated with reduced dengue risk and mediated the protective effect of binding and neutralizing Abs on symptomatic and severe dengue. Thus, Abs targeting quaternary epitopes help explain broad cross protection in those with multiple prior DENV exposures, making them useful for evaluation and development of future vaccines and therapeutics.
Collapse
|
2
|
Maxwell L, Chamorro JB, Leegstra LM, Laguna HS, Miranda Montoya MC. "How about me giving blood for the COVID vaccine and not being able to get vaccinated?" A cognitive interview study on understanding of and agreement with broad consent for future use of data and samples in Colombia and Nicaragua. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001253. [PMID: 37195974 PMCID: PMC10191364 DOI: 10.1371/journal.pgph.0001253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
Broad consent for future use, wherein researchers ask participants for permission to share participant-level data and samples collected within the study for purposes loosely related to the study objectives, is central to enabling ethical data and sample reuse. Ensuring that participants understand broad consent-related language is key to maintaining trust in the study and public health research. We conducted 52 cognitive interviews to explore cohort research participants' and their parents' understanding of the broad consent-related language in the University of California at Berkeley template informed consent (IC) form for biomedical research. Participants and their parents were recruited from long-standing infectious disease cohort studies in Nicaragua and Colombia and interviewed during the COVID-19 pandemic. We conducted semi-structured interviews to assess participants' agreement with the key concepts in the IC after clarifying them through the cognitive interview. Participants did not understand abstract concepts, including collecting and reusing genetic data. Participants wanted to learn about incidental findings, future users and uses. Trust in the research team and the belief that sharing could lead to new vaccines or treatments were critical to participant support for data and sample sharing. Participants highlighted the importance of data and sample sharing for COVID-19 response and equitable access to vaccines and treatments developed through sharing. Our findings on participants' understanding of broad consent and preferences for data and sample sharing can help inform researchers and ethics review committees working to enable ethical and equitable data and sample sharing.
Collapse
Affiliation(s)
- Lauren Maxwell
- Heidelberger Institut für Global Health, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Luz Marina Leegstra
- Heidelberger Institut für Global Health, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
3
|
Falconi-Agapito F, Kerkhof K, Merino X, Michiels J, Van Esbroeck M, Bartholomeeusen K, Talledo M, Ariën KK. Dynamics of the Magnitude, Breadth and Depth of the Antibody Response at Epitope Level Following Dengue Infection. Front Immunol 2021; 12:686691. [PMID: 34290707 PMCID: PMC8289389 DOI: 10.3389/fimmu.2021.686691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue is a major public health problem in tropical and sub-tropical regions worldwide. Since the Zika epidemic and the increased co-circulation of other arboviruses, the serology-based diagnosis of dengue has become more problematic due to the high antigenic resemblance, especially among the flavivirus family. Therefore, a more comprehensive understanding of the diversity, specificity and temporal evolution of the antibody response following dengue infection is needed. In order to close this knowledge gap, we used a high-density peptide microarray of 9,072 linear peptides covering the entire proteome diversity of dengue, Zika, yellow fever and chikungunya viruses. The IgM and IgG antibody responses were measured against the designed microarray in symptomatic dengue infected individuals from an arbovirus endemic area in Peru and in overseas travelers returning to Belgium, as representatives of multiple-exposed and primary infections, respectively. Serum samples were collected longitudinally across four time points over the period of six months in Peru and over two time points in travelers. We show that epitopes eliciting the strongest flavivirus cross-reactive antibodies, in both primary and secondary infections were concentrated in the capsid, E, NS1, NS3 and NS5 proteins. The IgG antibody responses against NS1 and NS3 followed a rise-and-fall pattern, with peak titers between two to four weeks after onset of illness. The response to the E and NS5 proteins increased rapidly in the acute phase and was maintained at stable levels until at least 6 months after illness. A more scattered IgM antibody reactivity across the viral proteome was observed in the acute phase of the disease and that persisted through the 6-month window. The magnitude, breadth (i.e. number of unique epitopes targeted) and depth (i.e. number of epitope variants recognized) of the IgG response was higher in secondary infections compared to primary infections. For IgM antibodies, the magnitude of the response was higher in primary infected individuals whereas the breadth and depth of the response was lower in this group compared with the endemic subjects. Finally, through this arboviral proteome-wide epitope mapping, we were able to identify IgM and IgG dengue-specific epitopes which can be useful serological markers for dengue diagnosis and serostatus determination.
Collapse
Affiliation(s)
- Francesca Falconi-Agapito
- Department of Biomedical Sciences, Unit of Virology, Institute of Tropical Medicine, Antwerp, Belgium
- Virology Unit, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Karen Kerkhof
- Department of Biomedical Sciences, Unit of Virology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xiomara Merino
- Virology Unit, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Johan Michiels
- Department of Biomedical Sciences, Unit of Virology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, National Reference Center for Arboviruses, Institute of Tropical Medicine, Antwerp, Belgium
| | - Koen Bartholomeeusen
- Department of Biomedical Sciences, Unit of Virology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michael Talledo
- Virology Unit, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kevin K. Ariën
- Department of Biomedical Sciences, Unit of Virology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Natali EN, Babrak LM, Miho E. Prospective Artificial Intelligence to Dissect the Dengue Immune Response and Discover Therapeutics. Front Immunol 2021; 12:574411. [PMID: 34211454 PMCID: PMC8239437 DOI: 10.3389/fimmu.2021.574411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue virus (DENV) poses a serious threat to global health as the causative agent of dengue fever. The virus is endemic in more than 128 countries resulting in approximately 390 million infection cases each year. Currently, there is no approved therapeutic for treatment nor a fully efficacious vaccine. The development of therapeutics is confounded and hampered by the complexity of the immune response to DENV, in particular to sequential infection with different DENV serotypes (DENV1-5). Researchers have shown that the DENV envelope (E) antigen is primarily responsible for the interaction and subsequent invasion of host cells for all serotypes and can elicit neutralizing antibodies in humans. The advent of high-throughput sequencing and the rapid advancements in computational analysis of complex data, has provided tools for the deconvolution of the DENV immune response. Several types of complex statistical analyses, machine learning models and complex visualizations can be applied to begin answering questions about the B- and T-cell immune responses to multiple infections, antibody-dependent enhancement, identification of novel therapeutics and advance vaccine research.
Collapse
Affiliation(s)
- Eriberto N. Natali
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Lmar M. Babrak
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- aiNET GmbH, Basel, Switzerland
| |
Collapse
|
5
|
Young E, Carnahan RH, Andrade DV, Kose N, Nargi RS, Fritch EJ, Munt JE, Doyle MP, White L, Baric TJ, Stoops M, DeSilva A, Tse LV, Martinez DR, Zhu D, Metz S, Wong MP, Espinosa DA, Montoya M, Biering SB, Sukulpolvi-Petty S, Kuan G, Balmaseda A, Diamond MS, Harris E, Crowe JE, Baric RS. Identification of Dengue Virus Serotype 3 Specific Antigenic Sites Targeted by Neutralizing Human Antibodies. Cell Host Microbe 2021; 27:710-724.e7. [PMID: 32407709 PMCID: PMC7309352 DOI: 10.1016/j.chom.2020.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/18/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
The rational design of dengue virus (DENV) vaccines requires a detailed understanding of the molecular basis for antibody-mediated immunity. The durably protective antibody response to DENV after primary infection is serotype specific. However, there is an incomplete understanding of the antigenic determinants for DENV type-specific (TS) antibodies, especially for DENV serotype 3, which has only one well-studied, strongly neutralizing human monoclonal antibody (mAb). Here, we investigated the human B cell response in children after natural DENV infection in the endemic area of Nicaragua and isolated 15 DENV3 TS mAbs recognizing the envelope (E) glycoprotein. Functional epitope mapping of these mAbs and small animal prophylaxis studies revealed a complex landscape with protective epitopes clustering in at least 6-7 antigenic sites. Potently neutralizing TS mAbs recognized sites principally in E glycoprotein domains I and II, and patterns suggest frequent recognition of quaternary structures on the surface of viral particles.
Collapse
Affiliation(s)
- Ellen Young
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Robert H Carnahan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniela V Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ethan J Fritch
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer E Munt
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Michael P Doyle
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura White
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas J Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Mark Stoops
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Aravinda DeSilva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Stefan Metz
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Magelda Montoya
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Soila Sukulpolvi-Petty
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Guillermina Kuan
- Health Center Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Angel Balmaseda
- National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - James E Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Warner NL, Linville AC, Core SB, Moreno B, Pascale JM, Peabody DS, Chackerian B, Frietze KM. Expansion and Refinement of Deep Sequence-Coupled Biopanning Technology for Epitope-Specific Antibody Responses in Human Serum. Viruses 2020; 12:E1114. [PMID: 33008118 PMCID: PMC7600589 DOI: 10.3390/v12101114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Identifying the specific epitopes targeted by antibodies elicited in response to infectious diseases is important for developing vaccines and diagnostics. However, techniques for broadly exploring the specificity of antibodies in a rapid manner are lacking, limiting our ability to quickly respond to emerging viruses. We previously reported a technology that couples deep sequencing technology with a bacteriophage MS2 virus-like particle (VLP) peptide display platform for identifying pathogen-specific antibody responses. Here, we describe refinements that expand the number of patient samples that can be processed at one time, increasing the utility of this technology for rapidly responding to emerging infectious diseases. We used dengue virus (DENV) as a model system since much is already known about the antibody response. Sera from primary DENV-infected patients (n = 28) were used to pan an MS2 bacteriophage VLP library displaying all possible 10-amino-acid peptides from the DENV polypeptide. Selected VLPs were identified by deep sequencing and further investigated by enzyme-linked immunosorbent assay. We identified previously described immunodominant regions of envelope and nonstructural protein-1, as well as a number of other epitopes. Our refinement of the deep sequence-coupled biopanning technology expands the utility of this approach for rapidly investigating the specificity of antibody responses to infectious diseases.
Collapse
Affiliation(s)
- Nikole L. Warner
- Department and Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA; (N.L.W.); (A.C.L.); (S.B.C.); (D.S.P.); (B.C.)
| | - Alexandria C. Linville
- Department and Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA; (N.L.W.); (A.C.L.); (S.B.C.); (D.S.P.); (B.C.)
| | - Susan B. Core
- Department and Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA; (N.L.W.); (A.C.L.); (S.B.C.); (D.S.P.); (B.C.)
| | - Brechla Moreno
- Gorgas Memorial Institute, Panama 0801, Panama; (B.M.); (J.M.P.)
| | - Juan M. Pascale
- Gorgas Memorial Institute, Panama 0801, Panama; (B.M.); (J.M.P.)
| | - David S. Peabody
- Department and Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA; (N.L.W.); (A.C.L.); (S.B.C.); (D.S.P.); (B.C.)
| | - Bryce Chackerian
- Department and Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA; (N.L.W.); (A.C.L.); (S.B.C.); (D.S.P.); (B.C.)
| | - Kathryn M. Frietze
- Department and Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA; (N.L.W.); (A.C.L.); (S.B.C.); (D.S.P.); (B.C.)
- Clinical and Translational Science Center, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
8
|
Sarathy VV, Barrett ADT. Finding Their Type: Elusive Antigenic Sites on Dengue Virus 3 Mapped with Human Antibodies. Cell Host Microbe 2020; 27:681-682. [PMID: 32407701 DOI: 10.1016/j.chom.2020.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this issue of Cell Host & Microbe, Young et al. shed light on dengue virus 3-specific epitopes. Mapping of human monoclonal antibodies led to the discovery of six quaternary antigenic sites with strong neutralizing activity suggesting that epitopes involved with protective immunity may be more complex than previously realized.
Collapse
Affiliation(s)
- Vanessa V Sarathy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
9
|
Swanstrom JA, Nivarthi UK, Patel B, Delacruz MJ, Yount B, Widman DG, Durbin AP, Whitehead SS, De Silva AM, Baric RS. Beyond Neutralizing Antibody Levels: The Epitope Specificity of Antibodies Induced by National Institutes of Health Monovalent Dengue Virus Vaccines. J Infect Dis 2020; 220:219-227. [PMID: 30895307 PMCID: PMC6581895 DOI: 10.1093/infdis/jiz109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/19/2019] [Indexed: 11/24/2022] Open
Abstract
Background Dengue virus is an emerging mosquito-borne flavivirus responsible for considerable morbidity and mortality worldwide. The Division of Intramural Research, National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (NIH) has developed live attenuated vaccines to each of the 4 serotypes of dengue virus (DENV1–4). While overall levels of DENV neutralizing antibodies (nAbs) in humans have been correlated with protection, these correlations vary depending on DENV serotype, prevaccination immunostatus, age, and study site. By combining both the level and molecular specificity of nAbs to each serotype, it may be possible to develop more robust correlates that predict long-term outcome. Methods Using depletions and recombinant chimeric epitope transplant DENVs, we evaluate the molecular specificity and mapped specific epitopes and antigenic regions targeted by vaccine-induced nAbs in volunteers who received the NIH monovalent vaccines against each DENV serotype. Results After monovalent vaccination, subjects developed high levels of nAbs that mainly targeted epitopes that are unique (type-specific) to each DENV serotype. The DENV1, 2, and 4 monovalent vaccines induced type-specific nAbs directed to quaternary structure envelope epitopes known to be targets of strongly neutralizing antibodies induced by wild-type DENV infections. Conclusions Our results reported here on the molecular specificity of NIH vaccine–induced antibodies enable new strategies, beyond the absolute levels of nAbs, for determining correlates and mechanisms of protective immunity.
Collapse
Affiliation(s)
- Jesica A Swanstrom
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | - Usha K Nivarthi
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill
| | - Bhumi Patel
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill
| | - Matthew J Delacruz
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill
| | - Boyd Yount
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | - Douglas G Widman
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | - Anna P Durbin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore.,Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aravinda M De Silva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| |
Collapse
|
10
|
Andrade DV, Warnes C, Young E, Katzelnick LC, Balmaseda A, de Silva AM, Baric RS, Harris E. Tracking the polyclonal neutralizing antibody response to a dengue virus serotype 1 type-specific epitope across two populations in Asia and the Americas. Sci Rep 2019; 9:16258. [PMID: 31700029 PMCID: PMC6838341 DOI: 10.1038/s41598-019-52511-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/18/2019] [Indexed: 01/22/2023] Open
Abstract
The four dengue virus serotypes (DENV1-4) cause major public health problems worldwide. Highly neutralizing type-specific human monoclonal antibodies (hmAbs) target conformation-dependent epitopes on the DENV envelope protein, including 1F4, a DENV1 type-specific hmAb. Using a recombinant DENV2 virus displaying the DENV1 1F4 epitope (rDENV2/1), we measured the proportion and kinetics of DENV1 neutralizing antibodies targeting the 1F4 epitope in individuals living in Asia and the Americas where different DENV1 genotypes were circulating. Samples from 20 individuals were analyzed 3 and 18 months post-primary DENV1 infection, alongside samples from 4 individuals collected annually for four years post-primary DENV1 infection, from two studies in Nicaragua. We also analyzed convalescent post-primary DENV1 plasma samples from Sri Lankan individuals. We found that neutralizing antibodies recognizing the 1F4 epitope vary in prevalence across both populations and were detected from 20 days to four years post-infection. Additionally, both populations displayed substantial variability, with a range of high to low proportions of DENV1 type-specific neutralizing antibodies recognizing the 1F4 epitope seen across individuals. Thus, the 1F4 epitope is a major but not exclusive target of type-specific neutralizing antibodies post-primary infection with different DENV1 genotypes in Asia and Latin America, and additional epitopes likely contribute to type-specific neutralization of DENV1.
Collapse
Affiliation(s)
- Daniela V Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Colin Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Ellen Young
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, CA, USA
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Angel Balmaseda
- National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, CA, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
11
|
Potent Neutralizing Human Monoclonal Antibodies Preferentially Target Mature Dengue Virus Particles: Implication for Novel Strategy for Dengue Vaccine. J Virol 2018; 92:JVI.00556-18. [PMID: 30185598 PMCID: PMC6232466 DOI: 10.1128/jvi.00556-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/22/2018] [Indexed: 11/20/2022] Open
Abstract
The four serotypes of dengue virus (DENV) cause the most important mosquito-borne viral disease in humans. The envelope (E) protein is the major target of neutralizing antibodies and contains 3 domains (domain I [DI], DII, and DIII). Recent studies reported that human monoclonal antibodies (MAbs) recognizing DIII, the D1/DII hinge, the E-dimer epitope, or a quaternary epitope involving DI/DII/DIII are more potently neutralizing than those recognizing the fusion loop (FL) of DII. Due to inefficient cleavage of the premembrane protein, DENV suspensions consist of a mixture of mature, immature, and partially immature particles. We investigated the neutralization and binding of 22 human MAbs to DENV serotype 1 (DENV1) virions with differential maturation status. Compared with FL MAbs, DIII, DI/DII hinge, and E-dimer epitope MAbs showed higher maximum binding and avidity to mature particles relative to immature particles; this feature may contribute to the strong neutralizing potency of such MAbs. FL-specific MAbs required 57 to 87% occupancy on mature particles to achieve half-maximal neutralization (NT50), whereas the potently neutralizing MAbs achieved NT50 states at 20 to 38% occupancy. Analysis of the MAb repertoire and polyclonal sera from patients with primary DENV1 infection supports the immunodominance of cross-reactive anti-E antibodies over type-specific antibodies. After depletion with viral particles from a heterologous DENV serotype, the type-specific neutralizing antibodies remained and showed binding features shared by potent neutralizing MAbs. Taken together, these findings suggest that the use of homogeneous mature DENV particles as an immunogen may induce more potent neutralizing antibodies against DENV than the use of immature or mixed particles.IMPORTANCE With an estimated 390 million infections per year, the four serotypes of dengue virus (DENV) cause the most important mosquito-borne viral disease in humans. The dengue vaccine Dengvaxia was licensed; however, its low efficacy among dengue-naive individuals and increased risk of causing severe dengue in children highlight the need for a better understanding of the role of human antibodies in immunity against DENV. DENV suspensions contain mature, immature, and partially immature particles. We investigated the binding of 22 human monoclonal antibodies (MAbs) to the DENV envelope protein on particles with different maturation states. Potently neutralizing MAbs had higher relative maximum binding and avidity to mature particles than weakly neutralizing MAbs. This was supported by analysis of MAb repertoires and polyclonal sera from patients with primary DENV infection. Together, these findings suggest that mature particles may be the optimal form of presentation of the envelope protein to induce more potent neutralizing antibodies against DENV.
Collapse
|
12
|
Katzelnick LC, Harris E. The use of longitudinal cohorts for studies of dengue viral pathogenesis and protection. Curr Opin Virol 2018; 29:51-61. [PMID: 29597086 PMCID: PMC5996389 DOI: 10.1016/j.coviro.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
Abstract
In this review, we describe how longitudinal prospective community-based, school-based, and household-based cohort studies contribute to improving our knowledge of viral disease, focusing specifically on contributions to understanding and preventing dengue. We describe how longitudinal cohorts enable measurement of essential disease parameters and risk factors; provide insights into biological correlates of protection and disease risk; enable rapid application of novel biological and statistical technologies; lead to development of new interventions and inform vaccine trial design; serve as sentinels in outbreak conditions and facilitate development of critical diagnostic assays; enable holistic studies on disease in the context of other infections, comorbidities, and environmental risk factors; and build research capacity that strengthens national and global public health response and disease surveillance.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, CA 94720-3370, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, CA 94720-3370, United States.
| |
Collapse
|
13
|
Widman DG, Young E, Nivarthi U, Swanstrom JA, Royal SR, Yount BL, Debbink K, Begley M, Marcet S, Durbin A, de Silva AM, Messer WB, Baric RS. Transplantation of a quaternary structure neutralizing antibody epitope from dengue virus serotype 3 into serotype 4. Sci Rep 2017; 7:17169. [PMID: 29215033 PMCID: PMC5719398 DOI: 10.1038/s41598-017-17355-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 01/04/2023] Open
Abstract
Dengue vaccine trials have revealed deficits in our understanding of the mechanisms of protective immunity, demonstrating a need to measure epitope-specific antibody responses against each DENV serotype. HmAb 5J7 binds to a complex, 3-monomer spanning quaternary epitope in the DENV3 envelope (E) protein, but it is unclear whether all interactions are needed for neutralization. Structure guided design and reverse genetics were used to sequentially transplant larger portions of the DENV3-specific 5J7 mAb epitope into dengue virus serotype 4 (DENV4). We observed complete binding and neutralization only when the entire 3 monomer spanning epitope was transplanted into DENV4, providing empirical proof that cooperative monomer-hmAb 5J7 interactions maximize activity. The rDENV4/3 virus containing the most expanded 5J7 epitope was also significantly more sensitive than WT DENV4 to neutralization by DENV3 primary immune sera. We conclude that the hinge-spanning region of the 5J7 quaternary epitope is a target for serotype-specific neutralizing antibodies after DENV3 infection.
Collapse
Affiliation(s)
- Douglas G Widman
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Usha Nivarthi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jesica A Swanstrom
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Scott R Royal
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kari Debbink
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.,Department of Natural Sciences, Bowie State University, Bowie, MD, USA
| | - Matthew Begley
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Marcet
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Anna Durbin
- Center for Immunization Research, Department for International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - William B Messer
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Ralph S Baric
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|