1
|
Li Y, Rivers J, Mathis S, Li Z, Chochua S, Metcalf BJ, Beall B, McGee L. Genomic cluster formation among invasive group A streptococcal infections in the USA: a whole-genome sequencing and population-based surveillance study. THE LANCET. MICROBE 2024; 5:100927. [PMID: 39419051 DOI: 10.1016/s2666-5247(24)00169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Clusters of invasive group A streptococcal (iGAS) infection, linked to genomically closely related group A streptococcal (GAS) isolates (referred to as genomic clusters), pose public health threats, and are increasingly identified through whole-genome sequencing (WGS) analysis. In this study, we aimed to assess the risk of genomic cluster formation among iGAS cases not already part of existing genomic clusters. METHODS In this WGS and population-based surveillance study, we analysed iGAS case isolates from the Active Bacterial Core surveillance (ABCs), which is part of the US Centers for Disease Control and Prevention's Emerging Infections Program, in ten US states from Jan 1, 2015, to Dec 31, 2019. We included all residents in ABCs sites with iGAS infections meeting the case definition and excluded non-conforming GAS infections and cases with whole-genome assemblies of the isolate containing fewer than 1·5 million total bases or more than 150 contigs. For iGAS cases we collected basic demographics, underlying conditions, and risk factors for infection from medical records, and for isolates we included emm types, antimicrobial resistance, and presence of virulence-related genes. Two iGAS cases were defined as genomically clustered if their isolates differed by three or less single-nucleotide variants. An iGAS case not clustered with any previous cases at the time of detection, with a minimum trace-back time of 1 year, was defined as being at risk of cluster formation. We monitored each iGAS case at risk for a minimum of 1 year to identify any cluster formation event, defined as the detection of a subsequent iGAS case clustered with the case at risk. We used the Kaplan-Meier method to estimate the cumulative incidence of cluster formation events over time. We used Cox regression to assess associations between features of cases at risk upon detection and subsequent cluster formation. We developed a random survival forest machine-learning model based on a derivation cohort (random selection of 50% of cases at risk) to predict cluster formation risk. This model was validated using a validation cohort consisting of the remaining 50% of cases at risk. FINDINGS We identified 2764 iGAS cases at risk from 2016 to 2018, of which 656 (24%) formed genomic clusters by the end of 2019. Overall, the cumulative incidence of cluster formation was 0·057 (95% CI 0·048-0·066) at 30 days after detection, 0·12 (0·11-0·13) at 90 days after detection, and 0·16 (0·15-0·18) at 180 days after detection. A higher risk of cluster formation was associated with emm type (adjusted hazard ratio as compared with emm89 was 2·37 [95% CI 1·71-3·30] for emm1, 2·72 [1·82-4·06] for emm3, 2·28 [1·49-3·51] for emm6, 1·47 [1·05-2·06] for emm12, and 2·21 [1·38-3·56] for emm92), homelessness (1·42 [1·01-1·99]), injection drug use (2·08 [1·59-2·72]), residence in a long-term care facility (1·78 [1·29-2·45]), and the autumn-winter season (1·34 [1·14-1·57]) in multivariable Cox regression analysis. The machine-learning model stratified the validation cohort (n=1382) into groups at low (n=370), moderate (n=738), and high (n=274) risk. The 90-day risk of cluster formation was 0·03 (95% CI 0·01-0·05) for the group at low risk, 0·10 (0·08-0·13) for the group at moderate risk, and 0·21 (0·17-0·25) for the group at high risk. These results were consistent with the cross-validation outcomes in the derivation cohort. INTERPRETATION Using population-based surveillance data, we found that pathogen, host, and environment factors of iGAS cases were associated with increased likelihood of subsequent genomic cluster formation. Groups at high risk were consistently identified by a predictive model which could inform prevention strategies, although future work to refine the model, incorporating other potential risk factors such as host contact patterns and immunity to GAS, is needed to improve its predictive performance. FUNDING Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
2
|
Tamminga SM, Schipper K, Murner N, Davies M, Berkhout P, Bessen DE, Hendriks A, Korotkova N, Pannekoek Y, van Sorge NM. Natural variation of the streptococcal Group A carbohydrate biosynthesis genes impacts host-pathogen interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621835. [PMID: 39574630 PMCID: PMC11580967 DOI: 10.1101/2024.11.04.621835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Streptococcus pyogenes ( S. pyogenes ) is a leading cause of infection-related mortality in humans globally. The characteristic cell wall-anchored Group A Carbohydrate (GAC) is expressed by all S. pyogenes strains and consists of a polyrhamnose backbone with alternating N -acetylglucosamine (GlcNAc) side chains, of which 25% are decorated with glycerol phosphate (GroP). The genes in the gacA-L cluster are critical for GAC biosynthesis with gacI-L being responsible for the characteristic GlcNAc-GroP decoration, which confers the agglutination in rapid test diagnostic assays and contributes to S. pyogenes pathogenicity. Seminal research papers described S. pyogenes isolates, so-called A-variant strains, that lost the characteristic GlcNAc side chain following serial animal passage. We performed genomic analysis of a single viable historic parent/A-variant strain pair to reveal a premature inactivating stop codon in gacI , explaining the described loss of the GlcNAc side chain. Subsequently, we analyzed the genetic variation of the 12 gacA-L genes in a collection of 2,044 S. pyogenes genome sequences. Although all gac genes ( gacA-L ) displayed genetic variation, we only identified 31 isolates (1.5%) with a premature stop codon in one of the gac genes. Nearly 40% of these isolates contained a premature stop codon in gacH . To study the functional consequences of the different premature stop codons for GacH function, we plasmid-expressed three gacH variants in a S. pyogenes gacH -deficient strain. Cell wall analysis confirmed GacH loss-of-function through the significant reduction of GroP. Complementary, we showed that strains expressing gacH loss-of-function variants were completely resistant to the human bactericidal enzyme group IIA-secreted phospholipase. Overall, our data provide a comprehensive overview of the genetic variation of the gacA-L gene cluster in a global population of S. pyogenes strains and the functional consequences of gacH variation for immune recognition and clearance. Data summary All S. pyogenes genome sequences used for this analysis are available within the publication by Davies et al . (2019), 'Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics' Nature Genetics, 51(6):1035-43.
Collapse
Affiliation(s)
- Sara M. Tamminga
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Kim Schipper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas Murner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Matthew Davies
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis (NRLBM), Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Paul Berkhout
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Debra E. Bessen
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Astrid Hendriks
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Nina M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis (NRLBM), Amsterdam UMC location AMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Yaglom HD, Bhattarai R, Lemmer D, Rust L, Ridenour C, Chorbi K, Kim E, Centner H, Sheridan K, Jasso-Selles D, Erickson DE, French C, Bowers JR, Valentine M, Francis D, Hepp CM, Brady S, Komatsu KK, Engelthaler DM. Large Clusters of Invasive emm49 Group A Streptococcus Identified Within Arizona Health Care Facilities Through Statewide Genomic Surveillance System, 2019-2021. J Infect Dis 2024; 230:598-605. [PMID: 38373258 DOI: 10.1093/infdis/jiae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
A statewide genomic surveillance system for invasive Group A Streptococcus was implemented in Arizona in June 2019, resulting in 1046 isolates being submitted for genomic analysis to characterize emm types and identify transmission clusters. Eleven of the 32 identified distinct emm types comprised >80% of samples, with 29.7% of all isolates being typed as emm49 (and its genetic derivative emm151). Phylogenetic analysis initially identified an emm49 genomic cluster of 4 isolates that rapidly expanded over subsequent months (June 2019 to February 2020). Public health investigations identified epidemiologic links with 3 different long-term care facilities, resulting in specific interventions. Unbiased genomic surveillance allowed for identification and response to clusters that would have otherwise remained undetected.
Collapse
Affiliation(s)
- Hayley D Yaglom
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Rachana Bhattarai
- Bureau of Infectious Disease and Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Darrin Lemmer
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Laura Rust
- Bureau of Infectious Disease and Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Chase Ridenour
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Kaitlyn Chorbi
- Bureau of Infectious Disease and Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Elizabeth Kim
- Bureau of Infectious Disease and Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Heather Centner
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Krystal Sheridan
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Daniel Jasso-Selles
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Daryn E Erickson
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Chris French
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Jolene R Bowers
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Michael Valentine
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Drew Francis
- Arizona State Laboratory, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Crystal M Hepp
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Shane Brady
- Public Health Preparedness Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Kenneth K Komatsu
- Public Health Services, Arizona Department of Health Services, Phoenix, Arizona, USA
| | - David M Engelthaler
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona, USA
| |
Collapse
|
4
|
Xie O, Davies MR, Tong SYC. Streptococcus dysgalactiae subsp. equisimilis infection and its intersection with Streptococcus pyogenes. Clin Microbiol Rev 2024; 37:e0017523. [PMID: 38856686 PMCID: PMC11392527 DOI: 10.1128/cmr.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
5
|
Hall JN, Bah SY, Khalid H, Brailey A, Coleman S, Kirk T, Hussain N, Tovey M, Chaudhuri RR, Davies S, Tilley L, de Silva T, Turner CE. Molecular characterization of Streptococcus pyogenes (StrepA) non-invasive isolates during the 2022-2023 UK upsurge. Microb Genom 2024; 10:001277. [PMID: 39133528 PMCID: PMC11318961 DOI: 10.1099/mgen.0.001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
At the end of 2022 into early 2023, the UK Health Security Agency reported unusually high levels of scarlet fever and invasive disease caused by Streptococcus pyogenes (StrepA or group A Streptococcus). During this time, we collected and genome-sequenced 341 non-invasive throat and skin S. pyogenes isolates identified during routine clinical diagnostic testing in Sheffield, a large UK city. We compared the data with that obtained from a similar collection of 165 isolates from 2016 to 2017. Numbers of throat-associated isolates collected peaked in early December 2022, reflecting the national scarlet fever upsurge, while skin infections peaked later in December. The most common emm-types in 2022-2023 were emm1 (28.7 %), emm12 (24.9 %) and emm22 (7.7 %) in throat and emm1 (22 %), emm12 (10 %), emm76 (18 %) and emm49 (7 %) in skin. While all emm1 isolates were the M1UK lineage, the comparison with 2016-2017 revealed diverse lineages in other emm-types, including emm12, and emergent lineages within other types including a new acapsular emm75 lineage, demonstrating that the upsurge was not completely driven by a single genotype. The analysis of the capsule locus predicted that only 51 % of throat isolates would produce capsule compared with 78% of skin isolates. Ninety per cent of throat isolates were also predicted to have high NADase and streptolysin O (SLO) expression, based on the promoter sequence, compared with only 56% of skin isolates. Our study has highlighted the value in analysis of non-invasive isolates to characterize tissue tropisms, as well as changing strain diversity and emerging genomic features which may have implications for spillover into invasive disease and future S. pyogenes upsurges.
Collapse
Affiliation(s)
- Jennifer N. Hall
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Saikou Y. Bah
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Henna Khalid
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Alison Brailey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sarah Coleman
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tracey Kirk
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Naveed Hussain
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mark Tovey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Roy R. Chaudhuri
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Steve Davies
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Lisa Tilley
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thushan de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Huang W, Markantonis JE, Yin C, Pozdol JR, Briley KP, Fallon JT. Local Genomic Surveillance of Invasive Streptococcus pyogenes in Eastern North Carolina (ENC) in 2022-2023. Int J Mol Sci 2024; 25:8179. [PMID: 39125755 PMCID: PMC11311789 DOI: 10.3390/ijms25158179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
The recent increase in Group A Streptococcus (GAS) incidences in several countries across Europe and some areas of the Unites States (U.S.) has raised concerns. To understand GAS diversity and prevalence, we conducted a local genomic surveillance in Eastern North Carolina (ENC) in 2022-2023 with 95 isolates and compared its results to those of the existing national genomic surveillance in the U.S. in 2015-2021 with 13,064 isolates. We observed their epidemiological changes before and during the COVID-19 pandemic and detected a unique sub-lineage in ENC among the most common invasive GAS strain, ST28/emm1. We further discovered a multiple-copy insertion sequence, ISLgar5, in ST399/emm77 and its single-copy variants in some other GAS strains. We discovered ISLgar5 was linked to a Tn5801-like tetM-carrying integrative and conjugative element, and its copy number was associated with an ermT-carrying pRW35-like plasmid. The dynamic insertions of ISLgar5 may play a vital role in genome fitness and adaptation, driving GAS evolution relevant to antimicrobial resistance and potentially GAS virulence.
Collapse
Affiliation(s)
- Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, Eastern Carolina University, Greenville, NC 27834, USA; (J.E.M.); (C.Y.); (J.R.P.); (K.P.B.); (J.T.F.)
| | | | | | | | | | | |
Collapse
|
7
|
Rampersadh K, Salie MT, Engel KC, Moodley C, Zühlke LJ, Engel ME. Presence of Group A streptococcus frequently assayed virulence genes in invasive disease: a systematic review and meta-analysis. Front Cell Infect Microbiol 2024; 14:1337861. [PMID: 39055978 PMCID: PMC11270091 DOI: 10.3389/fcimb.2024.1337861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction It is currently unclear what the role of Group A streptococcus (GAS) virulence factors (VFs) is in contributing to the invasive potential of GAS. This work investigated the evidence for the association of GAS VFs with invasive disease. Methods We employed a broad search strategy for studies reporting the presence of GAS VFs in invasive and non-invasive GAS disease. Data were independently extracted by two reviewers, quality assessed, and meta-analyzed using Stata®. Results A total of 32 studies reported on 45 putative virulence factors [invasive (n = 3,236); non-invasive (n = 5,218)], characterized by polymerase chain reaction (PCR) (n = 30) and whole-genome sequencing (WGS) (n = 2). The risk of bias was rated as low and moderate, in 23 and 9 studies, respectively. Meta-,analyses of high-quality studies (n = 23) revealed a significant association of speM [OR, 1.64 (95%CI, 1.06; 2.52)] with invasive infection. Meta-analysis of WGS studies demonstrated a significant association of hasA [OR, 1.91 (95%CI, 1.36; 2.67)] and speG [OR, 2.83 (95%CI, 1.63; 4.92)] with invasive GAS (iGAS). Meta-analysis of PCR studies indicated a significant association of speA [OR, 1.59 (95%CI, 1.10; 2.30)] and speK [OR, 2.95 (95%CI, 1.81; 4.80)] with invasive infection. A significant inverse association was observed between prtf1 [OR, 0.42 (95%CI, 0.20; 0.87)] and invasive infection. Conclusion This systematic review and genomic meta-analysis provides evidence of a statistically significant association with invasive infection for the hasA gene, while smeZ, ssa, pnga3, sda1, sic, and NaDase show statistically significantly inverse associations with invasive infection. SpeA, speK, and speG are associated with GAS virulence; however, it is unclear if they are markers of invasive infection. This work could possibly aid in developing preventative strategies.
Collapse
Affiliation(s)
- Kimona Rampersadh
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - M. Taariq Salie
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Kelin C. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Clinton Moodley
- Department of Pathology, Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- The National Health Laboratory Service, Microbiology, Groote Schuur Hospital, Cape Town, South Africa
| | - Liesl J. Zühlke
- Division of Paediatric Cardiology, Department of Paediatrics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| | - Mark E. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| |
Collapse
|
8
|
Bessen DE, Beall BW, Hayes A, Huang W, DiChiara JM, Velusamy S, Tettelin H, Jolley KA, Fallon JT, Chochua S, Alobaidallah MSA, Higgs C, Barnett TC, Steemson JT, Proft T, Davies MR. Recombinational exchange of M-fibril and T-pilus genes generates extensive cell surface diversity in the global group A Streptococcus population. mBio 2024; 15:e0069324. [PMID: 38587426 PMCID: PMC11078000 DOI: 10.1128/mbio.00693-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Among genes present in all group A streptococci (GAS), those encoding M-fibril and T-pilus proteins display the highest levels of sequence diversity, giving rise to the two primary serological typing schemes historically used to define strain. A new genotyping scheme for the pilin adhesin and backbone genes is developed and, when combined with emm typing, provides an account of the global GAS strain population. Cluster analysis based on nucleotide sequence similarity assigns most T-serotypes to discrete pilin backbone sequence clusters, yet the established T-types correspond to only half the clusters. The major pilin adhesin and backbone sequence clusters yield 98 unique combinations, defined as "pilin types." Numerous horizontal transfer events that involve pilin or emm genes generate extensive antigenic and functional diversity on the bacterial cell surface and lead to the emergence of new strains. Inferred pilin genotypes applied to a meta-analysis of global population-based collections of pharyngitis and impetigo isolates reveal highly significant associations between pilin genotypes and GAS infection at distinct ecological niches, consistent with a role for pilin gene products in adaptive evolution. Integration of emm and pilin typing into open-access online tools (pubmlst.org) ensures broad utility for end-users wanting to determine the architecture of M-fibril and T-pilus genes from genome assemblies.IMPORTANCEPrecision in defining the variant forms of infectious agents is critical to understanding their population biology and the epidemiology of associated diseases. Group A Streptococcus (GAS) is a global pathogen that causes a wide range of diseases and displays a highly diverse cell surface due to the antigenic heterogeneity of M-fibril and T-pilus proteins which also act as virulence factors of varied functions. emm genotyping is well-established and highly utilized, but there is no counterpart for pilin genes. A global GAS collection provides the basis for a comprehensive pilin typing scheme, and online tools for determining emm and pilin genotypes are developed. Application of these tools reveals the expansion of structural-functional diversity among GAS via horizontal gene transfer, as evidenced by unique combinations of surface protein genes. Pilin and emm genotype correlations with superficial throat vs skin infection provide new insights on the molecular determinants underlying key ecological and epidemiological trends.
Collapse
Affiliation(s)
- Debra E. Bessen
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Bernard W. Beall
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
- Eagle Global Scientific, LLC, Atlanta, Georgia, USA
| | - Andrew Hayes
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Weihua Huang
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, Brody School of Medicine, Eastern Carolina University, Greenville, North Carolina, USA
| | - Jeanne M. DiChiara
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Srinivasan Velusamy
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Keith A. Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - John T. Fallon
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, Brody School of Medicine, Eastern Carolina University, Greenville, North Carolina, USA
| | - Sopio Chochua
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Mosaed S. A. Alobaidallah
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Charlie Higgs
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Timothy C. Barnett
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Australia
| | - John T. Steemson
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- School of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
9
|
Hayama B, Harada S, Suzuki M, Doi Y, Nomura Y, Aoki K, Takehana K, Akatsuchi T, Enokida T, Takeda K, Seto A, Mitani H, Ohkushi D. Outbreak of Streptococcus pyogenes emm89 ST646 in a head and neck surgical oncology ward. Microbiol Spectr 2024; 12:e0426023. [PMID: 38587390 PMCID: PMC11064547 DOI: 10.1128/spectrum.04260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Streptococcus pyogenes causes a variety of human infections, and hospital outbreaks with this pathogen have also been reported. The purpose of this study is to describe the clinical characteristics of an outbreak of S. pyogenes involving 15 patients and four healthcare workers (HCWs), as well as the molecular characteristics of the causative isolates. The course and response to the outbreak were reviewed, and information on the characteristics of the patients was extracted retrospectively from the medical records. Whole-genome sequencing of the 16 causative isolates (14 from patients and two from HCWs) was also performed. All 15 patients were postoperative of head and neck cancer with tracheotomy, and 12 had invasive infections, primarily surgical site infections, all of which resolved without causing serious illness. All but the first case was detected more than 7 days after admission. S. pyogenes was detected in two patients after empiric antimicrobial administration was performed on all inpatients and HCWs, and the outbreak was finally contained in approximately 2 months. All isolates detected in patients and HCWs belonged to emm89/clade 3, a hypervirulent clone that has emerged worldwide and was classified as sequence type 646. These isolates had single nucleotide polymorphism (SNP) differences of zero to one, indicating clonal transmission. This study demonstrated an outbreak of S. pyogenes emm89/clade 3 in a ward of patients with head and neck cancer. The global emergence of hypervirulent isolates may increase the risk of outbreaks among high-risk patients. IMPORTANCE This study describes an outbreak of Streptococcus pyogenes that occurred in a ward caring for patients with head and neck cancer and tracheostomies. Many cases of invasive infections occurred in a short period, and extensive empiric antimicrobial administration on patients and healthcare workers was performed to control the outbreak. Whole-genome sequencing analysis of the causative strains confirmed that it was a monoclonal transmission of strains belonging to emm89/clade 3. The epidemiology and clinical characteristics of S. pyogenes infections have changed with the replacement of the prevalent clones worldwide. In the 1980s, there was a reemergence of S. pyogenes infections in high-income countries due to the spread of hypervirulent emm1 strains. emm89/clade 3 has recently been spreading worldwide and shares common features with emm1, including increased production of two toxins, NADase, and streptolysin O. The outbreak reported here may reflect the high spreading potential and virulence of emm89/clade 3.
Collapse
Affiliation(s)
- Brian Hayama
- Department of Infectious Diseases, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Infection Prevention, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sohei Harada
- Department of Infectious Diseases, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yusuke Nomura
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kazumi Takehana
- Clinical Laboratories, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomomi Akatsuchi
- Department of Infection Prevention, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Taisuke Enokida
- Department of Infectious Diseases, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koichi Takeda
- Department of Infectious Diseases, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akira Seto
- Department of Head and Neck Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroki Mitani
- Department of Head and Neck Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Ohkushi
- Department of Infectious Diseases, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
10
|
Xie O, Morris JM, Hayes AJ, Towers RJ, Jespersen MG, Lees JA, Ben Zakour NL, Berking O, Baines SL, Carter GP, Tonkin-Hill G, Schrieber L, McIntyre L, Lacey JA, James TB, Sriprakash KS, Beatson SA, Hasegawa T, Giffard P, Steer AC, Batzloff MR, Beall BW, Pinho MD, Ramirez M, Bessen DE, Dougan G, Bentley SD, Walker MJ, Currie BJ, Tong SYC, McMillan DJ, Davies MR. Inter-species gene flow drives ongoing evolution of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis. Nat Commun 2024; 15:2286. [PMID: 38480728 PMCID: PMC10937727 DOI: 10.1038/s41467-024-46530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging cause of human infection with invasive disease incidence and clinical manifestations comparable to the closely related species, Streptococcus pyogenes. Through systematic genomic analyses of 501 disseminated SDSE strains, we demonstrate extensive overlap between the genomes of SDSE and S. pyogenes. More than 75% of core genes are shared between the two species with one third demonstrating evidence of cross-species recombination. Twenty-five percent of mobile genetic element (MGE) clusters and 16 of 55 SDSE MGE insertion regions were shared across species. Assessing potential cross-protection from leading S. pyogenes vaccine candidates on SDSE, 12/34 preclinical vaccine antigen genes were shown to be present in >99% of isolates of both species. Relevant to possible vaccine evasion, six vaccine candidate genes demonstrated evidence of inter-species recombination. These findings demonstrate previously unappreciated levels of genomic overlap between these closely related pathogens with implications for streptococcal pathobiology, disease surveillance and prevention.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Jacqueline M Morris
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Rebecca J Towers
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton, Cambridgeshire, UK
| | - Nouri L Ben Zakour
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Olga Berking
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Layla Schrieber
- Faculty of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Taylah B James
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kadaba S Sriprakash
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Science & Technology, University of New England, Armidale, Australia
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Phil Giffard
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, Parkville, Australia
| | - Michael R Batzloff
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Bernard W Beall
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marcos D Pinho
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mario Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Debra E Bessen
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Gordon Dougan
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David J McMillan
- School of Science, Technology and Engineering, and Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
11
|
Smeesters PR, de Crombrugghe G, Tsoi SK, Leclercq C, Baker C, Osowicki J, Verhoeven C, Botteaux A, Steer AC. Global Streptococcus pyogenes strain diversity, disease associations, and implications for vaccine development: a systematic review. THE LANCET. MICROBE 2024; 5:e181-e193. [PMID: 38070538 DOI: 10.1016/s2666-5247(23)00318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 02/12/2024]
Abstract
The high strain diversity of Streptococcus pyogenes serves as a major obstacle to vaccine development against this leading global pathogen. We did a systematic review of studies in PubMed, MEDLINE, and Embase that reported the global distribution of S pyogenes emm-types and emm-clusters from Jan 1, 1990, to Feb 23, 2023. 212 datasets were included from 55 countries, encompassing 74 468 bacterial isolates belonging to 211 emm-types. Globally, an inverse correlation was observed between strain diversity and the UNDP Human Development Index (HDI; r=-0·72; p<0·0001), which remained consistent upon subanalysis by global region and site of infection. Greater strain diversity was associated with a lower HDI, suggesting the role of social determinants in diseases caused by S pyogenes. We used a population-weighted analysis to adjust for the disproportionate number of epidemiological studies from high-income countries and identified 15 key representative isolates as vaccine targets. Strong strain type associations were observed between the site of infection (invasive, skin, and throat) and several streptococcal lineages. In conclusion, the development of a truly global vaccine to reduce the immense burden of diseases caused by S pyogenes should consider the multidimensional diversity of the pathogen, including its social and environmental context, and not merely its geographical distribution.
Collapse
Affiliation(s)
- Pierre R Smeesters
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium; Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| | - Gabrielle de Crombrugghe
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Shu Ki Tsoi
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Céline Leclercq
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Ciara Baker
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Caroline Verhoeven
- Laboratoire d'enseignement des Mathématiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Unoarumhi Y, Davis ML, Rowe LA, Mathis S, Li Z, Chochua S, Li Y, McGee L, Metcalf BJ, Lee JS, Beall B. A novel invasive Streptococcus pyogenes variant sublineage derived through recombinational replacement of the emm12 genomic region. Sci Rep 2023; 13:21510. [PMID: 38057343 PMCID: PMC10700362 DOI: 10.1038/s41598-023-48035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Group A streptococcal strains potentially acquire new M protein gene types through genetic recombination (emm switching). To detect such variants, we screened 12,596 invasive GAS genomes for strains of differing emm types that shared the same multilocus sequence type (ST). Through this screening we detected a variant consisting of 16 serum opacity factor (SOF)-positive, emm pattern E, emm82 isolates that were ST36, previously only associated with SOF-negative, emm pattern A, emm12. The 16 emm82/ST36 isolates were closely interrelated (pairwise SNP distance of 0-43), and shared the same emm82-containing recombinational fragment. emm82/ST36 isolates carried the sof12 structural gene, however the sof12 indel characteristic of emm12 strains was corrected to confer the SOF-positive phenotype. Five independent emm82/ST36 invasive case isolates comprised two sets of genetically indistinguishable strains. The emm82/ST36 isolates were primarily macrolide resistant (12/16 isolates), displayed at least 4 different core genomic arrangements, and carried 11 different combinations of virulence and resistance determinants. Phylogenetic analysis revealed that emm82/ST36 was within a minor (non-clade 1) portion of ST36 that featured almost all ST36 antibiotic resistance. This work documents emergence of a rapidly diversifying variant that is the first confirmed example of an emm pattern A strain switched to a pattern E strain.
Collapse
Affiliation(s)
- Yvette Unoarumhi
- Centers for Disease Control and Prevention, Biotechnology Core Facility Branch, National Center for Emerging and Zoonotic Infectious Diseases, Division Scientific Resources, Atlanta, GA, USA
| | - Morgan L Davis
- Centers for Disease Control and Prevention, Biotechnology Core Facility Branch, National Center for Emerging and Zoonotic Infectious Diseases, Division Scientific Resources, Atlanta, GA, USA
| | - Lori A Rowe
- Centers for Disease Control and Prevention, Biotechnology Core Facility Branch, National Center for Emerging and Zoonotic Infectious Diseases, Division Scientific Resources, Atlanta, GA, USA
| | - Saundra Mathis
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Zhongya Li
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Sopio Chochua
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Yuan Li
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Lesley McGee
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Benjamin J Metcalf
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Justin S Lee
- Centers for Disease Control and Prevention, Biotechnology Core Facility Branch, National Center for Emerging and Zoonotic Infectious Diseases, Division Scientific Resources, Atlanta, GA, USA
| | - Bernard Beall
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA.
- Eagle GLobal Scientific, LLC, Atlanta, GA, USA.
| |
Collapse
|
13
|
Powell LM, Choi SJ, Haught BL, Demkowicz R, LaSala PR, Lukomski S. Prevalence of erythromycin-resistant emm92-type invasive group A streptococcal infections among injection drug users in West Virginia, United States, 2021-23. J Antimicrob Chemother 2023; 78:2554-2558. [PMID: 37638394 DOI: 10.1093/jac/dkad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Increasing incidence of invasive group A Streptococcus (iGAS) disease has been reported in Europe and the USA over the past several years. Coupled with this are observations of higher rates of resistance to erythromycin and clindamycin. OBJECTIVES To characterize iGAS and pharyngitis isolates from West Virginia (WV), a US state outside of the national Active Bacteria Core surveillance purview, where risk factors associated with iGAS infections are prevalent. METHODS Seventy-seven invasive group A Streptococcus isolates were collected from 67 unique patients at the J.W. Ruby Memorial Hospital Clinical Microbiology Laboratory in WV from 2021 to 2023. Invasive isolates and 20 unique pharyngitis isolates were tested for clindamycin and erythromycin susceptibility in the clinical laboratory. Patient demographic and clinical information was retrieved from patient electronic health records. Isolates were further characterized based on emm subtype and detection of MLSB resistance determinants. RESULTS Twenty-six (39%) isolates were of a single emm92 type. All emm92 isolates were uniformly erythromycin/clindamycin resistant with inducible or constitutive MLSB resistance imparted by the plasmid-borne erm(T) gene. The majority of emm92 infections were associated with adult patients who reported IV drug use, whereas no pharyngitis infections were caused by an emm92 strain. Overall, 51 (76%) of the 67 iGAS isolates were determined to carry MLSB resistance. CONCLUSIONS Isolates of emm92 type (clonal subtype emm92.0) were associated with iGAS infections in adult IV drug users, but not with paediatric pharyngitis, and were uniformly resistant to erythromycin and clindamycin.
Collapse
Affiliation(s)
- Lillie M Powell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| | - Soo Jeon Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| | - Breanna L Haught
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| | - Ryan Demkowicz
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - P Rocco LaSala
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| |
Collapse
|
14
|
Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DMP, Jespersen MG, Davies MR, Walker MJ. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat Rev Microbiol 2023; 21:431-447. [PMID: 36894668 PMCID: PMC9998027 DOI: 10.1038/s41579-023-00865-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is exquisitely adapted to the human host, resulting in asymptomatic infection, pharyngitis, pyoderma, scarlet fever or invasive diseases, with potential for triggering post-infection immune sequelae. GAS deploys a range of virulence determinants to allow colonization, dissemination within the host and transmission, disrupting both innate and adaptive immune responses to infection. Fluctuating global GAS epidemiology is characterized by the emergence of new GAS clones, often associated with the acquisition of new virulence or antimicrobial determinants that are better adapted to the infection niche or averting host immunity. The recent identification of clinical GAS isolates with reduced penicillin sensitivity and increasing macrolide resistance threatens both frontline and penicillin-adjunctive antibiotic treatment. The World Health Organization (WHO) has developed a GAS research and technology road map and has outlined preferred vaccine characteristics, stimulating renewed interest in the development of safe and effective GAS vaccines.
Collapse
Affiliation(s)
- Stephan Brouwer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Bodie F Curren
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nichaela Harbison-Price
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Catton EA, Bonsor DA, Herrera C, Stålhammar-Carlemalm M, Lyndin M, Turner CE, Soden J, van Strijp JAG, Singer BB, van Sorge NM, Lindahl G, McCarthy AJ. Human CEACAM1 is targeted by a Streptococcus pyogenes adhesin implicated in puerperal sepsis pathogenesis. Nat Commun 2023; 14:2275. [PMID: 37080973 PMCID: PMC10119177 DOI: 10.1038/s41467-023-37732-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Life-threatening bacterial infections in women after childbirth, known as puerperal sepsis, resulted in classical epidemics and remain a global health problem. While outbreaks of puerperal sepsis have been ascribed to Streptococcus pyogenes, little is known about disease mechanisms. Here, we show that the bacterial R28 protein, which is epidemiologically associated with outbreaks of puerperal sepsis, specifically targets the human receptor CEACAM1. This interaction triggers events that would favor the development of puerperal sepsis, including adhesion to cervical cells, suppression of epithelial wound repair and subversion of innate immune responses. High-resolution structural analysis showed that an R28 domain with IgI3-like fold binds to the N-terminal domain of CEACAM1. Together, these findings demonstrate that a single adhesin-receptor interaction can drive the pathogenesis of bacterial sepsis and provide molecular insights into the pathogenesis of one of the most important infectious diseases in medical history.
Collapse
Affiliation(s)
- Erin A Catton
- Centre for Bacterial Resistance Biology, Section of Molecular Microbiology, Department of Infectious Diseases, Imperial College London, London, SW7 2AZ, UK
| | - Daniel A Bonsor
- University of Maryland, Baltimore, MD, 21201, USA
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Carolina Herrera
- Section of Immunology of Infection, Department of Infectious Disease, Imperial College London, London, W2 1NY, UK
| | | | - Mykola Lyndin
- Sumy State University, Sumy, 40000, Ukraine
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, 45147, Germany
| | - Claire E Turner
- The School of Biosciences, The Florey Institute, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jo Soden
- Retrogenix, Chinley, High Peak, SK23 6FJ, Chinley, UK
| | - Jos A G van Strijp
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Bernhard B Singer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, 1105 AZ, The Netherlands
| | - Nina M van Sorge
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584 CX, The Netherlands.
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, 1105 AZ, The Netherlands.
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC, location AMC, Amsterdam, 1105 AZ, The Netherlands.
| | - Gunnar Lindahl
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, Lund, 223 62, Sweden.
- Department of Chemistry, Division of Applied Microbiology, Lund University, Lund, 221 00, Sweden.
| | - Alex J McCarthy
- Centre for Bacterial Resistance Biology, Section of Molecular Microbiology, Department of Infectious Diseases, Imperial College London, London, SW7 2AZ, UK.
- Department of Medical Microbiology, UMC Utrecht, Utrecht, 3584 CX, The Netherlands.
| |
Collapse
|
16
|
Kaci A, Jonassen CM, Skrede S, Sivertsen A, Steinbakk M, Oppegaard O. Genomic epidemiology of Streptococcus dysgalactiae subsp. equisimilis strains causing invasive disease in Norway during 2018. Front Microbiol 2023; 14:1171913. [PMID: 37485526 PMCID: PMC10361778 DOI: 10.3389/fmicb.2023.1171913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/31/2023] [Indexed: 07/25/2023] Open
Abstract
Background Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging global pathogen, yet the epidemiology and population genetics of SDSE species have not been extensively characterized. Methods We carried out whole genome sequencing to characterize 274 SDSE isolates causing bloodstream infections obtained through national surveillance program in 2018. We conducted multilocus sequence typing (MLST), emm-typing, core genome phylogeny, as well as investigated key features associated with virulence. Moreover, comparison to SDSE from other geographic regions were performed in order to gain more insight in the evolutionary dynamics in SDSE. Results The phylogenetic analysis indicated a substantial diversity of emm-types and sequence types (STs). Briefly, 17 emm-types and 58 STs were identified that formed 10 clonal complexes (CCs). The predominant ST-types were ST20 (20%), ST17 (17%), and ST29 (11%). While CC17 and CC29 clades showed a substantial heterogeneity with well-separated emm-associated subclades, the CC20 clade harboring the stG62647 emm-type was more homogenous and the most prevalent in the present study. Moreover, we observed notable differences in the distribution of clades within Norway, as well as several disseminated CCs and also distinct geographic variations when compared to data from other countries. We also revealed extensive intra-species recombination events involving surface exposed virulence factors, including the emm gene important for phylogenetic profiling. Conclusion Recombination events involving the emm as well as other virulence genes in SDSE, are important mechanisms in shaping the genetic variability in the SDSE population, potentially offering selective advantages to certain lineages. The enhanced phylogenetic resolution offered by whole genome sequencing is necessary to identify and delimitate outbreaks, monitor and properly characterize emerging strains, as well as elucidate bacterial population dynamics.
Collapse
Affiliation(s)
- Alba Kaci
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Christine M. Jonassen
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Steinar Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Audun Sivertsen
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - Martin Steinbakk
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Oddvar Oppegaard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
17
|
Yu D, Guo D, Zheng Y, Yang Y. A review of penicillin binding protein and group A Streptococcus with reduced-β-lactam susceptibility. Front Cell Infect Microbiol 2023; 13:1117160. [PMID: 37065204 PMCID: PMC10102528 DOI: 10.3389/fcimb.2023.1117160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
With the widespread use of antibiotics, antimicrobial resistance (AMR) has become a global problem that endangers public health. Despite the global high prevalence of group A Streptococcus (GAS) infections and the global widespread use of β-lactams, β-lactams remain the first-line treatment option for GAS infection. β-hemolytic streptococci maintain a persistent susceptibility to β-lactams, which is an extremely special phenomenon in the genus Streptococci, while the exact current mechanism is not known. In recent years, several studies have found that the gene encoding penicillin binding protein 2X (pbp2x) is associated with GAS with reduced-β-lactam susceptibility. The purpose of this review is to summarize the current published data on GAS penicillin binding proteins and β-lactam susceptibility, to explore the relationship between them, and to be alert to the emergence of GAS with reduced susceptibility to β-lactams.
Collapse
Affiliation(s)
- Dingle Yu
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Danchun Guo
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuejie Zheng
- Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Yuejie Zheng, ; Yonghong Yang,
| | - Yonghong Yang
- Shenzhen Children’s Hospital, Shenzhen, China
- Microbiology Laboratory, National Center for Children’s Health, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuejie Zheng, ; Yonghong Yang,
| |
Collapse
|
18
|
Genomic Characterization of Skin and Soft Tissue Streptococcus pyogenes Isolates from a Low-Income and a High-Income Setting. mSphere 2023; 8:e0046922. [PMID: 36507654 PMCID: PMC9942559 DOI: 10.1128/msphere.00469-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pyogenes is a leading cause of human morbidity and mortality, especially in resource-limited settings. The development of a vaccine against S. pyogenes is a global health priority to reduce the burden of postinfection rheumatic heart disease. To support this, molecular characterization of circulating S. pyogenes isolates is needed. We performed whole-genome analyses of S. pyogenes isolates from skin and soft tissue infections in Sukuta, The Gambia, a low-income country (LIC) in West Africa where there is a high burden of such infections. To act as a comparator to these LIC isolates, skin infection isolates from Sheffield, United Kingdom (a high-income country [HIC]), were also sequenced. The LIC isolates from The Gambia were genetically more diverse (46 emm types in 107 isolates) than the HIC isolates from Sheffield (23 emm types in 142 isolates), with only 7 overlapping emm types. Other molecular markers were shared, including a high prevalence of the skin infection-associated emm pattern D and the variable fibronectin-collagen-T antigen (FCT) types FCT-3 and FCT-4. Fewer of the Gambian LIC isolates carried prophage-associated superantigens (64%) and DNases (26%) than did the Sheffield HIC isolates (99% and 95%, respectively). We also identified streptococcin genes unique to 36% of the Gambian LIC isolates and a higher prevalence (48%) of glucuronic acid utilization pathway genes in the Gambian LIC isolates than in the Sheffield HIC isolates (26%). Comparison to a wider collection of HIC and LIC isolate genomes supported our findings of differing emm diversity and prevalence of bacterial factors. Our study provides insight into the genetics of LIC isolates and how they compare to HIC isolates. IMPORTANCE The global burden of rheumatic heart disease (RHD) has triggered a World Health Organization response to drive forward development of a vaccine against the causative human pathogen Streptococcus pyogenes. This burden stems primarily from low- and middle-income settings where there are high levels of S. pyogenes skin and soft tissue infections, which can lead to RHD. Our study provides much needed whole-genome-based molecular characterization of isolates causing skin infections in Sukuta, The Gambia, a low-income country (LIC) in West Africa where infection and RHD rates are high. Although we identified a greater level of diversity in these LIC isolates than in isolates from Sheffield, United Kingdom (a high-income country), there were some shared features. There were also some features that differed by geographical region, warranting further investigation into their contribution to infection. Our study has also contributed data essential for the development of a vaccine that would target geographically relevant strains.
Collapse
|
19
|
Li Y, Rivers J, Mathis S, Li Z, McGee L, Chochua S, Metcalf BJ, Fleming-Dutra KE, Nanduri SA, Beall B. Continued Increase of Erythromycin Nonsusceptibility and Clindamycin Nonsusceptibility Among Invasive Group A Streptococci Driven by Genomic Clusters, United States, 2018-2019. Clin Infect Dis 2023; 76:e1266-e1269. [PMID: 35684991 PMCID: PMC11120049 DOI: 10.1093/cid/ciac468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
We analyzed 9630 invasive GAS surveillance isolates in the USA. From 2015-2017 to 2018-2019, significant increases in erythromycin-nonsusceptibility (18% vs 25%) and clindamycin-nonsusceptibility (17% vs 24%) occurred, driven by rapid expansions of genomic subclones. Prevention and control of clustered infections appear key to containing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Saundra Mathis
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine E Fleming-Dutra
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Srinivas A Nanduri
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Sherman G, Lamb GS, Platt CD, Wessels MR, Chochua S, Nakamura MM. Simultaneous Late, Late-Onset Group B Streptococcal Meningitis in Identical Twins. Clin Pediatr (Phila) 2023; 62:96-99. [PMID: 35883267 PMCID: PMC11103665 DOI: 10.1177/00099228221113630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To our knowledge, late, late-onset group B streptococcal (GBS) meningitis in identical twins has yet to be reported. We describe a case of 14-week-old twins who developed fever hours apart and presented simultaneously to the emergency department 2 days later with seizures. Blood and cerebrospinal fluid (CSF) cultures from both infants were positive for GBS. Their clinical courses were highly similar, with magnetic resonance imaging (MRI) demonstrating ventriculitis and subdural empyema, complicated by clinical and subclinical seizures requiring quadruple antiepileptic treatment. The CSF was sterile for both on follow-up lumbar puncture 48 hours after the initial positive CSF culture. Both showed marked improvement on antimicrobial and antiepileptic therapy, with fever resolving after 5 days of therapy, control of seizures, and slowly improving MRI findings. Twin A received a 6-week course of penicillin, whereas twin B received 6 weeks plus an additional 10 days due to persistent left cochlear enhancement consistent with labyrinthitis. Evaluation for an underlying primary immunodeficiency was negative. Genomic analysis revealed that the patients' CSF GBS isolates were essentially identical and of capsular polysaccharide serotype Ia.
Collapse
Affiliation(s)
- Gilad Sherman
- Department of Pediatrics, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gabriella S. Lamb
- Department of Pediatrics, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Craig D. Platt
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Immunology, Boston Children’s Hospital, Boston, MA, USA
| | - Michael R. Wessels
- Department of Pediatrics, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mari M. Nakamura
- Department of Pediatrics, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Berbel D, González-Díaz A, López de Egea G, Càmara J, Ardanuy C. An Overview of Macrolide Resistance in Streptococci: Prevalence, Mobile Elements and Dynamics. Microorganisms 2022; 10:2316. [PMID: 36557569 PMCID: PMC9783990 DOI: 10.3390/microorganisms10122316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Streptococcal infections are usually treated with beta-lactam antibiotics, but, in case of allergic patients or reduced antibiotic susceptibility, macrolides and fluoroquinolones are the main alternatives. This work focuses on studying macrolide resistance rates, genetic associated determinants and antibiotic consumption data in Spain, Europe and also on a global scale. Macrolide resistance (MR) determinants, such as ribosomal methylases (erm(B), erm(TR), erm(T)) or active antibiotic efflux pumps and ribosomal protectors (mef(A/E)-mrs(D)), are differently distributed worldwide and associated with different clonal lineages and mobile genetic elements. MR rates vary together depending on clonal dynamics and on antibiotic consumption applying selective pressure. Among Streptococcus, higher MR rates are found in the viridans group, Streptococcus pneumoniae and Streptococcus agalactiae, and lower MR rates are described in Streptococcus pyogenes. When considering different geographic areas, higher resistance rates are usually found in East-Asian countries and milder or lower in the US and Europe. Unfortunately, the availability of data varies also between countries; it is scarce in low- and middle- income countries from Africa and South America. Thus, surveillance studies of macrolide resistance rates and the resistance determinants involved should be promoted to complete global knowledge among macrolide resistance dynamics.
Collapse
Affiliation(s)
- Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, 08907 Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, 28020 Madrid, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, 08907 Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, 28020 Madrid, Spain
| | - Guillem López de Egea
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, 08907 Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, 28020 Madrid, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, 08907 Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, 28020 Madrid, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, 08907 Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, 28020 Madrid, Spain
- Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
22
|
Chochua S, Metcalf B, Li Z, Mathis S, Tran T, Rivers J, Fleming-Dutra KE, Li Y, McGee L, Beall B. Invasive Group A Streptococcal Penicillin Binding Protein 2× Variants Associated with Reduced Susceptibility to β-Lactam Antibiotics in the United States, 2015-2021. Antimicrob Agents Chemother 2022; 66:e0080222. [PMID: 35969070 PMCID: PMC9487518 DOI: 10.1128/aac.00802-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
All known group A streptococci [GAS] are susceptible to β-lactam antibiotics. We recently identified an invasive GAS (iGAS) variant (emm43.4/PBP2x-T553K) with unusually high minimum inhibitory concentrations (MICs) for ampicillin and amoxicillin, although clinically susceptible to β-lactams. We aimed to quantitate PBP2x variants, small changes in β-lactam MICs, and lineages within contemporary population-based iGAS. PBP2x substitutions were comprehensively identified among 13,727 iGAS recovered during 2015-2021, in the USA. Isolates were subjected to antimicrobial susceptibility testing employing low range agar diffusion and PBP2x variants were subjected to phylogenetic analyses. Fifty-five variants were defined based upon substitutions within an assigned PBP2x transpeptidase domain. Twenty-nine of these variants, representing 338/13,727 (2.5%) isolates and 16 emm types, exhibited slightly elevated β-lactam MICs, none of which were above clinical breakpoints. The emm43.4/PBP2x-T553K variant, comprised of two isolates, displayed the most significant phenotype (ampicillin MIC 0.25 μg/ml) and harbored missense mutations within 3 non-PBP genes with known involvement in antibiotic efflux, membrane insertion of PBP2x, and peptidoglycan remodeling. The proportion of all PBP2x variants with elevated MICs remained stable throughout 2015-2021 (<3.0%). The predominant lineage (emm4/PBP2x-M593T/ermT) was resistant to macrolides/lincosamides and comprised 129/340 (37.9%) of isolates with elevated β-lactam MICs. Continuing β-lactam selective pressure is likely to have selected PBP2x variants that had escaped scrutiny due to MICs that remain below clinical cutoffs. Higher MICs exhibited by emm43.4/PBP2x-T553K are probably rare due to the requirement of additional mutations. Although elevated β-lactam MICs remain uncommon, emm43.4/PBP2x-T553K and emm4/PBP2x-M593T/ermT lineages indicate that antibiotic stewardship and strain monitoring is necessary.
Collapse
Affiliation(s)
- Sopio Chochua
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin Metcalf
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhongya Li
- ASRT Inc., Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Saundra Mathis
- ASRT Inc., Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Theresa Tran
- ASRT Inc., Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joy Rivers
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine E. Fleming-Dutra
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuan Li
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Accorsi EK, Chochua S, Moline HL, Hall M, Hersh AL, Shah SS, Britton A, Hawkins PA, Xing W, Onukwube Okaro J, Zielinski L, McGee L, Schrag S, Cohen AL. Pediatric Brain Abscesses, Epidural Empyemas, and Subdural Empyemas Associated with Streptococcus Species — United States, January 2016–August 2022. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2022; 71:1169-1173. [PMID: 36107787 PMCID: PMC9484804 DOI: 10.15585/mmwr.mm7137a2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Dunne EM, Hutton S, Peterson E, Blackstock AJ, Hahn CG, Turner K, Carter KK. Increasing Incidence of Invasive Group A Streptococcus Disease, Idaho, USA, 2008-2019. Emerg Infect Dis 2022; 28:1785-1795. [PMID: 35997313 PMCID: PMC9423907 DOI: 10.3201/eid2809.212129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigated invasive group A Streptococcus epidemiology in Idaho, USA, during 2008–2019 using surveillance data, medical record review, and emm (M protein gene) typing results. Incidence increased from 1.04 to 4.76 cases/100,000 persons during 2008–2019. emm 1, 12, 28, 11, and 4 were the most common types, and 2 outbreaks were identified. We examined changes in distribution of clinical syndrome, patient demographics, and risk factors by comparing 2008–2013 baseline with 2014–2019 data. Incidence was higher among all age groups during 2014–2019. Streptococcal toxic shock syndrome increased from 0% to 6.4% of cases (p = 0.02). We identified no differences in distribution of demographic or risk factors between periods. Results indicated that invasive group A Streptococcus is increasing among the general population of Idaho. Ongoing surveillance of state-level invasive group A Streptococcus cases could help identify outbreaks, track regional trends in incidence, and monitor circulating emm types.
Collapse
|
25
|
Metcalf B, Nanduri S, Chochua S, Li Y, Fleming-Dutra K, McGee L, Beall B. Cluster Transmission Drives Invasive Group A Streptococcus Disease Within the United States and Is Focused on Communities Experiencing Disadvantage. J Infect Dis 2022; 226:546-553. [PMID: 35511035 PMCID: PMC11058745 DOI: 10.1093/infdis/jiac162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/28/2022] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Group A streptococci (GAS), although usually responsible for mild infections, can sometimes spread into normally sterile sites and cause invasive GAS disease (iGAS). Because both the risk of iGAS disease and occurrence of outbreaks are elevated within certain communities, such as those comprising people who inject drugs (PWID) and people experiencing homelessness (PEH), understanding the transmission dynamics of GAS is of major relevance to public health. METHODS We used a cluster detection tool to scan genomes of 7552 Streptococcus pyogenes isolates acquired through the population-based Active Bacterial Core surveillance (ABCs) during 2015-2018 to identify genomically related clusters representing previously unidentified iGAS outbreaks. RESULTS We found that 64.6% of invasive isolates were included within clusters of at least 4 temporally related isolates. Calculating a cluster odds ratio (COR) for each emm type revealed that types vary widely in their propensity to form transmission clusters. By incorporating additional epidemiological metadata for each isolate, we found that emm types with a higher proportion of cases occurring among PEH and PWID were associated with higher CORs. Higher CORs were also correlated with emm types that are less geographically dispersed. CONCLUSIONS Early identification of clusters with implementation of outbreak control measures could result in significant reduction of iGAS.
Collapse
Affiliation(s)
- Benjamin Metcalf
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Srinivas Nanduri
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuan Li
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine Fleming-Dutra
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Rafei R, Al Iaali R, Osman M, Dabboussi F, Hamze M. A global snapshot on the prevalent macrolide-resistant emm types of Group A Streptococcus worldwide, their phenotypes and their resistance marker genotypes during the last two decades: A systematic review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105258. [PMID: 35219865 DOI: 10.1016/j.meegid.2022.105258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 12/29/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Watchful epidemiological surveillance of macrolide-resistant Group A Streptococcus (MRGAS) clones is important owing to the evolutionary and epidemiological dynamic of GAS. Meanwhile, data on the global distribution of MRGAS emm types according to macrolide resistance phenotypes and genotypes are scant and need to be updated. For this, the present systematic review analyses a global set of extensively characterized MRGAS isolates from patients of diverse ages and clinical presentations over approximately two decades (2000 to 2020) and recaps the peculiar epidemiological features of the dominant MRGAS clones. Based on the inclusion and exclusion criteria, 53 articles (3593 macrolide-resistant and 15,951 susceptible isolates) distributed over 23 countries were dissected with a predominance of high-income countries over low-income ones. Although macrolide resistance in GAS is highly variable in different countries, its within-GAS distribution seems not to be random. emm pattern E, 13 major emm types (emm12, 4, 28, 77, 75, 11, 22, 92, 58, 60, 94, 63, 114) and 4 emm clusters (A-C4, E1, E6, and E2) were significantly associated with macrolide resistance. emm patterns A-C and D, 14 major emm types (emm89, 3, 6, 2, 44, 82, 87, 118, 5, 49, 81, 59, 227, 78) and 3 well-defined emm clusters (A-C5, E3, and D4) were significantly associated with macrolide susceptibility. Scrutinizing the tendency of each MRGAS emm type to be significantly associated with specific macrolide resistance phenotype or genotype, interesting vignettes are also unveiled. The 30-valent vaccine covers ~95% of MRGAS isolates. The presented data urge the importance of comprehensive nationwide sustained surveillance of MRGAS circulating clones particularly in Low and Middle income countries where sampling bias is high and GAS epidemiology is obfuscated and needs to be demystified.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - Rayane Al Iaali
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
27
|
Lynch T, Nandi T, Jayaprakash T, Gregson D, Church DL. Genomic analysis of group A Streptococcus isolated during a correctional facility outbreak of MRSA in 2004. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2022; 7:23-35. [PMID: 36340844 PMCID: PMC9603014 DOI: 10.3138/jammi-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND In 2004-2005, an outbreak of impetigo occurred at a correctional facility during a sentinel outbreak of methicillin- resistant Staphylococcus aureus (MRSA) in Alberta, Canada. Next-generation sequencing (NGS) was used to characterize the group A Streptococcus (GAS) isolates and evaluate whether genomic biomarkers could distinguish between those recovered alone and those co-isolated with S. aureus. METHODS Superficial wound swabs collected from all adults with impetigo during this outbreak were cultured using standard methods. NGS was used to characterize and compare all of the GAS and S. aureus genomes. RESULTS Fifty-three adults were culture positive for GAS, with a subset of specimens also positive for MRSA (n = 5) or methicillin-sensitive S. aureus (n = 3). Seventeen additional MRSA isolates from this facility from the same time frame (no GAS co-isolates) were also included. All 78 bacterial genomes were analyzed for the presence of known virulence factors, plasmids, and antimicrobial resistance (AMR) genes. Among the GAS isolates were 12 emm types, the most common being 41.2 (n = 27; 51%). GAS genomes were phylogenetically compared with local and public datasets of invasive and non-invasive isolates. GAS genomes had diverse profiles for virulence factors, plasmids, and AMR genes. Pangenome analysis did not identify horizontally transferred genes in the co-infection versus single infections. CONCLUSIONS GAS recovered from invasive and non-invasive sources were not genetically distinguishable. Virulence factors, plasmids, and AMR profiles grouped by emm type, and no genetic changes were identified that predict co-infection or horizontal gene transfer between GAS and S. aureus.
Collapse
Affiliation(s)
- Tarah Lynch
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tannistha Nandi
- Research Computing Services, Information Technologies, University of Calgary, Calgary, Alberta, Canada
| | - Teenus Jayaprakash
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dan Gregson
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Deirdre L Church
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Integrative Reverse Genetic Analysis Identifies Polymorphisms Contributing to Decreased Antimicrobial Agent Susceptibility in Streptococcus pyogenes. mBio 2022; 13:e0361821. [PMID: 35038921 PMCID: PMC8764543 DOI: 10.1128/mbio.03618-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Identification of genetic polymorphisms causing increased antibiotic resistance in bacterial pathogens traditionally has proceeded from observed phenotype to defined mutant genotype. The availability of large collections of microbial genome sequences that lack antibiotic susceptibility metadata provides an important resource and opportunity to obtain new information about increased antimicrobial resistance by a reverse genotype-to-phenotype bioinformatic and experimental workflow. We analyzed 26,465 genome sequences of Streptococcus pyogenes, a human pathogen causing 700 million infections annually. The population genomic data identified amino acid changes in penicillin-binding proteins 1A, 1B, 2A, and 2X with signatures of evolution under positive selection as potential candidates for causing decreased susceptibility to β-lactam antibiotics. Construction and analysis of isogenic mutant strains containing individual amino acid replacements in penicillin-binding protein 2X (PBP2X) confirmed that the identified residues produced decreased susceptibility to penicillin. We also discovered the first chimeric PBP2X in S. pyogenes and show that strains containing it have significantly decreased β-lactam susceptibility. The novel integrative reverse genotype-to-phenotype strategy presented is broadly applicable to other pathogens and likely will lead to new knowledge about antimicrobial agent resistance, a massive public health problem worldwide. IMPORTANCE The recent demonstration that naturally occurring amino acid substitutions in Streptococcus pyogenes PBP2X are sufficient to cause severalfold reduced susceptibility to multiple β-lactam antibiotics in vitro raises the concern that these therapeutic agents may become compromised. Substitutions in PBP2X are common first-step mutations that, with the incremental accumulation of additional adaptive mutations within the PBPs, can result in high-level resistance. Because β-lactam susceptibility testing is not routinely performed, the nature and extent of such substitutions within the PBPs of S. pyogenes are poorly characterized. To address this knowledge deficit, polymorphisms in the PBPs were identified among the most comprehensive cohort of S. pyogenes genome sequences investigated to date. The mutational processes and selective forces acting on the PBPs were assessed to identify specific substitutions likely to influence β-lactam susceptibility and to evaluate factors posited to be impediments to resistance emergence.
Collapse
|
29
|
Distinct serotypes of streptococcal M proteins mediate fibrinogen-dependent platelet activation and pro-inflammatory effects. Infect Immun 2021; 90:e0046221. [PMID: 34898252 PMCID: PMC8852700 DOI: 10.1128/iai.00462-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a life-threatening complication of infection that is characterized by a dysregulated inflammatory state and disturbed hemostasis. Platelets are the main regulators of hemostasis, and they also respond to inflammation. The human pathogen Streptococcus pyogenes can cause local infection that may progress to sepsis. There are more than 200 serotypes of S. pyogenes defined according to sequence variations in the M protein. The M1 serotype is among 10 serotypes that are predominant in invasive infection. M1 protein can be released from the surface and has previously been shown to generate platelet, neutrophil, and monocyte activation. The platelet-dependent proinflammatory effects of other serotypes of M protein associated with invasive infection (M3, M5, M28, M49, and M89) are now investigated using a combination of multiparameter flow cytometry, enzyme-linked immunosorbent assay (ELISA), aggregometry, and quantitative mass spectrometry. We demonstrate that only M1, M3, and M5 protein serotypes can bind fibrinogen in plasma and mediate fibrinogen- and IgG-dependent platelet activation and aggregation, release of granule proteins, upregulation of CD62P to the platelet surface, and complex formation with neutrophils and monocytes. Neutrophil and monocyte activation, determined as upregulation of surface CD11b, is also mediated by M1, M3, and M5 protein serotypes, while M28, M49, and M89 proteins failed to mediate activation of platelets or leukocytes. Collectively, our findings reveal novel aspects of the immunomodulatory role of fibrinogen acquisition and platelet activation during streptococcal infections.
Collapse
|
30
|
Li Y, Dominguez S, Nanduri SA, Rivers J, Mathis S, Li Z, McGee L, Chochua S, Metcalf BJ, Van Beneden CA, Beall B, Miller L. Genomic Characterization of Group A Streptococci Causing Pharyngitis and Invasive Disease in Colorado, USA, June 2016 - April 2017. J Infect Dis 2021; 225:1841-1851. [PMID: 34788828 PMCID: PMC9125432 DOI: 10.1093/infdis/jiab565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The genomic features and transmission link of circulating Group A streptococcus (GAS) strains causing different disease types, such as pharyngitis and invasive disease, are not well understood. METHODS We used whole-genome sequencing (WGS) to characterize GAS isolates recovered from persons with pharyngitis and invasive disease in the Denver metropolitan area from June 2016 to April 2017. RESULTS GAS isolates were cultured from 236 invasive and 417 pharyngitis infections. WGS identified 34 emm types. Compared to pharyngitis isolates, invasive isolates were more likely to carry the erm family genes (23% vs. 7.4%, p<0.001), which confer resistance to erythromycin and clindamycin (including inducible resistance), and covS gene inactivation (7% vs. 0.5%, p<0.001). WGS identified 97 genomic clusters (433 isolates; 2-65 isolates per cluster) that consisted of genomically closely related isolates (median SNP (IQR) = 3 (1-4) within cluster). Thirty genomic clusters (200 isolates; 31% of all isolates) contained both pharyngitis and invasive isolates and were found in 11 emm types. CONCLUSIONS In the Denver metropolitan population, mixed disease types were commonly seen in clusters of closely related isolates, indicative of overlapping transmission networks. Antibiotic-resistance and covS inactivation was disproportionally associated with invasive disease.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samuel Dominguez
- University of Colorado School of Medicine Aurora, CO, USA; Children's Hospital Colorado Aurora, CO, USA
| | - Srinivas A Nanduri
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Saundra Mathis
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chris A Van Beneden
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa Miller
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
31
|
Bidell MR, Lodise TP. Use of oral tetracyclines in the treatment of adult outpatients with skin and skin structure infections: Focus on doxycycline, minocycline, and omadacycline. Pharmacotherapy 2021; 41:915-931. [PMID: 34558677 PMCID: PMC9292343 DOI: 10.1002/phar.2625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Oral tetracyclines have been used in clinical practice for over 60 years. One of the most common indications for use of oral tetracyclines is for treatment of adult outpatients with skin and soft infections (SSTIs), including acute bacterial skin and skin structure infections (ABSSSIs). The 2014 Infectious Diseases Society of America (IDSA) skin and soft tissue guideline strongly recommends sulfamethoxazole/trimethoprim, clindamycin, and tetracyclines as oral treatment options for patients with purulent SSTIs, especially when methicillin‐resistant Staphylococcus aureus is of clinical concern. Despite the long‐standing use of tetracyclines, practice patterns indicate that they are often considered after other guideline‐concordant oral options for the treatment of patients with SSTIs. Clinicians may therefore be less familiar with the clinical data associated with use of commercially available tetracycline agents for treatment of patients with SSTI. This review summarizes the literature on the use of oral tetracyclines (ie, doxycycline, minocycline, and omadacycline) for the treatment of adult patients with SSTIs. As part of this review, we describe their common mechanisms of resistance, susceptibility profiles against common SSTI pathogens, pharmacokinetics and pharmacodynamics, and comparative clinical data.
Collapse
Affiliation(s)
- Monique R Bidell
- Department of Pharmacy, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
32
|
Berbel D, Càmara J, González-Díaz A, Cubero M, López de Egea G, Martí S, Tubau F, Domínguez MA, Ardanuy C. Deciphering mobile genetic elements disseminating macrolide resistance in Streptococcus pyogenes over a 21 year period in Barcelona, Spain. J Antimicrob Chemother 2021; 76:1991-2003. [PMID: 34015100 DOI: 10.1093/jac/dkab130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To phenotypically and genetically characterize the antibiotic resistance determinants and associated mobile genetic elements (MGEs) among macrolide-resistant (MR) Streptococcus pyogenes [Group A streptococci (GAS)] clinical isolates collected in Barcelona, Spain. METHODS Antibiotic susceptibility testing was performed by microdilution. Isolates were emm and MLST typed and 55 were whole-genome sequenced to determine the nature of the macrolide resistance (MR) determinants and their larger MGE and chromosomal context. RESULTS Between 1998 and 2018, 142 of 1028 GAS (13.8%) were MR. Among 108 isolates available for molecular characterization, 41.7% had cMLSB, 30.5% iMLSB and 27.8% M phenotype. Eight erm(B)-containing strains were notable in having an MDR phenotype conferred by an MGE encoding several antibiotic resistance genes. MR isolates were comprised of several distinct genetic lineages as defined by the combination of emm and ST. Although most lineages were only transiently present, the emm11/ST403 clone persisted throughout the period. Two lineages, emm9/ST75 with erm(B) and emm77/ST63 with erm(TR), emerged in 2016-18. The erm(B) was predominantly encoded on the Tn916 family of transposons (21/31) with different genetic contexts, and in other MGEs (Tn6263, ICESpHKU372 and one harbouring an MDR cluster called ICESp1070HUB). The erm(TR) was found in ICESp2905 (8/17), ICESp1108-like (4/17), ICESpHKU165 (3/17) and two structures described in this study (IMESp316HUB and ICESp3729HUB). The M phenotype [mef(A)-msr(D)] was linked to phage φ1207.3. Eight integrative conjugative element/integrative mobilizable element (ICE/IME) cluster groups were classified on the basis of gene content within conjugation modules. These groups were found among MGEs, which corresponded with the MR-containing element or the site of integration. CONCLUSIONS We detected several different MGEs harbouring erm(B) or erm(TR). This is the first known description of Tn6263 in GAS and three MGEs [IMESp316HUB, ICESp3729HUB and ICESp1070HUB] associated with MR. Periods of high MR rates in our area were mainly associated with the expansion of certain predominant lineages, while in low MR periods different sporadic and low prevalence lineages were more frequent.
Collapse
Affiliation(s)
- Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Meritxell Cubero
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Guillem López de Egea
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Martí
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Fe Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - M Angeles Domínguez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Departament of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain.,Departament of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Population Genomics of emm4 Group A Streptococcus Reveals Progressive Replacement with a Hypervirulent Clone in North America. mSystems 2021; 6:e0049521. [PMID: 34374563 PMCID: PMC8409732 DOI: 10.1128/msystems.00495-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Clonal replacement is a major driver for changes in bacterial disease epidemiology. Recently, it has been proposed that episodic emergence of novel, hypervirulent clones of group A Streptococcus (GAS) results from acquisition of a 36-kb DNA region leading to increased expression of the cytotoxins Nga (NADase) and SLO (streptolysin O). We previously described a gene fusion event involving the gene encoding the GAS M protein (emm) and an adjacent M-like protein (enn) in the emm4 GAS population, a GAS emm type that lacks the hyaluronic acid capsule. Using whole-genome sequencing of a temporally and geographically diverse set of 1,126 isolates, we discovered that the North American emm4 GAS population has undergone clonal replacement with emergent GAS strains completely replacing historical isolates by 2017. Emergent emm4 GAS strains contained a handful of small genetic variations, including the emm-enn gene fusion, and showed a marked in vitro growth defect compared to historical strains. In contrast to other previously described GAS clonal replacement events, emergent emm4 GAS strains were not defined by acquisition of exogenous DNA and had no significant increase in transcript levels of nga and slo toxin genes via RNA sequencing and quantitative real-time PCR analysis relative to historic strains. Despite the in vitro growth differences, emergent emm4 GAS strains were hypervirulent in mice and ex vivo growth in human blood compared to historical strains. Thus, these data detail the emergence and dissemination of a hypervirulent acapsular GAS clone defined by small, endogenous genetic variation, thereby defining a novel model for GAS strain replacement. IMPORTANCE Severe invasive infections caused by group A Streptococcus (GAS) result in substantial morbidity and mortality in children and adults worldwide. Previously, GAS clonal strain replacement has been attributed to acquisition of exogenous DNA leading to novel virulence gene acquisition or increased virulence gene expression. Our study of type emm4 GAS identified emergence of a hypervirulent GAS clade defined by variation in endogenous DNA content and lacking augmented toxin gene expression relative to replaced strains. These findings expand our understanding of the molecular mechanisms underlying bacterial clonal emergence.
Collapse
|
34
|
Ozturk GZ, Toprak D, Sagsoz O, Ardic C. Knowledge, Attitude and Practice of Family Physicians on Antimicrobial Therapy for Acute Respiratory Tract Infections - A Study from Istanbul, Turkey. EURASIAN JOURNAL OF FAMILY MEDICINE 2021. [DOI: 10.33880/ejfm.2021100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: We aimed to investigate the knowledge, attitude, practice of family physicians regarding an-timicrobial therapy in acute respiratory tract infections.
Methods: After receiving the ethics committee approval, the data were collected by online questionnaire from a phone application with 304 physicians. Questions about socio-demographic features and knowledge, attitude, and practices on antibiotics use were asked. Using SPSS, we did the statistical analyses with appropriate procedures.
Results: Among the participants, 127 (41.8%) were specialists, and 177 (58.2%) were gen-eral practitioners. The specialists gave correct answers about tonsillopharyngitis and bron-chiolitis significantly more often than the general practitioners did. The antibiotic choices for acute otitis media were not in compliance with the guidelines of the Centers for Disease Control, and between the groups, there was no significant difference in terms of initial antibiotic choice. The self-reported antibiotic prescription rate was 25%. In 10%, the most common perceived reason for inappropriate antibiotic prescription was pressure from patients.
Conclusion: There remains considerable misuse of antibiotics by primary care physicians for acute respiratory tract infections. Education of physicians and patients regarding acute respiratory tract infections may be needed to lower the rate of inappropriate antibiotic pre-scriptions.
Keywords: public health practice, practice patterns, primary healthcare
Collapse
Affiliation(s)
| | | | | | - Cuneyt Ardic
- Recep Tayyip Erdoğan University Faculty of Medicine
| |
Collapse
|
35
|
King H, Ajay Castro S, Pohane AA, Scholte CM, Fischetti VA, Korotkova N, Nelson DC, Dorfmueller HC. Molecular basis for recognition of the Group A Carbohydrate backbone by the PlyC streptococcal bacteriophage endolysin. Biochem J 2021; 478:2385-2397. [PMID: 34096588 PMCID: PMC8555655 DOI: 10.1042/bcj20210158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022]
Abstract
Endolysins are peptidoglycan (PG) hydrolases that function as part of the bacteriophage (phage) lytic system to release progeny phage at the end of a replication cycle. Notably, endolysins alone can produce lysis without phage infection, which offers an attractive alternative to traditional antibiotics. Endolysins from phage that infect Gram-positive bacterial hosts contain at least one enzymatically active domain (EAD) responsible for hydrolysis of PG bonds and a cell wall binding domain (CBD) that binds a cell wall epitope, such as a surface carbohydrate, providing some degree of specificity for the endolysin. Whilst the EADs typically cluster into conserved mechanistic classes with well-defined active sites, relatively little is known about the nature of the CBDs and only a few binding epitopes for CBDs have been elucidated. The major cell wall components of many streptococci are the polysaccharides that contain the polyrhamnose (pRha) backbone modified with species-specific and serotype-specific glycosyl side chains. In this report, using molecular genetics, microscopy, flow cytometry and lytic activity assays, we demonstrate the interaction of PlyCB, the CBD subunit of the streptococcal PlyC endolysin, with the pRha backbone of the cell wall polysaccharides, Group A Carbohydrate (GAC) and serotype c-specific carbohydrate (SCC) expressed by the Group A Streptococcus and Streptococcus mutans, respectively.
Collapse
Affiliation(s)
- Harley King
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Amol Arunrao Pohane
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, U.S.A
| | - Cynthia M Scholte
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, U.S.A
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, U.S.A
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, U.S.A
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
36
|
Fay K, Onukwube J, Chochua S, Schaffner W, Cieslak P, Lynfield R, Muse A, Smelser C, Harrison LH, Farley M, Petit S, Alden N, Apostal M, Vagnone PS, Nanduri S, Beall B, Van Beneden CA. Patterns of antibiotic nonsusceptibility among invasive group A Streptococcus infections-United States, 2006-2017. Clin Infect Dis 2021; 73:1957-1964. [PMID: 34170310 DOI: 10.1093/cid/ciab575] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Treatment of severe group A streptococcal infections requires timely and appropriate antibiotic therapy. We describe the epidemiology of antimicrobial-resistant invasive group A streptococcal (iGAS) infections in the U.S. METHODS We analyzed population-based iGAS surveillance data at 10 U.S. sites from 2006-2017. Cases were defined as infection with GAS isolated from normally sterile sites or wounds in patients with necrotizing fasciitis or streptococcal toxic shock syndrome. GAS isolates were emm typed. Antimicrobial susceptibility was determined using broth microdilution or whole genome sequencing. We compared characteristics among patients infected with erythromycin nonsusceptible (EryNS) and clindamycin nonsusceptible (CliNS) strains to those with susceptible infections. We analyzed proportions of EryNS and CliNS among isolates by site, year, risk factors and emm type. RESULTS Overall, 17,179 iGAS cases were reported; 14.5% were EryNS. Among isolates tested for both inducible and constitutive CliNS (2011-2017), 14.6% were CliNS. Most (99.8%) CliNS isolates were EryNS. Resistance was highest in 2017 (EryNS: 22.8%; CliNS: 22.0%). All isolates were susceptible to beta-lactams. EryNS and CliNS infections were most frequent among persons aged 18-34 years and in persons residing in long-term care facilities, experiencing homelessness, incarcerated, or who injected drugs. Patterns varied by site. Patients with nonsusceptible infections were significantly less likely to die. Emm types with >30% EryNS or CliNS included: 77, 58, 11, 83, 92. CONCLUSION Increasing prevalence of EryNS and CliNS iGAS infections in the U.S. is predominantly due to expansion of several emm types. Clinicians should consider local resistance patterns when treating iGAS infections.
Collapse
Affiliation(s)
- Katherine Fay
- Respiratory Diseases Branch, CDC, Atlanta, Georgia, USA
| | | | - Sopio Chochua
- Respiratory Diseases Branch, CDC, Atlanta, Georgia, USA
| | | | - Paul Cieslak
- Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Ruth Lynfield
- Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Alison Muse
- New York State Department of Health, Emerging Infections Program, Rochester, New York, USA
| | - Chad Smelser
- New Mexico Department of Health, Santa Fe, New Mexico, USA
| | - Lee H Harrison
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monica Farley
- Emerging Infections Program, Emory University, Atlanta, Georgia, USA
| | - Susan Petit
- Connecticut Department of Public Health, Hartford Connecticut, USA
| | - Nisha Alden
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | | | | | | | - Bernard Beall
- Respiratory Diseases Branch, CDC, Atlanta, Georgia, USA
| | | |
Collapse
|
37
|
Tyrrell GJ, Bell C, Bill L, Fathima S. Increasing Incidence of Invasive Group A Streptococcus Disease in First Nations Population, Alberta, Canada, 2003-2017. Emerg Infect Dis 2021; 27:443-451. [PMID: 33496247 PMCID: PMC7853581 DOI: 10.3201/eid2702.201945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The incidence of invasive group A Streptococcus (iGAS) disease in the general population in Alberta, Canada, has been steadily increasing. To determine whether rates for specific populations such as First Nations are also increasing, we investigated iGAS cases among First Nations persons in Alberta during 2003-2017. We identified cases by isolating GAS from a sterile site and performing emm typing. We collected demographic, social, behavioral, and clinical data for patients. During the study period, 669 cases of iGAS in First Nations persons were reported. Incidence increased from 10.0 cases/100,000 persons in 2003 to 52.2 cases/100,000 persons in 2017. The 2017 rate was 6 times higher for the First Nations population than for non-First Nations populations (8.7 cases/100,000 persons). The 5 most common emm types from First Nations patients were 59, 101, 82, 41, and 11. These data indicate that iGAS is severely affecting the First Nations population in Alberta, Canada.
Collapse
|
38
|
Buckley SJ, Harvey RJ, Shan Z. Application of the random forest algorithm to Streptococcus pyogenes response regulator allele variation: from machine learning to evolutionary models. Sci Rep 2021; 11:12687. [PMID: 34135390 PMCID: PMC8209152 DOI: 10.1038/s41598-021-91941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) is a globally significant bacterial pathogen. The GAS genotyping gold standard characterises the nucleotide variation of emm, which encodes a surface-exposed protein that is recombinogenic and under immune-based selection pressure. Within a supervised learning methodology, we tested three random forest (RF) algorithms (Guided, Ordinary, and Regularized) and 53 GAS response regulator (RR) allele types to infer six genomic traits (emm-type, emm-subtype, tissue and country of sample, clinical outcomes, and isolate invasiveness). The Guided, Ordinary, and Regularized RF classifiers inferred the emm-type with accuracies of 96.7%, 95.7%, and 95.2%, using ten, three, and four RR alleles in the feature set, respectively. Notably, we inferred the emm-type with 93.7% accuracy using only mga2 and lrp. We demonstrated a utility for inferring emm-subtype (89.9%), country (88.6%), invasiveness (84.7%), but not clinical (56.9%), or tissue (56.4%), which is consistent with the complexity of GAS pathophysiology. We identified a novel cell wall-spanning domain (SF5), and proposed evolutionary pathways depicting the 'contrariwise' and 'likewise' chimeric deletion-fusion of emm and enn. We identified an intermediate strain, which provides evidence of the time-dependent excision of mga regulon genes. Overall, our workflow advances the understanding of the GAS mga regulon and its plasticity.
Collapse
Affiliation(s)
- Sean J Buckley
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD, 4558, Australia.
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD, 4558, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, 4575, Australia
| | - Zack Shan
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| |
Collapse
|
39
|
Lewnard JA, Whittles LK, Rick AM, Martin JM. Naturally Acquired Protection Against Upper Respiratory Symptoms Involving Group A Streptococcus in a Longitudinal Cohort Study. Clin Infect Dis 2021; 71:e244-e254. [PMID: 31955205 DOI: 10.1093/cid/ciaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pharyngitis due to group A Streptococcus (GAS) represents a major cause of outpatient visits and antibiotic use in the United States. A leading vaccine candidate targets 30 of the > 200 emm types of GAS. We aimed to assess natural protection conferred by GAS against respiratory symptoms. METHODS In a 5-year study among school-aged children in Pittsburgh, Pennsylvania, pharyngeal cultures were obtained from children at 2-week intervals, and active surveillance was conducted for respiratory illnesses. We assessed protection via the relative odds of previous detection of homologous strains (defined by field-inversion gel electrophoresis banding pattern), emm types, and emm clusters at visits where GAS was detected with symptoms, vs visits where GAS was detected without symptoms. We used a cluster bootstrap of children to adjust estimates for repeated sampling. RESULTS At visits where previously detected GAS emm types were identified, we estimated 81.8% (95% confidence interval [CI], 67.1%-91.7%) protection against typical pharyngitis symptoms among children reacquiring the same strain, and 94.5% (95% CI, 83.5%-98.6%) protection among children acquiring a distinct strain. We estimated 77.1% (95% CI, 33.7%-96.3%) protection against typical symptoms among children acquiring partially heterologous emm types belonging to a previously detected emm cluster. Protection was evident after both symptomatic and asymptomatic detections of GAS. We did not identify strong evidence of protection against atypical respiratory symptoms. CONCLUSIONS Within a 5-year longitudinal study, previous detection of GAS emm types was associated with protection against typical symptoms when homologous strains were subsequently detected. Naturally acquired protection against partially heterologous types suggests that emm type-based vaccines may have broader strain coverage than what has been previously assumed.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA.,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA.,Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Lilith K Whittles
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.,Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Modelling Methodology, School of Public Health, Imperial College London, London, United Kingdom
| | - Anne-Marie Rick
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Judith M Martin
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Vannice KS, Ricaldi J, Nanduri S, Fang FC, Lynch JB, Bryson-Cahn C, Wright T, Duchin J, Kay M, Chochua S, Van Beneden CA, Beall B. Streptococcus pyogenes pbp2x Mutation Confers Reduced Susceptibility to β-Lactam Antibiotics. Clin Infect Dis 2021; 71:201-204. [PMID: 31630171 DOI: 10.1093/cid/ciz1000] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/14/2019] [Indexed: 11/14/2022] Open
Abstract
Two near-identical clinical Streptococcus pyogenes isolates of emm subtype emm43.4 with a pbp2x missense mutation (T553K) were detected. Minimum inhibitory concentrations (MICs) for ampicillin and amoxicillin were 8-fold higher, and the MIC for cefotaxime was 3-fold higher than for near-isogenic control isolates, consistent with a first step in developing β-lactam resistance.
Collapse
Affiliation(s)
- Kirsten S Vannice
- Epidemiology Workforce Branch, Division of Scientific Education and Professional Development, Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Communicable Disease Epidemiology and Immunization, Prevention Division, Public Health-Seattle & King County, Seattle, Washington, USA
| | - Jessica Ricaldi
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Srinivas Nanduri
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - John B Lynch
- Harborview Medical Center, Seattle, Washington, USA
| | | | | | - Jeff Duchin
- Communicable Disease Epidemiology and Immunization, Prevention Division, Public Health-Seattle & King County, Seattle, Washington, USA
| | - Meagan Kay
- Communicable Disease Epidemiology and Immunization, Prevention Division, Public Health-Seattle & King County, Seattle, Washington, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Chris A Van Beneden
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
41
|
Hanage WP, Shelburne SA. Streptococcus pyogenes With Reduced Susceptibility to β-Lactams: How Big an Alarm Bell? Clin Infect Dis 2021; 71:205-206. [PMID: 31630163 DOI: 10.1093/cid/ciz1006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 01/26/2023] Open
Affiliation(s)
- William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Samuel A Shelburne
- Departments of Infectious Diseases and Genomic Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
42
|
Avire NJ, Whiley H, Ross K. A Review of Streptococcus pyogenes: Public Health Risk Factors, Prevention and Control. Pathogens 2021; 10:248. [PMID: 33671684 PMCID: PMC7926438 DOI: 10.3390/pathogens10020248] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pyogenes, (colloquially named "group A streptococcus" (GAS)), is a pathogen of public health significance, infecting 18.1 million people worldwide and resulting in 500,000 deaths each year. This review identified published articles on the risk factors and public health prevention and control strategies for mitigating GAS diseases. The pathogen causing GAS diseases is commonly transmitted via respiratory droplets, touching skin sores caused by GAS or through contact with contaminated material or equipment. Foodborne transmission is also possible, although there is need for further research to quantify this route of infection. It was found that GAS diseases are highly prevalent in developing countries, and among indigenous populations and low socioeconomic areas in developed countries. Children, the immunocompromised and the elderly are at the greatest risk of S. pyogenes infections and the associated sequelae, with transmission rates being higher in schools, kindergartens, hospitals and residential care homes. This was attributed to overcrowding and the higher level of social contact in these settings. Prevention and control measures should target the improvement of living conditions, and personal and hand hygiene. Adherence to infection prevention and control practices should be emphasized in high-risk settings. Resource distribution by governments, especially in developed countries, should also be considered.
Collapse
Affiliation(s)
| | | | - Kirstin Ross
- Environmental Health, College of Science and Engineering, Flinders University, Adelaide 5001, Australia; (N.J.A.); (H.W.)
| |
Collapse
|
43
|
Nakata M, Kreikemeyer B. Genetics, Structure, and Function of Group A Streptococcal Pili. Front Microbiol 2021; 12:616508. [PMID: 33633705 PMCID: PMC7900414 DOI: 10.3389/fmicb.2021.616508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is an exclusively human pathogen. This bacterial species is responsible for a large variety of infections, ranging from purulent but mostly self-limiting oropharynx/skin diseases to streptococcal sequelae, including glomerulonephritis and rheumatic fever, as well as life-threatening streptococcal toxic-shock syndrome. GAS displays a wide array of surface proteins, with antigenicity of the M protein and pili utilized for M- and T-serotyping, respectively. Since the discovery of GAS pili in 2005, their genetic features, including regulation of expression, and structural features, including assembly mechanisms and protein conformation, as well as their functional role in GAS pathogenesis have been intensively examined. Moreover, their potential as vaccine antigens has been studied in detail. Pilus biogenesis-related genes are located in a discrete section of the GAS genome encoding fibronectin and collagen binding proteins and trypsin-resistant antigens (FCT region). Based on the heterogeneity of genetic composition and DNA sequences, this region is currently classified into nine distinguishable forms. Pili and fibronectin-binding proteins encoded in the FCT region are known to be correlated with infection sites, such as the skin and throat, possibly contributing to tissue tropism. As also found for pili of other Gram-positive bacterial pathogens, GAS pilin proteins polymerize via isopeptide bonds, while intramolecular isopeptide bonds present in the pilin provide increased resistance to degradation by proteases. As supported by findings showing that the main subunit is primarily responsible for T-serotyping antigenicity, pilus functions and gene expression modes are divergent. GAS pili serve as adhesins for tonsillar tissues and keratinocyte cell lines. Of note, a minor subunit is considered to have a harpoon function by which covalent thioester bonds with host ligands are formed. Additionally, GAS pili participate in biofilm formation and evasion of the immune system in a serotype/strain-specific manner. These multiple functions highlight crucial roles of pili during the onset of GAS infection. This review summarizes the current state of the art regarding GAS pili, including a new mode of host-GAS interaction mediated by pili, along with insights into pilus expression in terms of tissue tropism.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Oral Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
44
|
Biggs HM, Van Beneden CA, Kurkjian K, Kobayashi M, Peret TCT, Watson JT, Schneider E, Gerber SI, Ravishankar J. Severe Human Metapneumovirus and Group A Streptococcus Pneumonia in an Immunocompetent Adult. Clin Infect Dis 2021; 70:2712-2714. [PMID: 31563939 DOI: 10.1093/cid/ciz961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/25/2019] [Indexed: 11/12/2022] Open
Abstract
An immunocompetent adult with asthma developed severe human metapneumovirus (HMPV) illness complicated by group A Streptococcus coinfection, progressing to acute respiratory distress syndrome and shock. Several coworkers had less severe HMPV infection. HMPV can cause severe respiratory illness in healthy adults and should be considered as a potential cause of community respiratory outbreaks.
Collapse
Affiliation(s)
- Holly M Biggs
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Chris A Van Beneden
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katie Kurkjian
- Division of State and Local Readiness, Center for Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Virginia Department of Health, Richmond, Virginia, USA
| | - Miwako Kobayashi
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Teresa C T Peret
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John T Watson
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eileen Schneider
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susan I Gerber
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
45
|
Remmington A, Haywood S, Edgar J, Green LR, de Silva T, Turner CE. Cryptic prophages within a Streptococcus pyogenes genotype emm4 lineage. Microb Genom 2021; 7:mgen000482. [PMID: 33245690 PMCID: PMC8115907 DOI: 10.1099/mgen.0.000482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
The major human pathogen Streptococcus pyogenes shares an intimate evolutionary history with mobile genetic elements, which in many cases carry genes encoding bacterial virulence factors. During recent whole-genome sequencing of a longitudinal sample of S. pyogenes isolates in England, we identified a lineage within emm4 that clustered with the reference genome MEW427. Like MEW427, this lineage was characterized by substantial gene loss within all three prophage regions, compared to MGAS10750 and isolates outside of the MEW427-like lineage. Gene loss primarily affected lysogeny, replicative and regulatory modules, and to a lesser and more variable extent, structural genes. Importantly, prophage-encoded superantigen and DNase genes were retained in all isolates. In isolates where the prophage elements were complete, like MGAS10750, they could be induced experimentally, but not in MEW427-like isolates with degraded prophages. We also found gene loss within the chromosomal island SpyCIM4 of MEW427-like isolates, although surprisingly, the SpyCIM4 element could not be experimentally induced in either MGAS10750-like or MEW427-like isolates. This did not, however, appear to abolish expression of the mismatch repair operon, within which this element resides. The inclusion of further emm4 genomes in our analyses ratified our observations and revealed an international emm4 lineage characterized by prophage degradation. Intriguingly, the USA population of emm4 S. pyogenes appeared to constitute predominantly MEW427-like isolates, whereas the UK population comprised both MEW427-like and MGAS10750-like isolates. The degraded and cryptic nature of these elements may have important phenotypic and fitness ramifications for emm4 S. pyogenes, and the geographical distribution of this lineage raises interesting questions on the population dynamics of the genotype.
Collapse
Affiliation(s)
- Alex Remmington
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| | - Samuel Haywood
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| | - Julia Edgar
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, Florey Institute, University of Sheffield, Sheffield, UK
| | - Thushan de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Florey Institute, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
46
|
Friedman-Klabanoff DJ, Campbell JD. A 29-day-old Infant with Poor Feeding and a Rash. Pediatr Rev 2021; 42:S15-SS18. [PMID: 33386352 DOI: 10.1542/pir.2019-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - James D Campbell
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
47
|
Flores AR, Shelburne SA. Toward an Understanding of Group A Streptococcal Transmission Dynamics Using National-level Surveillance. Clin Infect Dis 2020; 70:1482-1483. [PMID: 31408107 DOI: 10.1093/cid/ciz718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/07/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Samuel A Shelburne
- Departments of Infectious Diseases and Genomic Medicine, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
48
|
Sequential Quadriplex Real-Time PCR for Identifying 20 Common emm Types of Group A Streptococcus. J Clin Microbiol 2020; 59:JCM.01764-20. [PMID: 33087429 PMCID: PMC7771451 DOI: 10.1128/jcm.01764-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 11/20/2022] Open
Abstract
We developed a sequential quadriplex real-time PCR-based method for rapid identification of 20 emm types commonly found in invasive group A Streptococcus (iGAS) strains recovered through the Centers for Disease Control and Prevention’s Active Bacterial Core surveillance. Each emm real-time PCR assay showed high specificity and accurately identified the respective target emm type, including emm subtypes in the United States. We developed a sequential quadriplex real-time PCR-based method for rapid identification of 20 emm types commonly found in invasive group A Streptococcus (iGAS) strains recovered through the Centers for Disease Control and Prevention’s Active Bacterial Core surveillance. Each emm real-time PCR assay showed high specificity and accurately identified the respective target emm type, including emm subtypes in the United States. Furthermore, this method is useful for rapid typing of GAS isolates and culture-negative specimens during outbreak investigations.
Collapse
|
49
|
Jespersen MG, Lacey JA, Tong SYC, Davies MR. Global genomic epidemiology of Streptococcus pyogenes. INFECTION GENETICS AND EVOLUTION 2020; 86:104609. [PMID: 33147506 DOI: 10.1016/j.meegid.2020.104609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/04/2023]
Abstract
Streptococcus pyogenes is one of the Top 10 human infectious disease killers worldwide causing a range of clinical manifestations in humans. Colonizing a range of ecological niches within its sole host, the human, is key to the ability of this opportunistic pathogen to cause direct and post-infectious manifestations. The expansion of genome sequencing capabilities and data availability over the last decade has led to an improved understanding of the evolutionary dynamics of this pathogen within a global framework where epidemiological relationships and evolutionary mechanisms may not be universal. This review uses the recent publication by Davies et al., 2019 as an updated global framework to address S. pyogenes population genomics, highlighting how genomics is being used to gain new insights into evolutionary processes, transmission pathways, and vaccine design.
Collapse
Affiliation(s)
- Magnus G Jespersen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, VIC, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
50
|
Buckley SJ, Davies MR, McMillan DJ. In silico characterisation of stand-alone response regulators of Streptococcus pyogenes. PLoS One 2020; 15:e0240834. [PMID: 33075055 PMCID: PMC7571705 DOI: 10.1371/journal.pone.0240834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial “stand-alone” response regulators (RRs) are pivotal to the control of gene transcription in response to changing cytosolic and extracellular microenvironments during infection. The genome of group A Streptococcus (GAS) encodes more than 30 stand-alone RRs that orchestrate the expression of virulence factors involved in infecting multiple tissues, so causing an array of potentially lethal human diseases. Here, we analysed the molecular epidemiology and biological associations in the coding sequences (CDSs) and upstream intergenic regions (IGRs) of 35 stand-alone RRs from a collection of global GAS genomes. Of the 944 genomes analysed, 97% encoded 32 or more of the 35 tested RRs. The length of RR CDSs ranged from 297 to 1587 nucleotides with an average nucleotide diversity (π) of 0.012, while the IGRs ranged from 51 to 666 nucleotides with average π of 0.017. We present new evidence of recombination in multiple RRs including mga, leading to mga-2 switching, emm-switching and emm-like gene chimerization, and the first instance of an isolate that encodes both mga-1 and mga-2. Recombination was also evident in rofA/nra and msmR loci with 15 emm-types represented in multiple FCT (fibronectin-binding, collagen-binding, T-antigen)-types, including novel emm-type/FCT-type pairings. Strong associations were observed between concatenated RR allele types, and emm-type, MLST-type, core genome phylogroup, and country of sampling. No strong associations were observed between individual loci and disease outcome. We propose that 11 RRs may form part of future refinement of GAS typing systems that reflect core genome evolutionary associations. This subgenomic analysis revealed allelic traits that were informative to the biological function, GAS strain definition, and regional outbreak detection.
Collapse
Affiliation(s)
- Sean J. Buckley
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David J. McMillan
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|