1
|
Yang Y, Shao Q, Guo M, Han L, Zhao X, Wang A, Li X, Wang B, Pan JA, Chen Z, Fokine A, Sun L, Fang Q. Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages. Nat Commun 2024; 15:6551. [PMID: 39095371 PMCID: PMC11297242 DOI: 10.1038/s41467-024-50811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Jumbo phages are a group of tailed bacteriophages with large genomes and capsids. As a prototype of jumbo phage, ΦKZ infects Pseudomonas aeruginosa, a multi-drug-resistant (MDR) opportunistic pathogen leading to acute or chronic infection in immunocompromised individuals. It holds potential to be used as an antimicrobial agent and as a model for uncovering basic phage biology. Although previous low-resolution structural studies have indicated that jumbo phages may have more complicated capsid structures than smaller phages such as HK97, the detailed structures and the assembly mechanism of their capsids remain largely unknown. Here, we report a 3.5-Å-resolution cryo-EM structure of the ΦKZ capsid. The structure unveiled ten minor capsid proteins, with some decorating the outer surface of the capsid and the others forming a complex network attached to the capsid's inner surface. This network seems to play roles in driving capsid assembly and capsid stabilization. Similar mechanisms of capsid assembly and stabilization are probably employed by many other jumbo viruses.
Collapse
Affiliation(s)
- Yashan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Mingcheng Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lin Han
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xinyue Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Aohan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiangyun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bo Wang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhenguo Chen
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Lei Sun
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Qianglin Fang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
George NA, Zhou Z, Anantharaman K, Hug LA. Discarded diversity: Novel megaphages, auxiliary metabolic genes, and virally encoded CRISPR-Cas systems in landfills. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596742. [PMID: 38854013 PMCID: PMC11160803 DOI: 10.1101/2024.05.30.596742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Viruses are the most abundant microbial entity on the planet, impacting microbial community structure and ecosystem services. Despite outnumbering Bacteria and Archaea by an order of magnitude, viruses have been comparatively underrepresented in reference databases. Metagenomic examinations have illustrated that viruses of Bacteria and Archaea have been specifically understudied in engineered environments. Here we employed metagenomic and computational biology methods to examine the diversity, host interactions, and genetic systems of viruses predicted from 27 samples taken from three municipal landfills across North America. Results We identified numerous viruses that are not represented in reference databases, including the third largest bacteriophage genome identified to date (~678 kbp), and note a cosmopolitan diversity of viruses in landfills that are distinct from viromes in other systems. Host-virus interactions were examined via host CRISPR spacer to viral protospacer mapping which captured hyper-targeted viral populations and six viral populations predicted to infect across multiple phyla. Virally-encoded auxiliary metabolic genes (AMGs) were identified with the potential to augment hosts' methane, sulfur, and contaminant degradation metabolisms, including AMGs not previously reported in literature. CRISPR arrays and CRISPR-Cas systems were identified from predicted viral genomes, including the two largest bacteriophage genomes to contain these genetic features. Some virally encoded Cas effector proteins appear distinct relative to previously reported Cas systems and are interesting targets for potential genome editing tools. Conclusions Our observations indicate landfills, as heterogeneous contaminated sites with unique selective pressures, are key locations for diverse viruses and atypical virus-host dynamics.
Collapse
Affiliation(s)
- Nikhil A. George
- Department of Biology, University of Waterloo, Waterloo ON, Canada
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA
| | | | - Laura A. Hug
- Department of Biology, University of Waterloo, Waterloo ON, Canada
| |
Collapse
|
3
|
Dutcher CA, Andreas MP, Giessen TW. A two-component quasi-icosahedral protein nanocompartment with variable shell composition and irregular tiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591138. [PMID: 38712103 PMCID: PMC11071501 DOI: 10.1101/2024.04.25.591138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Protein shells or capsids are a widespread form of compartmentalization in nature. Viruses use protein capsids to protect and transport their genomes while many cellular organisms use protein shells for varied metabolic purposes. These protein-based compartments often exhibit icosahedral symmetry and consist of a small number of structural components with defined roles. Encapsulins are a prevalent protein-based compartmentalization strategy in prokaryotes. All encapsulins studied thus far consist of a single shell protein that adopts the viral HK97-fold. Here, we report the characterization of a Family 2B two-component encapsulin from Streptomyces lydicus. We show the differential assembly behavior of the two shell components and demonstrate their ability to co-assemble into mixed shells with variable shell composition. We determined the structures of both shell proteins using cryo-electron microscopy. Using 3D-classification and crosslinking studies, we highlight the irregular tiling of mixed shells. Our work expands the known assembly modes of HK97-fold proteins and lays the foundation for future functional and engineering studies on two-component encapsulins.
Collapse
Affiliation(s)
- Cassandra A. Dutcher
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Ghaly TM, Focardi A, Elbourne LDH, Sutcliffe B, Humphreys WF, Jaschke PR, Tetu SG, Paulsen IT. Exploring virus-host-environment interactions in a chemotrophic-based underground estuary. ENVIRONMENTAL MICROBIOME 2024; 19:9. [PMID: 38291480 PMCID: PMC10829341 DOI: 10.1186/s40793-024-00549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Viruses play important roles in modulating microbial communities and influencing global biogeochemistry. There is now growing interest in characterising their ecological roles across diverse biomes. However, little is known about viral ecology in low-nutrient, chemotrophic-based environments. In such ecosystems, virus-driven manipulation of nutrient cycles might have profound impacts across trophic levels. In particular, anchialine environments, which are low-energy underground estuaries sustained by chemotrophic processes, represent ideal model systems to study novel virus-host-environment interactions. RESULTS Here, we employ metagenomic sequencing to investigate the viral community in Bundera Sinkhole, an anchialine ecosystem rich in endemic species supported by microbial chemosynthesis. We find that the viruses are highly novel, with less than 2% representing described viruses, and are hugely abundant, making up as much as 12% of microbial intracellular DNA. These highly abundant viruses largely infect important prokaryotic taxa that drive key metabolic processes in the sinkhole. Further, the abundance of viral auxiliary metabolic genes (AMGs) involved in nucleotide and protein synthesis was strongly correlated with declines in environmental phosphate and sulphate concentrations. These AMGs encoded key enzymes needed to produce sulphur-containing amino acids, and phosphorus metabolic enzymes involved in purine and pyrimidine nucleotide synthesis. We hypothesise that this correlation is either due to selection of these AMGs under low phosphate and sulphate concentrations, highlighting the dynamic interactions between viruses, their hosts, and the environment; or, that these AMGs are driving increased viral nucleotide and protein synthesis via manipulation of host phosphorus and sulphur metabolism, consequently driving nutrient depletion in the surrounding water. CONCLUSION This study represents the first metagenomic investigation of viruses in anchialine ecosystems, and provides new hypotheses and insights into virus-host-environment interactions in such 'dark', low-energy environments. This is particularly important since anchialine ecosystems are characterised by diverse endemic species, both in their microbial and faunal assemblages, which are primarily supported by microbial chemosynthesis. Thus, virus-host-environment interactions could have profound effects cascading through all trophic levels.
Collapse
Affiliation(s)
- Timothy M Ghaly
- School of Natural Sciences, Macquarie University, Sydney, Australia.
| | - Amaranta Focardi
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Liam D H Elbourne
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | | | - William F Humphreys
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
5
|
Brown C, Agarwal A, Luque A. pyCapsid: identifying dominant dynamics and quasi-rigid mechanical units in protein shells. Bioinformatics 2024; 40:btad761. [PMID: 38113434 PMCID: PMC10786678 DOI: 10.1093/bioinformatics/btad761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
SUMMARY pyCapsid is a Python package developed to facilitate the characterization of the dynamics and quasi-rigid mechanical units of protein shells and other protein complexes. The package was developed in response to the rapid increase of high-resolution structures, particularly capsids of viruses, requiring multiscale biophysical analyses. Given a protein shell, pyCapsid generates the collective vibrations of its amino-acid residues, identifies quasi-rigid mechanical regions associated with the disassembly of the structure, and maps the results back to the input proteins for interpretation. pyCapsid summarizes the main results in a report that includes publication-quality figures. AVAILABILITY AND IMPLEMENTATION pyCapsid's source code is available under MIT License on GitHub. It is compatible with Python 3.8-3.10 and has been deployed in two leading Python package-management systems, PIP and Conda. Installation instructions and tutorials are available in the online documentation and in the pyCapsid's YouTube playlist. In addition, a cloud-based implementation of pyCapsid is available as a Google Colab notebook. pyCapsid Colab does not require installation and generates the same report and outputs as the installable version. Users can post issues regarding pyCapsid in the repository's issues section.
Collapse
Affiliation(s)
- Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Department of Physics, San Diego State University, San Diego, CA 92116, United States
| | - Anuradha Agarwal
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
| | - Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92116, United States
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| |
Collapse
|
6
|
Muscatt G, Cook R, Millard A, Bending GD, Jameson E. Viral metagenomics reveals diverse virus-host interactions throughout the soil depth profile. mBio 2023; 14:e0224623. [PMID: 38032184 PMCID: PMC10746233 DOI: 10.1128/mbio.02246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Soil viruses can moderate the roles that their host microbes play in global carbon cycling. However, given that most studies investigate the surface layer (i.e., top 20 cm) of soil, the extent to which this occurs in subsurface soil (i.e., below 20 cm) is unknown. Here, we leveraged public sequencing data to investigate the interactions between viruses and their hosts at soil depth intervals, down to 115 cm. While most viruses were detected throughout the soil depth profile, their adaptation to host microbes varied. Nonetheless, we uncovered evidence for the potential of soil viruses to encourage their hosts to recycle plant-derived carbon in both surface and subsurface soils. This work reasons that our understanding of soil viral functions requires us to continue to dig deeper and compare viruses existing throughout soil ecosystems.
Collapse
Affiliation(s)
- George Muscatt
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Andrew Millard
- Department of Genetics and Genome Biology, Leicester Centre for Phage Research, University of Leicester, Leicester, United Kingdom
| | - Gary D. Bending
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
7
|
Abstract
Two decades of metagenomic analyses have revealed that in many environments, small (∼5 kb), single-stranded DNA phages of the family Microviridae dominate the virome. Although the emblematic microvirus phiX174 is ubiquitous in the laboratory, most other microviruses, particularly those of the gokushovirus and amoyvirus lineages, have proven to be much more elusive. This puzzling lack of representative isolates has hindered insights into microviral biology. Furthermore, the idiosyncratic size and nature of their genomes have resulted in considerable misjudgments of their actual abundance in nature. Fortunately, recent successes in microvirus isolation and improved metagenomic methodologies can now provide us with more accurate appraisals of their abundance, their hosts, and their interactions. The emerging picture is that phiX174 and its relatives are rather rare and atypical microviruses, and that a tremendous diversity of other microviruses is ready for exploration.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA;
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Sonani RR, Esteves NC, Horton AA, Kelly RJ, Sebastian AL, Wang F, Kreutzberger MAB, Leiman PG, Scharf BE, Egelman EH. Neck and capsid architecture of the robust Agrobacterium phage Milano. Commun Biol 2023; 6:921. [PMID: 37684529 PMCID: PMC10491603 DOI: 10.1038/s42003-023-05292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Large gaps exist in our understanding of how bacteriophages, the most abundant biological entities on Earth, assemble and function. The structure of the "neck" region, where the DNA-filled capsid is connected to the host-recognizing tail remains poorly understood. We describe cryo-EM structures of the neck, the neck-capsid and neck-tail junctions, and capsid of the Agrobacterium phage Milano. The Milano neck 1 protein connects the 12-fold symmetrical neck to a 5-fold vertex of the icosahedral capsid. Comparison of Milano neck 1 homologs leads to four proposed classes, likely evolved from the simplest one in siphophages to more complex ones in myo- and podophages. Milano neck is surrounded by the atypical collar, which covalently crosslinks the tail sheath to neck 1. The Milano capsid is decorated with three types of proteins, a minor capsid protein (mCP) and two linking proteins crosslinking the mCP to the major capsid protein. The extensive network of disulfide bonds within and between neck, collar, capsid and tail provides an exceptional structural stability to Milano.
Collapse
Affiliation(s)
- Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Nathaniel C Esteves
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Abigail A Horton
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rebecca J Kelly
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda L Sebastian
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Birgit E Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
9
|
Roberts SM, Aldis M, Wright ET, Gonzales CB, Lai Z, Weintraub ST, Hardies SC, Serwer P. Siphophage 0105phi7-2 of Bacillus thuringiensis: Novel Propagation, DNA, and Genome-Implied Assembly. Int J Mol Sci 2023; 24:ijms24108941. [PMID: 37240285 DOI: 10.3390/ijms24108941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Diversity of phage propagation, physical properties, and assembly promotes the use of phages in ecological studies and biomedicine. However, observed phage diversity is incomplete. Bacillus thuringiensis siphophage, 0105phi-7-2, first described here, significantly expands known phage diversity, as seen via in-plaque propagation, electron microscopy, whole genome sequencing/annotation, protein mass spectrometry, and native gel electrophoresis (AGE). Average plaque diameter vs. plaque-supporting agarose gel concentration plots reveal unusually steep conversion to large plaques as agarose concentration decreases below 0.2%. These large plaques sometimes have small satellites and are made larger by orthovanadate, an ATPase inhibitor. Phage head-host-cell binding is observed by electron microscopy. We hypothesize that this binding causes plaque size-increase via biofilm evolved, ATP stimulated ride-hitching on motile host cells by temporarily inactive phages. Phage 0105phi7-2 does not propagate in liquid culture. Genomic sequencing/annotation reveals history as temperate phage and distant similarity, in a virion-assembly gene cluster, to prototypical siphophage SPP1 of Bacillus subtilis. Phage 0105phi7-2 is distinct in (1) absence of head-assembly scaffolding via either separate protein or classically sized, head protein-embedded peptide, (2) producing partially condensed, head-expelled DNA, and (3) having a surface relatively poor in AGE-detected net negative charges, which is possibly correlated with observed low murine blood persistence.
Collapse
Affiliation(s)
- Samantha M Roberts
- Department of Microbiology, Immunology and Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Miranda Aldis
- Department of Microbiology, Immunology and Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Elena T Wright
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Cara B Gonzales
- Department of Comprehensive Dentistry, UT Health, San Antonio, TX 78229, USA
| | - Zhao Lai
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Stephen C Hardies
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| |
Collapse
|
10
|
Gaïa M, Meng L, Pelletier E, Forterre P, Vanni C, Fernandez-Guerra A, Jaillon O, Wincker P, Ogata H, Krupovic M, Delmont TO. Mirusviruses link herpesviruses to giant viruses. Nature 2023; 616:783-789. [PMID: 37076623 PMCID: PMC10132985 DOI: 10.1038/s41586-023-05962-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
DNA viruses have a major influence on the ecology and evolution of cellular organisms1-4, but their overall diversity and evolutionary trajectories remain elusive5. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria6, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales. Yet, a substantial fraction of mirusvirus genes, including hallmark transcription machinery genes missing in herpesviruses, are closely related homologues of giant eukaryotic DNA viruses from another viral realm, Varidnaviria. These remarkable chimaeric attributes connecting Mirusviricota to herpesviruses and giant eukaryotic viruses are supported by more than 100 environmental mirusvirus genomes, including a near-complete contiguous genome of 432 kilobases. Moreover, mirusviruses are among the most abundant and active eukaryotic viruses characterized in the sunlit oceans, encoding a diverse array of functions used during the infection of microbial eukaryotes from pole to pole. The prevalence, functional activity, diversification and atypical chimaeric attributes of mirusviruses point to a lasting role of Mirusviricota in the ecology of marine ecosystems and in the evolution of eukaryotic DNA viruses.
Collapse
Affiliation(s)
- Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, Gif sur Yvette, France
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
| |
Collapse
|
11
|
Mass Spectral Analyses of Salmonella Myovirus SPN3US Reveal Conserved and Divergent Themes in Proteolytic Maturation of Large Icosahedral Capsids. Viruses 2023; 15:v15030723. [PMID: 36992431 PMCID: PMC10052503 DOI: 10.3390/v15030723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Salmonella myovirus SPN3US has a T = 27 capsid composed of >50 different gene products, including many that are packaged along with the 240 kb genome and ejected into the host cell. Recently, we showed that an essential phage-encoded prohead protease gp245 is responsible for cleavage of proteins during SPN3US head assembly. This proteolytic maturation step induces major changes in precursor head particles, enabling them to expand and undergo genome packaging. To comprehensively define the composition of the mature SPN3US head and elucidate how it is modified by proteolysis during assembly, we conducted tandem mass spectrometry analysis of purified virions and tailless heads. Fourteen protease cleavage sites were identified in nine proteins, including eight sites not previously identified in head proteins in vivo. Among these was the maturation cleavage site of gp245 which was identical to the autocleavage site we had previously identified in purified recombinant gp245. Our findings underscore the value of employing multiple mass spectrometry-based experimental strategies as a way to enhance the detection of head protein cleavage sites in tailed phages. In addition, our results have identified a conserved set of head proteins in related giant phages that are similarly cleaved by their respective prohead proteases, suggesting that these proteins have important roles in governing the formation and function of large icosahedral capsids.
Collapse
|
12
|
Podgorski JM, Freeman K, Gosselin S, Huet A, Conway JF, Bird M, Grecco J, Patel S, Jacobs-Sera D, Hatfull G, Gogarten JP, Ravantti J, White SJ. A structural dendrogram of the actinobacteriophage major capsid proteins provides important structural insights into the evolution of capsid stability. Structure 2023; 31:282-294.e5. [PMID: 36649709 PMCID: PMC10071307 DOI: 10.1016/j.str.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
Many double-stranded DNA viruses, including tailed bacteriophages (phages) and herpesviruses, use the HK97-fold in their major capsid protein to make the capsomers of the icosahedral viral capsid. After the genome packaging at near-crystalline densities, the capsid is subjected to a major expansion and stabilization step that allows it to withstand environmental stresses and internal high pressure. Several different mechanisms for stabilizing the capsid have been structurally characterized, but how these mechanisms have evolved is still not understood. Using cryo-EM structure determination of 10 capsids, structural comparisons, phylogenetic analyses, and Alphafold predictions, we have constructed a detailed structural dendrogram describing the evolution of capsid structural stability within the actinobacteriophages. We show that the actinobacteriophage major capsid proteins can be classified into 15 groups based upon their HK97-fold.
Collapse
Affiliation(s)
- Jennifer M Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Krista Freeman
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sophia Gosselin
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Bird
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - John Grecco
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Shreya Patel
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Deborah Jacobs-Sera
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Graham Hatfull
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Johann Peter Gogarten
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268-3125, USA
| | - Janne Ravantti
- University of Helsinki, Molecular and Integrative Biosciences Research Programme, Helsinki, Finland
| | - Simon J White
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA.
| |
Collapse
|
13
|
A Flexible and Efficient Microfluidics Platform for the Characterization and Isolation of Novel Bacteriophages. Appl Environ Microbiol 2023; 89:e0159622. [PMID: 36602353 PMCID: PMC9888219 DOI: 10.1128/aem.01596-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria. This property makes them highly suitable for varied uses in industry or in the development of the treatment of bacterial infections. However, the conventional methods that are used to isolate and analyze these bacteriophages from the environment are generally cumbersome and time consuming. Here, we adapted a high-throughput microfluidic setup for long-term analysis of bacteriophage-bacteria interaction and demonstrate isolation of phages from environmental samples. IMPORTANCE Bacteriophages are gaining increased attention for their potential application as agents to combat antibiotic-resistant infections. However, isolation and characterization of new phages are time consuming and limited by currently used methods. The microfluidics platform presented here allows the isolation and long-term analysis of phages and their effect on host cells with fluorescent light microscopy imaging. Furthermore, this new workflow allows high-throughput characterization of environmental samples for the identification of phages alongside gaining detailed insight into the host response. Taken together, this microfluidics platform will be a valuable tool for phage research, enabling faster and more efficient screening and characterization of host-phage interactions.
Collapse
|
14
|
Yuan S, Shi J, Jiang J, Ma Y. Genome-scale top-down strategy to generate viable genome-reduced phages. Nucleic Acids Res 2022; 50:13183-13197. [PMID: 36511873 PMCID: PMC9825161 DOI: 10.1093/nar/gkac1168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Efforts have been made to reduce the genomes of living cells, but phage genome reduction remains challenging. It is of great interest to investigate whether genome reduction can make phages obtain new infectious properties. We developed a CRISPR/Cas9-based iterative phage genome reduction (CiPGr) approach and applied this to four distinct phages, thereby obtaining heterogeneous genome-reduced mutants. We isolated and sequenced 200 mutants with loss of up to 8-23% (3.3-35 kbp) of the original sequences. This allowed the identification of non-essential genes for phage propagation, although loss of these genes is mostly detrimental to phage fitness to various degrees. Notwithstanding this, mutants with higher infectious efficiency than their parental strains were characterized, indicating a trade-off between genome reduction and infectious fitness for phages. In conclusion, this study provides a foundation for future work to leverage the information generated by CiPGr in phage synthetic biology research.
Collapse
Affiliation(s)
- Shengjian Yuan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Shi
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianrong Jiang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingfei Ma
- To whom correspondence should be addressed. Tel: +86 755 8639 2674;
| |
Collapse
|
15
|
Aylward FO, Moniruzzaman M. Viral Complexity. Biomolecules 2022; 12:1061. [PMID: 36008955 PMCID: PMC9405923 DOI: 10.3390/biom12081061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
Although traditionally viewed as streamlined and simple, discoveries over the last century have revealed that viruses can exhibit surprisingly complex physical structures, genomic organization, ecological interactions, and evolutionary histories. Viruses can have physical dimensions and genome lengths that exceed many cellular lineages, and their infection strategies can involve a remarkable level of physiological remodeling of their host cells. Virus-virus communication and widespread forms of hyperparasitism have been shown to be common in the virosphere, demonstrating that dynamic ecological interactions often shape their success. And the evolutionary histories of viruses are often fraught with complexities, with chimeric genomes including genes derived from numerous distinct sources or evolved de novo. Here we will discuss many aspects of this viral complexity, with particular emphasis on large DNA viruses, and provide an outlook for future research.
Collapse
Affiliation(s)
- Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mohammad Moniruzzaman
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL 33149, USA;
| |
Collapse
|
16
|
Zhao F, Lin X, Cai K, Jiang Y, Ni T, Chen Y, Feng J, Dang S, Zhou CZ, Zeng Q. Biochemical and structural characterization of the cyanophage-encoded phosphate binding protein: implications for enhanced phosphate uptake of infected cyanobacteria. Environ Microbiol 2022; 24:3037-3050. [PMID: 35590460 DOI: 10.1111/1462-2920.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/01/2022]
Abstract
To acquire phosphorus, cyanobacteria use the typical bacterial ABC-type phosphate transporter, which is composed of a periplasmic high-affinity phosphate-binding protein PstS and a channel formed by two transmembrane proteins PstC and PstA. A putative pstS gene was identified in the genomes of cyanophages that infect the unicellular marine cyanobacteria Prochlorococcus and Synechococcus. However, it has not been determined whether the cyanophage PstS protein is functional during infection to enhance the phosphate uptake rate of host cells. Here we showed that the cyanophage P-SSM2 PstS protein was abundant in the infected Prochlorococcus NATL2A cells and the host phosphate uptake rate was enhanced after infection. This is consistent with our biochemical and structural analyses showing that the phage PstS protein is indeed a high-affinity phosphate-binding protein. We further modeled the complex structure of phage PstS with host PstCA and revealed three putative interfaces that may facilitate the formation of a chimeric ABC transporter. Our results provide insights into the molecular mechanism by which cyanophages enhance the phosphate uptake rate of cyanobacteria. Phosphate acquisition by infected bacteria can increase the phosphorus contents of released cellular debris and virus particles, which together constitute a significant proportion of the marine dissolved organic phosphorus pool. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fangxin Zhao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xingqin Lin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kun Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - YongLiang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Tianchi Ni
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yue Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jianrong Feng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shangyu Dang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
| |
Collapse
|
17
|
Gomez-Raya-Vilanova MV, Leskinen K, Bhattacharjee A, Virta P, Rosenqvist P, Smith JLR, Bayfield O, Homberger C, Kerrinnes T, Vogel J, Pajunen M, Skurnik M. The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucleic Acids Res 2022; 50:3985-3997. [PMID: 35357498 PMCID: PMC9023294 DOI: 10.1093/nar/gkac203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Yersinia phage YerA41 is morphologically similar to jumbo bacteriophages. The isolated genomic material of YerA41 could not be digested by restriction enzymes, and used as a template by conventional DNA polymerases. Nucleoside analysis of the YerA41 genomic material, carried out to find out whether this was due to modified nucleotides, revealed the presence of a ca 1 kDa substitution of thymidine with apparent oligosaccharide character. We identified and purified the phage DNA polymerase (DNAP) that could replicate the YerA41 genomic DNA even without added primers. Cryo-electron microscopy (EM) was used to characterize structural details of the phage particle. The storage capacity of the 131 nm diameter head was calculated to accommodate a significantly longer genome than that of the 145 577 bp genomic DNA of YerA41 determined here. Indeed, cryo-EM revealed, in contrast to the 25 Å in other phages, spacings of 33-36 Å between shells of the genomic material inside YerA41 heads suggesting that the heavily substituted thymidine increases significantly the spacing of the DNA packaged inside the capsid. In conclusion, YerA41 appears to be an unconventional phage that packages thymidine-modified genomic DNA into its capsids along with its own DNAP that has the ability to replicate the genome.
Collapse
Affiliation(s)
- Miguel V Gomez-Raya-Vilanova
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Arnab Bhattacharjee
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
- Drug Discovery, Herantis Pharma Ltd. Bertel Jungin Aukio 1, 02600 Espoo, Finland
| | - Pasi Virta
- Department of Chemistry, 20014 University of Turku, Turku, Finland
| | - Petja Rosenqvist
- Department of Chemistry, 20014 University of Turku, Turku, Finland
| | - Jake L R Smith
- York Structural Biology Laboratory, University of York, YO10 5DD York, United Kingdom
| | - Oliver W Bayfield
- York Structural Biology Laboratory, University of York, YO10 5DD York, United Kingdom
| | - Christina Homberger
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Tobias Kerrinnes
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Maria I Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
- Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
18
|
Tall tails: cryo-electron microscopy of phage tail DNA ejection conduits. Biochem Soc Trans 2022; 50:459-22W. [PMID: 35129586 PMCID: PMC9022992 DOI: 10.1042/bst20210799] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
The majority of phages, viruses that infect prokaryotes, inject their genomic material into their host through a tubular assembly known as a tail. Despite the genomic diversity of tailed phages, only three morphological archetypes have been described: contractile tails of Myoviridae-like phages; short non-contractile tails of Podoviridae-like phages; and long and flexible non-contractile tails of Siphoviridae-like phages. While early cryo-electron microscopy (cryo-EM) work elucidated the organisation of the syringe-like injection mechanism of contractile tails, the intrinsic flexibility of the long non-contractile tails prevented high-resolution structural determination. In 2020, four cryo-EM structures of Siphoviridae-like tail tubes were solved and revealed common themes and divergences. The central tube is structurally conserved and homologous to the hexameric rings of the tail tube protein (TTP) also found in contractile tails, bacterial pyocins, and type VI secretion systems. The interior surface of the tube presents analogous motifs of negatively charged amino acids proposed to facilitate ratcheting of the DNA during genome ejection. The lack of a conformational change upon genome ejection implicates the tape measure protein in triggering genome release. A distinctive feature of Siphoviridae-like tails is their flexibility. This results from loose inter-ring connections that can asymmetrically stretch on one side to allow bending and flexing of the tube without breaking. The outer surface of the tube differs greatly and may be smooth or rugged due to additional Ig-like domains in TTP. Some of these variable domains may contribute to adsorption of the phage to prokaryotic and eukaryotic cell surfaces affecting tropism and virulence.
Collapse
|
19
|
Abstract
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids—known as megaplasmids—are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - João Botelho
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Adrian Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
20
|
Predicting the capsid architecture of phages from metagenomic data. Comput Struct Biotechnol J 2022; 20:721-732. [PMID: 35140890 PMCID: PMC8814770 DOI: 10.1016/j.csbj.2021.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
Tailed phages are viruses that infect bacteria and are the most abundant biological entities on Earth. Their ecological, evolutionary, and biogeochemical roles in the planet stem from their genomic diversity. Known tailed phage genomes range from 10 to 735 kilobase pairs thanks to the size variability of the protective protein capsids that store them. However, the role of tailed phage capsids’ diversity in ecosystems is unclear. A fundamental gap is the difficulty of associating genomic information with viral capsids in the environment. To address this problem, here, we introduce a computational approach to predict the capsid architecture (T-number) of tailed phages using the sequence of a single gene—the major capsid protein. This approach relies on an allometric model that relates the genome length and capsid architecture of tailed phages. This allometric model was applied to isolated phage genomes to generate a library that associated major capsid proteins and putative capsid architectures. This library was used to train machine learning methods, and the most computationally scalable model investigated (random forest) was applied to human gut metagenomes. Compared to isolated phages, the analysis of gut data reveals a large abundance of mid-sized (T = 7) capsids, as expected, followed by a relatively large frequency of jumbo-like tailed phage capsids (T ≥ 25) and small capsids (T = 4) that have been under-sampled. We discussed how to increase the method’s accuracy and how to extend the approach to other viruses. The computational pipeline introduced here opens the doors to monitor the ongoing evolution and selection of viral capsids across ecosystems.
Collapse
|
21
|
Kohm K, Basu S, Nawaz MM, Hertel R. Chances and limitations when uncovering essential and non-essential genes of Bacillus subtilis phages with CRISPR-Cas9. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:934-944. [PMID: 34465000 DOI: 10.1111/1758-2229.13005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Virulent bacterial viruses, also known as phages or bacteriophages, are considered as a potential option to fight antibiotic-resistant bacteria. However, their biology is still poorly understood, and only a fraction of phage genes is assigned with a function. To enable the first classification, we explored new options to test phage genes for their requirement on viral replication. As a model, we used the smallest known Bacillus subtilis phage Goe1, and the Cas9-based mutagenesis vector pRH030 as a genetic tool. All phage genes were specifically disrupted, and individual survival rates and mutant genotypes were investigated. Surviving phages relied on the genome integrity through host intrinsic non-homologues end joining system or a natural alteration of the Cas9 target sequence. Quantification of phage survivors and verifying the underlying genetic situation enables the classification of genes in essential or non-essential sets for viral replication. We also observed structural genes to hold more natural mutations than genes of the genome replication machinery.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Syamantak Basu
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Muhammad M Nawaz
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
22
|
Cui N, Yang F, Zhang JT, Sun H, Chen Y, Yu RC, Chen ZP, Jiang YL, Han SJ, Xu X, Li Q, Zhou CZ. Capsid Structure of Anabaena Cyanophage A-1(L). J Virol 2021; 95:e0135621. [PMID: 34549983 PMCID: PMC8610606 DOI: 10.1128/jvi.01356-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/19/2021] [Indexed: 01/09/2023] Open
Abstract
A-1(L) is a freshwater cyanophage with a contractile tail that specifically infects Anabaena sp. PCC 7120, one of the model strains for molecular studies of cyanobacteria. Although isolated for half a century, its structure remains unknown, which limits our understanding on the interplay between A-1(L) and its host. Here we report the 3.35 Å cryo-EM structure of A-1(L) capsid, representing the first near-atomic resolution structure of a phage capsid with a T number of 9. The major capsid gp4 proteins assemble into 91 capsomers, including 80 hexons: 20 at the center of the facet and 60 at the facet edge, in addition to 11 identical pentons. These capsomers further assemble into the icosahedral capsid, via gradually increasing curvatures. Different from the previously reported capsids of known-structure, A-1(L) adopts a noncovalent chainmail structure of capsid stabilized by two kinds of mortise-and-tenon inter-capsomer interactions: a three-layered interface at the pseudo 3-fold axis combined with the complementarity in shape and electrostatic potential around the 2-fold axis. This unique capsomer construction enables A-1(L) to possess a rigid capsid, which is solely composed of the major capsid proteins with an HK97 fold. IMPORTANCE Cyanobacteria are the most abundant photosynthetic bacteria, contributing significantly to the biomass production, O2 generation, and CO2 consumption on our planet. Their community structure and homeostasis in natural aquatic ecosystems are largely regulated by the corresponding cyanophages. In this study, we solved the structure of cyanophage A-1(L) capsid at near-atomic resolution and revealed a unique capsid construction. This capsid structure provides the molecular details for better understanding the assembly of A-1(L), and a structural platform for future investigation and application of A-1(L) in combination with its host Anabaena sp. PCC 7120. As the first isolated freshwater cyanophage that infects the genetically tractable model cyanobacterium, A-1(L) should become an ideal template for the genetic engineering and synthetic biology studies.
Collapse
Affiliation(s)
- Ning Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun-Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Rong-Cheng Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Shu-Jing Han
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xudong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
23
|
Sugimoto R, Nishimura L, Nguyen PT, Ito J, Parrish NF, Mori H, Kurokawa K, Nakaoka H, Inoue I. Comprehensive discovery of CRISPR-targeted terminally redundant sequences in the human gut metagenome: Viruses, plasmids, and more. PLoS Comput Biol 2021; 17:e1009428. [PMID: 34673779 PMCID: PMC8530359 DOI: 10.1371/journal.pcbi.1009428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Viruses are the most numerous biological entity, existing in all environments and infecting all cellular organisms. Compared with cellular life, the evolution and origin of viruses are poorly understood; viruses are enormously diverse, and most lack sequence similarity to cellular genes. To uncover viral sequences without relying on either reference viral sequences from databases or marker genes that characterize specific viral taxa, we developed an analysis pipeline for virus inference based on clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR is a prokaryotic nucleic acid restriction system that stores the memory of previous exposure. Our protocol can infer CRISPR-targeted sequences, including viruses, plasmids, and previously uncharacterized elements, and predict their hosts using unassembled short-read metagenomic sequencing data. By analyzing human gut metagenomic data, we extracted 11,391 terminally redundant CRISPR-targeted sequences, which are likely complete circular genomes. The sequences included 2,154 tailed-phage genomes, together with 257 complete crAssphage genomes, 11 genomes larger than 200 kilobases, 766 genomes of Microviridae species, 56 genomes of Inoviridae species, and 95 previously uncharacterized circular small genomes that have no reliably predicted protein-coding gene. We predicted the host(s) of approximately 70% of the discovered genomes at the taxonomic level of phylum by linking protospacers to taxonomically assigned CRISPR direct repeats. These results demonstrate that our protocol is efficient for de novo inference of CRISPR-targeted sequences and their host prediction. The evolution and origins of viruses are long-standing questions in the field of biology. Viral genomes provide fundamental information to infer the evolution and origin of viruses. However, viruses are extraordinarily diverse, and there are no single genes shared across entire species. Several methods were developed to collect viral genomes from metagenome. To infer viral genomes from metagenome, previous approaches relied on reference viral genomes. We thought that such reference-based methods may not be sufficient to uncover diverse viral genomes; therefore, we developed a pipeline that utilizes CRISPR, a prokaryotic adaptive immunological memory. Using this pipeline, we discovered more than 10,000 positively complete CRISPR-targeted genomes from human gut metagenome datasets. A substantial portion of the discovered genomes encoded various types of capsid proteins, supporting the contention that these sequences are viral. Although the majority of these capsid-protein-coding sequences were previously characterized, we notably discovered Inoviridae genomes that were previously difficult to infer as being viral. Furthermore, some of the remaining unclassified sequences without a detectable capsid-protein-encoding gene had a notably low protein-coding ratio. Overall, our pipeline successfully discovered viruses and previously uncharacterized presumably mobile genetic elements targeted by CRISPR.
Collapse
Affiliation(s)
- Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Phuong Thanh Nguyen
- Human Genetics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Nicholas F. Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, Center for Integrative Medical Sciences, RIKEN, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Hiroshi Mori
- Genome Diversity Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Chiyoda-ku, Tokyo, Japan
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
24
|
Structural Studies of the Phage G Tail Demonstrate an Atypical Tail Contraction. Viruses 2021; 13:v13102094. [PMID: 34696524 PMCID: PMC8570332 DOI: 10.3390/v13102094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/28/2023] Open
Abstract
Phage G is recognized as having a remarkably large genome and capsid size among isolated, propagated phages. Negative stain electron microscopy of the host–phage G interaction reveals tail sheaths that are contracted towards the distal tip and decoupled from the head–neck region. This is different from the typical myophage tail contraction, where the sheath contracts upward, while being linked to the head–neck region. Our cryo-EM structures of the non-contracted and contracted tail sheath show that: (1) The protein fold of the sheath protein is very similar to its counterpart in smaller, contractile phages such as T4 and phi812; (2) Phage G’s sheath structure in the non-contracted and contracted states are similar to phage T4’s sheath structure. Similarity to other myophages is confirmed by a comparison-based study of the tail sheath’s helical symmetry, the sheath protein’s evolutionary timetree, and the organization of genes involved in tail morphogenesis. Atypical phase G tail contraction could be due to a missing anchor point at the upper end of the tail sheath that allows the decoupling of the sheath from the head–neck region. Explaining the atypical tail contraction requires further investigation of the phage G sheath anchor points.
Collapse
|
25
|
High Resolution Structure of the Mature Capsid of Ralstonia solanacearum Bacteriophage ϕRSA1 by Cryo-Electron Microscopy. Int J Mol Sci 2021; 22:ijms222011053. [PMID: 34681713 PMCID: PMC8538268 DOI: 10.3390/ijms222011053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
The ϕRSA1 bacteriophage has been isolated from Ralstonia solanacearum, a gram negative bacteria having a significant economic impact on many important crops. We solved the three-dimensional structure of the ϕRSA1 mature capsid to 3.9 Å resolution by cryo-electron microscopy. The capsid shell, that contains the 39 kbp of dsDNA genome, has an icosahedral symmetry characterized by an unusual triangulation number of T = 7, dextro. The ϕRSA1 capsid is composed solely of the polymerization of the major capsid protein, gp8, which exhibits the typical “Johnson” fold first characterized in E. coli bacteriophage HK97. As opposed to the latter, the ϕRSA1 mature capsid is not stabilized by covalent crosslinking between its subunits, nor by the addition of a decoration protein. We further describe the molecular interactions occurring between the subunits of the ϕRSA1 capsid and their relationships with the other known bacteriophages.
Collapse
|
26
|
Duan C, Cao H, Zhang LH, Xu Z. Harnessing the CRISPR-Cas Systems to Combat Antimicrobial Resistance. Front Microbiol 2021; 12:716064. [PMID: 34489905 PMCID: PMC8418092 DOI: 10.3389/fmicb.2021.716064] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence of antimicrobial-resistant (AMR) bacteria has become one of the most serious threats to global health, necessitating the development of novel antimicrobial strategies. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system, known as a bacterial adaptive immune system, can be repurposed to selectively target and destruct bacterial genomes other than invasive genetic elements. Thus, the CRISPR-Cas system offers an attractive option for the development of the next-generation antimicrobials to combat infectious diseases especially those caused by AMR pathogens. However, the application of CRISPR-Cas antimicrobials remains at a very preliminary stage and numerous obstacles await to be solved. In this mini-review, we summarize the development of using type I, type II, and type VI CRISPR-Cas antimicrobials to eradicate AMR pathogens and plasmids in the past a few years. We also discuss the most common challenges in applying CRISPR-Cas antimicrobials and potential solutions to overcome them.
Collapse
Affiliation(s)
- Cheng Duan
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Zeling Xu
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Stanton CR, Rice DTF, Beer M, Batinovic S, Petrovski S. Isolation and Characterisation of the Bundooravirus Genus and Phylogenetic Investigation of the Salasmaviridae Bacteriophages. Viruses 2021; 13:1557. [PMID: 34452423 PMCID: PMC8402886 DOI: 10.3390/v13081557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Bacillus is a highly diverse genus containing over 200 species that can be problematic in both industrial and medical settings. This is mainly attributed to Bacillus sp. being intrinsically resistant to an array of antimicrobial compounds, hence alternative treatment options are needed. In this study, two bacteriophages, PumA1 and PumA2 were isolated and characterized. Genome nucleotide analysis identified the two phages as novel at the DNA sequence level but contained proteins similar to phi29 and other related phages. Whole genome phylogenetic investigation of 34 phi29-like phages resulted in the formation of seven clusters that aligned with recent ICTV classifications. PumA1 and PumA2 share high genetic mosaicism and form a genus with another phage named WhyPhy, more recently isolated from the United States of America. The three phages within this cluster are the only candidates to infect B. pumilus. Sequence analysis of B. pumilus phage resistant mutants revealed that PumA1 and PumA2 require polymerized and peptidoglycan bound wall teichoic acid (WTA) for their infection. Bacteriophage classification is continuously evolving with the increasing phages' sequences in public databases. Understanding phage evolution by utilizing a combination of phylogenetic approaches provides invaluable information as phages become legitimate alternatives in both human health and industrial processes.
Collapse
Affiliation(s)
- Cassandra R. Stanton
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Daniel T. F. Rice
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Michael Beer
- Department of Defence Science and Technology, Port Melbourne, VIC 3207, Australia;
| | - Steven Batinovic
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Steve Petrovski
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| |
Collapse
|
28
|
Xie Y, Thompson T, O'Leary C, Crosby S, Nguyen QX, Liu M, Gill JJ. Differential Bacteriophage Efficacy in Controlling Salmonella in Cattle Hide and Soil Models. Front Microbiol 2021; 12:657524. [PMID: 34262535 PMCID: PMC8273493 DOI: 10.3389/fmicb.2021.657524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Asymptomatic Salmonella carriage in beef cattle is a food safety concern and the beef feedlot environment and cattle hides are reservoirs of this pathogen. Bacteriophages present an attractive non-antibiotic strategy for control of Salmonella in beef. In this study, four diverse and genetically unrelated Salmonella phages, Sergei, Season12, Sw2, and Munch, were characterized and tested alone and in combination for their ability to control Salmonella in cattle hide and soil systems, which are relevant models for Salmonella control in beef production. Phage Sergei is a member of the genus Sashavirus, phage Season12 was identified as a member of the Chivirus genus, Sw2 was identified as a member of the T5-like Epseptimavirus genus, and Munch was found to be a novel “jumbo” myovirus. Observed pathogen reductions in the model systems ranged from 0.50 to 1.75 log10 CFU/cm2 in hides and from 0.53 to 1.38 log10 CFU/g in soil, with phages Sergei and Sw2 producing greater reductions (∼1 log10 CFU/cm2 or CFU/g) than Season12 and Munch. These findings are in accordance with previous observations of phage virulence, suggesting the simple ability of a phage to form plaques on a bacterial strain is not a strong indicator of antimicrobial activity, but performance in liquid culture assays provides a better predictor. The antimicrobial efficacies of phage treatments were found to be phage-specific across model systems, implying that a phage capable of achieving bacterial reduction in one model is more likely to perform well in another. Phage combinations did not produce significantly greater efficacy than single phages even after 24 h in the soil model, and phage-insensitive colonies were not isolated from treated samples, suggesting that the emergence of phage resistance was not a major factor limiting efficacy in this system.
Collapse
Affiliation(s)
- Yicheng Xie
- Department of Animal Science, Texas A&M University, College Station, TX, United States.,Center for Phage Technology, Texas A&M University, College Station, TX, United States
| | - Tyler Thompson
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Chandler O'Leary
- Center for Phage Technology, Texas A&M University, College Station, TX, United States.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Stephen Crosby
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Quang X Nguyen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, TX, United States
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX, United States.,Center for Phage Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
29
|
Serwer P, Wright ET, De La Chapa J, Gonzales CB. Basics for Improved Use of Phages for Therapy. Antibiotics (Basel) 2021; 10:antibiotics10060723. [PMID: 34208477 PMCID: PMC8234457 DOI: 10.3390/antibiotics10060723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Blood-borne therapeutic phages and phage capsids increasingly reach therapeutic targets as they acquire more persistence, i.e., become more resistant to non-targeted removal from blood. Pathogenic bacteria are targets during classical phage therapy. Metastatic tumors are potential future targets, during use of drug delivery vehicles (DDVs) that are phage derived. Phage therapy has, to date, only sometimes been successful. One cause of failure is low phage persistence. A three-step strategy for increasing persistence is to increase (1) the speed of lytic phage isolation, (2) the diversity of phages isolated, and (3) the effectiveness and speed of screening phages for high persistence. The importance of high persistence-screening is illustrated by our finding here of persistence dramatically higher for coliphage T3 than for its relative, coliphage T7, in murine blood. Coliphage T4 is more persistent, long-term than T3. Pseudomonas chlororaphis phage 201phi2-1 has relatively low persistence. These data are obtained with phages co-inoculated and separately assayed. In addition, highly persistent phage T3 undergoes dispersal to several murine organs and displays tumor tropism in epithelial tissue (xenografted human oral squamous cell carcinoma). Dispersal is an asset for phage therapy, but a liability for phage-based DDVs. We propose increased focus on phage persistence—and dispersal—screening.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Center, San Antonio, TX 78229-3900, USA;
- Correspondence: ; Tel.: +1-210-567-3765
| | - Elena T. Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Center, San Antonio, TX 78229-3900, USA;
| | - Jorge De La Chapa
- Department of Comprehensive Dentistry, The University of Texas Health Center, San Antonio, TX 78229-3900, USA; (J.D.L.C.); (C.B.G.)
| | - Cara B. Gonzales
- Department of Comprehensive Dentistry, The University of Texas Health Center, San Antonio, TX 78229-3900, USA; (J.D.L.C.); (C.B.G.)
| |
Collapse
|
30
|
Chaudhari HV, Inamdar MM, Kondabagil K. Scaling relation between genome length and particle size of viruses provides insights into viral life history. iScience 2021; 24:102452. [PMID: 34113814 PMCID: PMC8169800 DOI: 10.1016/j.isci.2021.102452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
In terms of genome and particle sizes, viruses exhibit great diversity. With the discovery of several nucleocytoplasmic large DNA viruses (NCLDVs) and jumbo phages, the relationship between particle and genome sizes has emerged as an important criterion for understanding virus evolution. We use allometric scaling of capsid volume with the genome length of different groups of viruses to shed light on its relationship with virus life history. The allometric exponents for icosahedral dsDNA bacteriophages and NCDLVs were found to be 1 and 2, respectively, indicating that with increasing capsid size DNA packaging density remains the same in bacteriophages but decreases for NCLDVs. We argue that the exponents are largely shaped by their entry mechanism and capsid mechanical stability. We further show that these allometric size parameters are also intricately linked to the relative energy costs of translation and replication in viruses and can have further implications on viral life history. Capsid and genome size allometric exponent gives insights into viral life history The allometric exponent of NCLDVs is almost twice that of bacteriophages The exponent is largely shaped by the viral entry mechanism and capsid stability The relaxed genome size constraint allows large viruses to evolve greater autonomy
Collapse
Affiliation(s)
- Harshali V Chaudhari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
31
|
Gabel C, Li Z, Zhang H, Chang L. Structural basis for inhibition of the type I-F CRISPR-Cas surveillance complex by AcrIF4, AcrIF7 and AcrIF14. Nucleic Acids Res 2021; 49:584-594. [PMID: 33332569 PMCID: PMC7797054 DOI: 10.1093/nar/gkaa1199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
CRISPR-Cas systems are adaptive immune systems in bacteria and archaea to defend against mobile genetic elements (MGEs) and have been repurposed as genome editing tools. Anti-CRISPR (Acr) proteins are produced by MGEs to counteract CRISPR-Cas systems and can be used to regulate genome editing by CRISPR techniques. Here, we report the cryo-EM structures of three type I-F Acr proteins, AcrIF4, AcrIF7 and AcrIF14, bound to the type I-F CRISPR-Cas surveillance complex (the Csy complex) from Pseudomonas aeruginosa. AcrIF4 binds to an unprecedented site on the C-terminal helical bundle of Cas8f subunit, precluding conformational changes required for activation of the Csy complex. AcrIF7 mimics the PAM duplex of target DNA and is bound to the N-terminal DNA vise of Cas8f. Two copies of AcrIF14 bind to the thumb domains of Cas7.4f and Cas7.6f, preventing hybridization between target DNA and the crRNA. Our results reveal structural detail of three AcrIF proteins, each binding to a different site on the Csy complex for inhibiting degradation of MGEs.
Collapse
Affiliation(s)
- Clinton Gabel
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Zhuang Li
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Heng Zhang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
32
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
33
|
Fage C, Lemire N, Moineau S. Delivery of CRISPR-Cas systems using phage-based vectors. Curr Opin Biotechnol 2020; 68:174-180. [PMID: 33360715 DOI: 10.1016/j.copbio.2020.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance has spread quickly on a worldwide scale, reducing therapeutic options for bacterial infections. CRISPR-Cas is an adaptive immune system found in many prokaryotes that can be designed to target bacterial genomes, leading to cell death. Repurposing the CRISPR-Cas system as a therapeutic strategy offers an attractive way to overcome antimicrobial resistance. However, this strategy requires efficient vectors for the CRISPR-Cas system to reach the bacterial genomes. Engineered phages offer an attractive option as cargo delivery vectors. In this review, we discuss the production of phage-based vectors and the relevance of using repurposed CRISPR-Cas systems as antimicrobials. We also discuss recent progress in phage engineering that can potentially overcome the limitations and increase the efficiency of CRISPR-Cas delivery.
Collapse
Affiliation(s)
- Clément Fage
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
| | - Nicolas Lemire
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
34
|
Abstract
Since their discovery more than 100 years ago, the viruses that infect bacteria (bacteriophages) have been widely studied as model systems. Largely overlooked, however, have been "jumbo phages," with genome sizes ranging from 200 to 500 kbp. Jumbo phages generally have large virions with complex structures and a broad host spectrum. While the majority of jumbo phage genes are poorly functionally characterized, recent work has discovered many unique biological features, including a conserved tubulin homolog that coordinates a proteinaceous nucleus-like compartment that houses and segregates phage DNA. The tubulin spindle displays dynamic instability and centers the phage nucleus within the bacterial host during phage infection for optimal reproduction. The shell provides robust physical protection for the enclosed phage genomes against attack from DNA-targeting bacterial immune systems, thereby endowing jumbo phages with broad resistance. In this review, we focus on the current knowledge of the cytoskeletal elements and the specialized nuclear compartment derived from jumbo phages, and we highlight their importance in facilitating spatial and temporal organization over the viral life cycle. Additionally, we discuss the evolutionary relationships between jumbo phages and eukaryotic viruses, as well as the therapeutic potential and drawbacks of jumbo phages as antimicrobial agents in phage therapy.
Collapse
|
35
|
Misol GN, Kokkari C, Katharios P. Biological and Genomic Characterization of a Novel Jumbo Bacteriophage, vB_VhaM_pir03 with Broad Host Lytic Activity against Vibrio harveyi. Pathogens 2020; 9:E1051. [PMID: 33333990 PMCID: PMC7765460 DOI: 10.3390/pathogens9121051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio harveyi is a Gram-negative marine bacterium that causes major disease outbreaks and economic losses in aquaculture. Phage therapy has been considered as a potential alternative to antibiotics however, candidate bacteriophages require comprehensive characterization for a safe and practical phage therapy. In this work, a lytic novel jumbo bacteriophage, vB_VhaM_pir03 belonging to the Myoviridae family was isolated and characterized against V. harveyi type strain DSM19623. It had broad host lytic activity against 31 antibiotic-resistant strains of V. harveyi, V. alginolyticus, V. campbellii and V. owensii. Adsorption time of vB_VhaM_pir03 was determined at 6 min while the latent-phase was at 40 min and burst-size at 75 pfu/mL. vB_VhaM_pir03 was able to lyse several host strains at multiplicity-of-infections (MOI) 0.1 to 10. The genome of vB_VhaM_pir03 consists of 286,284 base pairs with 334 predicted open reading frames (ORFs). No virulence, antibiotic resistance, integrase encoding genes and transducing potential were detected. Phylogenetic and phylogenomic analysis showed that vB_VhaM_pir03 is a novel bacteriophage displaying the highest similarity to another jumbo phage, vB_BONAISHI infecting Vibrio coralliilyticus. Experimental phage therapy trial using brine shrimp, Artemia salina infected with V. harveyi demonstrated that vB_VhaM_pir03 was able to significantly reduce mortality 24 h post infection when administered at MOI 0.1 which suggests that it can be an excellent candidate for phage therapy.
Collapse
Affiliation(s)
- Gerald N. Misol
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
- Department of Biology, University of Crete, 71003 Heraklion, Crete, Greece
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| |
Collapse
|
36
|
Luque A, Benler S, Lee DY, Brown C, White S. The Missing Tailed Phages: Prediction of Small Capsid Candidates. Microorganisms 2020; 8:E1944. [PMID: 33302408 PMCID: PMC7762592 DOI: 10.3390/microorganisms8121944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022] Open
Abstract
Tailed phages are the most abundant and diverse group of viruses on the planet. Yet, the smallest tailed phages display relatively complex capsids and large genomes compared to other viruses. The lack of tailed phages forming the common icosahedral capsid architectures T = 1 and T = 3 is puzzling. Here, we extracted geometrical features from high-resolution tailed phage capsid reconstructions and built a statistical model based on physical principles to predict the capsid diameter and genome length of the missing small-tailed phage capsids. We applied the model to 3348 isolated tailed phage genomes and 1496 gut metagenome-assembled tailed phage genomes. Four isolated tailed phages were predicted to form T = 3 icosahedral capsids, and twenty-one metagenome-assembled tailed phages were predicted to form T < 3 capsids. The smallest capsid predicted was a T = 4/3 ≈ 1.33 architecture. No tailed phages were predicted to form the smallest icosahedral architecture, T = 1. We discuss the feasibility of the missing T = 1 tailed phage capsids and the implications of isolating and characterizing small-tailed phages for viral evolution and phage therapy.
Collapse
Affiliation(s)
- Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| | - Sean Benler
- National Center for Biotechnology Information (NCBI), Bethesda, MD 20894, USA;
| | - Diana Y. Lee
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Simon White
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
37
|
Dedeo CL, Teschke CM, Alexandrescu AT. Keeping It Together: Structures, Functions, and Applications of Viral Decoration Proteins. Viruses 2020; 12:v12101163. [PMID: 33066635 PMCID: PMC7602432 DOI: 10.3390/v12101163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Decoration proteins are viral accessory gene products that adorn the surfaces of some phages and viral capsids, particularly tailed dsDNA phages. These proteins often play a "cementing" role, reinforcing capsids against accumulating internal pressure due to genome packaging, or environmental insults such as extremes of temperature or pH. Many decoration proteins serve alternative functions, including target cell recognition, participation in viral assembly, capsid size determination, or modulation of host gene expression. Examples that currently have structures characterized to high-resolution fall into five main folding motifs: β-tulip, β-tadpole, OB-fold, Ig-like, and a rare knotted α-helical fold. Most of these folding motifs have structure homologs in virus and target cell proteins, suggesting horizontal gene transfer was important in their evolution. Oligomerization states of decoration proteins range from monomers to trimers, with the latter most typical. Decoration proteins bind to a variety of loci on capsids that include icosahedral 2-, 3-, and 5-fold symmetry axes, as well as pseudo-symmetry sites. These binding sites often correspond to "weak points" on the capsid lattice. Because of their unique abilities to bind virus surfaces noncovalently, decoration proteins are increasingly exploited for technology, with uses including phage display, viral functionalization, vaccination, and improved nanoparticle design for imaging and drug delivery. These applications will undoubtedly benefit from further advances in our understanding of these versatile augmenters of viral functions.
Collapse
|
38
|
Ko CC, Hatfull GF. Identification of mycobacteriophage toxic genes reveals new features of mycobacterial physiology and morphology. Sci Rep 2020; 10:14670. [PMID: 32887931 PMCID: PMC7474061 DOI: 10.1038/s41598-020-71588-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Double-stranded DNA tailed bacteriophages typically code for 50-200 genes, of which 15-35 are involved in virion structure and assembly, DNA packaging, lysis, and DNA metabolism. However, vast numbers of other phage genes are small, are not required for lytic growth, and are of unknown function. The 1,885 sequenced mycobacteriophages encompass over 200,000 genes in 7,300 distinct protein 'phamilies', 77% of which are of unknown function. Gene toxicity provides potential insights into function, and here we screened 193 unrelated genes encoded by 13 different mycobacteriophages for their ability to impair the growth of Mycobacterium smegmatis. We identified 45 (23%) mycobacteriophage genes that are toxic when expressed. The impacts on M. smegmatis growth range from mild to severe, but many cause irreversible loss of viability. Expression of most of the severely toxic genes confers altered cellular morphologies, including filamentation, polar bulging, curving, and, surprisingly, loss of viability of one daughter cell at division, suggesting specific impairments of mycobacterial growth. Co-immunoprecipitation and mass spectrometry show that toxicity is frequently associated with interaction with host proteins and alteration or inactivation of their function. Mycobacteriophages thus present a massive reservoir of genes for identifying mycobacterial essential functions, identifying potential drug targets and for exploring mycobacteriophage physiology.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
39
|
Neumann E, Kawasaki T, Effantin G, Estrozi LF, Chatchawankanphanich O, Yamada T, Schoehn G. 3D structure of three jumbo phage heads. J Gen Virol 2020; 101:1219-1226. [PMID: 32840476 DOI: 10.1099/jgv.0.001487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Jumbo phages are bacteriophages that carry more than 200 kbp of DNA. In this study we characterized two jumbo phages (ΦRSL2 and ΦXacN1) and one semi-jumbo phage (ΦRP13) at the structural level by cryo-electron microscopy. Focusing on their capsids, three-dimensional structures of the heads at resolutions ranging from 16 to 9 Å were calculated. Based on these structures we determined the geometrical basis on which the icosahedral capsids of these phages are constructed, which includes the accessory and decorative proteins that complement them. A triangulation number novel to Myoviridae (ΦRP13; T=21) was discovered as well as two others, which are more common for jumbo phages (T=27 and T=28). Based on one of the structures we also provide evidence that accessory or decorative proteins are not a prerequisite for maintaining the structural integrity of very large capsids.
Collapse
Affiliation(s)
- Emmanuelle Neumann
- Université Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), F-38000, Grenoble, France
| | - Takeru Kawasaki
- Unit of Biotechnology, Division of Biological and Life Science, Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Grégory Effantin
- Université Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), F-38000, Grenoble, France
| | - Leandro F Estrozi
- Université Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), F-38000, Grenoble, France
| | - Orawan Chatchawankanphanich
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani, Thailand
| | - Takashi Yamada
- Unit of Biotechnology, Division of Biological and Life Science, Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.,Hiroshima Study Center, The Open University of Japan, Hiroshima 730-0053, Japan
| | - Guy Schoehn
- Université Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), F-38000, Grenoble, France
| |
Collapse
|
40
|
The Mottled Capsid of the Salmonella Giant Phage SPN3US, a Likely Maturation Intermediate with a Novel Internal Shell. Viruses 2020; 12:v12090910. [PMID: 32825132 PMCID: PMC7552025 DOI: 10.3390/v12090910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
“Giant” phages have genomes of >200 kbp, confined in correspondingly large capsids whose assembly and maturation are still poorly understood. Nevertheless, the first assembly product is likely to be, as in other tailed phages, a procapsid that subsequently matures and packages the DNA. The associated transformations include the cleavage of many proteins by the phage-encoded protease, as well as the thinning and angularization of the capsid. We exploited an amber mutation in the viral protease gene of the Salmonella giant phage SPN3US, which leads to the accumulation of a population of capsids with distinctive properties. Cryo-electron micrographs reveal patterns of internal density different from those of the DNA-filled heads of virions, leading us to call them “mottled capsids”. Reconstructions show an outer shell with T = 27 symmetry, an embellishment of the HK97 prototype composed of the major capsid protein, gp75, which is similar to some other giant viruses. The mottled capsid has a T = 1 inner icosahedral shell that is a complex network of loosely connected densities composed mainly of the ejection proteins gp53 and gp54. Segmentation of this inner shell indicated that a number of densities (~12 per asymmetric unit) adopt a “twisted hook” conformation. Large patches of a proteinaceous tetragonal lattice with a 67 Å repeat were also present in the cell lysate. The unexpected nature of these novel inner shell and lattice structures poses questions as to their functions in virion assembly.
Collapse
|
41
|
González B, Monroe L, Li K, Yan R, Wright E, Walter T, Kihara D, Weintraub ST, Thomas JA, Serwer P, Jiang W. Phage G Structure at 6.1 Å Resolution, Condensed DNA, and Host Identity Revision to a Lysinibacillus. J Mol Biol 2020; 432:4139-4153. [PMID: 32454153 DOI: 10.1016/j.jmb.2020.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
Phage G has the largest capsid and genome of any known propagated phage. Many aspects of its structure, assembly, and replication have not been elucidated. Herein, we present the dsDNA-packed and empty phage G capsid at 6.1 and 9 Å resolution, respectively, using cryo-EM for structure determination and mass spectrometry for protein identification. The major capsid protein, gp27, is identified and found to share the HK97-fold universally conserved in all previously solved dsDNA phages. Trimers of the decoration protein, gp26, sit on the 3-fold axes and are thought to enhance the interactions of the hexameric capsomeres of gp27, for other phages encoding decoration proteins. Phage G's decoration protein is longer than what has been reported in other phages, and we suspect the extra interaction surface area helps stabilize the capsid. We identified several additional capsid proteins, including a candidate for the prohead protease responsible for processing gp27. Furthermore, cryo-EM reveals a range of partially full, condensed DNA densities that appear to have no contact with capsid shell. Three analyses confirm that the phage G host is a Lysinibacillus, and not Bacillus megaterium: identity of host proteins in our mass spectrometry analyses, genome sequence of the phage G host, and host range of phage G.
Collapse
Affiliation(s)
- Brenda González
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Lyman Monroe
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Kunpeng Li
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Rui Yan
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Elena Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Thomas Walter
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Department of Computer Science, Purdue University, 305 North University Street, West Lafayette, IN 47907-2107, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Julie A Thomas
- Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Wen Jiang
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA; Purdue Cryo-EM Facility, Purdue University, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Purdue Center for Cancer Research, Purdue University, 201 South University Street, West Lafayette, IN 47907, USA; Purdue Institute for Infectious, Immunology and Inflammatory Diseases, Purdue University, 207 South Martin Jischke Drive, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47097, USA.
| |
Collapse
|
42
|
Wagemans J, Tsonos J, Holtappels D, Fortuna K, Hernalsteens JP, De Greve H, Estrozi LF, Bacia-Verloop M, Moriscot C, Noben JP, Schoehn G, Lavigne R. Structural Analysis of Jumbo Coliphage phAPEC6. Int J Mol Sci 2020; 21:ijms21093119. [PMID: 32354127 PMCID: PMC7247149 DOI: 10.3390/ijms21093119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/24/2023] Open
Abstract
The phAPEC6 genome encodes 551 predicted gene products, with the vast majority (83%) of unknown function. Of these, 62 have been identified as virion-associated proteins by mass spectrometry (ESI-MS/MS), including the major capsid protein (Gp225; present in 1620 copies), which shows a HK97 capsid protein-based fold. Cryo-electron microscopy experiments showed that the 350-kbp DNA molecule of Escherichia coli virus phAPEC6 is packaged in at least 15 concentric layers in the phage capsid. A capsid inner body rod is also present, measuring about 91 nm by 18 nm and oriented along the portal axis. In the phAPEC6 contractile tail, 25 hexameric stacked rings can be distinguished, built of the identified tail sheath protein (Gp277). Cryo-EM reconstruction reveals the base of the unique hairy fibers observed during an initial transmission electron microscopy (TEM) analysis. These very unusual filaments are ordered at three annular positions along the contractile sheath, as well as around the capsid, and may be involved in host interaction.
Collapse
Affiliation(s)
- Jeroen Wagemans
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21—box 2462, 3001 Leuven, Belgium; (J.W.); (J.T.); (D.H.); (K.F.)
| | - Jessica Tsonos
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21—box 2462, 3001 Leuven, Belgium; (J.W.); (J.T.); (D.H.); (K.F.)
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium;
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Dominique Holtappels
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21—box 2462, 3001 Leuven, Belgium; (J.W.); (J.T.); (D.H.); (K.F.)
| | - Kiandro Fortuna
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21—box 2462, 3001 Leuven, Belgium; (J.W.); (J.T.); (D.H.); (K.F.)
| | | | - Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
- VIB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Leandro F. Estrozi
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France; (L.F.E.); (M.B.-V.)
| | - Maria Bacia-Verloop
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France; (L.F.E.); (M.B.-V.)
| | - Christine Moriscot
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, Integrated Structural Biology Grenoble (ISBG), F-38042 Grenoble, France;
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Agoralaan D, 3590 Hasselt, Belgium;
| | - Guy Schoehn
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France; (L.F.E.); (M.B.-V.)
- Correspondence: (G.S.); (R.L.); Tel.: +33-4-5742-8568 (G.S.); +32-16-3795-24 (R.L.)
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21—box 2462, 3001 Leuven, Belgium; (J.W.); (J.T.); (D.H.); (K.F.)
- Correspondence: (G.S.); (R.L.); Tel.: +33-4-5742-8568 (G.S.); +32-16-3795-24 (R.L.)
| |
Collapse
|
43
|
Serwer P, Wright ET. In-Gel Isolation and Characterization of Large (and Other) Phages. Viruses 2020; 12:v12040410. [PMID: 32272774 PMCID: PMC7232213 DOI: 10.3390/v12040410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
We review some aspects of the rapid isolation of, screening for and characterization of jumbo phages, i.e., phages that have dsDNA genomes longer than 200 Kb. The first aspect is that, as plaque-supporting gels become more concentrated, jumbo phage plaques become smaller. Dilute agarose gels are better than conventional agar gels for supporting plaques of both jumbo phages and, prospectively, the even larger (>520 Kb genome), not-yet-isolated mega-phages. Second, dilute agarose gels stimulate propagation of at least some jumbo phages. Third, in-plaque techniques exist for screening for both phage aggregation and high-in-magnitude, negative average electrical surface charge density. The latter is possibly correlated with high phage persistence in blood. Fourth, electron microscopy of a thin section of a phage plaque reveals phage type, size and some phage life cycle information. Fifth, in-gel propagation is an effective preparative technique for at least some jumbo phages. Sixth, centrifugation through sucrose density gradients is a relatively non-destructive jumbo phage purification technique. These basics have ramifications in the development of procedures for (1) use of jumbo phages for phage therapy of infectious disease, (2) exploration of genomic diversity and evolution and (3) obtaining accurate metagenomic analyses.
Collapse
|
44
|
Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol 2020; 18:125-138. [PMID: 32015529 DOI: 10.1038/s41579-019-0311-5] [Citation(s) in RCA: 400] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 12/23/2022]
Abstract
Recent advances in viral metagenomics have enabled the rapid discovery of an unprecedented catalogue of phages in numerous environments, from the human gut to the deep ocean. Although these advances have expanded our understanding of phage genomic diversity, they also revealed that we have only scratched the surface in the discovery of novel viruses. Yet, despite the remarkable diversity of phages at the nucleotide sequence level, the structural proteins that form viral particles show strong similarities and conservation. Phages are uniquely interconnected from an evolutionary perspective and undergo multiple events of genetic exchange in response to the selective pressure of their hosts, which drives their diversity. In this Review, we explore phage diversity at the structural, genomic and community levels as well as the complex evolutionary relationships between phages, moulded by the mosaicity of their genomes.
Collapse
Affiliation(s)
- Moïra B Dion
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Frank Oechslin
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada. .,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada. .,Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
45
|
Dokland T. Molecular Piracy: Redirection of Bacteriophage Capsid Assembly by Mobile Genetic Elements. Viruses 2019; 11:v11111003. [PMID: 31683607 PMCID: PMC6893505 DOI: 10.3390/v11111003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/21/2023] Open
Abstract
Horizontal transfer of mobile genetic elements (MGEs) is a key aspect of the evolution of bacterial pathogens. Transduction by bacteriophages is especially important in this process. Bacteriophages—which assemble a machinery for efficient encapsidation and transfer of genetic material—often transfer MGEs and other chromosomal DNA in a more-or-less nonspecific low-frequency process known as generalized transduction. However, some MGEs have evolved highly specific mechanisms to take advantage of bacteriophages for their own propagation and high-frequency transfer while strongly interfering with phage production—“molecular piracy”. These mechanisms include the ability to sense the presence of a phage entering lytic growth, specific recognition and packaging of MGE genomes into phage capsids, and the redirection of the phage assembly pathway to form capsids with a size more appropriate for the size of the MGE. This review focuses on the process of assembly redirection, which has evolved convergently in many different MGEs from across the bacterial universe. The diverse mechanisms that exist suggest that size redirection is an evolutionarily advantageous strategy for many MGEs.
Collapse
Affiliation(s)
- Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35242, USA.
| |
Collapse
|
46
|
Abstract
Studies on viruses infecting archaea living in the most extreme environments continue to show a remarkable diversity of structures, suggesting that the sampling continues to be very sparse. We have used electron cryo-microscopy to study at 3.7-Å resolution the structure of the Sulfolobus polyhedral virus 1 (SPV1), which was originally isolated from a hot, acidic spring in Beppu, Japan. The 2 capsid proteins with variant single jelly-roll folds form pentamers and hexamers which assemble into a T = 43 icosahedral shell. In contrast to tailed icosahedral double-stranded DNA (dsDNA) viruses infecting bacteria and archaea, and herpesviruses infecting animals and humans, where naked DNA is packed under very high pressure due to the repulsion between adjacent layers of DNA, the circular dsDNA in SPV1 is fully covered with a viral protein forming a nucleoprotein filament with attractive interactions between layers. Most strikingly, we have been able to show that the DNA is in an A-form, as it is in the filamentous viruses infecting hyperthermophilic acidophiles. Previous studies have suggested that DNA is in the B-form in bacteriophages, and our study is a direct visualization of the structure of DNA in an icosahedral virus.
Collapse
|
47
|
Capsid expansion of bacteriophage T5 revealed by high resolution cryoelectron microscopy. Proc Natl Acad Sci U S A 2019; 116:21037-21046. [PMID: 31578255 DOI: 10.1073/pnas.1909645116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The large (90-nm) icosahedral capsid of bacteriophage T5 is composed of 775 copies of the major capsid protein (mcp) together with portal, protease, and decoration proteins. Its assembly is a regulated process that involves several intermediates, including a thick-walled round precursor prohead that expands as the viral DNA is packaged to yield a thin-walled and angular mature capsid. We investigated capsid maturation by comparing cryoelectron microscopy (cryo-EM) structures of the prohead, the empty expanded capsid both with and without decoration protein, and the virion capsid at a resolution of 3.8 Å for the latter. We detail the molecular structure of the mcp, its complex pattern of interactions, and their evolution during maturation. The bacteriophage T5 mcp is a variant of the canonical HK97-fold with a high level of plasticity that allows for the precise assembly of a giant macromolecule and the adaptability needed to interact with other proteins and the packaged DNA.
Collapse
|
48
|
Wang Y, Palmfeldt J, Gregersen N, Makhov AM, Conway JF, Wang M, McCalley SP, Basu S, Alharbi H, St Croix C, Calderon MJ, Watkins S, Vockley J. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. J Biol Chem 2019; 294:12380-12391. [PMID: 31235473 DOI: 10.1074/jbc.ra119.008680] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Three mitochondrial metabolic pathways are required for efficient energy production in eukaryotic cells: the electron transfer chain (ETC), fatty acid β-oxidation (FAO), and the tricarboxylic acid cycle. The ETC is organized into inner mitochondrial membrane supercomplexes that promote substrate channeling and catalytic efficiency. Although previous studies have suggested functional interaction between FAO and the ETC, their physical interaction has never been demonstrated. In this study, using blue native gel and two-dimensional electrophoreses, nano-LC-MS/MS, immunogold EM, and stimulated emission depletion microscopy, we show that FAO enzymes physically interact with ETC supercomplexes at two points. We found that the FAO trifunctional protein (TFP) interacts with the NADH-binding domain of complex I of the ETC, whereas the electron transfer enzyme flavoprotein dehydrogenase interacts with ETC complex III. Moreover, the FAO enzyme very-long-chain acyl-CoA dehydrogenase physically interacted with TFP, thereby creating a multifunctional energy protein complex. These findings provide a first view of an integrated molecular architecture for the major energy-generating pathways in mitochondria that ensures the safe transfer of unstable reducing equivalents from FAO to the ETC. They also offer insight into clinical ramifications for individuals with genetic defects in these pathways.
Collapse
Affiliation(s)
- Yudong Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Meicheng Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Stephen P McCalley
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261
| | - Shrabani Basu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Hana Alharbi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Michael J Calderon
- Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Simon Watkins
- Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261; Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.
| |
Collapse
|
49
|
Duda RL, Teschke CM. The amazing HK97 fold: versatile results of modest differences. Curr Opin Virol 2019; 36:9-16. [PMID: 30856581 PMCID: PMC6626583 DOI: 10.1016/j.coviro.2019.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/27/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023]
Abstract
dsDNA Bacteriophages, some dsDNA archaeal viruses and the Herpesviruses share many features including a common capsid assembly pathway and coat protein fold. The coat proteins of these viruses, which have the HK97 fold, co-assemble with a free or attached scaffolding protein and other capsid proteins into a precursor capsid, known as a procapsid or prohead. The procapsid is a metastable state that increases in stability as a result of morphological changes that occur during the dsDNA packaging reaction. We review evidence from several systems indicating that proper contacts acquired in the assembly of the procapsid are critical to forming the correct morphology in the mature capsid.
Collapse
Affiliation(s)
- Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| | - Carolyn M Teschke
- Departments of Molecular and Cell Biology, and Chemistry, University of Connecticut, Storrs, CT, 06269-3125, United States.
| |
Collapse
|
50
|
Newcomer RL, Schrad JR, Gilcrease EB, Casjens SR, Feig M, Teschke CM, Alexandrescu AT, Parent KN. The phage L capsid decoration protein has a novel OB-fold and an unusual capsid binding strategy. eLife 2019; 8:e45345. [PMID: 30945633 PMCID: PMC6449081 DOI: 10.7554/elife.45345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
The major coat proteins of dsDNA tailed phages (order Caudovirales) and herpesviruses form capsids by a mechanism that includes active packaging of the dsDNA genome into a precursor procapsid, followed by expansion and stabilization of the capsid. These viruses have evolved diverse strategies to fortify their capsids, such as non-covalent binding of auxiliary 'decoration' (Dec) proteins. The Dec protein from the P22-like phage L has a highly unusual binding strategy that distinguishes between nearly identical three-fold and quasi-three-fold sites of the icosahedral capsid. Cryo-electron microscopy and three-dimensional image reconstruction were employed to determine the structure of native phage L particles. NMR was used to determine the structure/dynamics of Dec in solution. The NMR structure and the cryo-EM density envelope were combined to build a model of the capsid-bound Dec trimer. Key regions that modulate the binding interface were verified by site-directed mutagenesis.
Collapse
Affiliation(s)
- Rebecca L Newcomer
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Jason R Schrad
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Michael Feig
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Carolyn M Teschke
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Andrei T Alexandrescu
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Kristin N Parent
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| |
Collapse
|