1
|
Ren F, Ma J, Dang L, Li A, Zhao G, Qi Y, Xu Y, Yang H, Li J. Potential of nanopore sequencing for tuberculosis diagnosis and drug resistance detection. BMC Infect Dis 2024; 24:1469. [PMID: 39731145 DOI: 10.1186/s12879-024-10378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
OBJECTIVES This study evaluates the effectiveness of nanopore sequencing for accurate detection of Mycobacterium tuberculosis pathogens and drug resistance mutations in clinical specimens. METHODS A retrospective analysis of 2,421 specimens from suspected tuberculosis patients admitted to Xi'an Chest Hospital from 2022 to 2023 was conducted, with 131 specimens undergoing via real-time, fluorescence-based quantitative Polymerase Chain Reaction (qPCR), simultaneous amplification and testing RNA (RNA), Mycobacterium culture, Mycobacterium smear, and nanopore sequencing. Employing clinical tuberculosis diagnoses as the gold standard, sensitivity, specificity, positive predictive value, negative predictive value, concordance rate, and Kappa coefficient were measured for the five detection techniques. We compared nanopore sequencing with the Melting Curve method to detect drug-resistant gene mutations. RESULTS Nanopore sequencing has a significantly higher sensitivity (0.786) for tuberculosis diagnosis compared to qPCR (0.411), RNA (0.411), Mycobacterium culture (0.402), and Mycobacterium smear (0.241), against the gold-standard clinical diagnosis. It also exhibited a greater concordance rate (0.809) and Kappa coefficient (0.488), and outperformed the other methods in terms of the area under the ROC curve. Nanopore sequencing surpassed the Melting Curve method in identifying drug-resistant mutations. CONCLUSION Nanopore sequencing significantly enhances the detection of tuberculosis pathogens and drug-resistant genes.
Collapse
Affiliation(s)
- Fei Ren
- Department of Drug-Resistance Tuberculosis, Xi'an Chest Hospital, Xi'an, China
| | - JinBao Ma
- Department of Drug-Resistance Tuberculosis, Xi'an Chest Hospital, Xi'an, China
| | - LiYun Dang
- Department of Drug-Resistance Tuberculosis, Xi'an Chest Hospital, Xi'an, China
| | - AiFang Li
- Department of Clinical Laboratory, Xi'an Chest Hospital, Xi'an, Shaanxi Province, China
| | - GuoLian Zhao
- Department of Clinical Laboratory, Xi'an Chest Hospital, Xi'an, Shaanxi Province, China
| | - Yun Qi
- Department of Gynecology and Pediatric Tuberculosis, Xi'an Chest Hospital, Xi'an, Shaanxi Province, China
| | - You Xu
- Department of Drug-Resistance Tuberculosis, Xi'an Chest Hospital, Xi'an, China
| | - Han Yang
- Medical Transformation Centre, Xi'an Chest Hospital, Yanta District, Xi'an, Shaanxi Province, China.
| | - JianYing Li
- Xi'an Chest Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Thuansuwan W, Chuchottaworn C, Nakajima C, Suzuki Y, Chaichanawongsaroj N. Biphasic Medium Using Nicotinamide for Detection of Pyrazinamide Resistance in Mycobacterium tuberculosis. Antibiotics (Basel) 2024; 13:563. [PMID: 38927229 PMCID: PMC11200442 DOI: 10.3390/antibiotics13060563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Reliable drug susceptibility testing of pyrazinamide (PZA) is technically difficult, since PZA activity is pH sensitive. The aim of this study was to evaluate a biphasic medium assay (BMA) for the reliable detection of PZA resistance in Mycobacterium tuberculosis (MTB) using nicotinamide (NIC) as a surrogate for PZA and identifying the appropriate cut-off value for the assay. The PZA susceptibility of 122 multidrug-resistant tuberculosis (MDR-TB) isolates and 39 drug-susceptible tuberculosis (DS-TB) isolates was examined using the BMA with NIC at four different concentrations (250, 500, 1000, and 2000 mg/L) and comparing the results with results from the BACTEC MGIT 960 reference method. Out of 122 MDR-TB isolates, 40 were identified as resistant by the BACTEC MGIT 960 system, of which 92.5% contained mutations within their pncA gene plus promoter region. A minimum inhibitory concentration of NIC ≥ 1000 mg/L was used as the cut-off concentration to define resistance in correlation with the MGIT 960 outcomes. NIC-BMA had a sensitivity of 90.91%, a specificity of 100%, and an accuracy of 97.52% compared with the MGIT 960 method. NIC-BMA is a promising assay to screen PZA resistance in microbiological laboratories without automation or advanced molecular instruments.
Collapse
Affiliation(s)
- Waraporn Thuansuwan
- Program of Molecular Sciences in Medical Microbiology and Immunology, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | | | - Chie Nakajima
- International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (C.N.); (Y.S.)
| | - Yasuhiko Suzuki
- International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (C.N.); (Y.S.)
| | - Nuntaree Chaichanawongsaroj
- Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Shahab M, de Farias Morais GC, Akash S, Fulco UL, Oliveira JIN, Zheng G, Akter S. A robust computational quest: Discovering potential hits to improve the treatment of pyrazinamide-resistant Mycobacterium tuberculosis. J Cell Mol Med 2024; 28:e18279. [PMID: 38634203 PMCID: PMC11024510 DOI: 10.1111/jcmm.18279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The rise of pyrazinamide (PZA)-resistant strains of Mycobacterium tuberculosis (MTB) poses a major challenge to conventional tuberculosis (TB) treatments. PZA, a cornerstone of TB therapy, must be activated by the mycobacterial enzyme pyrazinamidase (PZase) to convert its active form, pyrazinoic acid, which targets the ribosomal protein S1. Resistance, often associated with mutations in the RpsA protein, complicates treatment and highlights a critical gap in the understanding of structural dynamics and mechanisms of resistance, particularly in the context of the G97D mutation. This study utilizes a novel integration of computational techniques, including multiscale biomolecular and molecular dynamics simulations, physicochemical and medicinal chemistry predictions, quantum computations and virtual screening from the ZINC and Chembridge databases, to elucidate the resistance mechanism and identify lead compounds that have the potential to improve treatment outcomes for PZA-resistant MTB, namely ZINC15913786, ZINC20735155, Chem10269711, Chem10279789 and Chem10295790. These computational methods offer a cost-effective, rapid alternative to traditional drug trials by bypassing the need for organic subjects while providing highly accurate insight into the binding sites and efficacy of new drug candidates. The need for rapid and appropriate drug development emphasizes the need for robust computational analysis to justify further validation through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Muhammad Shahab
- State key laboratories of Chemical Resources Engineering Beijing, University of Chemical TechnologyBeijingChina
| | | | - Shopnil Akash
- Department of PharmacyDaffodil International UniversityDhakaBangladesh
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | - Guojun Zheng
- State key laboratories of Chemical Resources Engineering Beijing, University of Chemical TechnologyBeijingChina
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial ResearchDhakaBangladesh
| |
Collapse
|
4
|
Carter JJ, Walker TM, Walker AS, Whitfield MG, Morlock GP, Lynch CI, Adlard D, Peto TEA, Posey JE, Crook DW, Fowler PW. Prediction of pyrazinamide resistance in Mycobacterium tuberculosis using structure-based machine-learning approaches. JAC Antimicrob Resist 2024; 6:dlae037. [PMID: 38500518 PMCID: PMC10946228 DOI: 10.1093/jacamr/dlae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Background Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis; however, antibiotic susceptibility testing for pyrazinamide is challenging. Resistance to pyrazinamide is primarily driven by genetic variation in pncA, encoding an enzyme that converts pyrazinamide into its active form. Methods We curated a dataset of 664 non-redundant, missense amino acid mutations in PncA with associated high-confidence phenotypes from published studies and then trained three different machine-learning models to predict pyrazinamide resistance. All models had access to a range of protein structural-, chemical- and sequence-based features. Results The best model, a gradient-boosted decision tree, achieved a sensitivity of 80.2% and a specificity of 76.9% on the hold-out test dataset. The clinical performance of the models was then estimated by predicting the binary pyrazinamide resistance phenotype of 4027 samples harbouring 367 unique missense mutations in pncA derived from 24 231 clinical isolates. Conclusions This work demonstrates how machine learning can enhance the sensitivity/specificity of pyrazinamide resistance prediction in genetics-based clinical microbiology workflows, highlights novel mutations for future biochemical investigation, and is a proof of concept for using this approach in other drugs.
Collapse
Affiliation(s)
- Joshua J Carter
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Timothy M Walker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Michael G Whitfield
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Tygerberg, South Africa
| | - Glenn P Morlock
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charlotte I Lynch
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Dylan Adlard
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Timothy E A Peto
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - James E Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Philip W Fowler
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
Liu B, Su P, Hu P, Yan M, Li W, Yi S, Chen Z, Zhang X, Guo J, Wan X, Wang J, Gong D, Bai H, Wan K, Liu H, Li G, Tan Y. Prevalence, Transmission and Genetic Diversity of Pyrazinamide Resistance Among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Hunan, China. Infect Drug Resist 2024; 17:403-416. [PMID: 38328339 PMCID: PMC10849141 DOI: 10.2147/idr.s436161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Background China is a country with a burden of high rates of both TB and multidrug-resistant TB (MDR-TB). However, published data on pyrazinamide (PZA) resistance are still limited in Hunan province, China. This study investigated the prevalence, transmission, and genetic diversity of PZA resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Hunan province. Methods Drug susceptibility testing (DST) with the Bactec MGIT 960 PZA kit and pyrazinamidase (PZase) testing were conducted on all 298 MDR clinical isolates. Moreover, 24-locus MIRU-VNTR and DNA sequencing of pncA, rpsA, and panD genes were conducted on 180 PZA-resistant (PZA-R) isolates. Results The prevalence of PZA resistance among MDR-TB strains reached 60.4%. Newly diagnosed PZA-R TB patients and clustered isolates with identical pncA, rpsA, and panD mutations showed that transmission of PZA-R isolates played a significant role in the formation of PZA-R TB. Ninety-eight mutation patterns were observed in the pncA among 180 PZA-R isolates, and seventy-one (72.4%) were point mutations. Twenty-four of these mutations are new, including 2 base substitutions (V93G and T153S) and 22 nucleotide deletions or insertions. The W119C was found in PZA-S isolates, on the other hand, F94L and V155A mutations were found in both PZA resistant and susceptible isolates with positive PZase activity, indicating that they were not associated with PZA resistance. This is not entirely in line with the WHO catalogue. Ten novel rpsA mutations were found in 10 PZA-R isolates, which all combined with mutations in pncA. Thus, it is unpredictable whether these mutations in rpsA can impact PZA resistance. No panD mutation was found in all PZA-R isolates. Conclusion DNA sequencing of pncA and PZase activity testing have great potential in predicting PZA resistance.
Collapse
Affiliation(s)
- Binbin Liu
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Pan Su
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Peilei Hu
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Mi Yan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Wenbin Li
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Songlin Yi
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Zhenhua Chen
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Xiaoping Zhang
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Jingwei Guo
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Xiaojie Wan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Jue Wang
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Daofang Gong
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Hua Bai
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yunhong Tan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| |
Collapse
|
6
|
Xiao YX, Liu KH, Lin WH, Chan TH, Jou R. Whole-genome sequencing-based analyses of drug-resistant Mycobacterium tuberculosis from Taiwan. Sci Rep 2023; 13:2540. [PMID: 36781938 PMCID: PMC9925824 DOI: 10.1038/s41598-023-29652-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) posed challenges to global TB control. Whole-genome sequencing (WGS) is recommended for predicting drug resistance to guide DR-TB treatment and management. Nevertheless, data are lacking in Taiwan. Phenotypic drug susceptibility testing (DST) of 12 anti-TB drugs was performed for 200 Mycobacterium tuberculosis isolates. WGS was performed using the Illumina platform. Drug resistance profiles and lineages were predicted in silico using the Total Genotyping Solution for TB (TGS-TB). Using the phenotypic DST results as a reference, WGS-based prediction demonstrated high concordance rates of isoniazid (95.0%), rifampicin (RIF) (98.0%), pyrazinamide (98.5%) and fluoroquinolones (FQs) (99.5%) and 96.0% to 99.5% for second-line injectable drugs (SLIDs); whereas, lower concordance rates of ethambutol (87.5%), streptomycin (88.0%) and ethionamide (84.0%). Furthermore, minimum inhibitory concentrations confirmed that RIF rpoB S450L, FQs gyrA D94G and SLIDs rrs a1401g conferred high resistance levels. Besides, we identified lineage-associated mutations in lineage 1 (rpoB H445Y and fabG1 c-15t) and predominant lineage 2 (rpoB S450L and rpsL K43R). The WGS-based prediction of drug resistance is highly concordant with phenotypic DST results and can provide comprehensive genetic information to guide DR-TB precision therapies in Taiwan.
Collapse
Affiliation(s)
- Yu-Xin Xiao
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, R.O.C
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Kuang-Hung Liu
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, R.O.C
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Wan-Hsuan Lin
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, R.O.C
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Tai-Hua Chan
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, R.O.C
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Ruwen Jou
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, R.O.C..
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C..
| |
Collapse
|
7
|
Rajendran A, Palaniyandi K. Mutations Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis: A Review and Update. Curr Microbiol 2022; 79:348. [PMID: 36209317 DOI: 10.1007/s00284-022-03032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Pyrazinamide (PZA) has remained a keystone of tuberculosis (TB) therapy, and it possesses high imperative sterilizing action that can facilitate reduction in the present chemotherapy regimen. The combination of PZA works both with first- and second-line TB drugs, notably fluoroquinolones, clofazimine, bedaquiline, delamanid and pretomanid. Pyrazinamide inhibits various targets that are involved in different cellular processes like energy production (pncA), trans-translation (rpsA) and pantothenate/coenzyme A (panD) which are required for persistence of the pathogen. It is well known that pncA gene encoding pyrazinamidase is involved in the transition of PZA into the active form of pyrazinoic acid, which implies that mutation in the pncA gene can develop PZA resistance in Mycobacterium tuberculosis (M. tuberculosis) strain leading to a major clinical and public health concern. Therefore, it is very crucial to understand its resistance mechanism and to detect it precisely to help in the management of the disease. Scope of this review is to have a deep understanding of molecular mechanism of PZA resistance with its multiple targets which would help study the association of mutations and its resistance in M. tuberculosis. This will in turn help learn about the resistance of PZA and develop more accurate molecular diagnostic tool for drug-resistant TB in future TB therapy.
Collapse
Affiliation(s)
- Ananthi Rajendran
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India.
| |
Collapse
|
8
|
Mvelase NR, Singh R, Swe Swe-Han K, Mlisana KP. Pyrazinamide resistance in rifampicin discordant tuberculosis. PLoS One 2022; 17:e0274688. [PMID: 36129921 PMCID: PMC9491533 DOI: 10.1371/journal.pone.0274688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Mycobacterium tuberculosis strains with phenotypically susceptible rpoB mutations (rifampicin discordant) have emerged following implementation of rapid molecular drug resistance testing for tuberculosis. Whilst rifampicin resistance is known to be associated with resistance to other rifamycins (rifapentine and rifabutin) as well as isoniazid and pyrazinamide, rifampicin discordant strains have shown high rates of susceptibility to isoniazid and rifabutin. However, pyrazinamide susceptibly testing results have not been reported. Materials and methods We evaluated pyrazinamide resistance in 80 rifampicin discordant and 25 rifampicin and isoniazid susceptible isolates from KwaZulu-Natal in South Africa using Mycobacteria Growth Indicator Tube method and sequencing of the pncA. We also compared susceptibility of pyrazinamide with that of isoniazid. Results Pyrazinamide resistance was found in 6/80 (7.5%) rifampicin discordant isolates. All pyrazinamide resistant isolates were also resistant to isoniazid and pyrazinamide resistance was found to be associated with isoniazid resistance. No pyrazinamide resistance was found among the isoniazid susceptible isolates. Conclusion Given the low prevalence of pyrazinamide resistance in rifampicin discordant TB, this anti-TB drug still has a significant role in the treatment of these patients. Performing pyrazinamide susceptibility testing remains a challenge, our findings show that isoniazid susceptible isolates are unlikely to be resistant to pyrazinamide among the discordant TB isolates.
Collapse
Affiliation(s)
- Nomonde Ritta Mvelase
- Department of Medical Microbiology, National Health Laboratory Service, Inkosi Albert Luthuli Hospital, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, Department of Medical Microbiology, University of KwaZulu-Natal, College of Health Sciences, Durban, South Africa
- * E-mail:
| | - Ravesh Singh
- Department of Medical Microbiology, National Health Laboratory Service, Inkosi Albert Luthuli Hospital, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, Department of Medical Microbiology, University of KwaZulu-Natal, College of Health Sciences, Durban, South Africa
| | - Khine Swe Swe-Han
- Department of Medical Microbiology, National Health Laboratory Service, Inkosi Albert Luthuli Hospital, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, Department of Medical Microbiology, University of KwaZulu-Natal, College of Health Sciences, Durban, South Africa
| | - Koleka Patience Mlisana
- Department of Medical Microbiology, National Health Laboratory Service, Inkosi Albert Luthuli Hospital, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, Department of Medical Microbiology, University of KwaZulu-Natal, College of Health Sciences, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, Durban, South Africa
| |
Collapse
|
9
|
Shrestha D, Maharjan B, Thapa J, Akapelwa ML, Bwalya P, Chizimu JY, Nakajima C, Suzuki Y. Detection of Mutations in pncA in Mycobacterium tuberculosis Clinical Isolates from Nepal in Association with Pyrazinamide Resistance. Curr Issues Mol Biol 2022; 44:4132-4141. [PMID: 36135195 PMCID: PMC9497661 DOI: 10.3390/cimb44090283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Without the proper information on pyrazinamide (PZA) susceptibility of Mycobacterium tuberculosis (MTB), PZA is inappropriately recommended for the treatment of both susceptible and multidrug-resistant tuberculosis (MDR-TB) in Nepal. This study aimed to collect information regarding PZA susceptibility in MTB isolates from Nepal by analyzing pncA and its upstream regulatory region (URR). A total of 211 MTB isolates were included in this study. Sequence analysis of pncA and its URR was performed to assess PZA resistance. First-line drug susceptibility testing, spoligotyping, and sequence analysis of rpoB, katG, the inhA regulatory region, gyrA, gyrB, and rrs were performed to assess their association with pncA mutation. Sequencing results reveal that 125 (59.2%) isolates harbored alterations in pncA and its URR. A total of 57 different mutation types (46 reported and 11 novel) were scattered throughout the whole length of the pncA gene. Eighty-seven isolates (41.2%) harbored mutations in pncA, causing PZA resistance in MTB. There was a more significant association of pncA alterations in MDR/pre-extensively drug-resistant (Pre-XDR) TB than in mono-resistant/pan-susceptible TB (p < 0.005). This first report on the increasing level of PZA resistance in DR-TB in Nepal highlights the importance of PZA susceptibility testing before DR-TB treatment.
Collapse
Affiliation(s)
- Dipti Shrestha
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- Department of Microbiology, Kathmandu College of Science and Technology, Tribhuvan University, Kathmandu 44600, Nepal
| | - Bhagwan Maharjan
- German Nepal Tuberculosis Project c/o Nepal Anti-Tuberculosis Association, Kalimati, Kathmandu 44600, Nepal
- National Tuberculosis Control Center, Thimi, Bhaktapur 44800, Nepal
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Precious Bwalya
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Joseph Yamweka Chizimu
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University Research Center for Zoonosis Control, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University Research Center for Zoonosis Control, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
- Correspondence: ; Tel.: +81-11-706-9503; Fax: +81-11-706-7310
| |
Collapse
|
10
|
Mesfin EA, Merker M, Beyene D, Tesfaye A, Shuaib YA, Addise D, Tessema B, Niemann S. Prediction of drug resistance by Sanger sequencing of Mycobacterium tuberculosis complex strains isolated from multidrug resistant tuberculosis suspect patients in Ethiopia. PLoS One 2022; 17:e0271508. [PMID: 35930613 PMCID: PMC9355188 DOI: 10.1371/journal.pone.0271508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Ethiopia is one of the high multidrug-resistant tuberculosis (MDR-TB) burden countries. However, phenotypic drug susceptibility testing can take several weeks due to the slow growth of Mycobacterium tuberculosis complex (MTBC) strains. In this study, we assessed the performance of a Sanger sequencing approach to predict resistance against five anti-tuberculosis drugs and the pattern of resistance mediating mutations. Methods We enrolled 226 MTBC culture-positive MDR-TB suspects and collected sputum specimens and socio-demographic and TB related data from each suspect between June 2015 and December 2016 in Addis Ababa, Ethiopia. Phenotypic drug susceptibility testing (pDST) for rifampicin, isoniazid, pyrazinamide, ethambutol, and streptomycin using BACTEC MGIT 960 was compared with the results of a Sanger sequencing analysis of seven resistance determining regions in the genes rpoB, katG, fabG-inhA, pncA, embB, rpsL, and rrs. Result DNA isolation for Sanger sequencing was successfully extracted from 92.5% (209/226) of the MTBC positive cultures, and the remaining 7.5% (17/226) strains were excluded from the final analysis. Based on pDST results, drug resistance proportions were as follows: isoniazid: 109/209 (52.2%), streptomycin: 93/209 (44.5%), rifampicin: 88/209 (42.1%), ethambutol: 74/209 (35.4%), and pyrazinamide: 69/209 (33.0%). Resistance against isoniazid was mainly mediated by the mutation katG S315T (97/209, 46.4%) and resistance against rifampicin by rpoB S531L (58/209, 27.8%). The dominating resistance-conferring mutations for ethambutol, streptomycin, and pyrazinamide affected codon 306 in embB (48/209, 21.1%), codon 88 in rpsL (43/209, 20.6%), and codon 65 in pncA (19/209, 9.1%), respectively. We observed a high agreement between phenotypic and genotypic DST, such as 89.9% (at 95% confidence interval [CI], 84.2%–95.8%) for isoniazid, 95.5% (95% CI, 91.2%–99.8%) for rifampicin, 98.6% (95% CI, 95.9–100%) for ethambutol, 91.3% (95% CI, 84.6–98.1%) for pyrazinamide and 57.0% (95% CI, 46.9%–67.1%) for streptomycin. Conclusion We detected canonical mutations implicated in resistance to rifampicin, isoniazid, pyrazinamide, ethambutol, and streptomycin. High agreement with phenotypic DST results for all drugs renders Sanger sequencing promising to be performed as a complementary measure to routine phenotypic DST in Ethiopia. Sanger sequencing directly from sputum may accelerate accurate clinical decision-making in the future.
Collapse
Affiliation(s)
- Eyob Abera Mesfin
- Ethiopian Public Health Institute, National Laboratory Capacity Building Directorate, Addis Ababa, Ethiopia
- * E-mail:
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Sülfeld, Germany
- Evolution of the Resistome, Research Center Borstel, Sülfeld, Germany
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abreham Tesfaye
- Addis Ababa City Administration Health Bureau Health Research and Laboratory Services, Addis Ababa, Ethiopia
| | - Yassir Adam Shuaib
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Sülfeld, Germany
- College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum North, Sudan
| | - Desalegn Addise
- Ethiopian Public Health Institute, National Laboratory Capacity Building Directorate, Addis Ababa, Ethiopia
| | - Belay Tessema
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Sülfeld, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck- Borstel-Riems, Hamburg, Germany
| |
Collapse
|
11
|
Jiang Z, Lu Y, Liu Z, Wu W, Xu X, Dinnyés A, Yu Z, Chen L, Sun Q. Drug resistance prediction and resistance genes identification in Mycobacterium tuberculosis based on a hierarchical attentive neural network utilizing genome-wide variants. Brief Bioinform 2022; 23:6553603. [PMID: 35325021 DOI: 10.1093/bib/bbac041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
Prediction of antimicrobial resistance based on whole-genome sequencing data has attracted greater attention due to its rapidity and convenience. Numerous machine learning-based studies have used genetic variants to predict drug resistance in Mycobacterium tuberculosis (MTB), assuming that variants are homogeneous, and most of these studies, however, have ignored the essential correlation between variants and corresponding genes when encoding variants, and used a limited number of variants as prediction input. In this study, taking advantage of genome-wide variants for drug-resistance prediction and inspired by natural language processing, we summarize drug resistance prediction into document classification, in which variants are considered as words, mutated genes in an isolate as sentences, and an isolate as a document. We propose a novel hierarchical attentive neural network model (HANN) that helps discover drug resistance-related genes and variants and acquire more interpretable biological results. It captures the interaction among variants in a mutated gene as well as among mutated genes in an isolate. Our results show that for the four first-line drugs of isoniazid (INH), rifampicin (RIF), ethambutol (EMB) and pyrazinamide (PZA), the HANN achieves the optimal area under the ROC curve of 97.90, 99.05, 96.44 and 95.14% and the optimal sensitivity of 94.63, 96.31, 92.56 and 87.05%, respectively. In addition, without any domain knowledge, the model identifies drug resistance-related genes and variants consistent with those confirmed by previous studies, and more importantly, it discovers one more potential drug-resistance-related gene.
Collapse
Affiliation(s)
- Zhonghua Jiang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yongmei Lu
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuochong Liu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wei Wu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xinyi Xu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - András Dinnyés
- BioTalentum Ltd. Aulich Lajos str. 26. 2100 Gödöllõ, Hungary
| | - Zhonghua Yu
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Chen
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
12
|
Bonnet I, Enouf V, Morel F, Ok V, Jaffré J, Jarlier V, Aubry A, Robert J, Sougakoff W. A Comprehensive Evaluation of GeneLEAD VIII DNA Platform Combined to Deeplex Myc-TB ® Assay to Detect in 8 Days Drug Resistance to 13 Antituberculous Drugs and Transmission of Mycobacterium tuberculosis Complex Directly From Clinical Samples. Front Cell Infect Microbiol 2021; 11:707244. [PMID: 34778100 PMCID: PMC8586210 DOI: 10.3389/fcimb.2021.707244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
The GeneLEAD VIII (Diagenode, Belgium) is a new, fully automated, sample-to-result precision instrument for the extraction of DNA and PCR detection of Mycobacterium tuberculosis complex (MTBC) directly from clinical samples. The Deeplex Myc-TB® assay (Genoscreen, France) is a diagnostic kit based on the deep sequencing of a 24-plexed amplicon mix allowing simultaneously the detection of resistance to 13 antituberculous (antiTB) drugs and the determination of spoligotype. We evaluated the performance of a strategy combining the both mentioned tools to detect directly from clinical samples, in 8 days, MTBC and its resistance to 13 antiTB drugs, and identify potential transmission of strains from patient-to-patient. Using this approach, we screened 112 clinical samples (65 smear-negative) and 94 MTBC cultured strains. The sensitivity and the specificity of the GeneLEAD/Deeplex Myc-TB approach for MTBC detection were 79.3% and 100%, respectively. One hundred forty successful Deeplex Myc-TB results were obtained for 46 clinical samples and 94 strains, a total of 85.4% of which had a Deeplex Myc-TB susceptibility and resistance prediction consistent with phenotypic drug susceptibility testing (DST). Importantly, the Deeplex Myc-TB assay was able to detect 100% of the multidrug-resistant (MDR) MTBC tested. The lowest concordance rates were for pyrazinamide, ethambutol, streptomycin, and ethionamide (84.5%, 81.5%, 73%, and 55%, respectively) for which the determination of susceptibility or resistance is generally difficult with current tools. One of the main difficulties of Deeplex Myc-TB is to interpret the non-synonymous uncharacterized variants that can represent up to 30% of the detected single nucleotide variants. We observed a good level of concordance between Deeplex Myc-TB-spoligotyping and MIRU-VNTR despite a lower discriminatory power for spoligotyping. The median time to obtain complete results from clinical samples was 8 days (IQR 7–13) provided a high-throughput NGS sequencing platform was available. Our results highlight that the GeneLEAD/Deeplex Myc-TB approach could be a breakthrough in rapid diagnosis of MDR TB in routine practice.
Collapse
Affiliation(s)
- Isabelle Bonnet
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vincent Enouf
- Plateforme de Microbiologie Mutualisée (P2M), Pasteur International Bioresources network (PIBnet), Institut Pasteur, Paris, France
| | - Florence Morel
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vichita Ok
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Jérémy Jaffré
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vincent Jarlier
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France
| | - Alexandra Aubry
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Jérôme Robert
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Wladimir Sougakoff
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| |
Collapse
|
13
|
Mugumbate G, Nyathi B, Zindoga A, Munyuki G. Application of Computational Methods in Understanding Mutations in Mycobacterium tuberculosis Drug Resistance. Front Mol Biosci 2021; 8:643849. [PMID: 34651013 PMCID: PMC8505691 DOI: 10.3389/fmolb.2021.643849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) impedes the End TB Strategy by the World Health Organization aiming for zero deaths, disease, and suffering at the hands of tuberculosis (TB). Mutations within anti-TB drug targets play a major role in conferring drug resistance within Mtb; hence, computational methods and tools are being used to understand the mechanisms by which they facilitate drug resistance. In this article, computational techniques such as molecular docking and molecular dynamics are applied to explore point mutations and their roles in affecting binding affinities for anti-TB drugs, often times lowering the protein’s affinity for the drug. Advances and adoption of computational techniques, chemoinformatics, and bioinformatics in molecular biosciences and resources supporting machine learning techniques are in abundance, and this has seen a spike in its use to predict mutations in Mtb. This article highlights the importance of molecular modeling in deducing how point mutations in proteins confer resistance through destabilizing binding sites of drugs and effectively inhibiting the drug action.
Collapse
Affiliation(s)
- Grace Mugumbate
- Department of Chemical Sciences, Midlands State University, Gweru, Zimbabwe
| | - Brilliant Nyathi
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Albert Zindoga
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Gadzikano Munyuki
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
14
|
Tunstall T, Phelan J, Eccleston C, Clark TG, Furnham N. Structural and Genomic Insights Into Pyrazinamide Resistance in Mycobacterium tuberculosis Underlie Differences Between Ancient and Modern Lineages. Front Mol Biosci 2021; 8:619403. [PMID: 34422898 PMCID: PMC8372558 DOI: 10.3389/fmolb.2021.619403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Resistance to drugs used to treat tuberculosis disease (TB) continues to remain a public health burden, with missense point mutations in the underlying Mycobacterium tuberculosis bacteria described for nearly all anti-TB drugs. The post-genomics era along with advances in computational and structural biology provide opportunities to understand the interrelationships between the genetic basis and the structural consequences of M. tuberculosis mutations linked to drug resistance. Pyrazinamide (PZA) is a crucial first line antibiotic currently used in TB treatment regimens. The mutational promiscuity exhibited by the pncA gene (target for PZA) necessitates computational approaches to investigate the genetic and structural basis for PZA resistance development. We analysed 424 missense point mutations linked to PZA resistance derived from ∼35K M. tuberculosis clinical isolates sourced globally, which comprised the four main M. tuberculosis lineages (Lineage 1-4). Mutations were annotated to reflect their association with PZA resistance. Genomic measures (minor allele frequency and odds ratio), structural features (surface area, residue depth and hydrophobicity) and biophysical effects (change in stability and ligand affinity) of point mutations on pncA protein stability and ligand affinity were assessed. Missense point mutations within pncA were distributed throughout the gene, with the majority (>80%) of mutations with a destabilising effect on protomer stability and on ligand affinity. Active site residues involved in PZA binding were associated with multiple point mutations highlighting mutational diversity due to selection pressures at these functionally important sites. There were weak associations between genomic measures and biophysical effect of mutations. However, mutations associated with PZA resistance showed statistically significant differences between structural features (surface area and residue depth), but not hydrophobicity score for mutational sites. Most interestingly M. tuberculosis lineage 1 (ancient lineage) exhibited a distinct protein stability profile for mutations associated with PZA resistance, compared to modern lineages.
Collapse
Affiliation(s)
- Tanushree Tunstall
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jody Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Charlotte Eccleston
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
15
|
Overcoming the Challenges of Pyrazinamide Susceptibility Testing in Clinical Mycobacterium tuberculosis Isolates. Antimicrob Agents Chemother 2021; 65:e0261720. [PMID: 33972244 DOI: 10.1128/aac.02617-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide (PZA) is one of the first-line agents used for the treatment of tuberculosis. However, current phenotypic PZA susceptibility testing in the Bactec MGIT 960 system is unreliable, and false resistance is well documented. Rapid identification of resistance-associated mutations can confirm the phenotypic result. This study aimed to investigate the use of genotypic methods in combination with phenotypic susceptibility testing for confirmation of PZA-resistant Mycobacterium tuberculosis isolates. Sanger sequencing and/or whole-genome sequencing were performed to detect mutations in pncA, rpsA, panD, and clpC1. Isolates were screened for heteroresistance, and PZA susceptibility testing was performed using the Bactec MGIT 960 system using a reduced inoculum to investigate false resistance. Overall, 40 phenotypically PZA-resistant isolates were identified. Of these, PZA resistance was confirmed in 22/40 (55%) isolates by detecting mutations in the pncA, rpsA, and panD genes. Of the 40 isolates, 16 (40%) were found to be susceptible using the reduced inoculum method (i.e., false resistance). No mutations were detected in two PZA-resistant isolates. False resistance was observed in isolates with MICs close to the critical concentration. In particular, East African Indian strains (lineage 1) appeared to have an elevated MIC that is close to the critical concentration. While this study illustrates the complexity and challenges associated with PZA susceptibility testing of M. tuberculosis, we conclude that a combination of genotypic and phenotypic drug susceptibility testing methods is required for accurate detection of PZA resistance.
Collapse
|
16
|
Che Y, Bo D, Lin X, Chen T, He T, Lin Y. Phenotypic and molecular characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Ningbo, China. BMC Infect Dis 2021; 21:605. [PMID: 34171989 PMCID: PMC8228925 DOI: 10.1186/s12879-021-06306-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 03/22/2024] Open
Abstract
Background Detection of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis (TB) patients is critical, especially in dealing with multidrug-resistant Mycobacterium tuberculosis (MDR-TB) case. Up to date, PZA drug susceptibility testing (DST) has not been regularly performed in China. The prevalence and molecular characteristics of PZA resistance in M.tuberculosis isolates, especially MDR-TB have not been studied in Ningbo, China. This study aimed to analyze the phenotypic and molecular characterization of PZA resistance among MDR-TB isolates in Ningbo. Methods A total of 110 MDR-TB isolates were collected from the TB patients who were recorded at local TB dispensaries in Ningbo. All clinical isolates were examined by drug susceptibility testing and genotyping. DNA sequencing was used to detect mutations in the pncA gene associated with PZA resistance. Results The prevalence of PZA resistance among MDR-TB strains in Ningbo was 59.1%. With regard to the history and the outcome of treatments among MDR-TB cases, the percentages of re-treated MDR-TB patients in the PZA-resistant group and of successful patients in PZA-susceptible group were significantly higher than the ones in the PZA-susceptible group and in the PZA-resistant group, respectively (P = 0.027, P = 0.020). The results showed that the resistance of streptomycin (67.7% vs 46.7%, P = 0.027), ethambutol (56.9% vs 33.3%, P = 0.015), ofloxacin (43.1% vs 11.1%, P = 0.000), levofloxacin (43.1% vs 11.1%, P = 0.000), pre-XDR (pre-Xtensively Drug Resistance) (38.5% vs 15.6%, P = 0.009), were more frequently adverted among PZA-resistant isolates compared with PZA-susceptible isolates. In addition, 110 MDR-TB was composed of 87 (PZA resistant, 78.5%) Beijing strains and 23 (PZA resistant, 21.5%) non-Beijing strains. Fifty-four out of 65 (83.1%) PZA-resistant MDR strains harbored a mutation located in the pncA gene and the majority (90.7%) were point mutations. Compared with the phenotypic characterization, DNA sequencing of pncA has sensitivity and specificity of 83.1 and 95.6%. Conclusion The mutations within pncA gene was the primary mechanism of PZA resistance among MDR-TB and DNA sequencing of pncA gene could provide a rapid detection evidence in PZA drug resistance of MDR-TB in Ningbo.
Collapse
Affiliation(s)
- Yang Che
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, Zhejiang, China
| | - Dingyi Bo
- Institute of Tuberculosis Prevention and Control, Haishu Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Xiang Lin
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, Zhejiang, China
| | - Tong Chen
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, Zhejiang, China
| | - Tianfeng He
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, Zhejiang, China.
| | - Yi Lin
- Center for Health Economics, Faculty of Humanities and Social Sciences, University of Nottingham, Ningbo, Zhejiang, China.
| |
Collapse
|
17
|
Alsayed SSR, Lun S, Payne A, Bishai WR, Gunosewoyo H. Facile synthesis and antimycobacterial activity of isoniazid, pyrazinamide and ciprofloxacin derivatives. Chem Biol Drug Des 2021; 97:1137-1150. [PMID: 33638304 PMCID: PMC8113106 DOI: 10.1111/cbdd.13836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Several rationally designed isoniazid (INH), pyrazinamide (PZA) and ciprofloxacin (CPF) derivatives were conveniently synthesized and evaluated in vitro against H37Rv Mycobacterium tuberculosis (M. tb) strain. CPF derivative 16 displayed a modest activity (MIC = 16 µg/ml) and was docked into the M. tb DNA gyrase. Isoniazid-pyrazinoic acid (INH-POA) hybrid 21a showed the highest potency in our study (MIC = 2 µg/ml). It also retained its high activity against the other tested M. tb drug-sensitive strain (DS) V4207 (MIC = 4 µg/ml) and demonstrated negligible cytotoxicity against Vero cells (IC50 ≥ 64 µg/ml). Four tested drug-resistant (DR) M. tb strains were refractory to 21a, similar to INH, whilst being sensitive to CPF. Compound 21a was also inactive against two non-tuberculous mycobacterial (NTM) strains, suggesting its selective activity against M. tb. The noteworthy activity of 21a against DS strains and its low cytotoxicity highlight its potential to treat DS M. tb.
Collapse
Affiliation(s)
- Shahinda S. R. Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland, 21231-1044, United States
| | - Alan Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland, 21231-1044, United States
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland, 20815-6789, United States
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| |
Collapse
|
18
|
Quantifying transmission fitness costs of multi-drug resistant tuberculosis. Epidemics 2021; 36:100471. [PMID: 34256273 DOI: 10.1016/j.epidem.2021.100471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 01/14/2020] [Accepted: 05/17/2021] [Indexed: 11/22/2022] Open
Abstract
As multi-drug resistant tuberculosis (MDR-TB) continues to spread, investigating the transmission potential of different drug-resistant strains becomes an ever more pressing topic in public health. While phylogenetic and transmission tree inferences provide valuable insight into possible transmission chains, phylodynamic inference combines evolutionary and epidemiological analyses to estimate the parameters of the underlying epidemiological processes, allowing us to describe the overall dynamics of disease spread in the population. In this study, we introduce an approach to Mycobacterium tuberculosis (M. tuberculosis) phylodynamic analysis employing an existing computationally efficient model to quantify the transmission fitness costs of drug resistance with respect to drug-sensitive strains. To determine the accuracy and precision of our approach, we first perform a simulation study, mimicking the simultaneous spread of drug-sensitive and drug-resistant tuberculosis (TB) strains. We analyse the simulated transmission trees using the phylodynamic multi-type birth-death model (MTBD, (Kühnert et al., 2016)) within the BEAST2 framework and show that this model can estimate the parameters of the epidemic well, despite the simplifying assumptions that MTBD makes compared to the complex TB transmission dynamics used for simulation. We then apply the MTBD model to an M. tuberculosis lineage 4 dataset that primarily consists of MDR sequences. Some of the MDR strains additionally exhibit resistance to pyrazinamide - an important first-line anti-tuberculosis drug. Our results support the previously proposed hypothesis that pyrazinamide resistance confers a transmission fitness cost to the bacterium, which we quantify for the given dataset. Importantly, our sensitivity analyses show that the estimates are robust to different prior distributions on the resistance acquisition rate, but are affected by the size of the dataset - i.e. we estimate a higher fitness cost when using fewer sequences for analysis. Overall, we propose that MTBD can be used to quantify the transmission fitness cost for a wide range of pathogens where the strains can be appropriately divided into two or more categories with distinct properties.
Collapse
|
19
|
Nangraj AS, Khan A, Umbreen S, Sahar S, Arshad M, Younas S, Ahmad S, Ali S, Ali SS, Ali L, Wei DQ. Insights Into Mutations Induced Conformational Changes and Rearrangement of Fe 2+ Ion in pncA Gene of Mycobacterium tuberculosis to Decipher the Mechanism of Resistance to Pyrazinamide. Front Mol Biosci 2021; 8:633365. [PMID: 34095218 PMCID: PMC8174790 DOI: 10.3389/fmolb.2021.633365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Pyrazinamide (PZA) is the first-line drug commonly used in treating Mycobacterium tuberculosis (Mtb) infections and reduces treatment time by 33%. This prodrug is activated and converted to an active form, Pyrazinoic acid (POA), by Pyrazinamidase (PZase) enzyme. Mtb resistance to PZA is the outcome of mutations frequently reported in pncA, rpsA, and panD genes. Among the mentioned genes, pncA mutations contribute to 72-99% of the total resistance to PZA. Thus, considering the vital importance of this gene in PZA resistance, its frequent mutations (D49N, Y64S, W68G, and F94A) were investigated through in-depth computational techniques to put conclusions that might be useful for new scaffolds design or structure optimization to improve the efficacy of the available drugs. Mutants and wild type PZase were used in extensive and long-run molecular dynamics simulations in triplicate to disclose the resistance mechanism induced by the above-mentioned point mutations. Our analysis suggests that these mutations alter the internal dynamics of PZase and hinder the correct orientation of PZA to the enzyme. Consequently, the PZA has a low binding energy score with the mutants compared with the wild type PZase. These mutations were also reported to affect the binding of Fe2+ ion and its coordinated residues. Conformational dynamics also revealed that β-strand two is flipped, which is significant in Fe2+ binding. MM-GBSA analysis confirmed that these mutations significantly decreased the binding of PZA. In conclusion, these mutations cause conformation alterations and deformities that lead to PZA resistance.
Collapse
Affiliation(s)
- Asma Sindhoo Nangraj
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Sana Sahar
- The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryam Arshad
- Government College University Faisalabad, Sahiwal, Pakistan
| | | | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Xu G, Liu H, Jia X, Wang X, Xu P. Mechanisms and detection methods of Mycobacterium tuberculosis rifampicin resistance: The phenomenon of drug resistance is complex. Tuberculosis (Edinb) 2021; 128:102083. [PMID: 33975262 DOI: 10.1016/j.tube.2021.102083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/30/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease that poses a serious threat to human health. Rifampin (RIF) is an important first-line anti-TB drug, and rifampin resistance (RIF-R) is a key factor in formulating treatment regimen and evaluating the prognosis of TB. Compared with other drugs resistance, the RIF-R mechanism of Mycobacterium tuberculosis (M. tuberculosis) is one of the clearest, which is mainly caused by RIF resistance-related mutations in the rpoB gene. This provides a convenient condition for developing rapid detection methods, and also an ideal object for studying the general drug resistance mechanisms of M. tuberculosis. This review focuses on the mechanisms that influence the RIF resistance of M. tuberculosis and related detection methods. Besides the mutations in rpoB, M. tuberculosis can decrease the amount of drugs entering the cells, enhance the drugs efflux, and be heterogeneous RIF susceptibility to resist drug pressure. Based on the results of current researches, many genes participate in influencing the susceptibility to RIF, which indicates the phenomenon of M. tuberculosis drug resistance is very complex.
Collapse
Affiliation(s)
- Ge Xu
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China
| | - Hangchi Liu
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China
| | - Xudong Jia
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China
| | - Xiaomin Wang
- Department of Microbiology, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China.
| | - Peng Xu
- Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
21
|
Che Y, Yang T, Lin L, Xiao Y, Jiang F, Chen Y, Chen T, Zhou J. Comparative Utility of Genetic Determinants of Drug Resistance and Phenotypic Drug Susceptibility Profiling in Predicting Clinical Outcomes in Patients With Multidrug-Resistant Mycobacterium tuberculosis. Front Public Health 2021; 9:663974. [PMID: 33968888 PMCID: PMC8100237 DOI: 10.3389/fpubh.2021.663974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Setting: Programmatic management of drug-resistant tuberculosis in Ningbo, China. Objective: To assess whether data-driven genetic determinants of drug resistance patterns could outperform phenotypic drug susceptibility testing in predicting clinical meaningful outcomes among patients with multidrug-resistant tuberculosis (MDR-TB). Design: We conducted a prospective cohort study of 104 MDR-TB patients. All MDR-TB isolates underwent drug susceptibility testing and genotyping for mutations that could cause drug resistance. Study outcomes were time to sputum smear conversion and probability of treatment success, as well as time to culture conversion within 6 months. Data were analyzed using latent class analysis, Kaplan–Meier curves, and Cox regression models. Results: We report that latent class analysis of data identified two latent classes that predicted sputum smear conversion with P = 0.001 and area under receiver-operating characteristic curve of 0.73. The predicted latent class memberships were associated with superior capability in predicting sputum culture conversion at 6 months and overall treatment success compared to phenotypic drug susceptibility profiling using boosted logistic regression models. Conclusion: These results suggest that genetic determinants of drug resistance in combination with phenotypic drug-resistant tests could serve as useful biomarkers in predicting treatment prognosis in MDR-TB.
Collapse
Affiliation(s)
- Yang Che
- Ningbo Municipal Center for Disease Control and Prevention, Institute of Tuberculosis Prevention and Control, Ningbo, China
| | - Tianchi Yang
- Ningbo Municipal Center for Disease Control and Prevention, Institute of Tuberculosis Prevention and Control, Ningbo, China
| | - Lv Lin
- Ningbo Municipal Center for Disease Control and Prevention, Institute of Tuberculosis Prevention and Control, Ningbo, China
| | - Yue Xiao
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Feng Jiang
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Yanfei Chen
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Tong Chen
- Ningbo Municipal Center for Disease Control and Prevention, Institute of Tuberculosis Prevention and Control, Ningbo, China
| | - Jifang Zhou
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
Coolen JPM, den Drijver EPM, Verweij JJ, Schildkraut JA, Neveling K, Melchers WJG, Kolwijck E, Wertheim HFL, Kluytmans JAJW, Huynen MA. Genome-wide analysis in Escherichia coli unravels a high level of genetic homoplasy associated with cefotaxime resistance. Microb Genom 2021; 7:000556. [PMID: 33843573 PMCID: PMC8208684 DOI: 10.1099/mgen.0.000556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/11/2021] [Indexed: 11/18/2022] Open
Abstract
Cefotaxime (CTX) is a third-generation cephalosporin (3GC) commonly used to treat infections caused by Escherichia coli. Two genetic mechanisms have been associated with 3GC resistance in E. coli. The first is the conjugative transfer of a plasmid harbouring antibiotic-resistance genes. The second is the introduction of mutations in the promoter region of the ampC β-lactamase gene that cause chromosome-encoded β-lactamase hyperproduction. A wide variety of promoter mutations related to AmpC hyperproduction have been described. However, their link to CTX resistance has not been reported. We recultured 172 cefoxitin-resistant E. coli isolates with known CTX minimum inhibitory concentrations and performed genome-wide analysis of homoplastic mutations associated with CTX resistance by comparing Illumina whole-genome sequencing data of all isolates to a PacBio sequenced reference chromosome. We mapped the mutations on the reference chromosome and determined their occurrence in the phylogeny, revealing extreme homoplasy at the -42 position of the ampC promoter. The 24 occurrences of a T at the -42 position rather than the wild-type C, resulted from 18 independent C>T mutations in five phylogroups. The -42 C>T mutation was only observed in E. coli lacking a plasmid-encoded ampC gene. The association of the -42 C>T mutation with CTX resistance was confirmed to be significant (false discovery rate <0.05). To conclude, genome-wide analysis of homoplasy in combination with CTX resistance identifies the -42 C>T mutation of the ampC promotor as significantly associated with CTX resistance and underlines the role of recurrent mutations in the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jordy P. M. Coolen
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evert P. M. den Drijver
- Department of Infection Control, Amphia Ziekenhuis, Breda, The Netherlands
- Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Jaco J. Verweij
- Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Jodie A. Schildkraut
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Kolwijck
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heiman F. L. Wertheim
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A. J. W. Kluytmans
- Department of Infection Control, Amphia Ziekenhuis, Breda, The Netherlands
- Laboratory for Microbiology, Microvida, Breda, The Netherlands
- Julius Center for Health Sciences and Primary Care, UMCU, Utrecht, The Netherlands
| | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Jouet A, Gaudin C, Badalato N, Allix-Béguec C, Duthoy S, Ferré A, Diels M, Laurent Y, Contreras S, Feuerriegel S, Niemann S, André E, Kaswa MK, Tagliani E, Cabibbe A, Mathys V, Cirillo D, de Jong BC, Rigouts L, Supply P. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J 2021; 57:13993003.02338-2020. [PMID: 32943401 PMCID: PMC8174722 DOI: 10.1183/13993003.02338-2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole-genome sequencing (WGS) typically requires culture. Here, we evaluated the Deeplex Myc-TB targeted deep-sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum. With MTBC DNA tests, the limit of detection was 100–1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1–99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and a specificity of 97.4%. 56 out of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol and ethionamide, and low-level rifampicin or isoniazid resistance mutations, all notoriously prone to phenotypic testing variability. Only two out of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1% and a specificity of 98.5/97.2/95.3%, respectively. Most residual discordances involved gene deletions/indels and 3–12% heteroresistant calls undetected by WGS analysis or natural pyrazinamide resistance of globally rare “Mycobacterium canettii” strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14 902 out of 19 422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free. Deeplex Myc-TB may enable fast, tailored tuberculosis treatment. The novel Deeplex Myc-TB molecular assay shows a high degree of accuracy for extensive prediction of susceptibility and resistance to 13 anti-tuberculous drugs, directly achievable without culture, which may enable fast, tailored tuberculosis treatmenthttps://bit.ly/3bAvcAt
Collapse
Affiliation(s)
- Agathe Jouet
- GenoScreen, Lille, France.,These authors contributed equally to this work
| | - Cyril Gaudin
- GenoScreen, Lille, France.,These authors contributed equally to this work
| | | | | | | | | | - Maren Diels
- BCCM/ITM, Mycobacteria Collection, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Silke Feuerriegel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Emmanuel André
- Laboratory of Clinical Bacteriology and Mycology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Michel K Kaswa
- National Tuberculosis Program, Kinshasa, Democratic Republic of the Congo
| | - Elisa Tagliani
- Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Cabibbe
- Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vanessa Mathys
- Unit Bacterial Diseases Service, Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Daniela Cirillo
- Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bouke C de Jong
- Mycobacteriology Unit, Dept of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Dept of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Dept of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Philip Supply
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL (Center for Infection and Immunity of Lille), Lille, France
| |
Collapse
|
24
|
Li K, Yang Z, Gu J, Luo M, Deng J, Chen Y. Characterization of pncA Mutations and Prediction of PZA Resistance in Mycobacterium tuberculosis Clinical Isolates From Chongqing, China. Front Microbiol 2021; 11:594171. [PMID: 33505367 PMCID: PMC7832174 DOI: 10.3389/fmicb.2020.594171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023] Open
Abstract
Pyrazinamide (PZA) is widely used to treat drug-sensitive or multidrug resistance tuberculosis. However, conventional PZA susceptibility tests of clinical isolates are rather difficult because of the requirement of acid pH. Since resistance to pyrazinamide is primary mediated by mutation of pncA, an alternative way of PZA susceptibility test is to analyze the pyrazinamidase activities of Mycobacterium tuberculosis clinical isolates. Therefore, a database containing the full spectrum of pncA mutations along with pyrazinamidase activities will be beneficial. To characterize mutations of pncA in M. tuberculosis from Chongqing, China, the pncA gene was sequenced and analyzed in 465 clinical isolates. A total of 124 types of mutations were identified in 424 drug-resistant isolates, while no mutation was identified in the 31 pan-susceptible isolates. Ninety-four of the 124 mutations had previously been reported, and 30 new mutations were identified. Based on reported literatures, 294 isolates could be predicted resistant to pyrazinamide. Furthermore, pyrazinamidase activities of the 30 new mutations were tested using the Escherichia coli pncA gene knockout strain. The results showed that 24 of these new mutations (28 isolates) led to loss of pyrazinamidase activity and six (8 isolates) of them did not. Taken together, 322 isolates with pncA mutations could be predicted to be PZA resistant among the 424 drug-resistant isolates tested. Analysis of pncA mutations and their effects on pyrazinamidase activity will not only enrich our knowledge of comprehensive pncA mutations related with PZA resistance but also facilitate rapid molecular diagnosis of pyrazinamide resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Zhongping Yang
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Gu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Luo
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiaoyu Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaokai Chen
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
25
|
Kambli P, Ajbani K, Kazi M, Sadani M, Naik S, Shetty A, Tornheim JA, Singh H, Rodrigues C. Targeted next generation sequencing directly from sputum for comprehensive genetic information on drug resistant Mycobacterium tuberculosis. Tuberculosis (Edinb) 2021; 127:102051. [PMID: 33450448 DOI: 10.1016/j.tube.2021.102051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Timely drug resistance detection is essential to global tuberculosis management. Unfortunately, rapid molecular tests assess resistance to only a few drugs, with culture required for comprehensive susceptibility test results. METHODS We evaluated targeted next generation sequencing (tNGS) for tuberculosis on 40 uncultured sputum samples. Resistance profiles from tNGS were compared with profiles from Xpert MTB/RIF, line probe assay (LPA), pyrosequencing (PSQ), and phenotypic testing. Concordance, sensitivity, specificity, and overall test agreement were compared across assays. RESULTS tNGS provided results for 39 of 40 samples (97.5%) with faster turnaround than phenotypic testing (median 3 vs. 21 days, p = 0.0068). Most samples were isoniazid and rifampin resistant (N = 31, 79.5%), 21 (53.8%) were fluoroquinolone resistant, and 3 (7.7%) were also resistant to Kanamycin. Half were of the Beijing lineage (N = 20, 51.3%). tNGS from uncultured sputum identified all resistance to isoniazid, rifampin, fluoroquinolones, and second-line injectable drugs that was identified by other methods. Agreement between tNGS and existing assays was excellent for isoniazid, rifampin, and SLDs, very good for levofloxacin, and good for moxifloxacin. CONCLUSION tNGS can rapidly identify tuberculosis, lineage, and drug resistance with faster turnaround than phenotypic testing. tNGS is a potential alternative to phenotypic testing in high-burden settings.
Collapse
Affiliation(s)
- Priti Kambli
- Microbiology Section, Department of Laboratory Medicine, P.D. Hinduja National Hospital and Medical Research Centre, Mumbai, India.
| | - Kanchan Ajbani
- Microbiology Section, Department of Laboratory Medicine, P.D. Hinduja National Hospital and Medical Research Centre, Mumbai, India.
| | - Mubin Kazi
- Microbiology Section, Department of Laboratory Medicine, P.D. Hinduja National Hospital and Medical Research Centre, Mumbai, India.
| | - Meeta Sadani
- Microbiology Section, Department of Laboratory Medicine, P.D. Hinduja National Hospital and Medical Research Centre, Mumbai, India.
| | - Swapna Naik
- Microbiology Section, Department of Laboratory Medicine, P.D. Hinduja National Hospital and Medical Research Centre, Mumbai, India.
| | - Anjali Shetty
- Microbiology Section, Department of Laboratory Medicine, P.D. Hinduja National Hospital and Medical Research Centre, Mumbai, India.
| | - Jeffrey A Tornheim
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Harpreet Singh
- Bioinformatics Section, Indian Council of Medical Research New Delhi Area, India.
| | - Camilla Rodrigues
- Microbiology Section, Department of Laboratory Medicine, P.D. Hinduja National Hospital and Medical Research Centre, Mumbai, India.
| |
Collapse
|
26
|
Florentini EA, Angulo N, Gilman RH, Alcántara R, Roncal E, Antiparra R, Toscano E, Vallejos K, Kirwan D, Zimic M, Sheen P. Immunological detection of pyrazine-2-carboxylic acid for the detection of pyrazinamide resistance in Mycobacterium tuberculosis. PLoS One 2020; 15:e0241600. [PMID: 33151985 PMCID: PMC7643994 DOI: 10.1371/journal.pone.0241600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/17/2020] [Indexed: 11/18/2022] Open
Abstract
Pyrazinamide (PZA) susceptibility testing in Mycobacterium tuberculosis (Mtb) is a current area of development and PZA-resistant strains are increasingly prevalent. Previous studies have demonstrated that the detection of pyrazinoic acid (POA), the metabolite produced by the deamidation of PZA, is a good predictor for PZA resistance since a resistant strain would not convert PZA into POA at a critical required rate, whereas a susceptible strain will do, expelling POA to the extracellular environment at a certain rate, and allowing for quantification of this accumulated analyte. In order to quantify POA, an indirect competitive ELISA (icELISA) test using hyperimmune polyclonal rabbit serum against POA was developed: for this purpose, pure POA was first covalently linked to the highly immunogenic Keyhole Limpet Hemocyanine, and inoculated in rabbits. A construct made of bovine serum albumin (BSA) linked to pure POA and fixed at the bottom of wells was used as a competitor against spiked samples and liquid Mtb culture supernatants. When spiked samples (commercial POA alone) were analyzed, the half maximal inhibitory concentration (IC50) was 1.16 mg/mL, the limit of detection 200 μg/mL and the assay was specific (it did not detect PZA, IC50 > 20 mg/mL). However, culture supernatants (7H9-OADC-PANTA medium) disrupted the competition and a proper icELISA curve was not obtainable. We consider that, although we have shown that it is feasible to induce antibodies against POA, matrix effects could damage its analytical usefulness; multiple, upcoming ways to solve this obstacle are suggested.
Collapse
Affiliation(s)
- Edgar A. Florentini
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porras, Lima, Perú
| | - Noelia Angulo
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porras, Lima, Perú
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Roberto Alcántara
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porras, Lima, Perú
| | - Elisa Roncal
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porras, Lima, Perú
| | - Ricardo Antiparra
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porras, Lima, Perú
| | - Emily Toscano
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porras, Lima, Perú
| | - Katherine Vallejos
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porras, Lima, Perú
| | - Danni Kirwan
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porras, Lima, Perú
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porras, Lima, Perú
| | - Patricia Sheen
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porras, Lima, Perú
- * E-mail:
| |
Collapse
|
27
|
Ei PW, Mon AS, Htwe MM, Win SM, Aye KT, San LL, Zaw NN, Nyunt WW, Myint Z, Lee JS, Aung WW. Pyrazinamide resistance and pncA mutations in drug resistant Mycobacterium tuberculosis clinical isolates from Myanmar. Tuberculosis (Edinb) 2020; 125:102013. [PMID: 33142220 DOI: 10.1016/j.tube.2020.102013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
Pyrazinamide (PZA) is an important anti-tuberculosis drug, which is active against semi-dormant bacilli and used as a component of first-line drugs and drug-resistant tuberculosis regimens. Mutations in pncA and its promoter region are main cause of PZA resistance. There are limited PZA susceptibility data as there is no routine drug susceptibility testing (DST) for PZA. This study was aimed to determine the proportion of PZA resistance among rifampicin-resistant tuberculosis patients and to identify mutations which are responsible for PZA resistance in pncA and its promoter region. Liquid-based DST was performed to detect PZA susceptibility on 192 culture positive rifampicin-resistant isolates collected from National Tuberculosis Reference Laboratory. Sequencing on pncA including its promoter region was performed and analysis was done on 157 isolates. Phenotypic PZA resistance was detected in 58.9% of isolates. Sixty-five different mutations were distributed in pncA or promoter region of 82 isolates. Sensitivity and specificity of pncA sequencing in detection of PZA resistance showed 89.8% and 95.6% respectively. High proportion of PZA resistance among rifampicin-resistant cases highlighted the need for effective treatment regimen development for PZA-resistant MDR-TB. It is also suggested that routine PZA susceptibility test should be incorporated to treatment monitoring regimen and National Drug Resistance surveys.
Collapse
Affiliation(s)
- Phyu Win Ei
- Advanced Molecular Research Centre, Department of Medical Research, 5, Ziwaka Road, Dagon Township, 11191, Yangon, Myanmar.
| | - Aye Su Mon
- Advanced Molecular Research Centre, Department of Medical Research, 5, Ziwaka Road, Dagon Township, 11191, Yangon, Myanmar.
| | - Mi Mi Htwe
- Advanced Molecular Research Centre, Department of Medical Research, 5, Ziwaka Road, Dagon Township, 11191, Yangon, Myanmar.
| | - Su Mon Win
- Advanced Molecular Research Centre, Department of Medical Research, 5, Ziwaka Road, Dagon Township, 11191, Yangon, Myanmar.
| | - Kay Thi Aye
- Advanced Molecular Research Centre, Department of Medical Research, 5, Ziwaka Road, Dagon Township, 11191, Yangon, Myanmar
| | - Lai Lai San
- Advanced Molecular Research Centre, Department of Medical Research, 5, Ziwaka Road, Dagon Township, 11191, Yangon, Myanmar.
| | - Ni Ni Zaw
- Advanced Molecular Research Centre, Department of Medical Research, 5, Ziwaka Road, Dagon Township, 11191, Yangon, Myanmar.
| | - Wint Wint Nyunt
- National Tuberculosis Program, Department of Public Health, 15011, Naypyitaw, Myanmar.
| | - Zaw Myint
- National Tuberculosis Program, Department of Public Health, 15011, Naypyitaw, Myanmar.
| | - Jong Seok Lee
- International Tuberculosis Research Center, 234 Gaposunhwan-ro, Masanhappo-gu, Changwon-si, Gyeongsangnamdo, 51755, Republic of Korea.
| | - Wah Wah Aung
- Advanced Molecular Research Centre, Department of Medical Research, 5, Ziwaka Road, Dagon Township, 11191, Yangon, Myanmar.
| |
Collapse
|
28
|
Characterization of Genomic Variants Associated with Resistance to Bedaquiline and Delamanid in Naive Mycobacterium tuberculosis Clinical Strains. J Clin Microbiol 2020; 58:JCM.01304-20. [PMID: 32907992 DOI: 10.1128/jcm.01304-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The role of mutations in genes associated with phenotypic resistance to bedaquiline (BDQ) and delamanid (DLM) in Mycobacterium tuberculosis complex (MTBc) strains is poorly characterized. A clear understanding of the genetic variants' role is crucial to guide the development of molecular-based drug susceptibility testing (DST). In this work, we analyzed all mutations in candidate genomic regions associated with BDQ- and DLM-resistant phenotypes using a whole-genome sequencing (WGS) data set from a collection of 4,795 MTBc clinical isolates from six countries with a high burden of tuberculosis (TB). From WGS analysis, we identified 61 and 163 unique mutations in genomic regions potentially involved in BDQ- and DLM-resistant phenotypes, respectively. Importantly, all strains were isolated from patients who likely have never been exposed to these medicines. To characterize the role of mutations, we calculated the free energy variation upon mutations in the available protein structures of Ddn (DLM), Fgd1 (DLM), and Rv0678 (BDQ) and performed MIC assays on a subset of MTBc strains carrying mutations to assess their phenotypic effect. The combination of structural and phenotypic data allowed for cataloguing the mutations clearly associated with resistance to BDQ (n = 4) and DLM (n = 35), only two of which were previously described, as well as about a hundred genetic variants without any correlation with resistance. Significantly, these results show that both BDQ and DLM resistance-related mutations are diverse and distributed across the entire region of each gene target, which is of critical importance for the development of comprehensive molecular diagnostic tools.
Collapse
|
29
|
Kuhlin J, Davies Forsman L, Mansjö M, Jonsson Nordvall M, Wijkander M, Wagrell C, Jonsson J, Groenheit R, Werngren J, Schön T, Bruchfeld J. Genotypic resistance of pyrazinamide but not MIC is associated with longer time to sputum culture conversion in patients with multidrug-resistant tuberculosis. Clin Infect Dis 2020; 73:e3511-e3517. [PMID: 33011791 DOI: 10.1093/cid/ciaa1509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND PZA resistance in multidrug-resistant tuberculosis (MDR-TB) is common and it is not clear how it affects interim and treatment outcomes. Although rarely performed, phenotypic drug susceptibility testing (pDST) is used to define PZA resistance but genotypic DST (gDST) and minimum inhibitory concentration (MIC) could be beneficial. We aimed to assess the impact of PZA gDST and MIC on time to sputum culture conversion (SCC) and treatment outcome in patients with MDR-TB. METHODS Clinical, microbiological and treatment data was collected in this cohort study for all patients diagnosed with MDR-TB in Sweden 1992-2014. MIC, pDST and whole genome sequencing of the pncA, rpsA and panD genes were used to define PZA resistance. A Cox regression model was used for statistical analyses. RESULTS Of 157 patients with MDR-TB, 56.1% (n=88) had PZA resistant strains and 49.7% (n=78) were treated with PZA. In crude and adjusted analyses, PZA gDST resistance was associated with a 29-day longer time to SCC (hazard ratio [HR] 0.57, 95% confidence interval [CI] 0.36-0.89, p=0.013 and HR 0.49, 95% CI 0.29-0.82, p=0.007, respectively). A two-fold decrease in dilutions of PZA MIC for PZA susceptible strains showed no association with SCC in crude or adjusted analyses (HR 0.98, 95% CI 0.73-1.31, p=0.89). Genotypic DST and MIC for PZA were not associated with treatment outcome. CONCLUSION In patients with MDR-TB, gDST PZA resistance was associated with a longer time to SCC. Rapid PZA gDST is important to identify patients who may benefit from PZA treatment.
Collapse
Affiliation(s)
- Johanna Kuhlin
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Davies Forsman
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Mansjö
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | | | - Maria Wijkander
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Charlotta Wagrell
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jerker Jonsson
- Department of Public Health Analysis and Data Management, Public Health Agency of Sweden, Stockholm, Sweden
| | - Ramona Groenheit
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Jim Werngren
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Thomas Schön
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden.,Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University
| | - Judith Bruchfeld
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Köser CU, Cirillo DM, Miotto P. How To Optimally Combine Genotypic and Phenotypic Drug Susceptibility Testing Methods for Pyrazinamide. Antimicrob Agents Chemother 2020; 64:e01003-20. [PMID: 32571824 PMCID: PMC7449218 DOI: 10.1128/aac.01003-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/17/2020] [Indexed: 11/20/2022] Open
Abstract
False-susceptible phenotypic drug-susceptibility testing (DST) results for pyrazinamide due to mutations with MICs close to the critical concentration (CC) confound the classification of pncA resistance mutations, leading to an underestimate of the specificity of genotypic DST. This could be minimized by basing treatment decisions on well-understood mutations and by adopting an area of technical uncertainty for phenotypic DST rather than only testing the CC, as is current practice for the Mycobacterium tuberculosis complex.
Collapse
Affiliation(s)
- Claudio U Köser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
31
|
Sheik Amamuddy O, Musyoka TM, Boateng RA, Zabo S, Tastan Bishop Ö. Determining the unbinding events and conserved motions associated with the pyrazinamide release due to resistance mutations of Mycobacterium tuberculosis pyrazinamidase. Comput Struct Biotechnol J 2020; 18:1103-1120. [PMID: 32489525 PMCID: PMC7251373 DOI: 10.1016/j.csbj.2020.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 01/04/2023] Open
Abstract
Pyrazinamide (PZA) is the only first-line antitubercular drug active against latent Mycobacterium tuberculosis (Mtb). It is activated to pyrazinoic acid by the pncA-encoded pyrazinamidase enzyme (PZase). Despite the emergence of PZA drug resistance, the underlying mechanisms of resistance remain unclear. This study investigated part of these mechanisms by modelling a PZA-bound wild type and 82 mutant PZase structures before applying molecular dynamics (MD) with an accurate Fe2+ cofactor coordination geometry. After observing nanosecond-scale PZA unbinding from several PZase mutants, an algorithm was developed to systematically detect ligand release via centre of mass distances (COM) and ligand average speed calculations, before applying the statistically guided network analysis (SGNA) method to investigate conserved protein motions associated with ligand unbinding. Ligand and cofactor perspectives were also investigated. A conserved pair of lid-destabilising motions was found. These consisted of (1) antiparallel lid and side flap motions; (2) the contractions of a flanking region within the same flap and residue 74 towards the core. Mutations affecting the hinge residues (H51 and H71), nearby residues or L19 were found to destabilise the lid. Additionally, other metal binding site (MBS) mutations delocalised the Fe2+ cofactor, also facilitating lid opening. In the early stages of unbinding, a wider variety of PZA poses were observed, suggesting multiple exit pathways. These findings provide insights into the late events preceding PZA unbinding, which we found to occur in some resistant PZase mutants. Further, the algorithm developed here to identify unbinding events coupled with SGNA can be applicable to other similar problems.
Collapse
Key Words
- 3D, Three-dimensional
- ACPYPE, AnteChamber Python Parser interface
- Amber force field parameters
- CHPC, Center for High Performance Computing
- COM, Center of mass
- Drug resistance
- Drug unbinding
- FDA, Food and Drug Administration
- HTMD, High throughput molecular dynamics
- INH, Isoniazid
- MBS, Metal binding site
- MCBP, Metal Center Parameter Builder
- MD, Molecular dynamics
- MDR-TB, Multidrug-resistant tuberculosis
- Missense mutations
- Molecular dynamics simulations
- PBC, Periodic boundary conditions
- PDB, Protein Data bank
- POA, Pyrazinoic acid
- PZA, Pyrazinamide
- PZase, Pyrazinamidase
- QM, Quantum Mechanics
- RIF, Rifampicin
- SGNA, Statistically guided network analysis
- Statistically guided network analysis
- TB, Tuberculosis
- VAPOR, Variant Analysis Portal
- WHO, World Health Organization
- WT, Wild type
Collapse
Affiliation(s)
| | | | - Rita Afriyie Boateng
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Sophakama Zabo
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
32
|
Tafess K, Ng TTL, Lao HY, Leung KSS, Tam KKG, Rajwani R, Tam STY, Ho LPK, Chu CMK, Gonzalez D, Sayada C, Ma OCK, Nega BH, Ameni G, Yam WC, Siu GKH. Targeted-Sequencing Workflows for Comprehensive Drug Resistance Profiling of Mycobacterium tuberculosis Cultures Using Two Commercial Sequencing Platforms: Comparison of Analytical and Diagnostic Performance, Turnaround Time, and Cost. Clin Chem 2020; 66:809-820. [DOI: 10.1093/clinchem/hvaa092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Abstract
Background
The emergence of Mycobacterium tuberculosis with complex drug resistance profiles necessitates a rapid and comprehensive drug susceptibility test for guidance of patient treatment. We developed two targeted-sequencing workflows based on Illumina MiSeq and Nanopore MinION for the prediction of drug resistance in M. tuberculosis toward 12 antibiotics.
Methods
A total of 163 M. tuberculosis isolates collected from Hong Kong and Ethiopia were subjected to a multiplex PCR for simultaneous amplification of 19 drug resistance-associated genetic regions. The amplicons were then barcoded and sequenced in parallel on MiSeq and MinION in respective batch sizes of 24 and 12 samples. A web-based bioinformatics pipeline, BacterioChek-TB, was developed to translate the raw datasets into clinician-friendly reports.
Results
Both platforms successfully sequenced all samples with mean read depths of 1,127× and 1,649×, respectively. The variant calling by MiSeq and MinION could achieve 100% agreement if variants with an allele frequency of <40% reported by MinION were excluded. Both workflows achieved a mean clinical sensitivity of 94.8% and clinical specificity of 98.0% when compared with phenotypic drug susceptibility test (pDST). Turnaround times for the MiSeq and MinION workflows were 38 and 15 h, facilitating the delivery of treatment guidance at least 17–18 days earlier than pDST, respectively. The higher cost per sample on the MinION platform ($71.56) versus the MiSeq platform ($67.83) was attributed to differences in batching capabilities.
Conclusion
Our study demonstrates the interchangeability of MiSeq and MinION platforms for generation of accurate and actionable results for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Ketema Tafess
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Department of Medical Laboratory, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Timothy Ting Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Hiu Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kenneth Siu Sing Leung
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kingsley King Gee Tam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rahim Rajwani
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Sarah Tsz Yan Tam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lily Pui Ki Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Corey Mang Kiu Chu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | | | - Chalom Sayada
- Advanced Biological Laboratories (ABL), Metz, France
| | - Oliver Chiu Kit Ma
- KingMed Diagnostics, Science Park, Hong Kong Special Administrative Region, China
| | - Belete Haile Nega
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wing Cheong Yam
- Department of Medical Laboratory, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Gilman Kit Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
33
|
Direct Determination of Pyrazinamide (PZA) Susceptibility by Sputum Microscopic Observation Drug Susceptibility (MODS) Culture at Neutral pH: the MODS-PZA Assay. J Clin Microbiol 2020; 58:JCM.01165-19. [PMID: 32132191 PMCID: PMC7180241 DOI: 10.1128/jcm.01165-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pyrazinamide (PZA) is considered the pivot drug in all tuberculosis treatment regimens due to its particular action on the persistent forms of Mycobacterium tuberculosis. However, no drug susceptibility test (DST) is considered sufficiently reliable for routine application. Although molecular tests are endorsed, their application is limited to known PZA resistance associated mutations. Microbiological DSTs for PZA have been restricted by technical limitations, especially the necessity for an acidic pH. Pyrazinamide (PZA) is considered the pivot drug in all tuberculosis treatment regimens due to its particular action on the persistent forms of Mycobacterium tuberculosis. However, no drug susceptibility test (DST) is considered sufficiently reliable for routine application. Although molecular tests are endorsed, their application is limited to known PZA resistance associated mutations. Microbiological DSTs for PZA have been restricted by technical limitations, especially the necessity for an acidic pH. Here, for the first time, MODS culture at neutral pH was evaluated using high PZA concentrations (400 and 800 μg/ml) to determine PZA susceptibility directly from sputum samples. Sputum samples were cultured with PZA for up to 21 days at 37°C. Plate reading was performed at two time points: R1 (mean, 10 days) and R2 (mean, 13 days) for each PZA concentration. A consensus reference test, composed of MGIT-PZA, pncA sequencing, and the classic Wayne test, was used. A total of 182 samples were evaluated. The sensitivity and specificity for 400 μg/ml ranged from 76.9 to 89.7 and from 93.0 to 97.9%, respectively, and for 800 μg/ml ranged from 71.8 to 82.1 and from 95.8 to 98.6%, respectively. Compared to MGIT-PZA, our test showed a similar turnaround time (medians of 10 and 12 days for PZA-sensitive and -resistant isolates, respectively). In conclusion, MODS-PZA is presented as a fast, simple, and low-cost DST that could complement the MODS assay to evaluate resistance to the principal first-line antituberculosis drugs. Further optimization of test conditions would be useful in order to increase its performance.
Collapse
|
34
|
Abstract
Pyrazinamide (PZA) is a cornerstone antimicrobial drug used exclusively for the treatment of tuberculosis (TB). Due to its ability to shorten drug therapy by 3 months and reduce disease relapse rates, PZA is considered an irreplaceable component of standard first-line short-course therapy for drug-susceptible TB and second-line treatment regimens for multidrug-resistant TB. Despite over 60 years of research on PZA and its crucial role in current and future TB treatment regimens, the mode of action of this unique drug remains unclear. Defining the mode of action for PZA will open new avenues for rational design of novel therapeutic approaches for the treatment of TB. In this review, we discuss the four prevailing models for PZA action, recent developments in modulation of PZA susceptibility and resistance, and outlooks for future research and drug development.
Collapse
|
35
|
Karmakar M, Rodrigues CHM, Horan K, Denholm JT, Ascher DB. Structure guided prediction of Pyrazinamide resistance mutations in pncA. Sci Rep 2020; 10:1875. [PMID: 32024884 PMCID: PMC7002382 DOI: 10.1038/s41598-020-58635-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/28/2019] [Indexed: 11/29/2022] Open
Abstract
Pyrazinamide plays an important role in tuberculosis treatment; however, its use is complicated by side-effects and challenges with reliable drug susceptibility testing. Resistance to pyrazinamide is largely driven by mutations in pyrazinamidase (pncA), responsible for drug activation, but genetic heterogeneity has hindered development of a molecular diagnostic test. We proposed to use information on how variants were likely to affect the 3D structure of pncA to identify variants likely to lead to pyrazinamide resistance. We curated 610 pncA mutations with high confidence experimental and clinical information on pyrazinamide susceptibility. The molecular consequences of each mutation on protein stability, conformation, and interactions were computationally assessed using our comprehensive suite of graph-based signature methods, mCSM. The molecular consequences of the variants were used to train a classifier with an accuracy of 80%. Our model was tested against internationally curated clinical datasets, achieving up to 85% accuracy. Screening of 600 Victorian clinical isolates identified a set of previously unreported variants, which our model had a 71% agreement with drug susceptibility testing. Here, we have shown the 3D structure of pncA can be used to accurately identify pyrazinamide resistance mutations. SUSPECT-PZA is freely available at: http://biosig.unimelb.edu.au/suspect_pza/.
Collapse
Affiliation(s)
- Malancha Karmakar
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Tuberculosis Program, Melbourne Health and Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Carlos H M Rodrigues
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, University of Melbourne at The Peter Doherty Institute for Infection &Immunity, Melbourne, Victoria, Australia
| | - Justin T Denholm
- Victorian Tuberculosis Program, Melbourne Health and Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| |
Collapse
|
36
|
Xia H, van den Hof S, Cobelens F, Zhou Y, Zhao B, Wang S, Zhao Y. Value of pyrazinamide for composition of new treatment regimens for multidrug-resistant Mycobacterium tuberculosis in China. BMC Infect Dis 2020; 20:19. [PMID: 31910878 PMCID: PMC6947908 DOI: 10.1186/s12879-020-4758-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022] Open
Abstract
Background Pyrazinamide still may be a useful drug for treatment of rifampin-resistant (RR-TB) or multidrug-resistant tuberculosis (MDR-TB) in China while awaiting scale up of new drugs and regimens including bedaquiline and linezolid. The level of pyrazinamide resistance among MDR-TB patients in China is not well established. Therefore, we assessed pyrazinamide resistance in a representative sample and explored determinants and patterns of pncA mutations. Methods MDR-TB isolates from the 2007 national drug resistance survey of China were sub-cultured and examined for pyrazinamide susceptibility by BACTEC MGIT 960 method. pncA mutations were identified by sequencing. Characteristics associated with pyrazinamide resistance were analyzed using univariable and multivariable log-binominal regression. Results Of 401 MDR-TB isolates, 324 were successfully sub-cultured and underwent drug susceptibility testing. Pyrazinamide resistance was prevalent in 40.7% of samples, similarly among new and previously treated MDR-TB patients. Pyrazinamide resistance in MDR-TB patients was associated with lower age (adjusted OR 0.54; 95% CI, 0.34–0.87 for those aged ≧60 years compared to < 40 years). Pyrazinamide resistance was not associated with gender, residential area, previous treatment history and Beijing genotype. Of 132 patients with pyrazinamide resistant MDR-TB, 97 (73.5%) had a mutation in the pncA gene; with 61 different point mutations causing amino acid change, and 11 frameshifts in the pncA gene. The mutations were scattered throughout the whole pncA gene and no hot spot region was identified. Conclusions Pyrazinamide resistance among MDR-TB patients in China is common, although less so in elderly patients. Therefore, pyrazinamide should only be used for treatment of RR/MDR-TB in China if susceptibility is confirmed. Molecular testing for detection of pyrazinamide resistance only based on pncA mutations has certain value for the rapid detection of pyrazinamide resistance in MDR-TB strains but other gene mutations conferring to pyrazinamide resistance still need to be explored to increase its predictive ability .
Collapse
Affiliation(s)
- Hui Xia
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Susan van den Hof
- KNCV Tuberculosis Foundation, The Hague, The Netherlands.,National Institute of Public Health and the Environment, Centre for Infectious Disease Epidemiology and Surveillance, Bilthoven, The Netherlands
| | - Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Yang Zhou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
37
|
Al-Mutairi NM, Ahmad S, Mokaddas EM. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates identifies local transmission of infection in Kuwait, a country with a low incidence of TB and MDR-TB. Eur J Med Res 2019; 24:38. [PMID: 31806020 PMCID: PMC6894303 DOI: 10.1186/s40001-019-0397-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Increasing incidence of multidrug-resistant Mycobacterium tuberculosis infections is hampering global tuberculosis control efforts. Kuwait is a low-tuberculosis-incidence country, and ~ 1% of M. tuberculosis strains are resistant to rifampicin and isoniazid (MDR-TB). This study detected mutations in seven genes predicting resistance to rifampicin, isoniazid, pyrazinamide, ethambutol and streptomycin in MDR-TB strains. Sequence data were combined with spoligotypes for detecting local transmission of MDR-TB in Kuwait. Methods Ninety-three MDR-TB strains isolated from 12 Kuwaiti and 81 expatriate patients and 50 pansusceptible strains were used. Phenotypic drug susceptibility was determined by MGIT 460 TB/960 system. Mutations conferring resistance to rifampicin, isoniazid, pyrazinamide, ethambutol and streptomycin were detected by genotype MTBDRplus assay and/or PCR sequencing of three rpoB regions, katG codon 315 (katG315) + inhA regulatory region, pncA, three embB regions and rpsL + rrs-500–900 regions. Spoligotyping kit was used, spoligotypes were identified by SITVIT2, and phylogenetic tree was constructed by using MIRU-VNTRplus software. Phylogenetic tree was also constructed from concatenated sequences by MEGA7 software. Additional PCR sequencing of gidB and rpsA was performed for cluster isolates. Results Pansusceptible isolates contained wild-type sequences. Mutations in rpoB and katG and/or inhA were detected in 93/93 and 92/93 MDR-TB strains, respectively. Mutations were also detected for pyrazinamide resistance, ethambutol resistance and streptomycin resistance in MDR-TB isolates in pncA, embB and rpsL + rrs, respectively. Spoligotyping identified 35 patterns with 18 isolates exhibiting unique patterns while 75 isolates grouped in 17 patterns. Beijing genotype was most common (32/93), and 11 isolates showed nine orphan patterns. Phylogenetic analysis of concatenated sequences showed unique patterns for 51 isolates while 42 isolates grouped in 16 clusters. Interestingly, 22 isolates in eight clusters by both methods were isolated from TB patients typically within a span of 2 years. Five of eight clusters were confirmed by additional gidB and rpsA sequence data. Conclusions Our study provides the first insight into molecular epidemiology of MDR-TB in Kuwait and identified several potential clusters of local transmission of MDR-TB involving 2–6 subjects which had escaped detection by routine surveillance studies. Prospective detection of resistance-conferring mutations can identify possible cases of local transmission of MDR-TB in low MDR-TB settings.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman M Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| |
Collapse
|
38
|
Gopal P, Grüber G, Dartois V, Dick T. Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends Pharmacol Sci 2019; 40:930-940. [PMID: 31704175 PMCID: PMC6884696 DOI: 10.1016/j.tips.2019.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
Abstract
Inclusion of pyrazinamide (PZA) in the tuberculosis (TB) drug regimen during the 1970s enabled a reduction in treatment duration from 12 to 6 months. PZA has this remarkable effect in patients despite displaying poor potency against Mycobacterium tuberculosis (Mtb) in vitro. The pharmacological basis for the in vivo sterilizing activity of the drug has remained obscure and its bacterial target controversial. Recently it was shown that PZA penetrates necrotic caseous TB lung lesions and kills nongrowing, drug-tolerant bacilli. Furthermore, it was uncovered that PZA inhibits bacterial Coenzyme A biosynthesis. It may block this pathway by triggering degradation of its target, aspartate decarboxylase. The elucidation of the pharmacological and molecular mechanisms of PZA provides the basis for the rational discovery of the next-generation PZA with improved in vitro potency while maintaining attractive pharmacological properties.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore; Current address: MSD Translational Medicine Research Centre, Merck Research Laboratories, 8 Biomedical Grove, Singapore 138665, Republic of Singapore.
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, 340 Kingsland Street Building 102, Nutley, NJ 07110, USA; Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, 340 Kingsland Street Building 102, Nutley, NJ 07110, USA; Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Nutley, NJ 07110, USA; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore
| |
Collapse
|
39
|
Dara M, Ehsani S, Mozalevskis A, Vovc E, Simões D, Avellon Calvo A, Casabona I Barbarà J, Chokoshvili O, Felker I, Hoffner S, Kalmambetova G, Noroc E, Shubladze N, Skrahina A, Tahirli R, Tsertsvadze T, Drobniewski F. Tuberculosis, HIV, and viral hepatitis diagnostics in eastern Europe and central Asia: high time for integrated and people-centred services. THE LANCET. INFECTIOUS DISEASES 2019; 20:e47-e53. [PMID: 31740252 DOI: 10.1016/s1473-3099(19)30524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Globally, high rates (and in the WHO European region an increasing prevalence) of co-infection with tuberculosis and HIV and HIV and hepatitis C virus exist. In eastern European and central Asian countries, the tuberculosis, HIV, and viral hepatitis programmes, including diagnostic services, are separate vertical structures. In this Personal View, we consider underlying reasons for the poor integration for these diseases, particularly in the WHO European region, and how to address this with an initial focus on diagnostic services. In part, this low integration has reflected different diagnostic development histories, global funding sources, and sample types used for diagnosis (eg, typically sputum for tuberculosis and blood for HIV and hepatitis C). Cooperation between services improved as patients with tuberculosis needed routine testing for HIV and vice versa, but financial, infection control, and logistical barriers remain. Multidisease diagnostic platforms exist, but to be used optimally, appropriate staff training and sensible understanding of different laboratory and infection control risks needs rapid implementation. Technically these ideas are all feasible. Poor coordination between these vertical systems remains unhelpful. There is a need to increase political and operational integration of diagnostic and treatment services and bring them closer to patients.
Collapse
Affiliation(s)
- Masoud Dara
- Communicable Diseases Department, Division of Health Emergencies and Communicable Diseases, Regional Office for Europe, World Health Organization, Copenhagen, Denmark.
| | - Soudeh Ehsani
- Joint Tuberculosis, HIV and Viral Hepatitis Programme, Regional Office for Europe, World Health Organization, Copenhagen, Denmark
| | - Antons Mozalevskis
- Joint Tuberculosis, HIV and Viral Hepatitis Programme, Regional Office for Europe, World Health Organization, Copenhagen, Denmark
| | - Elena Vovc
- Joint Tuberculosis, HIV and Viral Hepatitis Programme, Regional Office for Europe, World Health Organization, Copenhagen, Denmark
| | - Daniel Simões
- EPI Unit, Institute of Public Health, University of Porto, Porto, Portugal
| | - Ana Avellon Calvo
- Hepatitis Unit, National Center of Microbiology, Carlos III Institute of Health, Majadahonda, Madrid, Spain
| | - Jordi Casabona I Barbarà
- Center for Epidemiological Studies on STI and AIDS in Catalonia and Research Network on Biomedical Research, Epidemiology and Public Health, Catalan Agency of Public Health, Badalona, Spain
| | - Otar Chokoshvili
- Infectious diseases and Clinical Immunology Research Center, Tbilisi, Georgia
| | - Irina Felker
- Scientific department, Novosibirsk Tuberculosis Research Institute, Novosibirsk, Russia
| | - Sven Hoffner
- Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | | | - Ecatarina Noroc
- National AIDS Programme, Dermatology and Communicable Diseases Hospital, Chisinau, Moldova
| | - Natalia Shubladze
- National Reference Laboratory, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Alena Skrahina
- Clinical department, Republican Scientific and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Rasim Tahirli
- Laboratory for Medical Service, Specialized Treatment Institution, Main Medical Department, Ministry of Justice, Baku, Azerbaijan
| | - Tengiz Tsertsvadze
- Infectious Diseases and Clinical Immunology Research Center, Tbilisi State University, Tbilisi, Georgia
| | - Francis Drobniewski
- Global Health and Tuberculosis, Imperial College London, London, UK; WHO European Laboratory Initiative on Tuberculosis, HIV and Viral hepatitis, WHO Regional Office of Europe, Copenhagen, Denmark
| |
Collapse
|
40
|
Whole genome sequencing, analyses of drug resistance-conferring mutations, and correlation with transmission of Mycobacterium tuberculosis carrying katG-S315T in Hanoi, Vietnam. Sci Rep 2019; 9:15354. [PMID: 31653940 PMCID: PMC6814805 DOI: 10.1038/s41598-019-51812-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Drug-resistant tuberculosis (TB) is a serious global problem, and pathogen factors involved in the transmission of isoniazid (INH)-resistant TB have not been fully investigated. We performed whole genome sequencing of 332 clinical Mycobacterium tuberculosis (Mtb) isolates collected from patients newly diagnosed with smear-positive pulmonary TB in Hanoi, Vietnam. Using a bacterial genome-wide approach based on linear mixed models, we investigated the associations between 31-bp k-mers and clustered strains harboring katG-S315T, a major INH-resistance mutation in the present cohort and in the second panel previously published in South Africa. Five statistically significant genes, namely, PPE18/19, gid, emrB, Rv1588c, and pncA, were shared by the two panels. We further identified variants of the genes responsible for these k-mers, which are relevant to the spread of INH-resistant strains. Phylogenetic convergence test showed that variants relevant to PPE46/47-like chimeric genes were significantly associated with the same phenotype in Hanoi. The associations were further confirmed after adjustment for the confounders. These findings suggest that genomic variations of the pathogen facilitate the expansion of INH-resistance TB, at least in part, and our study provides a new insight into the mechanisms by which drug-resistant Mtb maintains fitness and spreads in Asia and Africa.
Collapse
|
41
|
Anthony RM, den Hertog AL, van Soolingen D. 'Happy the man, who, studying nature's laws, Thro' known effects can trace the secret cause.' Do we have enough pieces to solve the pyrazinamide puzzle? J Antimicrob Chemother 2019. [PMID: 29528413 DOI: 10.1093/jac/dky060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A low pH was assumed to be required for the activity of pyrazinoic acid (the active form of pyrazinamide) against Mycobacterium tuberculosis, but recently activity has been demonstrated at neutral pH. Renewed interest in pyrazinamide has led to an increasing number of potential targets and the suspicion that pyrazinamide is a 'dirty drug'. However, it is our opinion that the recent demonstration that pyrazinoic acid is active against PanD provides an alternative explanation for the secret of pyrazinamide's unusual activity. In this article we propose that PanD is the primary target of pyrazinoic acid but expression of pyrazinoic acid susceptibility requires an intact stress response. As the mycobacterial stress response requires the interaction of a number of genes, disruption of any could result in an inability to enter the susceptible phenotype. We believe this model can explain most of the recent observations of the seemingly diverse spectrum of activity of pyrazinamide.
Collapse
Affiliation(s)
- R M Anthony
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A L den Hertog
- Institute for Life Sciences and Chemistry, HU University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - D van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
42
|
Cao Z, Lan Y, Chen L, Xiang M, Peng Z, Zhang J, Zhang H. Resistance To First-Line Antituberculosis Drugs And Prevalence Of pncA Mutations In Clinical Isolates Of Mycobacterium tuberculosis From Zunyi, Guizhou Province Of China. Infect Drug Resist 2019; 12:3093-3102. [PMID: 31686870 PMCID: PMC6777635 DOI: 10.2147/idr.s222943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/29/2019] [Indexed: 11/23/2022] Open
Abstract
Background China is one of the high-burden countries for multidrug-resistant tuberculosis (MDR-TB), and pyrazinamide is one of the anti-TB drugs used for the shorter MDR-TB treatment regimen. The aim of this study was to determine the correlation between pncA gene mutations and resistance to four first-line anti-TB drugs as well as treatment history in clinical isolates of Mycobacterium tuberculosis. Patients and methods M. tuberculosis clinical isolates were collected from 318 in-patients with smear-positive TB between October 2008 and September 2016 at a major hospital in Zunyi, Guizhou Province of China, and used for drug susceptibility testing against four first-line anti-TB drugs. Genomic DNA extracted from clinical isolates was used for PCR amplification and DNA sequencing of the pncA gene. Results Among 318 clinical isolates, 129 (40.6%), 170 (53.5%), 66 (20.8%) and 109 (34.3%) were resistant to rifampicin, isoniazid, ethambutol and streptomycin respectively. In addition, 124 clinical isolates were MDR-TB and 71.8% of them were previously treated cases. Sequencing results showed that 46.8% of MDR-TB and 2.2% of drug susceptible isolates harbored a pncA mutation, and 52 types of pncA mutations were detected from 64 isolates. The prevalence of pncA mutations in isolates resistant to first-line anti-TB drugs and previously treated TB cases was significantly higher than that in drug-susceptible isolates and new cases of TB. Conclusion High prevalence of pncA mutations in clinical isolates of M. tuberculosis from Zunyi, Guizhou Province of China, is correlated with resistance to four first-line anti-TB drugs, MDR-TB and previously treated TB cases.
Collapse
Affiliation(s)
- Zhimin Cao
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Yuanbo Lan
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Ling Chen
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Min Xiang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Zhiyuan Peng
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Jianyong Zhang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Hong Zhang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China.,Department of R & D, Z-BioMed, Inc, Rockville, MD, 20855, USA
| |
Collapse
|
43
|
Karmakar M, Globan M, Fyfe JAM, Stinear TP, Johnson PDR, Holmes NE, Denholm JT, Ascher DB. Analysis of a Novel pncA Mutation for Susceptibility to Pyrazinamide Therapy. Am J Respir Crit Care Med 2019; 198:541-544. [PMID: 29694240 DOI: 10.1164/rccm.201712-2572le] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Maria Globan
- 1 University of Melbourne Melbourne, Victoria, Australia and.,2 Melbourne Health Melbourne, Victoria, Australia
| | - Janet A M Fyfe
- 1 University of Melbourne Melbourne, Victoria, Australia and.,2 Melbourne Health Melbourne, Victoria, Australia
| | | | - Paul D R Johnson
- 1 University of Melbourne Melbourne, Victoria, Australia and.,3 World Health Organization Collaborating Centre for Mycobacterium ulcerans Melbourne, Victoria, Australia
| | - Natasha E Holmes
- 1 University of Melbourne Melbourne, Victoria, Australia and.,4 Austin Health Heidelberg, Victoria, Australia
| | | | - David B Ascher
- 1 University of Melbourne Melbourne, Victoria, Australia and.,5 University of Cambridge Cambridge, United Kingdom
| |
Collapse
|
44
|
Dowdy DW, Theron G, Tornheim JA, Warren R, Kendall EA. Of Testing and Treatment: Implications of Implementing New Regimens for Multidrug-Resistant Tuberculosis. Clin Infect Dis 2019; 65:1206-1211. [PMID: 29554229 DOI: 10.1093/cid/cix486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/23/2017] [Indexed: 01/02/2023] Open
Abstract
A novel, shorter-course regimen for treating multidrug-resistant (MDR) tuberculosis was recently recommended by the World Health Organization. However, the most appropriate use of drug susceptibility testing (DST) to support this regimen is less clear. Implementing countries must therefore often choose between using a standardized regimen despite high levels of underlying drug resistance or require more stringent DST prior to treatment initiation. The former carries a high likelihood of exposing patients to de facto monotherapy with a critical drug class (fluoroquinolones), whereas the latter could exclude large groups of patients from their most effective treatment option. We discuss the implications of this dilemma and argue for an approach that will integrate DST into the delivery of any novel antimicrobial regimen, without excessively stringent requirements. Such guidance could make the novel MDR tuberculosis regimen available to most patients while reducing the risk of generating additional drug resistance.
Collapse
Affiliation(s)
- David W Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Grant Theron
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; and
| | - Jeffrey A Tornheim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robin Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; and
| | - Emily A Kendall
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
45
|
|
46
|
Khan MT, Junaid M, Mao X, Wang Y, Hussain A, Malik SI, Wei DQ. Pyrazinamide resistance and mutations L19R, R140H, and E144K in Pyrazinamidase of Mycobacterium tuberculosis. J Cell Biochem 2019; 120:7154-7166. [PMID: 30485476 DOI: 10.1002/jcb.27989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Pyrazinamide (PZA) is an important component of first-line antituberculosis drugs activated by Mycobacterium tuberculosis pyrazinamidase (PZase) into its active form pyrazinoic acid. Mutations in the pncA gene have been recognized as the major cause of PZA resistance. We detected some novel mutations, Leucine19Arginine (L19R), Arginine140Histidine (R140H), and Glutamic acid144 Lysine (E144K), in the pncA gene of PZA-resistant isolates in our wet lab PZA drug susceptibility testing and sequencing. As the molecular mechanism of resistance of these variants has not been reported earlier, we have performed multiple analyses to unveil different mechanisms of resistance because of PZase mutations L19R, R140H, and E144K. The mutants and native PZase structures were subjected to comprehensive computational molecular dynamics (MD) simulations at 100 nanoseconds in apo and drug-bound form. Mutants and native PZase binding pocket were compared to observe the consequence of mutations on the binding pocket size. Hydrogen bonding, Gibbs free energy, and natural ligand Fe +2 effect were also analyzed between native and mutants. A significant variation between native and mutant PZase structure activity was observed. The native PZase protein docking score was found to be the maximum, showing strong binding affinity in comparison with mutants. MD simulations explored the effect of the variants on the biological function of PZase. Hydrogen bonding, metal ion Fe +2 deviation, and fluctuation also seemed to be affected because of the mutations L19R, R140H, and E144K. The variants L19R, R140H, and E144K play a significant role in PZA resistance, altering the overall activity of native PZase, including metal ion Fe +2 displacement and free energy. This study offers valuable evidence for better management of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan.,Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Junaid
- Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xueying Mao
- Department of Bioinformatics and Biostatistics, Qianweichang College, Shanghai University, Shanghai, China
| | - Yanjie Wang
- Department of Computer Science, College of Computer Science and Information Tech, Henan Normal University, Xixiang, China
| | - Abid Hussain
- Department of Pharmaceutics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Characterization of novel Mycobacterium tuberculosis pncA gene mutations in clinical isolates from the Ukraine. Diagn Microbiol Infect Dis 2019; 93:334-338. [DOI: 10.1016/j.diagmicrobio.2018.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Accepted: 10/29/2018] [Indexed: 01/23/2023]
|
48
|
Sun F, Li Y, Chen Y, Guan W, Jiang X, Wang X, Ren P, Li J, Shi J, He G, Wu M, Tang P, Wang F, Sheng Y, Huang F, Zhou Z, Huang H, Hong L, Liu Q, Zhang Y, Zhang W. Introducing molecular testing of pyrazinamide susceptibility improves multidrug-resistant tuberculosis treatment outcomes: a prospective cohort study. Eur Respir J 2019; 53:13993003.01770-2018. [PMID: 30578402 DOI: 10.1183/13993003.01770-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/14/2018] [Indexed: 11/05/2022]
Abstract
The current treatment for multidrug-resistant tuberculosis (MDR-TB) takes a lengthy period of 18-24 months and has a poor cure rate of 50-60%. A multicenter, prospective cohort study was conducted to assess the role of testing for molecular susceptibility to pyrazinamide (PZA) in optimising treatment for MDR-TB.We assigned 76 patients to an optimised molecular susceptibility group and 159 patients to a regular treatment group where PZA susceptibility was not determined. Of these patients, 152 were matched after propensity score matching (76 in the optimised group and 76 in the regular group). Treatment success rate was measured in the propensity-matched cohort as the primary outcome.Patients in the optimised group achieved a higher treatment success rate than those in the regular group (76.3% versus 55.3%, p=0.006). Of 51 patients with isolates that were susceptible to PZA and who were receiving a 12-month regimen, 42 (82.4%) were treated successfully. The optimised group showed faster culture conversion than the regular group (p=0.024). After exclusion of pre-extensively drug-resistant TB (pre-XDR-TB), the treatment outcome in the optimised group was still better than the regular group (83.1% versus 62.1%, p=0.009).Introducing molecular susceptibility testing for PZA improved the treatment outcomes for MDR-TB without the use of new drugs. Introducing PZA for patients with PZA-susceptible (PZA-S) MDR-TB allows the current regimen to be shortened to 12 months with comparable success rates to the World Health Organization (WHO) recommended shorter regimen.
Collapse
Affiliation(s)
- Feng Sun
- Dept of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,These authors contributed equally to this work
| | - Yang Li
- Dept of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,These authors contributed equally to this work
| | - Yu Chen
- Dept of Tuberculosis, Henan Province Infectious Diseases Hospital, Zhengzhou, China.,These authors contributed equally to this work
| | - Wenlong Guan
- The Chest Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China.,These authors contributed equally to this work
| | - Xiangao Jiang
- Dept of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China.,These authors contributed equally to this work
| | - Xiaomeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.,These authors contributed equally to this work
| | - Pengfei Ren
- Dept of Tuberculosis, Henan Province Infectious Diseases Hospital, Zhengzhou, China
| | - Junlian Li
- The Chest Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
| | - Jichan Shi
- Dept of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
| | - Guiqing He
- Dept of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
| | - Meiying Wu
- Suzhou Fifth People's Hospital, Suzhou, China
| | - Peijun Tang
- Suzhou Fifth People's Hospital, Suzhou, China
| | - Fei Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yunfeng Sheng
- Tuberculosis Treatment Center, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Fuli Huang
- Dept of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zumo Zhou
- People's Hospital of Zhuji, Zhuji, China
| | | | - Liang Hong
- Dept of Infectious Diseases, The Third Affiliated Hospital to Wenzhou Medical College, Rui'an, China
| | - Qihui Liu
- Dept of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Dept of Molecular Microbiology and Immunology, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, USA
| | - Wenhong Zhang
- Dept of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Iwamoto T, Murase Y, Yoshida S, Aono A, Kuroda M, Sekizuka T, Yamashita A, Kato K, Takii T, Arikawa K, Kato S, Mitarai S. Overcoming the pitfalls of automatic interpretation of whole genome sequencing data by online tools for the prediction of pyrazinamide resistance in Mycobacterium tuberculosis. PLoS One 2019; 14:e0212798. [PMID: 30817803 PMCID: PMC6394917 DOI: 10.1371/journal.pone.0212798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/09/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Automated online software tools that analyse whole genome sequencing (WGS) data without the need for bioinformatics expertise can motivate the implementation of WGS-based molecular drug susceptibility testing (DST) in routine diagnostic settings for tuberculosis (TB). Pyrazinamide (PZA) is a key drug for current and future TB treatment regimens; however, it was reported that predictive power for PZA resistance by the available tools is low. Therefore, this low predictive power may make users hesitant to use the tools. This study aimed to elucidate why and to uncover the real performance of the tools when taking into account their variation calling lists (manual inspection), not just their automated reporting system (default setting) that was evaluated by previous studies. METHODS WGS data from 191 datasets comprising 108 PZA-resistant and 83 susceptible strains were used to evaluate the potential performance of the available online tools (TB Profiler, TGS-TB, PhyResSE, and CASTB) for predicting phenotypic PZA resistance. RESULTS When taking into consideration the variation calling lists, 73 variants in total (47 non-synonymous mutations and 26 indels) in pncA were detected by TGS-TB and PhyResSE, covering all mutations for the 108 PZA-resistant strains. The 73 variants were confirmed by Sanger sequencing. TB Profiler also detected all but three complete loss, two large deletion at the 3'-end, and one relatively large insertion of pncA. On the other hand, many of the 73 variants were lacking in the automated reporting systems except by TGS-TB; of these variants, CASTB detected only 20. By applying the 'non-wild type sequence' approach for predicting PZA resistance, accuracy of the results significantly improved compared with that of the automated results obtained by each tool. CONCLUSION Users can obtain more accurate predictions for PZA resistance than previously reported by manually checking the results and applying the 'non-wild type sequence' approach.
Collapse
Affiliation(s)
- Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
- * E-mail: (TI); (SM)
| | - Yoshiro Murase
- Bacteriology Division, Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Akio Aono
- Bacteriology Division, Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kengo Kato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takemasa Takii
- Molecular Epidemiology Division, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Seiya Kato
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
| | - Satoshi Mitarai
- Bacteriology Division, Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, Japan
- Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City, Nagasaki, Japan
- * E-mail: (TI); (SM)
| |
Collapse
|
50
|
Juma SP, Maro A, Pholwat S, Mpagama SG, Gratz J, Liyoyo A, Houpt ER, Kibiki GS, Mmbaga BT, Heysell SK. Underestimated pyrazinamide resistance may compromise outcomes of pyrazinamide containing regimens for treatment of drug susceptible and multi-drug-resistant tuberculosis in Tanzania. BMC Infect Dis 2019; 19:129. [PMID: 30732572 PMCID: PMC6367741 DOI: 10.1186/s12879-019-3757-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the leading cause of death from an infectious disease and the roll-out of rapid molecular diagnostics for rifampin resistance has resulted in a steady rise in the number of patients with multidrug-resistant (MDR)-TB referred for treatment. Pyrazinamide is used in susceptible TB treatment for 6 months when used in combination with rifampin, isoniazid and ethambutol and is an important companion drug in novel MDR-TB trials. This study was undertaken to determine the prevalence of pyrazinamide resistance by either phenotypic or pncA testing among patients admitted to a referral hospital in Tanzania for drug-susceptible and MDR-TB treatment. METHODS Surveillance sputa were sent among subjects beginning TB therapy at the national MDR-TB referral hospital during a 6 month period in 2013-2014. Mycobacterial cultures of pretreatment sputa were performed at the Kilimanjaro Clinical Research Institute (KCRI) in the BACTEC mycobacterial growth indicator tubes (MGIT) 960 system. Speciation of M. tuberculosis complex was confirmed by MTBc assay. Isolates were sub-cultured on to Lowenstein-Jensen (LJ) slants. Phenotypic resistance to pyrazinamide was performed in the MGIT system while a real-time PCR with High Resolution Melt (HRM) technique was used to determine mutation in the pncA gene from the same pure subculture. Sputa were then collected monthly to determine the time to culture negativity. Final treatment outcome was determined. RESULTS Ninety-one M. tuberculosis isolates from individual patients were available for analysis of which 30 (32.9%) had MDR-TB, the mean (±SD) age was 33 ± 10 years, and the majority 23 (76.7%) were males. Of the 30 MDR-TB patients, 15(50%) had isolates with pyrazinamide resistance by conventional MGIT testing. This proportion expectedly exceeded the number with pyrazinamide resistance in the 61 patients without MDR-TB, 13 (21.3%) (p = 0.008). Six (20%) of MDR-TB patients had a poor outcome including treatment failure. Among patients with treatment failure, 5 (83%) had pyrazinamide resistance compared to only 10 (41.6%) with treatment success (p = 0.08). Two patients died, and both had isolates with pyrazinamide resistance. No other pretreatment characteristic was associated with treatment outcome. CONCLUSION Pyrazinamide susceptibility appears to be important in clinical outcomes for MDR-TB patients, and susceptibility testing appears to be a critical adjunct to TB care. The high proportion of PZA resistance in non-MDR TB cases calls for further local investigation.
Collapse
Affiliation(s)
- Saumu Pazia Juma
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre and Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
| | - Athanasia Maro
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Suporn Pholwat
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| | - Stellah G. Mpagama
- Kilimanjaro Christian Medical Centre and Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kibong’oto Infectious Diseases Hospital, Kilimanjaro, Tanzania
| | - Jean Gratz
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| | - Alphonse Liyoyo
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre and Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| | | | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre and Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
| | - Scott K. Heysell
- Kibong’oto Infectious Diseases Hospital, Kilimanjaro, Tanzania
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| |
Collapse
|