1
|
Shi H, Mao X, Yang F, Zhu M, Tan N, Tan W, Gu T, Zhang X. Multi-scale analysis of acidophilic microbial consortium biofilm's tolerance of lithium and cobalt ions in bioleaching. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134764. [PMID: 38824773 DOI: 10.1016/j.jhazmat.2024.134764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Metal ions stress will inhibit the oxidation capacity of iron and sulfur of an acidophilic microbial consortium (AMC), which leads to reduced bioleaching efficiency. This work explored the impacts of Li+ and Co2+ on the composition and function of AMC biofilms with a multi-scale approach. At the reactor scale, the results indicated that the oxidative activity, the adsorption capacity, and the biofilm formation ability of AMC on pyrite surfaces decreased under 500 mM Li+ and 500 mM Co2+. At the biofilm scale, the electrochemical measurements showed that Li+ and Co2+ inhibited the charge transfer between the pyrite working electrode and the biofilm, and decreased the corrosion current density of the pyrite working electrode. At the cell scale, the content of proteins in extracellular polymers substrate (EPS) increased as the concentrations of metal ions increased. Moreover, the adsorption capacity of EPS for Li+ and Co2+ increased. At the microbial consortium scale, a BugBase phenotype analysis showed that under 500 mM Li+ and 500 mM Co2+, the antioxidant stress capacity and the content of mobile gene elements in AMC increased. The results in this work can provide useful data and theoretical support for the regulation strategy of the bioleaching of spent lithium-ion batteries to recover valuable metals.
Collapse
Affiliation(s)
- Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingshun Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ningjie Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Jha A, Barsola B, Pathania D, Sonu, Raizada P, Thakur P, Singh P, Rustagi S, Khosla A, Chaudhary V. Nano-biogenic heavy metals adsorptive remediation for enhanced soil health and sustainable agricultural production. ENVIRONMENTAL RESEARCH 2024; 252:118926. [PMID: 38657848 DOI: 10.1016/j.envres.2024.118926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Hazardous heavy metal (HM) pollution constitutes a pervasive global challenge, posing substantial risks to ecosystems and human health. The exigency for expeditious detection, meticulous monitoring, and efficacious remediation of HM within ecosystems is indisputable. Soil contamination, stemming from a myriad of anthropogenic activities, emerges as a principal conduit for HM ingress into the food chain. Traditional soil remediation modalities for HM elimination, while effective are labor-intensive, susceptible to secondary contamination, and exhibit limited efficacy in regions characterized by low metal toxicity. In response to these exigencies, the eco-friendly paradigm of bioremediation has garnered prominence as a financially judicious and sustainable remedial strategy. This approach entails the utilization of hyperaccumulators, Genetically Modified Microorganisms (GMM), and advantageous microbes. The current review offers a comprehensive elucidation of cutting-edge phyto/microbe-based bioremediation techniques, with a specific emphasis on their amalgamation with nanotechnology. Accentuating their pivotal role in advancing sustainable agricultural practices, the review meticulously dissects the synergistic interplay between plants and microbes, underscoring their adeptness in HM remediation sans secondary contamination. Moreover, the review scrutinizes the challenges intrinsic to implementing bioremediation-nanotechnology interface techniques and propounds innovative resolutions. These discernments proffer auspicious trajectories for the future of agriculture. Through the environmentally conscientious marvels of phyto/microbe bioremediation, an optimistic outlook emerges for environmental preservation and the cultivation of a sustainable, salubrious planet via the conduit of cleaner agricultural production.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Bindiya Barsola
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Diksha Pathania
- Department of Biosciences and Technology, MMEC, Maharishi Markandeshwar University, Mullana (Ambala), Haryana,133203, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Thakur
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, PR China.
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; Centre for Research Impact & Outcome, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
3
|
Goff JL, Szink EG, Durrence KL, Lui LM, Nielsen TN, Kuehl JV, Hunt KA, Chandonia JM, Huang J, Thorgersen MP, Poole FL, Stahl DA, Chakraborty R, Deutschbauer AM, Arkin AP, Adams MWW. Genomic and environmental controls on Castellaniella biogeography in an anthropogenically disturbed subsurface. ENVIRONMENTAL MICROBIOME 2024; 19:26. [PMID: 38671539 PMCID: PMC11046850 DOI: 10.1186/s40793-024-00570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Castellaniella species have been isolated from a variety of mixed-waste environments including the nitrate and multiple metal-contaminated subsurface at the Oak Ridge Reservation (ORR). Previous studies examining microbial community composition and nitrate removal at ORR during biostimulation efforts reported increased abundances of members of the Castellaniella genus concurrent with increased denitrification rates. Thus, we asked how genomic and abiotic factors control the Castellaniella biogeography at the site to understand how these factors may influence nitrate transformation in an anthropogenically impacted setting. We report the isolation and characterization of several Castellaniella strains from the ORR subsurface. Five of these isolates match at 100% identity (at the 16S rRNA gene V4 region) to two Castellaniella amplicon sequence variants (ASVs), ASV1 and ASV2, that have persisted in the ORR subsurface for at least 2 decades. However, ASV2 has consistently higher relative abundance in samples taken from the site and was also the dominant blooming denitrifier population during a prior biostimulation effort. We found that the ASV2 representative strain has greater resistance to mixed metal stress than the ASV1 representative strains. We attribute this resistance, in part, to the large number of unique heavy metal resistance genes identified on a genomic island in the ASV2 representative genome. Additionally, we suggest that the relatively lower fitness of ASV1 may be connected to the loss of the nitrous oxide reductase (nos) operon (and associated nitrous oxide reductase activity) due to the insertion at this genomic locus of a mobile genetic element carrying copper resistance genes. This study demonstrates the value of integrating genomic, environmental, and phenotypic data to characterize the biogeography of key microorganisms in contaminated sites.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Elizabeth G Szink
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Konnor L Durrence
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Lauren M Lui
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jiawen Huang
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Romy Chakraborty
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Hu L, Tan X, Lu L, Meng X, Li Y, Yao H. DNA-SIP delineates unique microbial communities in the rhizosphere of the hyperaccumulator Sedum alfredii which are beneficial to Cd phytoextraction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116016. [PMID: 38301580 DOI: 10.1016/j.ecoenv.2024.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Rhizo-microbe recruited by hyperaccumulating plants are crucial for the extraction of metals from contaminated soils. It is important, but difficult, to identify the specific rhizosphere microbes of hyperaccumulators shaped by root exudation. Continuous 13CO2 labeling, microbial DNA-based stable isotope probing (DNA-SIP), and high throughput sequencing were applied to identify those rhizosphere microorganisms using exudates from the Cd hyperaccumulator Sedum alfredii. In contrast to its non-hyperaccumulating ecotype (NAE), the hyperaccumulating ecotype (HAE) of S. alfredii strongly changed the rhizosphere environment and extracted a 5-fold higher concentration of Cd from contaminated soil. Although both HAE and NAE harbored Streptomyces, Massilia, Bacillus, and WPS-2 Uncultured Bacteria with relative abundance of more than 1% in the rhizosphere associated with plant growth and immunity, the HAE rhizosphere specifically recruited Rhodanobacter (2.66%), Nocardioides (1.16%), and Burkholderia (1.01%) through exudates to benefit the extraction of Cd from soil. Different from the bacterial network with weak cooperation in the NAE rhizosphere, a closed-loop bacterial network shaped by exudates was established in the HAE rhizosphere to synergistically resist Cd. This research reveals a specific rhizosphere bacterial community induced by exudates assisted in the extraction of Cd by S. alfredii and provides a new perspective for plant regulation of the rhizo-microbe community beneficial for optimizing phytoremediation.
Collapse
Affiliation(s)
- Lanfang Hu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingyan Tan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Lingli Lu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangtian Meng
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
5
|
Chen M, Trotter VV, Walian PJ, Chen Y, Lopez R, Lui LM, Nielsen TN, Malana RG, Thorgersen MP, Hendrickson AJ, Carion H, Deutschbauer AM, Petzold CJ, Smith HJ, Arkin AP, Adams MWW, Fields MW, Chakraborty R. Molecular mechanisms and environmental adaptations of flagellar loss and biofilm growth of Rhodanobacter under environmental stress. THE ISME JOURNAL 2024; 18:wrae151. [PMID: 39113613 PMCID: PMC11410051 DOI: 10.1093/ismejo/wrae151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.5 to 5) and nitrates (13.7 to 146 mM). Eight Rhodanobacter strains demonstrated significant biofilm growth under low pH, suggesting adaptations for survival and growth at low pH. Biofilms were intensified under aluminum stress, particularly in strains possessing fewer genetic traits associated with biofilm formation, findings warranting further investigation. Through random barcode transposon-site sequencing (RB-TnSeq), proteomics, use of specific mutants, and transmission electron microscopy analysis, we discovered flagellar loss under aluminum stress, indicating a potential relationship between motility, metal tolerance, and biofilm growth. Comparative genomic analyses revealed the absence of flagella and chemotaxis genes and the presence of a putative type VI secretion system in the highly biofilm-forming strain FW021-MT20. In this study we identified genetic determinants associated with biofilm growth under metal stress in a predominant environmental genus, Rhodanobacter, and identified traits aiding survival and adaptation to contaminated subsurface environments.
Collapse
Affiliation(s)
- Mingfei Chen
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Valentine V Trotter
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter J Walian
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romario Lopez
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lauren M Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Torben N Nielsen
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ria Gracielle Malana
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andrew J Hendrickson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Héloïse Carion
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Heidi J Smith
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Adam P Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Matthew W Fields
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Romy Chakraborty
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
6
|
Goff JL, Lui LM, Nielsen TN, Poole FL, Smith HJ, Walker KF, Hazen TC, Fields MW, Arkin AP, Adams MWW. Mixed waste contamination selects for a mobile genetic element population enriched in multiple heavy metal resistance genes. ISME COMMUNICATIONS 2024; 4:ycae064. [PMID: 38800128 PMCID: PMC11128244 DOI: 10.1093/ismeco/ycae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/11/2024] [Indexed: 05/29/2024]
Abstract
Mobile genetic elements (MGEs) like plasmids, viruses, and transposable elements can provide fitness benefits to their hosts for survival in the presence of environmental stressors. Heavy metal resistance genes (HMRGs) are frequently observed on MGEs, suggesting that MGEs may be an important driver of adaptive evolution in environments contaminated with heavy metals. Here, we report the meta-mobilome of the heavy metal-contaminated regions of the Oak Ridge Reservation subsurface. This meta-mobilome was compared with one derived from samples collected from unimpacted regions of the Oak Ridge Reservation subsurface. We assembled 1615 unique circularized DNA elements that we propose to be MGEs. The circular elements from the highly contaminated subsurface were enriched in HMRG clusters relative to those from the nearby unimpacted regions. Additionally, we found that these HMRGs were associated with Gamma and Betaproteobacteria hosts in the contaminated subsurface and potentially facilitate the persistence and dominance of these taxa in this region. Finally, the HMRGs were associated with conjugative elements, suggesting their potential for future lateral transfer. We demonstrate how our understanding of MGE ecology, evolution, and function can be enhanced through the genomic context provided by completed MGE assemblies.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Kathleen F Walker
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37916, United States
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37916, United States
- Genome Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
7
|
Liu CHM, Dahms HU, Hsieh CY, Lin ZY, Lin TY, Huang XQ. Bacterial heavy metal resistance related to environmental conditions. CHEMOSPHERE 2024; 347:140539. [PMID: 37951402 DOI: 10.1016/j.chemosphere.2023.140539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Contaminated water bodies such as rivers provide reservoirs for bacterial resistance. This field study tested the water quality and the bacterial resistance to heavy metals of Qishan River water pollution. Wastewater discharged to environmental surface waters is a major pathway of heavy metals and heavy metal-resistant bacteria. Contaminated water bodies such as rivers provide reservoirs for bacterial resistance. This field study tested the water quality and bacterial resistance to heavy metals of Qishan River water pollution. Guided by our research hypothesis that an overall increase in downstream heavy metal resistance levels was following an increase in human settlements were eight sites sampled along the Qishan River. These were situated upstream and downstream to the confluence of the Qishan River with the Kaoping River. In the laboratory bacterial heavy metal resistance was bio-assayed by disk diffusion and micro-dilution with six widely used heavy metals. The comparison of bacterial resistance was among Qishan River upstream sites (sites 1-6) and downstream sites (sites 7-9). Multi-drug-resistant bacteria and co-resistance against heavy metals and antibacterials appeared at site 8. This research discusses the correlation between environmental factors, and antibacterial and heavy metal resistance. The results provide stakeholders and authorities responsible for environmental pollution with a reference for risk assessment and management of bacterial resistance.
Collapse
Affiliation(s)
- Cheng-Han Michael Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, ROC; Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| | - Chi-Ying Hsieh
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC; Water Resources Education and Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| | - Zong-Ying Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Tai-Yan Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC; University Social Responsibility Project Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Xiao-Qian Huang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| |
Collapse
|
8
|
Skoog EJ, Fournier GP, Bosak T. Assessing the Influence of HGT on the Evolution of Stress Responses in Microbial Communities from Shark Bay, Western Australia. Genes (Basel) 2023; 14:2168. [PMID: 38136990 PMCID: PMC10742547 DOI: 10.3390/genes14122168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial systems that colonized peritidal environments before the evolution of complex life. To understand how these microbial communities evolved to grow and metabolize in the presence of various environmental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using these genes and their most closely related homologs from other environments in order to determine the likelihood of these HGT events occurring within the pustular mat. Phylogenies of several stress-related genes-including those involved in response to osmotic stress, oxidative stress and arsenic toxicity-indicate a potentially long history of HGT events and are consistent with these transfers occurring outside of modern pustular mats. The phylogeny of a particular osmoprotectant transport gene reveals relatively recent adaptations and suggests interactions between Planctomycetota and Myxococcota within these pustular mats. Overall, HGT phylogenies support a potentially broad distribution in the relative timing of the HGT events of stress-related genes and demonstrate ongoing microbial adaptations and evolution in these pustular mat communities.
Collapse
Affiliation(s)
- Emilie J. Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| |
Collapse
|
9
|
Mahbub KR, Chénard C, Batinovic S, Petrovski S, Lauro FM, Rahman MH, Megharaj M, Franks AE, Labbate M. Complex interactions between diverse mobile genetic elements drive the evolution of metal-resistant bacterial genomes. Environ Microbiol 2023; 25:3387-3405. [PMID: 37915109 DOI: 10.1111/1462-2920.16532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
In this study, we compared the genomes of three metal-resistant bacteria isolated from mercury-contaminated soil. We identified diverse and novel MGEs with evidence of multiple LGT events shaping their genomic structure and heavy metal resistance. Among the three metal-resistant strains, Sphingobium sp SA2 and Sphingopyxis sp SE2 were resistant to multiple metals including mercury, cadmium, copper, zinc and lead. Pseudoxanthomonas sp SE1 showed resistance to mercury only. Whole genome sequencing by Illumina and Oxford Nanopore technologies was undertaken to obtain comprehensive genomic data. The Sphingobium and Sphingopyxis strains contained multiple chromosomes and plasmids, whereas the Pseudoxanthomonas strain contained one circular chromosome. Consistent with their metal resistance profiles, the strains of Sphingobium and Sphingopyxis contained a higher quantity of diverse metal resistance genes across their chromosomes and plasmids compared to the single-metal resistant Pseudoxanthomonas SE1. In all three strains, metal resistance genes were principally associated with various novel MGEs including genomic islands (GIs), integrative conjugative elements (ICEs), transposons, insertion sequences (IS), recombinase in trio (RIT) elements and group II introns, indicating their importance in facilitating metal resistance adaptation in a contaminated environment. In the Pseudoxanthomonas strain, metal resistance regions were largely situated on a GI. The chromosomes of the strains of Sphingobium and Sphingopyxis contained multiple metal resistance regions, which were likely acquired by several GIs, ICEs, numerous IS elements, several Tn3 family transposons and RIT elements. Two of the plasmids of Sphingobium were impacted by Tn3 family transposons and ISs likely integrating metal resistance genes. The two plasmids of Sphingopyxis harboured transposons, IS elements, an RIT element and a group II intron. This study provides a comprehensive annotation of complex genomic regions of metal resistance associated with novel MGEs. It highlights the critical importance of LGT in the evolution of metal resistance of bacteria in contaminated environments.
Collapse
Affiliation(s)
- Khandaker Rayhan Mahbub
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Caroline Chénard
- Asian School for the Environment, Nanyang Technological University, Singapore, Singapore
| | - Steven Batinovic
- Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
- Centre for Future Landscapes, La Trobe University, Bundoora, Victoria, Australia
| | - Federico M Lauro
- Asian School for the Environment, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering/Nanyang Technological University, Singapore, Singapore
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore
| | - Md Hafizur Rahman
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment, The University of Newcastle (UoN), Callaghan, New South Wales, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
- Centre for Future Landscapes, La Trobe University, Bundoora, Victoria, Australia
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
10
|
Weiss A, Wang T, You L. Promotion of plasmid maintenance by heterogeneous partitioning of microbial communities. Cell Syst 2023; 14:895-905.e5. [PMID: 37820728 PMCID: PMC10591896 DOI: 10.1016/j.cels.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/09/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Transferable plasmids play a critical role in shaping the functions of microbial communities. Previous studies suggested multiple mechanisms underlying plasmid persistence and abundance. Here, we focus on the interplay between heterogeneous community partitioning and plasmid fates. Natural microbiomes often experience partitioning that creates heterogeneous local communities with reduced population sizes and biodiversity. Little is known about how population partitioning affects the plasmid fate through the modulation of community structure. By modeling and experiments, we show that heterogeneous community partitioning can paradoxically promote the persistence of a plasmid that would otherwise not persist in a global community. Among the local communities created by partitioning, a minority will primarily consist of members able to transfer the plasmid fast enough to support its maintenance by serving as a local plasmid haven. Our results provide insights into plasmid maintenance and suggest a generalizable approach to modulate plasmid persistence for engineering and medical applications.
Collapse
Affiliation(s)
- Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Teng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
11
|
Hu G, Cao H, Ye C, Wang F. Effect of cadmium stress on the bacterial community in the rhizosphere of mulberry (Morus alba L.). Braz J Microbiol 2023; 54:2297-2305. [PMID: 37594657 PMCID: PMC10484825 DOI: 10.1007/s42770-023-01090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Mulberry has a good tolerance to cadmium (Cd) and is considered a candidate plant for phytoremediation. The rhizosphere microbial community plays an important role in phytoremediation. Nevertheless, little information on the rhizosphere microbial community mechanisms in mulberry during the phytoremediation of Cd-contaminated soil is available. In this study, the remediation efficiency of mulberry in pots subjected to three simulated Cd pollution levels and their rhizosphere bacterial communities during the remediation process were analyzed. "Yuesang 11" was used as the test mulberry variety, and three simulated Cd pollution levels were set by adding three concentrations of Cd (Cd5, 5 mg kg-1; Cd3, 3 mg kg-1; Cd2, 2 mg kg-1). The results showed that the elimination rates of Cd in the rhizosphere soil were 81.7%, 85.3%, and 57.9% under the stress of the Cd2, Cd3, and Cd5 conditions, respectively. Meanwhile, 3,082,583 high-quality sequence reads and 976 operational taxonomic units were successfully obtained from the mulberry rhizosphere soil by high-throughput absolute quantification sequencing and further assigned to 11 bacterial phyla and 26 families. Of these, decreased abundances of 19 bacteria at the family level and increased abundances of seven bacteria under Cd stress were revealed by comparative analysis. Based on the alpha diversity indices (Chaol, Shannon and Simpson) and principal component analysis, the rhizosphere bacterial diversity of the Cd5 condition was significantly decreased, but that of the Cd2 and Cd3 conditions was not different from that of soil without Cd (CK). Likewise, redundancy analysis showed that the abundances of Acidobacteria Gp2, Acidobacteria Gp13, and Sphingobacteria were significantly positively associated with the elimination rates of Cd. This study suggested that the mulberry rhizosphere contains a relatively stable bacterial community consisting of diverse Cd-resistant bacteria, providing a scientific basis for remediating heavy-metal polluted soils using mulberry.
Collapse
Affiliation(s)
- Guiping Hu
- Economic Crops Research Institute of Jiangxi Province, Nanchang, 330202, Jiangxi, China.
- Jiangxi Provincial Research Center for Sericultural Engineering and Technology, Nanchang, 330202, China.
| | - Hongmei Cao
- Economic Crops Research Institute of Jiangxi Province, Nanchang, 330202, Jiangxi, China
- Jiangxi Provincial Research Center for Sericultural Engineering and Technology, Nanchang, 330202, China
| | - Chuan Ye
- Economic Crops Research Institute of Jiangxi Province, Nanchang, 330202, Jiangxi, China
- Jiangxi Provincial Research Center for Sericultural Engineering and Technology, Nanchang, 330202, China
| | - Feng Wang
- Economic Crops Research Institute of Jiangxi Province, Nanchang, 330202, Jiangxi, China
- Jiangxi Provincial Research Center for Sericultural Engineering and Technology, Nanchang, 330202, China
| |
Collapse
|
12
|
Zhang X, Xiao L, Liu J, Tian Q, Xie J. Trade-off in genome turnover events leading to adaptive evolution of Microcystis aeruginosa species complex. BMC Genomics 2023; 24:462. [PMID: 37592233 PMCID: PMC10433662 DOI: 10.1186/s12864-023-09555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Numerous studies in the past have expanded our understanding of the genetic differences of global distributed cyanobacteria that originated around billions of years ago, however, unraveling how gene gain and loss drive the genetic evolution of cyanobacterial species, and the trade-off of these evolutionary forces are still the central but poorly understood issues. RESULTS To delineate the contribution of gene flow in mediating the hereditary differentiation and shaping the microbial evolution, a global genome-wide study of bloom-forming cyanobacterium, Microcystis aeruginosa species complex, provided robust evidence for genetic diversity, reflected by enormous variation in gene repertoire among various strains. Mathematical extrapolation showed an 'open' microbial pan-genome of M. aeruginosa species, since novel genes were predicted to be introduced after new genomes were sequenced. Identification of numerous horizontal gene transfer's signatures in genome regions of interest suggested that genome expansion via transformation and phage-mediated transduction across bacterial lineage as an evolutionary route may contribute to the differentiation of Microcystis functions (e.g., carbohydrate metabolism, amino acid metabolism, and energy metabolism). Meanwhile, the selective loss of some dispensable genes at the cost of metabolic versatility is as a mean of adaptive evolution that has the potential to increase the biological fitness. CONCLUSIONS Now that the recruitment of novel genes was accompanied by a parallel loss of some other ones, a trade-off in gene content may drive the divergent differentiation of M. aeruginosa genomes. Our study provides a genetic framework for the evolution of M. aeruginosa species and illustrates their possible evolutionary patterns.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, China.
| | - Lijun Xiao
- Guangdong Corps Hospital of Chinese People's Armed Police Forces, Guangzhou, China
| | - Jiahui Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Qibai Tian
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jiaqi Xie
- Hunan Food and Drug Vocational College, Changsha, China
| |
Collapse
|
13
|
Yao Y, Fu B, Han D, Zhang Y, Wei Z, Liu H. Reduction, evolutionary pattern and positive selection of genes encoding formate dehydrogenase in Wood-Ljungdahl pathway of gastrointestinal acetogens suggests their adaptation to formate-rich habitats. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:129-141. [PMID: 36779246 PMCID: PMC10103890 DOI: 10.1111/1758-2229.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/23/2022] [Indexed: 05/20/2023]
Abstract
Acetogens are anaerobes using Wood-Ljungdahl pathway (WLP) as the terminal electron acceptor for both assimilation and dissimilation of CO2 and widely distributed in diverse habitats. However, their habitat adaptation is often unclear. Given that bacterial genome evolution is often the result of environmental selective pressure, hereby we analysed gene copy number, phylogeny and selective pressure of genes involved in WLP within known genomes of 43 species to study the habitat adaption of gastrointestinal acetogens. The gene copy number of formate dehydrogenase (FDH) in gastrointestinal acetogens was much lower than that of non-gastrointestinal acetogens, and in five cases, no FDH genes were found in the genomes of five gastrointestinal acetogens, but that of the other WLP genes showed no difference. The evolutionary pattern of FDH genes was significantly different from that of the other enzymes. Additionally, seven positively selected sites were only identified in the fdhF genes, which means fdhF mutations favoured their adaptation. Collectively, reduction or loss of FDH genes and their evolutionary pattern as well as positive selection in gastrointestinal acetogens indicated their adaptation to formate-rich habitats, implying that FDH genes catalysing CO2 reduction to formate as the first step of methyl branch of WLP may have evolved independently.
Collapse
Affiliation(s)
- Ye Yao
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxiChina
| | - Bo Fu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxiChina
- Jiangsu Collaborative Innovation Center of Technology and Material of Water TreatmentSuzhouChina
| | - Dongfei Han
- School of Environmental Science and EngineeringSuzhou University of Science and TechnologySuzhouPeople's Republic of China
- Institute of Environment and Sustainable Development in AgricultureChinese Academy of Agricultural SciencesBeijingChina
| | - Yan Zhang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxiChina
- Jiangsu Collaborative Innovation Center of Technology and Material of Water TreatmentSuzhouChina
| | - Zhiyuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - He Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxiChina
- Jiangsu Collaborative Innovation Center of Technology and Material of Water TreatmentSuzhouChina
| |
Collapse
|
14
|
Goff JL, Szink EG, Thorgersen MP, Putt AD, Fan Y, Lui LM, Nielsen TN, Hunt KA, Michael JP, Wang Y, Ning D, Fu Y, Van Nostrand JD, Poole FL, Chandonia J, Hazen TC, Stahl DA, Zhou J, Arkin AP, Adams MWW. Ecophysiological and genomic analyses of a representative isolate of highly abundant Bacillus cereus strains in contaminated subsurface sediments. Environ Microbiol 2022; 24:5546-5560. [PMID: 36053980 PMCID: PMC9805006 DOI: 10.1111/1462-2920.16173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/10/2022] [Indexed: 01/09/2023]
Abstract
Bacillus cereus strain CPT56D-587-MTF (CPTF) was isolated from the highly contaminated Oak Ridge Reservation (ORR) subsurface. This site is contaminated with high levels of nitric acid and multiple heavy metals. Amplicon sequencing of the 16S rRNA genes (V4 region) in sediment from this area revealed an amplicon sequence variant (ASV) with 100% identity to the CPTF 16S rRNA sequence. Notably, this CPTF-matching ASV had the highest relative abundance in this community survey, with a median relative abundance of 3.77% and comprised 20%-40% of reads in some samples. Pangenomic analysis revealed that strain CPTF has expanded genomic content compared to other B. cereus species-largely due to plasmid acquisition and expansion of transposable elements. This suggests that these features are important for rapid adaptation to native environmental stressors. We connected genotype to phenotype in the context of the unique geochemistry of the site. These analyses revealed that certain genes (e.g. nitrate reductase, heavy metal efflux pumps) that allow this strain to successfully occupy the geochemically heterogenous microniches of its native site are characteristic of the B. cereus species while others such as acid tolerance are mobile genetic element associated and are generally unique to strain CPTF.
Collapse
Affiliation(s)
- Jennifer L. Goff
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Elizabeth G. Szink
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Michael P. Thorgersen
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Andrew D. Putt
- Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Yupeng Fan
- Institute for Environmental GenomicsUniversity of OklahomaNormanOklahomaUSA
| | - Lauren M. Lui
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Torben N. Nielsen
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Kristopher A. Hunt
- Civil and Environmental EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | | | - Yajiao Wang
- Institute for Environmental GenomicsUniversity of OklahomaNormanOklahomaUSA
| | - Daliang Ning
- Institute for Environmental GenomicsUniversity of OklahomaNormanOklahomaUSA
| | - Ying Fu
- Institute for Environmental GenomicsUniversity of OklahomaNormanOklahomaUSA
| | | | - Farris L. Poole
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - John‐Marc Chandonia
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Terry C. Hazen
- Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTennesseeUSA,Genome Sciences DivisionOak Ridge National LabOak RidgeTennesseeUSA,Department of Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleTennesseeUSA
| | - David A. Stahl
- Civil and Environmental EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Jizhong Zhou
- Institute for Environmental GenomicsUniversity of OklahomaNormanOklahomaUSA,Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA,School of Civil Engineering and Environmental SciencesUniversity of OklahomaNormanOklahomaUSA,Earth and Environmental SciencesLawrence Berkley National LaboratoryBerkeleyCaliforniaUSA
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA,Department of BioengineeringUniversity of California at BerkeleyBerkeleyCaliforniaUSA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
15
|
Wang T, Weiss A, Aqeel A, Wu F, Lopatkin AJ, David LA, You L. Horizontal gene transfer enables programmable gene stability in synthetic microbiota. Nat Chem Biol 2022; 18:1245-1252. [PMID: 36050493 PMCID: PMC10018779 DOI: 10.1038/s41589-022-01114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
The functions of many microbial communities exhibit remarkable stability despite fluctuations in the compositions of these communities. To date, a mechanistic understanding of this function-composition decoupling is lacking. Statistical mechanisms have been commonly hypothesized to explain such decoupling. Here, we proposed that dynamic mechanisms, mediated by horizontal gene transfer (HGT), also enable the independence of functions from the compositions of microbial communities. We combined theoretical analysis with numerical simulations to illustrate that HGT rates can determine the stability of gene abundance in microbial communities. We further validated these predictions using engineered microbial consortia of different complexities transferring one or more than a dozen clinically isolated plasmids, as well as through the reanalysis of data from the literature. Our results demonstrate a generalizable strategy to program the gene stability of microbial communities.
Collapse
Affiliation(s)
- Teng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ammara Aqeel
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Feilun Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Allison J Lopatkin
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Lawrence A David
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Neethu CS, Saravanakumar C, Purvaja R, Robin RS, Ramesh R. Arsenic resistance and horizontal gene transfer are associated with carbon and nitrogen enrichment in bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119937. [PMID: 35977641 DOI: 10.1016/j.envpol.2022.119937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/14/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Coastal waters are confluences receiving large amounts of point and non-point sources of pollution. An attempt was made to explore microbial community interactions in response to carbon, nitrogen and metal pollution. Additionally, experiments were designed to analyze the influence of these factors on horizontal gene transfer (HGT). Shift in bacterial diversity dynamics by arsenic stress and nutrient addition in coastal waters was explored by metagenomics of microcosm setups. Phylogenetic analysis revealed equal distribution of Gammaproteobacteria (29%) and Betaproteobacteria (28%) in control microcosm. This proportional diversity from control switched to unique distribution of Gammaproteobacteria (44.5%)> Flavobacteria (17.7%)> Bacteriodia (11.92%)> Betaproteobacteria (11.52%) in microcosm supplemented with carbon, nitrogen and metal (C + N + M). Among metal-stressed systems, alpha diversity analysis indicated highest diversity of genera in C + N + M followed by N + M > C+M> metal alone. Arsenic and ampicillin sensitive E. coli XL1 blue and environmental strains (Vibrio tubiashii W85 and E. coli W101) were tested for efficiency of uptake of plasmid (P) pUCminusMCS (arsBRampR) under varying stress conditions. Transformation experiments revealed that combined effect of carbon, nitrogen and metal on horizontal gene transfer (HGT) was significantly higher (p < 0.01) than individual factors. The effect of carbon on HGT was proved to be superior to nitrogen under metal stressed conditions. Presence of arsenic in experimental setups (P + M, P + N + M and P + C + M) enhanced the HGT compared to non-metal counterparts supplemented with carbon or nitrogen. Arsenic resistant bacterial isolates (n = 200) were tested for the ability to utilize various carbon and nitrogen substrates and distinct positive correlation (p < 0.001) was found between arsenic resistance and utilization of urea and nitrate. However, evident positive correlation was not found between carbon sources and arsenic resistance. Our findings suggest that carbon and nitrogen pollution in aquatic habitats under arsenic stress determine the microbial community dynamics and critically influence uptake of genetic material from the surrounding environment.
Collapse
Affiliation(s)
- C S Neethu
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - C Saravanakumar
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India.
| |
Collapse
|
17
|
Bärenstrauch M, Vanhove AS, Allégra S, Peuble S, Gallice F, Paran F, Lavastre V, Girardot F. Microbial diversity and geochemistry of groundwater impacted by steel slag leachates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156987. [PMID: 35772557 DOI: 10.1016/j.scitotenv.2022.156987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
To understand long-term impacts of steel slag material on aquifer geochemistry and microbial communities, we conducted four sampling campaigns in the Gier alluvial groundwater (Loire, France). In its northern part, the aquifer flows under a 200,000 m3 steel slag exhibiting high levels of chromium and molybdenum. Geochemical analyses of the water table revealed the existence of water masses with different chemical signatures. They allowed us to identify an area particularly contaminated by leachates from the slag heap, whatever the sampling period. Water samples from this area were compared to non-contaminated samples, with geochemical characteristics similar to the river samples. To follow changes in microbial communities, the V3-V4 region of 16 s rRNA gene was sequenced. Overall, we observed lower diversity indices in contaminated areas, with higher relative abundances of Verrucomicrobiota and Myxococcota phyla, while several Proteobacteria orders exhibited lower relative abundances. In particular, one single genus among the Verrucomicrobiota, Candidatus Omnitrophus, represented up to 36 % of total taxon abundance in areas affected by steel slag leachates. A large proportion of taxa identified in groundwater were also detected in the upstream river, indicating strong river-groundwater interactions. Our findings pave the way for future research work on C. Omnitrophus remediation capacities.
Collapse
Affiliation(s)
- Margot Bärenstrauch
- Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023 Saint-Etienne, France
| | - Audrey S Vanhove
- Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023 Saint-Etienne, France
| | - Séverine Allégra
- Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023 Saint-Etienne, France
| | - Steve Peuble
- Mines Saint-Étienne, Centre "Sciences des Processus Industriels et Naturels" (SPIN), Département "Procédés pour l'Environnement et les Géo-ressources" (PEG), UMR 5600 EVS, UMR 5307 LGF, F-42023 Saint-Etienne, France
| | - Frédéric Gallice
- Mines Saint-Étienne, Centre "Sciences des Processus Industriels et Naturels" (SPIN), Département "Procédés pour l'Environnement et les Géo-ressources" (PEG), UMR 5600 EVS, UMR 5307 LGF, F-42023 Saint-Etienne, France
| | - Frédéric Paran
- Mines Saint-Étienne, Centre "Sciences des Processus Industriels et Naturels" (SPIN), Département "Procédés pour l'Environnement et les Géo-ressources" (PEG), UMR 5600 EVS, UMR 5307 LGF, F-42023 Saint-Etienne, France
| | - Véronique Lavastre
- Université de Lyon, Université Jean Monnet Saint-Etienne, Laboratoire de Géologie de Lyon - Terre Planètes Environnement LGL-TPE, CNRS -UMR 5276, F-42023 Saint-Etienne, France
| | - Françoise Girardot
- Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023 Saint-Etienne, France.
| |
Collapse
|
18
|
Development of a Markerless Deletion Mutagenesis System in Nitrate-Reducing Bacterium Rhodanobacter denitrificans. Appl Environ Microbiol 2022; 88:e0040122. [PMID: 35737807 PMCID: PMC9317963 DOI: 10.1128/aem.00401-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rhodanobacter has been found as the dominant genus in aquifers contaminated with high concentrations of nitrate and uranium in Oak Ridge, TN, USA. The in situ stimulation of denitrification has been proposed as a potential method to remediate nitrate and uranium contamination. Among the Rhodanobacter species, Rhodanobacter denitrificans strains have been reported to be capable of denitrification and contain abundant metal resistance genes. However, due to the lack of a mutagenesis system in these strains, our understanding of the mechanisms underlying low-pH resistance and the ability to dominate in the contaminated environment remains limited. Here, we developed an in-frame markerless deletion system in two R. denitrificans strains. First, we optimized the growth conditions, tested antibiotic resistance, and determined appropriate transformation parameters in 10 Rhodanobacter strains. We then deleted the upp gene, which encodes uracil phosphoribosyltransferase, in R. denitrificans strains FW104-R3 and FW104-R5. The resulting strains were designated R3_Δupp and R5_Δupp and used as host strains for mutagenesis with 5-fluorouracil (5-FU) resistance as the counterselection marker to generate markerless deletion mutants. To test the developed protocol, the narG gene encoding nitrate reductase was knocked out in the R3_Δupp and R5_Δupp host strains. As expected, the narG mutants could not grow in anoxic medium with nitrate as the electron acceptor. Overall, these results show that the in-frame markerless deletion system is effective in two R. denitrificans strains, which will allow for future functional genomic studies in these strains furthering our understanding of the metabolic and resistance mechanisms present in Rhodanobacter species. IMPORTANCE Rhodanobacter denitrificans is capable of denitrification and is also resistant to toxic heavy metals and low pH. Accordingly, the presence of Rhodanobacter species at a particular environmental site is considered an indicator of nitrate and uranium contamination. These characteristics suggest its future potential application in bioremediation of nitrate or concurrent nitrate and uranium contamination in groundwater ecosystems. Due to the lack of genetic tools in this organism, the mechanisms of low-pH and heavy metal resistance in R. denitrificans strains remain elusive, which impedes its use in bioremediation strategies. Here, we developed a genome editing method in two R. denitrificans strains. This work marks a crucial step in developing Rhodanobacter as a model for studying the diverse mechanisms of low-pH and heavy metal resistance associated with denitrification.
Collapse
|
19
|
de Raad M, Li YV, Kuehl JV, Andeer PF, Kosina SM, Hendrickson A, Saichek NR, Golini AN, Han LZ, Wang Y, Bowen BP, Deutschbauer AM, Arkin AP, Chakraborty R, Northen TR. A Defined Medium for Cultivation and Exometabolite Profiling of Soil Bacteria. Front Microbiol 2022; 13:855331. [PMID: 35694313 PMCID: PMC9174792 DOI: 10.3389/fmicb.2022.855331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Exometabolomics is an approach to assess how microorganisms alter, or react to their environments through the depletion and production of metabolites. It allows the examination of how soil microbes transform the small molecule metabolites within their environment, which can be used to study resource competition and cross-feeding. This approach is most powerful when used with defined media that enable tracking of all metabolites. However, microbial growth media have traditionally been developed for the isolation and growth of microorganisms but not metabolite utilization profiling through Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Here, we describe the construction of a defined medium, the Northen Lab Defined Medium (NLDM), that not only supports the growth of diverse soil bacteria but also is defined and therefore suited for exometabolomic experiments. Metabolites included in NLDM were selected based on their presence in R2A medium and soil, elemental stoichiometry requirements, as well as knowledge of metabolite usage by different bacteria. We found that NLDM supported the growth of 108 of the 110 phylogenetically diverse (spanning 36 different families) soil bacterial isolates tested and all of its metabolites were trackable through LC–MS/MS analysis. These results demonstrate the viability and utility of the constructed NLDM medium for growing and characterizing diverse microbial isolates and communities.
Collapse
Affiliation(s)
- Markus de Raad
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Yifan V. Li
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jennifer V. Kuehl
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Peter F. Andeer
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Suzanne M. Kosina
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Andrew Hendrickson
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Nicholas R. Saichek
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Amber N. Golini
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - La Zhen Han
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Ying Wang
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Benjamin P. Bowen
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Adam M. Deutschbauer
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Adam P. Arkin
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Romy Chakraborty
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Trent R. Northen
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
- Lawrence Berkeley National Laboratory, Joint Genome Institute, Berkeley, CA, United States
- *Correspondence: Trent R. Northen,
| |
Collapse
|
20
|
Aldas-Vargas A, Hauptfeld E, Hermes GDA, Atashgahi S, Smidt H, Rijnaarts HHM, Sutton NB. Selective pressure on microbial communities in a drinking water aquifer - Geochemical parameters vs. micropollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118807. [PMID: 35007672 DOI: 10.1016/j.envpol.2022.118807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/26/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Groundwater quality is crucial for drinking water production, but groundwater resources are increasingly threatened by contamination with pesticides. As pesticides often occur at micropollutant concentrations, they are unattractive carbon sources for microorganisms and typically remain recalcitrant. Exploring microbial communities in aquifers used for drinking water production is an essential first step towards understanding the fate of micropollutants in groundwater. In this study, we investigated the interaction between groundwater geochemistry, pesticide presence, and microbial communities in an aquifer used for drinking water production. Two groundwater monitoring wells in The Netherlands were sampled in 2014, 2015, and 2016. In both wells, water was sampled from five discrete depths ranging from 13 to 54 m and was analyzed for geochemical parameters, pesticide concentrations and microbial community composition using 16S rRNA gene sequencing and qPCR. Groundwater geochemistry was stable throughout the study period and pesticides were heterogeneously distributed at low concentrations (μg L-1 range). Microbial community composition was also stable throughout the sampling period. Integration of a unique dataset of chemical and microbial data showed that geochemical parameters and to a lesser extent pesticides exerted selective pressure on microbial communities. Microbial communities in both wells showed similar composition in the deeper aquifer, where pumping results in horizontal flow. This study provides insight into groundwater parameters that shape microbial community composition. This information can contribute to the future implementation of remediation technologies to guarantee safe drinking water production.
Collapse
Affiliation(s)
- Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, EV Wageningen, the Netherlands
| | - Ernestina Hauptfeld
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, EV Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700, EH Wageningen, the Netherlands
| | - Gerben D A Hermes
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700, EH Wageningen, the Netherlands
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700, EH Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700, EH Wageningen, the Netherlands
| | - Huub H M Rijnaarts
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, EV Wageningen, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, EV Wageningen, the Netherlands.
| |
Collapse
|
21
|
Ma L, Yang W, Huang S, Liu R, Li H, Huang X, Xiong J, Liu X. Integrative Assessments on Molecular Taxonomy of Acidiferrobacter thiooxydans ZJ and Its Environmental Adaptation Based on Mobile Genetic Elements. Front Microbiol 2022; 13:826829. [PMID: 35250944 PMCID: PMC8889020 DOI: 10.3389/fmicb.2022.826829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acidiferrobacter spp. are facultatively anaerobic acidophiles that belong to a distinctive Acidiferrobacteraceae family, which are similar to Ectothiorhodospiraceae phylogenetically, and are closely related to Acidithiobacillia class/subdivision physiologically. The limited genome information has kept them from being studied on molecular taxonomy and environmental adaptation in depth. Herein, Af. thiooxydans ZJ was isolated from acid mine drainage (AMD), and the complete genome sequence was reported to scan its genetic constitution for taxonomic and adaptative feature exploration. The genome has a single chromosome of 3,302,271 base pairs (bp), with a GC content of 63.61%. The phylogenetic tree based on OrthoANI highlighted the unique position of Af. thiooxydans ZJ, which harbored more unique genes among the strains from Ectothiorhodospiraceae and Acidithiobacillaceae by pan-genome analysis. The diverse mobile genetic elements (MGEs), such as insertion sequence (IS), clustered regularly interspaced short palindromic repeat (CRISPR), prophage, and genomic island (GI), have been identified and characterized in Af. thiooxydans ZJ. The results showed that Af. thiooxydans ZJ may effectively resist the infection of foreign viruses and gain functional gene fragments or clusters to shape its own genome advantageously. This study will offer more evidence of the genomic plasticity and improve our understanding of evolutionary adaptation mechanisms to extreme AMD environment, which could expand the potential utilization of Af. thiooxydans ZJ as an iron and sulfur oxidizer in industrial bioleaching.
Collapse
Affiliation(s)
- Liyuan Ma
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Weiyi Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shanshan Huang
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Rui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Huiying Li
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xinping Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Junming Xiong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
22
|
Genomic Features and Pervasive Negative Selection in Rhodanobacter Strains Isolated from Nitrate and Heavy Metal Contaminated Aquifer. Microbiol Spectr 2022; 10:e0259121. [PMID: 35107332 PMCID: PMC8809349 DOI: 10.1128/spectrum.02591-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rhodanobacter species dominate in the Oak Ridge Reservation (ORR) subsurface environments contaminated with acids, nitrate, metal radionuclides, and other heavy metals. To uncover the genomic features underlying adaptations to these mixed-waste environments and to guide genetic tool development, we sequenced the whole genomes of eight Rhodanobacter strains isolated from the ORR site. The genome sizes ranged from 3.9 to 4.2 Mb harboring 3,695 to 4,035 protein-coding genes and GC contents approximately 67%. Seven strains were classified as R. denitrificans and one strain, FW510-R12, as R. thiooxydans based on full length 16S rRNA sequences. According to gene annotation, the top two Cluster of Orthologous Groups (COGs) with high pan-genome expansion rates (Pan/Core gene ratio) were “replication, recombination and repair” and “defense mechanisms.” The denitrifying genes had high DNA homologies except the predicted protein structure variances in NosZ. In contrast, heavy metal resistance genes were diverse with between 7 to 34% of them were located in genomic islands, and these results suggested origins from horizontal gene transfer. Analysis of the methylation patterns in four strains revealed the unique 5mC methylation motifs. Most orthologs (78%) had ratios of nonsynonymous to synonymous substitutions (dN/dS) less than one when compared to the type strain 2APBS1, suggesting the prevalence of negative selection. Overall, the results provide evidence for the important roles of horizontal gene transfer and negative selection in genomic adaptation at the contaminated field site. The complex restriction-modification system genes and the unique methylation motifs in Rhodanobacter strains suggest the potential recalcitrance to genetic manipulation. IMPORTANCE Despite the dominance of Rhodanobacter species in the subsurface of the contaminated Oak Ridge Reservation (ORR) site, very little is known about the mechanisms underlying their adaptions to the various stressors present at ORR. Recently, multiple Rhodanobacter strains have been isolated from the ORR groundwater samples from several wells with varying geochemical properties. Using Illumina, PacBio, and Oxford Nanopore sequencing platforms, we obtained the whole genome sequences of eight Rhodanobacter strains. Comparison of the whole genomes demonstrated the genetic diversity, and analysis of the long nanopore reads revealed the heterogeneity of methylation patterns in strains isolated from the same well. Although all strains contained a complete set of denitrifying genes, the predicted tertiary structures of NosZ differed. The sequence comparison results demonstrate the important roles of horizontal gene transfer and negative selection in adaptation. In addition, these strains may be recalcitrant to genetic manipulation due to the complex restriction-modification systems and methylations.
Collapse
|
23
|
Eggers S, Safdar N, Kates A, Sethi AK, Peppard PE, Kanarek MS, Malecki KMC. Urinary lead level and colonization by antibiotic resistant bacteria: Evidence from a population-based study. Environ Epidemiol 2021; 5:e175. [PMID: 34909555 PMCID: PMC8663876 DOI: 10.1097/ee9.0000000000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Infection by antibiotic resistant bacteria (ARB) is a global health crisis and asymptomatic colonization increases risk of infection. Nonhuman studies have linked heavy metal exposure to the selection of ARB; however, few epidemiologic studies have examined this relationship. This study analyzes the association between urinary lead level and colonization by ARB in a nonclinical human population. METHODS Data came from the Survey of the Health of Wisconsin 2016-2017, and its ancillary Wisconsin Microbiome Study. Urinary lead levels, adjusted for creatinine, were used to assess exposure. ARB included methicillin resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), fluoroquinolone resistant Gram-negative bacilli (RGNB), and Clostridium difficile (C. diff), from skin, nose, and mouth swabs, and saliva and stool samples. Logistic regression, adjusted for covariates, was used to evaluate associations between Pb and ARB. Secondary analysis investigated Pb resistance from ARB isolates. RESULTS Among 695 participants, 239 (34%) tested positive for ARB. Geometric mean urinary Pb (unadjusted) was 0.286 µg/L (95% confidence intervals [CI] = 0.263, 0.312) for ARB negative participants and 0.323 µg/L (95% CI = 0.287, 0.363) for ARB positive participants. Models adjusted for demographics, diet, and antibiotic use showed elevated odds of positive colonization for those in the 95th percentile (vs. below) of Pb exposure (odds ratio [OR] = 2.05, 95% CI = 0.95, 4.44), and associations were highest in urban residents (OR = 2.85, 95% CI = 1.07, 7.59). RGNB isolates were most resistant to Pb. DISCUSSION These novel results suggest that Pb exposure is associated with increased colonization by ARB, and that RGNB are particularly resistant to Pb.
Collapse
Affiliation(s)
- Shoshannah Eggers
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- William S. Middleton Veterans Affairs Medical Center, Madison, WI
| | - Ashley Kates
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- William S. Middleton Veterans Affairs Medical Center, Madison, WI
| | - Ajay K. Sethi
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
| | - Paul E. Peppard
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
| | - Marty S. Kanarek
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- Nelson Institute for Environmental Studies, University of Wisconsin—Madison, Madison, WI
| | - Kristen M. C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
| |
Collapse
|
24
|
Zhang X, Yu D, Wang H. Pepper root rot resistance and pepper yield are enhanced through biological agent G15 soil amelioration. PeerJ 2021; 9:e11768. [PMID: 34322325 PMCID: PMC8297472 DOI: 10.7717/peerj.11768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
Pepper root rot is a serious soil-borne disease that hinders pepper production, and efforts are being made to identify biological agents that can prevent and control pepper root rot. Our group recently discovered and produced a biological agent, named G15, which reduces the diversity and richness of fungi and bacteria when applied to pepper fields. In the soil of the G15-treatment condition, the pathogenic fungus Fusarium was inhibited, while the richness of beneficial bacteria Rhodanobacter was increased. Also, the ammonia nitrogen level was decreased in the G15-treatment soil, and the pH, total carbon, and total potassium levels were increased. Compared to the control condition, pepper yield was increased in the treatment group (by 16,680 kg acre-1). We found that G15 could alter the microbial community structure of the pepper rhizosphere. These changes alter the physical and chemical properties of the soil and, ultimately, improve resistance to pepper root rot and increase pepper yield.
Collapse
Affiliation(s)
- Xuejiang Zhang
- Institute of Plant Protection and Soil & Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Provience, China.,Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, Hubei Province, P. R. China
| | - Dazhao Yu
- Institute of Plant Protection and Soil & Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Provience, China.,Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, Hubei Province, P. R. China
| | - Hua Wang
- Institute of Plant Protection and Soil & Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Provience, China.,Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, Hubei Province, P. R. China
| |
Collapse
|
25
|
Abstract
Bacteria acquire novel DNA through horizontal gene transfer (HGT), a process that enables an organism to rapidly adapt to changing environmental conditions, provides a competitive edge and potentially alters its relationship with its host. Although the HGT process is routinely exploited in laboratories, there is a surprising disconnect between what we know from laboratory experiments and what we know from natural environments, such as the human gut microbiome. Owing to a suite of newly available computational algorithms and experimental approaches, we have a broader understanding of the genes that are being transferred and are starting to understand the ecology of HGT in natural microbial communities. This Review focuses on these new technologies, the questions they can address and their limitations. As these methods are applied more broadly, we are beginning to recognize the full extent of HGT possible within a microbiome and the punctuated dynamics of HGT, specifically in response to external stimuli. Furthermore, we are better characterizing the complex selective pressures on mobile genetic elements and the mechanisms by which they interact with the bacterial host genome.
Collapse
Affiliation(s)
- Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
26
|
Kothari A, Roux S, Zhang H, Prieto A, Soneja D, Chandonia JM, Spencer S, Wu X, Altenburg S, Fields MW, Deutschbauer AM, Arkin AP, Alm EJ, Chakraborty R, Mukhopadhyay A. Ecogenomics of Groundwater Phages Suggests Niche Differentiation Linked to Specific Environmental Tolerance. mSystems 2021; 6:e0053721. [PMID: 34184913 PMCID: PMC8269241 DOI: 10.1128/msystems.00537-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023] Open
Abstract
Viruses are ubiquitous microbiome components, shaping ecosystems via strain-specific predation, horizontal gene transfer and redistribution of nutrients through host lysis. Viral impacts are important in groundwater ecosystems, where microbes drive many nutrient fluxes and metabolic processes; however, little is known about the diversity of viruses in these environments. We analyzed four groundwater plasmidomes (the entire plasmid content of an environment) and identified 200 viral sequences, which clustered into 41 genus-level viral clusters (approximately equivalent to viral genera) including 9 known and 32 putative new genera. We used publicly available bacterial whole-genome sequences (WGS) and WGS from 261 bacterial isolates from this groundwater environment to identify potential viral hosts. We linked 76 of the 200 viral sequences to a range of bacterial phyla, the majority associated with Proteobacteria, followed by Firmicutes, Bacteroidetes, and Actinobacteria. The publicly available WGS enabled mapping bacterial hosts to several viral sequences. The WGS of groundwater isolates increased the depth of host prediction by allowing host identification at the strain level. The latter included 4 viruses that were almost entirely (>99% query coverage, >99% identity) identified as integrated in the genomes of Pseudomonas, Acidovorax, and Castellaniella strains, resulting in high-confidence host assignments. Lastly, 21 of these viruses carried putative auxiliary metabolite genes for metal and antibiotic resistance, which might drive their infection cycles and/or provide selective advantage to infected hosts. Exploring the groundwater virome provides a necessary foundation for integration of viruses into ecosystem models where they are key players in microbial adaption to environmental stress. IMPORTANCE To our knowledge, this is the first study to identify the bacteriophage distribution in a groundwater ecosystem shedding light on their prevalence and distribution across metal-contaminated and background sites. Our study is uniquely based on selective sequencing of solely the extrachromosomal elements of a microbiome followed by analysis for viral signatures, thus establishing a more focused approach for phage identifications. Using this method, we detected several novel phage genera along with those previously established. Our approach of using the whole-genome sequences of hundreds of bacterial isolates from the same site enabled us to make host assignments with high confidence, several at strain levels. Certain phage genes suggest that they provide an environment-specific selective advantage to their bacterial hosts. Our study lays the foundation for future research on directed phage isolations using specific bacterial host strains to further characterize groundwater phages, their life cycles, and their effects on groundwater microbiome and biogeochemistry.
Collapse
Affiliation(s)
- Ankita Kothari
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hanqiao Zhang
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Anatori Prieto
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Drishti Soneja
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sarah Spencer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xiaoqin Wu
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sara Altenburg
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Matthew W. Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, USA
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Energy Biosciences Institute, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Eric J. Alm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT Cambridge, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Romy Chakraborty
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
27
|
Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol Mol Biol Rev 2021; 85:85/2/e00026-20. [PMID: 33789927 DOI: 10.1128/mmbr.00026-20] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability of ecosystems to withstand disturbances and maintain their functions is being increasingly tested as rates of change intensify due to climate change and other human activities. Microorganisms are crucial players underpinning ecosystem functions, and the recovery of microbial communities from disturbances is therefore a key part of the complex processes determining the fate of ecosystem functioning. However, despite global environmental change consisting of numerous pressures, it is unclear and controversial how multiple disturbances affect microbial community stability and what consequences this has for ecosystem functions. This is particularly the case for those multiple or compounded disturbances that occur more frequently than the normal recovery time. The aim of this review is to provide an overview of the mechanisms that can govern the responses of microbes to multiple disturbances across aquatic and terrestrial ecosystems. We first summarize and discuss properties and mechanisms that influence resilience in aquatic and soil biomes to determine whether there are generally applicable principles. Following, we focus on interactions resulting from inherent characteristics of compounded disturbances, such as the nature of the disturbance, timing, and chronology that can lead to complex and nonadditive effects that are modulating the response of microorganisms.
Collapse
|
28
|
Lui LM, Majumder ELW, Smith HJ, Carlson HK, von Netzer F, Fields MW, Stahl DA, Zhou J, Hazen TC, Baliga NS, Adams PD, Arkin AP. Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Front Microbiol 2021; 12:642422. [PMID: 33841364 PMCID: PMC8024649 DOI: 10.3389/fmicb.2021.642422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.
Collapse
Affiliation(s)
- Lauren M. Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Heidi J. Smith
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Hans K. Carlson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Frederick von Netzer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Matthew W. Fields
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology & Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Paul D. Adams
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Adam P. Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
29
|
Hao X, Zhu J, Rensing C, Liu Y, Gao S, Chen W, Huang Q, Liu YR. Recent advances in exploring the heavy metal(loid) resistant microbiome. Comput Struct Biotechnol J 2020; 19:94-109. [PMID: 33425244 PMCID: PMC7771044 DOI: 10.1016/j.csbj.2020.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Heavy metal(loid)s exert selective pressure on microbial communities and evolution of metal resistance determinants. Despite increasing knowledge concerning the impact of metal pollution on microbial community and ecological function, it is still a challenge to identify a consistent pattern of microbial community composition along gradients of elevated metal(loid)s in natural environments. Further, our current knowledge of the microbial metal resistome at the community level has been lagging behind compared to the state-of-the-art genetic profiling of bacterial metal resistance mechanisms in a pure culture system. This review provides an overview of the core metal resistant microbiome, development of metal resistance strategies, and potential factors driving the diversity and distribution of metal resistance determinants in natural environments. The impacts of biotic factors regulating the bacterial metal resistome are highlighted. We finally discuss the advances in multiple technologies, research challenges, and future directions to better understand the interface of the environmental microbiome with the metal resistome. This review aims to highlight the diversity and wide distribution of heavy metal(loid)s and their corresponding resistance determinants, helping to better understand the resistance strategy at the community level.
Collapse
Affiliation(s)
- Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Testing Different Membrane Filters for 16S rRNA Gene-Based Metabarcoding in Karstic Springs. WATER 2020. [DOI: 10.3390/w12123400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: Karstic springs are used worldwide by rural communities as sources of fresh water for humans and livestock. In Romania, one-third of the population has no direct access to a public water supply. The present study is part of a country-wide project to develop simple, quick and cheap methods for seasonal environmental and microbiological monitoring of karstic springs used as drinking water by rural populations. Critical steps for monitoring workflow consist of evaluating water quality and selecting suitable membrane filters to efficiently capture environmental DNA for further microbial diversity estimation using 16S rRNA gene-based metabarcoding. Methods: Several commercial membrane filters of different compositions and pore sizes were tested on the water sampled from three karstic springs in Romania, followed by water chemistry and whole community 16S rRNA gene-based metabarcoding analysis. Results: We found that different types of applied membrane filters provide varying recovery in diversity and abundance of both overall and pathogenic bacteria. Conclusions: The result of the experiment with different filters shows that mixed cellulose ester, cellulose acetate, and nitrate membranes of 0.20 and 0.22 µm are the best for amplicon-based metabarcoding monitoring of karst springs.
Collapse
|
31
|
Coelho da Costa Waite C, Oliveira Andrade da Silva G, Pires Bitencourt JA, Pereira Torres Chequer L, Pennafirme S, de Azevedo Jurelevicius D, Seldin L, Araújo Carlos Crapez M. Potential application of Pseudomonas stutzeri W228 for removal of copper and lead from marine environments. PLoS One 2020; 15:e0240486. [PMID: 33104697 PMCID: PMC7588114 DOI: 10.1371/journal.pone.0240486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022] Open
Abstract
High concentrations of metals in the environment alter bacterial diversity, selecting resistant and tolerant species. The study evaluated the selection of a potential bacterial strain from Sepetiba Bay-Rio de Janeiro, Brazil marine sediments to remove Cu and Pb. The bacterial strain isolated from the sediments was used in three different bioassays: (1) Cu at concentrations of 0 (control), 6 and 50 μg.mL-1; (2) Pb at concentrations of 0 (control), 6 and 50 μg.mL-1; (3) Cu + Pb in concentrations of 3 μg.mL-1 Cu + 3 μg.mL-1 Pb (6 μg.mL-1) and 25 μg.mL-1 Cu + 25 μg.mL-1 Pb (50 μg.mL-1). The number of cells and the enzymatic activities of dehydrogenases and esterases were quantified. Results of taxonomic identification indicated the selection of the Pseudomonas stutzeri W228 strain, showing a greater degree of similarity (±73%) with the database used. There was no significant variation in the number of cells, 108 cells.mL-1, which represents a high biomass production in the presence of stressors. However, we observed a reduction in dehydrogenase activity at all tested concentrations of Cu, Pb and Cu + Pb. The activity of esterase increased, indicating a higher energy demand to complete the bacterial life cycle. The study showed significant results for the absorption of Pb by the extracellular polymeric substances (EPS) and the efflux of Cu. The capacity of Pb absorption by EPS can be considered a resistance mechanism, as well as the efflux of Cu, so that the available EPS sites could be occupied by the most toxic ions demonstrating that Pseudomonas stutzeri is resistant to Pb and Cu.
Collapse
Affiliation(s)
- Carolina Coelho da Costa Waite
- Programa de Biologia Marinha e Ambientes Costeiros, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- * E-mail:
| | | | | | - Luciana Pereira Torres Chequer
- Programa de Biologia Marinha e Ambientes Costeiros, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Simone Pennafirme
- Programa de Biologia Marinha e Ambientes Costeiros, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Diogo de Azevedo Jurelevicius
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde.CCS—Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucy Seldin
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde.CCS—Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mirian Araújo Carlos Crapez
- Programa de Biologia Marinha e Ambientes Costeiros, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
32
|
Chen L, Zhang J, Dai H, Hu BX, Tong J, Gui D, Zhang X, Xia C. Comparison of the groundwater microbial community in a salt-freshwater mixing zone during the dry and wet seasons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110969. [PMID: 32583802 DOI: 10.1016/j.jenvman.2020.110969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/22/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
To gain a better understanding of the microbial community in salt-freshwater mixing zones, in this study, the influence of seasonal variation on the groundwater microbial community was evaluated by high throughput 16S rDNA gene sequencing. The results showed that notable changes in microbial community occurred in a salt-freshwater mixing zone and the groundwater samples in the dry season were more saline than those in the wet season. The increase in precipitation during the wet season relieved local seawater intrusion. Microbial diversity varied greatly with seasons, while no obvious change pattern was found. Proteobacteria was identified as the dominant phylum in all samples. The genus Hydrogenophaga dominated in the dry season, while the genus Acidovorax dominated in the wet season. Dissolved oxygen affected the diversity of the microbial communities during the dry and wet season, while groundwater level had a strong influence on the structure of microbial communities. Phylogenetic molecular network analysis of the microbial communities indicated that increased seawater intrusion led to a more compact microbial network and strengthening the groundwater microbial interactions.
Collapse
Affiliation(s)
- Lin Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), 100083, Beijing, China; Shenyang Geological Survey, China Geological Survey, 110034, Shenyang, China
| | - Jin Zhang
- Institute of Groundwater and Earth Science, Jinan University, 510632, Guangzhou, China; Green Development Institute of Zhaoqing, 526000, Zhaoqing, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 510632, Guangzhou, China
| | - Heng Dai
- Institute of Groundwater and Earth Science, Jinan University, 510632, Guangzhou, China.
| | - Bill X Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 100083, Beijing, China; Institute of Groundwater and Earth Science, Jinan University, 510632, Guangzhou, China.
| | - Juxiu Tong
- School of Water Resources and Environment, China University of Geosciences (Beijing), 100083, Beijing, China
| | - Dongwei Gui
- Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xiaoying Zhang
- College of Construct Engineering, Jilin University, 130012, Changchun, China
| | - Chuanan Xia
- Institute of Groundwater and Earth Science, Jinan University, 510632, Guangzhou, China
| |
Collapse
|
33
|
Meng D, Wu J, Xu Z, Xu Y, Li H, Jin W, Zhang J. Effect of passive ventilation on the performance of unplanted sludge treatment wetlands: heavy metal removal and microbial community variation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31665-31676. [PMID: 32500490 DOI: 10.1007/s11356-020-09288-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Sludge treatment wetlands (STWs) have been applied worldwide to treat excess sludge; however, the performance of STWs is generally limited by weather partly due to the plants vegetated on the STWs. In this study, ventilation is suggested to assist unvegetated STWs. Solid samples from different depths were analysed. Additionally, the variation of microbial community in STW unit was analysed and the fate of heavy metals in the sludge was determined. Results indicate that the STW unit with suitable parameters has better performance in stabilising and maturing the sludge than planted STW, which may contribute to the variation of the microbial community; additionally, ventilation exerts a positive influence on these bacteria during the variation of microbial community and on heavy metal removal through the substrate and positively impacts the Cd and Pb in reduction state. Furthermore, ventilation decreases the bioavailability of Cr. With ventilation in STWs, Bacillus and Streptomyces play a necessary role in enhancing the possibility of sludge to be used as microbial inoculants.
Collapse
Affiliation(s)
- Daizong Meng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jun Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yixiao Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huaizheng Li
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Wei Jin
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jin Zhang
- Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
34
|
Corretto E, Antonielli L, Sessitsch A, Höfer C, Puschenreiter M, Widhalm S, Swarnalakshmi K, Brader G. Comparative Genomics of Microbacterium Species to Reveal Diversity, Potential for Secondary Metabolites and Heavy Metal Resistance. Front Microbiol 2020; 11:1869. [PMID: 32903828 PMCID: PMC7438953 DOI: 10.3389/fmicb.2020.01869] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Microbacterium species have been isolated from a wide range of hosts and environments, including heavy metal-contaminated sites. Here, we present a comprehensive analysis on the phylogenetic distribution and the genetic potential of 70 Microbacterium belonging to 20 different species isolated from heavy metal-contaminated and non-contaminated sites with particular attention to secondary metabolites gene clusters. The analyzed Microbacterium species are divided in three main functional clades. They share a small core genome (331 gene families covering basic functions) pointing to high genetic diversity. The most common secondary metabolite gene clusters encode pathways for the production of terpenoids, type III polyketide synthases and non-ribosomal peptide synthetases, potentially responsible of the synthesis of siderophore-like compounds. In vitro tests showed that many Microbacterium strains produce siderophores, ACC deaminase, auxins (IAA) and are able to solubilize phosphate. Microbacterium isolates from heavy metal contaminated sites are on average more resistant to heavy metals and harbor more genes related to metal homeostasis (e.g., metalloregulators). On the other hand, the ability to increase the metal mobility in a contaminated soil through the secretion of specific molecules seems to be widespread among all. Despite the widespread capacity of strains to mobilize several metals, plants inoculated with selected Microbacterium isolates showed only slightly increased iron concentrations, whereas concentrations of zinc, cadmium and lead were decreased.
Collapse
Affiliation(s)
- Erika Corretto
- Bioresouces Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Livio Antonielli
- Bioresouces Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Angela Sessitsch
- Bioresouces Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Christoph Höfer
- Institute of Soil Research, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Puschenreiter
- Institute of Soil Research, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Siegrid Widhalm
- Bioresouces Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | | | - Günter Brader
- Bioresouces Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
35
|
ShadowCaster: Compositional Methods under the Shadow of Phylogenetic Models to Detect Horizontal Gene Transfers in Prokaryotes. Genes (Basel) 2020; 11:genes11070756. [PMID: 32645885 PMCID: PMC7397055 DOI: 10.3390/genes11070756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role for evolutionary innovations within prokaryotic communities and is a crucial event for their survival. Several computational approaches have arisen to identify HGT events in recipient genomes. However, this has been proven to be a complex task due to the generation of a great number of false positives and the prediction disagreement among the existing methods. Phylogenetic reconstruction methods turned out to be the most reliable ones, but they are not extensible to all genes/species and are computationally demanding when dealing with large datasets. In contrast, the so-called surrogate methods that use heuristic solutions either based on nucleotide composition patterns or phyletic distribution of BLAST hits can be applied easily to the genomic scale, but they fail in identifying common HGT events. Here, we present ShadowCaster, a hybrid approach that sequentially combines nucleotide composition-based predictions by support vector machines (SVMs) under the shadow of phylogenetic models independent of tree reconstruction, to improve the detection of HGT events in prokaryotes. ShadowCaster successfully predicted close and distant HGT events in both artificial and bacterial genomes. ShadowCaster detected HGT related to heavy metal resistance in the genome of Rhodanobacter denitrificans with higher accuracy than the most popular state-of-the-art computational approaches, encompassing most of the predicted cases made by other methods. ShadowCaster is released at the GitHub platform as an open-source software under the GPLv3 license.
Collapse
|
36
|
Storck V, Gallego S, Vasileiadis S, Hussain S, Béguet J, Rouard N, Baguelin C, Perruchon C, Devers-Lamrani M, Karpouzas DG, Martin-Laurent F. Insights into the Function and Horizontal Transfer of Isoproturon Degradation Genes ( pdmAB) in a Biobed System. Appl Environ Microbiol 2020; 86:e00474-20. [PMID: 32414799 PMCID: PMC7357488 DOI: 10.1128/aem.00474-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Biobeds, designed to minimize pesticide point source contamination, rely mainly on biodegradation processes. We studied the interactions of a biobed microbial community with the herbicide isoproturon (IPU) to explore the role of the pdmA gene, encoding the large subunit of an N-demethylase responsible for the initial demethylation of IPU, via quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR) and the effect of IPU on the diversity of the total bacterial community and its active fraction through amplicon sequencing of DNA and RNA, respectively. We further investigated the localization and dispersal mechanisms of pdmAB in the biobed packing material by measuring the abundance of the plasmid pSH (harboring pdmAB) of the IPU-degrading Sphingomonas sp. strain SH (previously isolated from the soil used in the biobed) compared with the abundance of the pdmA gene and metagenomic fosmid library screening. pdmA abundance and expression increased concomitantly with IPU mineralization, verifying its major role in IPU transformation in the biobed system. DNA- and RNA-based 16S rRNA gene sequencing analysis showed no effects on bacterial diversity. The pdmAB-harboring plasmid pSH showed a consistently lower abundance than pdmA, suggesting the localization of pdmAB in replicons other than pSH. Metagenomic analysis identified four pdmAB-carrying fosmids. In three of these fosmids, the pdmAB genes were organized in a well-conserved operon carried by sphingomonad plasmids with low synteny with pSH, while the fourth fosmid contained an incomplete pdmAB cassette localized in a genomic fragment of a Rhodanobacter strain. Further analysis suggested a potentially crucial role of IS6 and IS256 in the transposition and activation of the pdmAB operon.IMPORTANCE Our study provides novel insights into the interactions of IPU with the bacterial community of biobed systems, reinforces the assumption of a transposable nature of IPU-degrading genes, and verifies that on-farm biobed systems are hot spots for the evolution of pesticide catabolic traits.
Collapse
Affiliation(s)
- Veronika Storck
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sara Gallego
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sotirios Vasileiadis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College, University of Faisalabad, Faisalabad, Pakistan
| | - Jérémie Béguet
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Nadine Rouard
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Céline Baguelin
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
- Hydreka Enoveo, Lyon, France
| | - Chiara Perruchon
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Marion Devers-Lamrani
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Fabrice Martin-Laurent
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
37
|
Wang J, Peng X, Yang H, Lv B, Wang Z, Song Q. Mul-tiomics analysis of cadmium stress on the ovarian function of the wolf spider Pardosa pseudoannulata. CHEMOSPHERE 2020; 248:125904. [PMID: 32014633 DOI: 10.1016/j.chemosphere.2020.125904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) pollution is widespread in paddy filed soil in China. In this study, the toxicity of Cd with regard to the female reproductive system of paddy spider Pardosa pseudoannulata was investigated by means of multi-omics analyses (transcriptome, proteome, and miRNAs). Decreased activities of detoxifying enzymes including peroxidase (POD), Glutathione S-transferases (GST), and superoxide dismutase were detected in the ovary of P. pseudoannulata. Of these, GST and POD were consistently down-regulated at the transcriptional and translational levels. Vitellogenin content and fecundity of the spider were also reduced by Cd burden. Five vitellogenin encodes genes were down-regulated while only vitellogenin-6 protein was up-regulated. But protein lipovitellin-1, the main composition of vitellin, was down-regulated. In addition, the correlation between the mitogen-activated protein kinase (MAPK) signaling pathway and Cd stress was identified. A down-regulated gene that encoding connector of kinase to AP-1 in the MAPK signaling pathway was regulated by the up-regulated miRNA (miRNA id: miRNA dan-miR- 318>der-miR-318>dgr-miR-318>dme-miR-318-3p > dmo-miR-318>dpe-miR-318>dps-miR-318>dse-miR-318>dsi-miR-318>dvi-miR-318>dwi-miR-318>dya-miR-318). In conclusion, Cd stress possesses distinct female reproductive toxicity on P. pseudoannulata through impairing antioxidant system and synthesis of vitellin.
Collapse
Affiliation(s)
- Juan Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xianjin Peng
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Huilin Yang
- College of Resources & Environment, Hunan Agriculture University, Changsha, Hunan, 410128, China
| | - Bo Lv
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhi Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
38
|
Wang S, Zhang B, Li T, Li Z, Fu J. Soil vanadium(V)-reducing related bacteria drive community response to vanadium pollution from a smelting plant over multiple gradients. ENVIRONMENT INTERNATIONAL 2020; 138:105630. [PMID: 32163768 DOI: 10.1016/j.envint.2020.105630] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 05/13/2023]
Abstract
The mining and smelting of navajoite has resulted in a serious vanadium pollution in regional geological environments and significant influence on soil microorganisms. However, the core microbiome responsible for adjusting community response to vanadium pollution and the driving pattern have been kept unclear. In this study, a suite of surface and profile soil samples over multiple gradients were collected in four directions and distances of 10-2000 m from a vanadium smelting plant in Panzhihua, China. The indigenous microbial communities and vanadium(V)-reducing related bacteria (VRB) were profiled by 16S rRNA gene high-throughput sequencing technique. Five VRB were detected in the original collected soil samples including Bacillus, Geobacter, Clostridium, Pseudomonas and Comamonadaceae based on high-throughput sequencing data analysis, and their abundances were significantly related with the content of vanadium. Low vanadium concentration promoted the growth of VRB, while high vanadium concentration would inhibit VRB multiplication. The Gaussian equation could be used to quantitatively describe the nonlinear relationship between VRB and vanadium. Network analysis demonstrated that the microbial communities were significantly influenced by VRB assemblage, and 1.32-52.77% of microbes in the community showed a close association with VRB. A laboratory incubation experiment also confirmed the core role of VRB to drive community response to vanadium pressure.
Collapse
Affiliation(s)
- Song Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Tingting Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Zongyan Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jie Fu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
39
|
Zhou J, Li P, Meng D, Gu Y, Zheng Z, Yin H, Zhou Q, Li J. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113990. [PMID: 32018197 DOI: 10.1016/j.envpol.2020.113990] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/10/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) contamination in paddy soil becomes increasingly prominent in recent years, which endangers the safe production of food crops. Cd-tolerant endophytes are ideal mediators for decreasing Cd content in rice plants, but their effects on the rice endophytic microbial community and gene expression profile have not yet been well elucidated. In this study, 58 endophytic bacteria from rice seeds were isolated and characterized. Five strains of them were selected based on their potential growth-promoting traits and strong Cd tolerance that could grow well under 4 mM Cd2+. By 16S ribosomal RNA (rRNA) identification, these five strains were designated as Enterobacter tabaci R2-7, Pantoea agglomerans R3-3, Stenotrophomonas maltophilia R5-5, Sphingomonas sanguinis R7-3 and Enterobacter tabaci R3-2. Pot experiments in relieving Cd stress in rice plants showed that the S. maltophilia R5-5 performed the strongest potential for reducing the Cd content in root and blade by 81.33% and 77.78%, respectively. The endophytic microbial community diversity, richness and composition were significantly altered in S. maltophilia R5-5 inoculated rice plants. Reverse-transcription qPCR (RT-qPCR) showed that the expression of Cd transporters, OsNramp5 and OsHMA2, were down-regulated in S. maltophilia R5-5-innoculated rice roots. The results indicate that the inoculation of endophytic bacteria S. maltophilia R5-5 provides a reference for alleviating the heavy metal contamination in paddy fields and can be a better alternative for guaranteeing the safe production of crops. Changes in the relative abundance of Cd-resistant microorganisms and the expression of Cd transporters might be the intrinsic factors affecting cadmium content in rice.
Collapse
Affiliation(s)
- Jieyi Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Zhongyi Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Qingming Zhou
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
40
|
Comparative core/pan genome analysis of Vibrio cholerae isolates from Pakistan. INFECTION GENETICS AND EVOLUTION 2020; 82:104316. [PMID: 32278144 DOI: 10.1016/j.meegid.2020.104316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 01/23/2023]
Abstract
Cholera is an endemic disease in many regions of Asia including, Pakistan. Vibrio cholerae, the causative agent of cholera, is considered as one of the best adapted bacteria due to its ability to withstand severe environmental stresses. The V. cholerae genome is very plastic with many gene additions and deletions. In this study, we sought to understand the diversity of V. cholerae genes in two Pakistani subclades [e.g. Pakistani subclade I (PSC I) and Pakistani subclade II (PSC II)]. We have analyzed 44 PSC I and 56 PSC II strains, respectively. By analyzing our data, it was concluded that subclade group 2 (PSC II) has 2967 core genes repositories, while the PSC 1 group has just 1062 core genes. It was observed that the pangenome in the PSC II group is open while the pan-genome in PSC I are closed. It was also noted that the number of accessory genes (n = 2500) is higher in the PSC I group compared to the PSC II group (n = 550). Furthermore, analysis extended to the study of unique gene profiles suggested that all strains of the PSC II group have unique genes. One strain among the PSC II group had a high number of unique genes (n = 2612). However, in the PSC I group, only a few strains had unique genes with a maximum of 86 unique genes being found in a single strain. Core phylogeny of PSC I indicated that just three groups initially arose from a single common ancestor. At the same time, a complex pattern of evolution was found in the PSC II phylogenetic tree based on core gene information. This comparative genomic analysis has revealed 'waves' of V. cholerae evolution and information on its transmission and ability to modify its genetic content to survive in different environmental conditions. Here, we have investigated how the versatility of V. cholerae, a bacterium that persists across different habitats, is reflected in its genome. The data generated during the study should be extremely beneficial in defining the evolutionary relationship as well as diversity between V. cholerae subclades. It will also benefit epidemiological studies and the design of better treatment strategies for controlling epidemics.
Collapse
|
41
|
Gorter FA, Manhart M, Ackermann M. Understanding the evolution of interspecies interactions in microbial communities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190256. [PMID: 32200743 DOI: 10.1098/rstb.2019.0256] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbial communities are complex multi-species assemblages that are characterized by a multitude of interspecies interactions, which can range from mutualism to competition. The overall sign and strength of interspecies interactions have important consequences for emergent community-level properties such as productivity and stability. It is not well understood how interspecies interactions change over evolutionary timescales. Here, we review the empirical evidence that evolution is an important driver of microbial community properties and dynamics on timescales that have traditionally been regarded as purely ecological. Next, we briefly discuss different modelling approaches to study evolution of communities, emphasizing the similarities and differences between evolutionary and ecological perspectives. We then propose a simple conceptual model for the evolution of interspecies interactions in communities. Specifically, we propose that to understand the evolution of interspecies interactions, it is important to distinguish between direct and indirect fitness effects of a mutation. We predict that in well-mixed environments, traits will be selected exclusively for their direct fitness effects, while in spatially structured environments, traits may also be selected for their indirect fitness effects. Selection of indirectly beneficial traits should result in an increase in interaction strength over time, while selection of directly beneficial traits should not have such a systematic effect. We tested our intuitions using a simple quantitative model and found support for our hypotheses. The next step will be to test these hypotheses experimentally and provide input for a more refined version of the model in turn, thus closing the scientific cycle of models and experiments. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Florien A Gorter
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Michael Manhart
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| |
Collapse
|
42
|
Native Plasmid-Encoded Mercury Resistance Genes Are Functional and Demonstrate Natural Transformation in Environmental Bacterial Isolates. mSystems 2019; 4:4/6/e00588-19. [PMID: 31848306 PMCID: PMC6918032 DOI: 10.1128/msystems.00588-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid-mediated horizontal gene transfer (HGT) is a major driver of genetic diversity in bacteria. We experimentally validated the function of a putative mercury resistance operon present on an abundant 8-kbp native plasmid found in groundwater samples without detectable levels of mercury. Phylogenetic analyses of the plasmid-encoded mercury reductases from the studied groundwater site show them to be distinct from those reported in proximal metal-contaminated sites. We synthesized the entire native plasmid and demonstrated that the plasmid was sufficient to confer functional mercury resistance in Escherichia coli Given the possibility that natural transformation is a prevalent HGT mechanism in the low-cell-density environments of groundwaters, we also assayed bacterial strains from this environment for competence. We used the native plasmid-encoded metal resistance to design a screen and identified 17 strains positive for natural transformation. We selected 2 of the positive strains along with a model bacterium to fully confirm HGT via natural transformation. From an ecological perspective, the role of the native plasmid population in providing advantageous traits combined with the microbiome's capacity to take up environmental DNA enables rapid adaptation to environmental stresses.IMPORTANCE Horizontal transfer of mobile genetic elements via natural transformation has been poorly understood in environmental microbes. Here, we confirm the functionality of a native plasmid-encoded mercury resistance operon in a model microbe and then query for the dissemination of this resistance trait via natural transformation into environmental bacterial isolates. We identified 17 strains including Gram-positive and Gram-negative bacteria to be naturally competent. These strains were able to successfully take up the plasmid DNA and obtain a clear growth advantage in the presence of mercury. Our study provides important insights into gene dissemination via natural transformation enabling rapid adaptation to dynamic stresses in groundwater environments.
Collapse
|
43
|
Song D, Chen X, Xu M, Hai R, Zhou A, Tian R, Van Nostrand JD, Kempher ML, Guo J, Sun G, Zhou J. Adaptive Evolution of Sphingobium hydrophobicum C1 T in Electronic Waste Contaminated River Sediment. Front Microbiol 2019; 10:2263. [PMID: 31632374 PMCID: PMC6783567 DOI: 10.3389/fmicb.2019.02263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Electronic waste (e-waste) has caused a severe worldwide pollution problem. Despite increasing isolation of degradative microorganisms from e-waste contaminated environments, the mechanisms underlying their adaptive evolution in such habitats remain unclear. Sphingomonads generally have xenobiotic-degrading ability and may play important roles in bioremediation. Sphingobium hydrophobicum C1T, characterized with superior cell surface hydrophobicity, was recently isolated from e-waste contaminated river sediment. To dissect the mechanisms driving its adaptive evolution, we evaluated its stress resistance, sequenced its genome and performed comparative genomic analysis with 19 other Sphingobium strains. Strain C1T can feed on several kinds of e-waste-derived xenobiotics, exhibits a great resistance to heavy metals and possesses a high colonization ability. It harbors abundant genes involved in environmental adaptation, some of which are intrinsic prior to experiencing e-waste contamination. The extensive genomic variations between strain C1T and other Sphingobium strains, numerous C1T-unique genes, massive mobile elements and frequent genome rearrangements reflect a high genome plasticity. Positive selection, gene duplication, and especially horizontal gene transfer drive the adaptive evolution of strain C1T. Moreover, presence of type IV secretion systems may allow strain C1T to be a source of beneficial genes for surrounding microorganisms. This study provides new insights into the adaptive evolution of sphingomonads, and potentially guides bioremediation strategies.
Collapse
Affiliation(s)
- Da Song
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xingjuan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rong Hai
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA, United States
| | - Aifen Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Renmao Tian
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Jun Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guoping Sun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
44
|
Douglas GM, Langille MGI. Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes. Genome Biol Evol 2019; 11:2750-2766. [PMID: 31504488 PMCID: PMC6777429 DOI: 10.1093/gbe/evz184] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
High-throughput shotgun metagenomics sequencing has enabled the profiling of myriad natural communities. These data are commonly used to identify gene families and pathways that were potentially gained or lost in an environment and which may be involved in microbial adaptation. Despite the widespread interest in these events, there are no established best practices for identifying gene gain and loss in metagenomics data. Horizontal gene transfer (HGT) represents several mechanisms of gene gain that are especially of interest in clinical microbiology due to the rapid spread of antibiotic resistance genes in natural communities. Several additional mechanisms of gene gain and loss, including gene duplication, gene loss-of-function events, and de novo gene birth are also important to consider in the context of metagenomes but have been less studied. This review is largely focused on detecting HGT in prokaryotic metagenomes, but methods for detecting these other mechanisms are first discussed. For this article to be self-contained, we provide a general background on HGT and the different possible signatures of this process. Lastly, we discuss how improved assembly of genomes from metagenomes would be the most straight-forward approach for improving the inference of gene gain and loss events. Several recent technological advances could help improve metagenome assemblies: long-read sequencing, determining the physical proximity of contigs, optical mapping of short sequences along chromosomes, and single-cell metagenomics. The benefits and limitations of these advances are discussed and open questions in this area are highlighted.
Collapse
Affiliation(s)
- Gavin M Douglas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
45
|
Ugwuja CG, Adelowo OO, Ogunlaja A, Omorogie MO, Olukanni OD, Ikhimiukor OO, Iermak I, Kolawole GA, Guenter C, Taubert A, Bodede O, Moodley R, Inada NM, de Camargo ASS, Unuabonah EI. Visible-Light-Mediated Photodynamic Water Disinfection @ Bimetallic-Doped Hybrid Clay Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25483-25494. [PMID: 31268651 DOI: 10.1021/acsami.9b01212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study reports a new class of photocatalytic hybrid clay nanocomposites prepared from low-cost sources (kaolinite clay and Carica papaya seeds) doped with Zn and Cu salts via a solvothermal process. X-ray diffraction analysis suggests that Cu-doping and Cu/Zn-doping introduce new phases into the crystalline structure of Kaolinite clay, which is linked to the reduced band gap of kaolinite from typically between 4.9 and 8.2 eV to 2.69 eV for Cu-doped and 1.5 eV for Cu/Zn hybrid clay nanocomposites (Nisar, J.; Århammar, C.; Jämstorp, E.; Ahuja, R. Phys. Rev. B 2011, 84, 075120). In the presence of solar light irradiation, Cu- and Cu/Zn-doped nanocomposites facilitate the electron-hole pair separation. This promotes the generation of singlet oxygen which in turn improves the water disinfection efficiencies of these novel nanocomposite materials. The nanocomposite materials were further characterized using high-resolution scanning electron microscopy, fluorimetry, thermogravimetric analysis, and Raman spectroscopy. The breakthrough times of the nanocomposites for a fixed bed mode of disinfection of water contaminated with 2.32 × 107 cfu/mL E. coli ATCC 25922 under solar light irradiation are 25 h for Zn-doped, 30 h for Cu-doped, and 35 h for Cu/Zn-doped nanocomposites. In the presence of multidrug and multimetal resistant strains of E. coli, the breakthrough time decreases significantly. Zn-only doped nanocomposites are not photocatalytically active. In the absence of light, the nanocomposites are still effective in decontaminating water, although less efficient than under solar light irradiation. Electrostatic interaction, metal toxicity, and release of singlet oxygen (only in the Cu-doped and Cu/Zn-doped nanocomposites) are the three disinfection mechanisms by which these nanocomposites disinfect water. A regrowth study indicates the absence of any living E. coli cells in treated water even after 4 days. These data and the long hydraulic times (under gravity) exhibited by these nanocomposites during photodisinfection of water indicate an unusually high potential of these nanocomposites as efficient, affordable, and sustainable point-of-use systems for the disinfection of water in developing countries.
Collapse
Affiliation(s)
| | - Olawale O Adelowo
- Department of Microbiology , University of Ibadan , PMB 5116 , Ibadan , Oyo State 200284 , Nigeria
| | | | | | | | - Odion O Ikhimiukor
- Department of Microbiology , University of Ibadan , PMB 5116 , Ibadan , Oyo State 200284 , Nigeria
| | - Ievgeniia Iermak
- São Carlos Institute of Physics , University of São Paulo , Avenida Trabalhador Sãocarlense 400 , São Carlos 13566-590 , Brazil
| | - Gabriel A Kolawole
- Department of Chemistry , University of Zululand , Kwadlangezwa , 3886 , Republic of South Africa
| | | | | | - Olusola Bodede
- School of Chemistry and Physics , University of KwaZulu-Natal , Westville Campus , Durban , 3630 , South Africa
| | - Roshila Moodley
- School of Chemistry and Physics , University of KwaZulu-Natal , Westville Campus , Durban , 3630 , South Africa
| | - Natalia M Inada
- São Carlos Institute of Physics , University of São Paulo , Avenida Trabalhador Sãocarlense 400 , São Carlos 13566-590 , Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics , University of São Paulo , Avenida Trabalhador Sãocarlense 400 , São Carlos 13566-590 , Brazil
| | - Emmanuel I Unuabonah
- São Carlos Institute of Physics , University of São Paulo , Avenida Trabalhador Sãocarlense 400 , São Carlos 13566-590 , Brazil
| |
Collapse
|
46
|
Large Circular Plasmids from Groundwater Plasmidomes Span Multiple Incompatibility Groups and Are Enriched in Multimetal Resistance Genes. mBio 2019; 10:mBio.02899-18. [PMID: 30808697 PMCID: PMC6391923 DOI: 10.1128/mbio.02899-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Naturally occurring plasmids constitute a major category of mobile genetic elements responsible for harboring and transferring genes important in survival and fitness. A targeted evaluation of plasmidomes can reveal unique adaptations required by microbial communities. We developed a model system to optimize plasmid DNA isolation procedures targeted to groundwater samples which are typically characterized by low cell density (and likely variations in the plasmid size and copy numbers). The optimized method resulted in successful identification of several hundred circular plasmids, including some large plasmids (11 plasmids more than 50 kb in size, with the largest being 1.7 Mb in size). Several interesting observations were made from the analysis of plasmid DNA isolated in this study. The plasmid pool (plasmidome) was more conserved than the corresponding microbiome distribution (16S rRNA based). The circular plasmids were diverse as represented by the presence of seven plasmid incompatibility groups. The genes carried on these groundwater plasmids were highly enriched in metal resistance. Results from this study confirmed that traits such as metal, antibiotic, and phage resistance along with toxin-antitoxin systems are encoded on abundant circular plasmids, all of which could confer novel and advantageous traits to their hosts. This study confirms the ecological role of the plasmidome in maintaining the latent capacity of a microbiome, enabling rapid adaptation to environmental stresses.IMPORTANCE Plasmidomes have been typically studied in environments abundant in bacteria, and this is the first study to explore plasmids from an environment characterized by low cell density. We specifically target groundwater, a significant source of water for human/agriculture use. We used samples from a well-studied site and identified hundreds of circular plasmids, including one of the largest sizes reported in plasmidome studies. The striking similarity of the plasmid-borne ORFs in terms of taxonomical and functional classifications across several samples suggests a conserved plasmid pool, in contrast to the observed variability in the 16S rRNA-based microbiome distribution. Additionally, the stress response to environmental factors has stronger conservation via plasmid-borne genes as marked by abundance of metal resistance genes. Last, identification of novel and diverse plasmids enriches the existing plasmid database(s) and serves as a paradigm to increase the repertoire of biological parts that are available for modifying novel environmental strains.
Collapse
|
47
|
Comparative Genomic Analysis Reveals the Distribution, Organization, and Evolution of Metal Resistance Genes in the Genus Acidithiobacillus. Appl Environ Microbiol 2019; 85:AEM.02153-18. [PMID: 30389769 DOI: 10.1128/aem.02153-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022] Open
Abstract
Members of the genus Acidithiobacillus, which can adapt to extremely high concentrations of heavy metals, are universally found at acid mine drainage (AMD) sites. Here, we performed a comparative genomic analysis of 37 strains within the genus Acidithiobacillus to answer the untouched questions as to the mechanisms and the evolutionary history of metal resistance genes in Acidithiobacillus spp. The results showed that the evolutionary history of metal resistance genes in Acidithiobacillus spp. involved a combination of gene gains and losses, horizontal gene transfer (HGT), and gene duplication. Phylogenetic analyses revealed that metal resistance genes in Acidithiobacillus spp. were acquired by early HGT events from species that shared habitats with Acidithiobacillus spp., such as Acidihalobacter, Thiobacillus, Acidiferrobacter, and Thiomonas species. Multicopper oxidase genes involved in copper detoxification were lost in iron-oxidizing Acidithiobacillus ferridurans, Acidithiobacillus ferrivorans, and Acidithiobacillus ferrooxidans and were replaced by rusticyanin genes during evolution. In addition, widespread purifying selection and the predicted high expression levels emphasized the indispensable roles of metal resistance genes in the ability of Acidithiobacillus spp. to adapt to harsh environments. Altogether, the results suggested that Acidithiobacillus spp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. This study sheds light on the distribution, organization, functionality, and complex evolutionary history of metal resistance genes in Acidithiobacillus spp.IMPORTANCE Horizontal gene transfer (HGT), natural selection, and gene duplication are three main engines that drive the adaptive evolution of microbial genomes. Previous studies indicated that HGT was a main adaptive mechanism in acidophiles to cope with heavy-metal-rich environments. However, evidences of HGT in Acidithiobacillus species in response to challenging metal-rich environments and the mechanisms addressing how metal resistance genes originated and evolved in Acidithiobacillus are still lacking. The findings of this study revealed a fascinating phenomenon of putative cross-phylum HGT, suggesting that Acidithiobacillus spp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. Altogether, the insights gained in this study have improved our understanding of the metal resistance strategies of Acidithiobacillus spp.
Collapse
|
48
|
Gracioso LH, Baltazar MPG, Avanzi IR, Karolski B, Oller Nascimento CA, Perpetuo EA. Analysis of copper response inAcinetobactersp. by comparative proteomics. Metallomics 2019; 11:949-958. [DOI: 10.1039/c8mt00365c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal contamination exerts environmental pressure on several lifeforms.
Collapse
Affiliation(s)
- Louise Hase Gracioso
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- The Interunits Graduate Program in Biotechnology
| | - Marcela Passos Galluzzi Baltazar
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- Chemical Engineering Department
| | - Ingrid Regina Avanzi
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
| | - Bruno Karolski
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- Chemical Engineering Department
| | | | - Elen Aquino Perpetuo
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- Department of Marine Sciences
| |
Collapse
|
49
|
Carlson HK, Price MN, Callaghan M, Aaring A, Chakraborty R, Liu H, Kuehl JV, Arkin AP, Deutschbauer AM. The selective pressures on the microbial community in a metal-contaminated aquifer. ISME JOURNAL 2018; 13:937-949. [PMID: 30523276 PMCID: PMC6461962 DOI: 10.1038/s41396-018-0328-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022]
Abstract
In many environments, toxic compounds restrict which microorganisms persist. However, in complex mixtures of inhibitory compounds, it is challenging to determine which specific compounds cause changes in abundance and prevent some microorganisms from growing. We focused on a contaminated aquifer in Oak Ridge, Tennessee, USA that has large gradients of pH and widely varying concentrations of uranium, nitrate, and many other inorganic ions. In the most contaminated wells, the microbial community is enriched in the Rhodanobacter genus. Rhodanobacter abundance is positively correlated with low pH and high concentrations of uranium and 13 other ions and we sought to determine which of these ions are selective pressures that favor the growth of Rhodanobacter over other taxa. Of these ions, low pH and high UO22+, Mn2+, Al3+, Cd2+, Zn2+, Co2+, and Ni2+ are both (a) selectively inhibitory of a Pseudomonas isolate from an uncontaminated well vs. a Rhodanobacter isolate from a contaminated well, and (b) reach toxic concentrations (for the Pseudomonas isolate) in the Rhodanobacter-dominated wells. We used mixtures of ions to simulate the groundwater conditions in the most contaminated wells and verified that few isolates aside from Rhodanobacter can tolerate these eight ions. These results clarify which ions are likely causal factors that impact the microbial community at this field site and are not merely correlated with taxonomic shifts. Furthermore, our general high-throughput approach can be applied to other environments, isolates, and conditions to systematically help identify selective pressures on microbial communities.
Collapse
Affiliation(s)
- Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mark Callaghan
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex Aaring
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romy Chakraborty
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
50
|
Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Arch Microbiol 2018; 201:107-121. [PMID: 30276423 DOI: 10.1007/s00203-018-1581-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/24/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023]
Abstract
In this study, two populations of leguminous plants Lathyrus sativus were grown in four soils that were collected from sites differently contaminated by heavy metals. Evaluations included basic soil properties, concentrations of major nutrients and four metals (copper, zinc, lead and cadmium) in these soils. Investigation of Lathyrus sativus response to contamination showed that the increase of heavy metal concentration in soils affected biomass of plant, number of nodules and plant metal uptake. Heavy metal tolerance of 46 isolated bacteria from the root nodules was evaluated and demonstrated that the maximum concentration of Cd, Pb, Cu and Zn tolerated by strains were 0.8, 2.5, 0.2, and 0.5 mM, respectively. Twenty-two isolates were tested for their effects on plant biomass production and nodule formation and showed that only R. leguminosarum nodulated Lathyrus sativus, while some bacteria improved the shoot and root dry biomass. Sequences of their 16S rDNA gene fragments were also obtained and evaluated for tentative identification of the isolates which revealed different bacterial genera represented by Rhizobium sp, Rhizobium leguminosarum, Sinorhizobium meliloti, Pseudomonas sp, Pseudomonas fluorescens, Luteibacter sp, Variovorax sp, Bacillus simplex and Bacillus megaterium. The existence of Pb- and Cd-resistant genes (PbrA and CadA) in these bacteria was determined by PCR, and it showed high homology with PbrA and CadA genes from other bacteria. The tested resistant population was able to accumulate high concentrations of Pb and Cd in all plant parts and, therefore, can be classified as a strong metal accumulator with suitable potential for phytoremediation of Pb and Cd polluted sites. Heavy metal resistant and efficient bacteria isolated from root nodules were chosen with Lathyrus sativus to form symbiotic associations for eventual bioremediation program, which could be tested to remove pollutants from contaminated sites.
Collapse
|