1
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Cissé OH, Curran SJ, Folco HD, Liu Y, Bishop L, Wang H, Fischer ER, Davis AS, Combs C, Thapar S, Dekker JP, Grewal S, Cushion M, Ma L, Kovacs JA. Regional centromere configuration in the fungal pathogens of the Pneumocystis genus. mBio 2024; 15:e0318523. [PMID: 38380929 PMCID: PMC10936427 DOI: 10.1128/mbio.03185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Centromeres are constricted chromosomal regions that are essential for cell division. In eukaryotes, centromeres display a remarkable architectural and genetic diversity. The basis of centromere-accelerated evolution remains elusive. Here, we focused on Pneumocystis species, a group of mammalian-specific fungal pathogens that form a sister taxon with that of the Schizosaccharomyces pombe, an important genetic model for centromere biology research. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of S. pombe. Using organisms from a short-term in vitro culture or infected animal models and chromatin immunoprecipitation (ChIP)-Seq, we identified CENP-A bound regions in two Pneumocystis species that diverged ~35 million years ago. Each species has a unique short regional centromere (<10 kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. These features suggest an epigenetic specification of centromere function. Analysis of centromeric DNA across multiple Pneumocystis species suggests a vertical transmission at least 100 million years ago. The common ancestry of Pneumocystis and S. pombe centromeres is untraceable at the DNA level, but the overall architectural similarity could be the result of functional constraint for successful chromosomal segregation.IMPORTANCEPneumocystis species offer a suitable genetic system to study centromere evolution in pathogens because of their phylogenetic proximity with the non-pathogenic yeast S. pombe, a popular model for cell biology. We used this system to explore how centromeres have evolved after the divergence of the two clades ~ 460 million years ago. To address this question, we established a protocol combining short-term culture and ChIP-Seq to characterize centromeres in multiple Pneumocystis species. We show that Pneumocystis have short epigenetic centromeres that function differently from those in S. pombe.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shelly J. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - H. Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth R. Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - A. Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Christian Combs
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina Thapar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P. Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shiv Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Cissé OH, Curran S, Folco HD, Liu Y, Bishop L, Wang H, Fischer ER, Davis AS, Babb-Biernacki S, Doyle VP, Richards JK, Hassan SA, Dekker JP, Khil PP, Brenchley JM, Grewal S, Cushion M, Ma L, Kovacs JA. The Host Adapted Fungal Pathogens of Pneumocystis Genus Utilize Genic Regional Centromeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540427. [PMID: 37425787 PMCID: PMC10327204 DOI: 10.1101/2023.05.12.540427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Centromeres are genomic regions that coordinate accurate chromosomal segregation during mitosis and meiosis. Yet, despite their essential function, centromeres evolve rapidly across eukaryotes. Centromeres are often the sites of chromosomal breaks which contribute to genome shuffling and promote speciation by inhibiting gene flow. How centromeres form in strongly host-adapted fungal pathogens has yet to be investigated. Here, we characterized the centromere structures in closely related species of mammalian-specific pathogens of the fungal phylum of Ascomycota. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of Schizosaccharomyces pombe. Using organisms from a short-term in vitro culture or infected animal models and ChIP-seq, we identified centromeres in three Pneumocystis species that diverged ~100 million years ago. Each species has a unique short regional centromere (< 10kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. CENP-C, a scaffold protein that links the inner centromere to the kinetochore appears dispensable in one species, suggesting a kinetochore rewiring. Despite the loss of DNA methyltransferases, 5-methylcytosine DNA methylation occurs in these species, though not related to centromere function. These features suggest an epigenetic specification of centromere function.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shelly Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, USA
| | - Spenser Babb-Biernacki
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Vinson P Doyle
- Department of Plant Pathology and Crop Physiology, Lousiana State University AgCenter, Baton Rouge, Louisiana, USA
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Lousiana State University AgCenter, Baton Rouge, Louisiana, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shiv Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Yadav V, Sun S, Heitman J. On the evolution of variation in sexual reproduction through the prism of eukaryotic microbes. Proc Natl Acad Sci U S A 2023; 120:e2219120120. [PMID: 36867686 PMCID: PMC10013875 DOI: 10.1073/pnas.2219120120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
Almost all eukaryotes undergo sexual reproduction to generate diversity and select for fitness in their population pools. Interestingly, the systems by which sex is defined are highly diverse and can even differ between evolutionarily closely related species. While the most commonly known form of sex determination involves males and females in animals, eukaryotic microbes can have as many as thousands of different mating types for the same species. Furthermore, some species have found alternatives to sexual reproduction and prefer to grow clonally and yet undergo infrequent facultative sexual reproduction. These organisms are mainly invertebrates and microbes, but several examples are also present among vertebrates suggesting that alternative modes of sexual reproduction evolved multiple times throughout evolution. In this review, we summarize the sex-determination modes and variants of sexual reproduction found across the eukaryotic tree of life and suggest that eukaryotic microbes provide unique opportunities to study these processes in detail. We propose that understanding variations in modes of sexual reproduction can serve as a foundation to study the evolution of sex and why and how it evolved in the first place.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
5
|
Hauser PM, Almeida JMGCF, Richard S, Meier CS. Cell Fusion May Be Involved in the Homothallic Mating of Pneumocystis Species. mBio 2022; 13:e0085922. [PMID: 35726921 PMCID: PMC9426428 DOI: 10.1128/mbio.00859-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pneumocystis species are obligate fungal biotrophs that colonize the lungs of mammals. They cause deadly pneumonia in immunocompromised hosts. The sexual phase seems obligate during their life cycle and essential for survival because it is believed to ensure proliferation and transmission between hosts. Here, we consider if the sexual phase is initiated by the fusion of two cells or by nucleus duplication in order to generate diploid cells that can undergo meiosis. The juxtaposition of the nucleus-associated organelles of pairs of cells with fused cytoplasmic membranes demonstrated that cell fusion can occur. Nevertheless, the frequency of cell fusion remains to be determined, and it cannot be excluded that both cell fusion and nucleus duplication are used to ensure the occurrence of the essential sexual phase. In vitro culturing of these fungi is a major milestone that could clarify the issue.
Collapse
Affiliation(s)
- Philippe M. Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joao M. G. C. F. Almeida
- UCIBIO—REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sophie Richard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline S. Meier
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Christita M, Sipilä TP, Auzane A, Overmyer K. Distinct Taphrina strains from the phyllosphere of birch exhibiting a range of witches' broom disease symptoms. Environ Microbiol 2022; 24:3549-3564. [PMID: 35579036 PMCID: PMC9545635 DOI: 10.1111/1462-2920.16037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/26/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The phyllosphere is an important microbial habitat and reservoir of organisms that modify plant health. Taphrina betulina is the causal agent of birch witches' broom disease. Taphrina species are dimorphic, infecting hosts in the filamentous form and residing in the host phyllosphere as non-infectious yeast. As such, they are expected to be found as resident yeasts on their hosts, even on healthy tissues; however, there is little experimental data supporting this supposition. With the aim of exploring the local infection ecology of T. betulina, we isolated yeasts from the phyllosphere of birch leaves, using three sample classes; infected leaves inside symptom-bearing branches, healthy leaves from symptom-free branches on symptom-bearing trees and leaves from symptom-free branches on symptom-free trees. Isolations yielded 224 yeast strains, representing 11 taxa, including T. betulina, which was the most common isolate and was found in all sample classes, including symptom-free samples. Genotyping revealed genetic diversity among these T. betulina isolates, with seven distinct genotypes differentiated by the markers used. Twenty-two representative T. betulina strains were selected for further study, revealing further phenotypic differences. These findings support that T. betulina is ubiquitous on birch and that individual trees host a diversity of T. betulina strains.
Collapse
Affiliation(s)
- Margaretta Christita
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
- Environment and Forestry Research and Development Institute of Manado, Jalan Adipura, MapangetManadoNorth SulawesiIndonesia
| | - Timo P. Sipilä
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Agate Auzane
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
7
|
Abstract
Pneumocystis species colonize mammalian lungs and cause deadly pneumonia if the immune system of the host weakens. Each species presents a specificity for a single mammalian host species. Pneumocystis jirovecii infects humans and provokes pneumonia, which is among the most frequent invasive fungal infections. The lack of in vitro culture methods for these fungi complicates their study. Recently, high-throughput sequencing technologies followed by comparative genomics have allowed a better understanding of the mechanisms involved in the sexuality of Pneumocystis organisms. The structure of their mating-type locus corresponding to a fusion of two loci, Plus and Minus, and the concomitant expression of the three mating-type genes revealed that their mode of sexual reproduction is primarily homothallism. This mode is favored by microbial pathogens and involves a single self-compatible mating type that can enter into the sexual cycle on its own. Pneumocystis sexuality is obligatory within the host's lungs during pneumonia in adults, primary infection in children, and possibly colonization. This sexuality participates in cell proliferation, airborne transmission to new hosts, and probably antigenic variation, processes that are crucial to ensure the survival of the fungus. Thus, sexuality is central in the Pneumocystis life cycle. The obligate biotrophic parasitism with obligate sexuality of Pneumocystis is unique among fungi pathogenic to humans. Pneumocystis organisms are similar to the plant fungal obligate biotrophs that complete their entire life cycle within their hosts, including sex, and that are also difficult to grow in vitro.
Collapse
|
8
|
Čadež N, Dlauchy D, Tome M, Péter G. Novakomyces olei sp. nov., the First Member of a Novel Taphrinomycotina Lineage. Microorganisms 2021; 9:microorganisms9020301. [PMID: 33540601 PMCID: PMC7912804 DOI: 10.3390/microorganisms9020301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/25/2023] Open
Abstract
Taphrinomycotina is the smallest subphylum of the phylum Ascomycota. It is an assemblage of distantly related early diverging lineages of the phylum, comprising organisms with divergent morphology and ecology; however, phylogenomic analyses support its monophyly. In this study, we report the isolation of a yeast strain, which could not be assigned to any of the currently recognised five classes of Taphrinomycotina. The strain of the novel budding species was recovered from extra virgin olive oil and characterised phenotypically by standard methods. The ultrastructure of the cell wall was investigated by transmission electron microscopy. Comparisons of barcoding DNA sequences indicated that the investigated strain is not closely related to any known organism. Tentative phylogenetic placement was achieved by maximum-likelihood analysis of the D1/D2 domain of the nuclear LSU rRNA gene. The genome of the investigated strain was sequenced, assembled, and annotated. Phylogenomic analyses placed it next to the fission Schizosaccharomyces species. To accommodate the novel species, Novakomyces olei, a novel genus Novakomyces, a novel family Novakomycetaceae, a novel order Novakomycetales, and a novel class Novakomycetes is proposed as well. Functional analysis of genes missing in N. olei in comparison to Schizosaccharomyces pombe revealed that they are biased towards biosynthesis of complex organic molecules, regulation of mRNA, and the electron transport chain. Correlating the genome content and physiology among species of Taphrinomycotina revealed some discordance between pheno- and genotype. N. olei produced ascospores in axenic culture preceded by conjugation between two cells. We confirmed that N. olei is a primary homothallic species lacking genes for different mating types.
Collapse
Affiliation(s)
- Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (N.Č.); (M.T.)
| | - Dénes Dlauchy
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16, H-1118 Budapest, Hungary;
| | - Miha Tome
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (N.Č.); (M.T.)
| | - Gábor Péter
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16, H-1118 Budapest, Hungary;
- Correspondence:
| |
Collapse
|
9
|
Zhao Y, Lin X. Cryptococcus neoformans: Sex, morphogenesis, and virulence. INFECTION GENETICS AND EVOLUTION 2021; 89:104731. [PMID: 33497839 DOI: 10.1016/j.meegid.2021.104731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is a dimorphic fungus that causes lethal meningoencephalitis mainly in immunocompromised individuals. Different morphotypes enable this environmental fungus and opportunistic pathogen to adapt to different natural niches and exhibit different levels of pathogenicity in various hosts. It is well-recognized that C. neoformans undergoes bisexual or unisexual reproduction in vitro to generate genotypic, morphotypic, and phenotypic diversity, which augments its ability for adaptation. However, if and how sexual reproduction and the meiotic machinery exert any direct impact on the infection process is unclear. This review summarizes recent discoveries on the regulation of cryptococcal life cycle and morphogenesis, and how they impact cryptococcal pathogenicity. The potential role of the meiotic machinery on ploidy regulation during cryptococcal infection is also discussed. This review aims to stimulate further investigation on links between fungal morphogenesis, sexual reproduction, and virulence.
Collapse
Affiliation(s)
- Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Kestel Kayık S, Acar E, Memiş L. Pneumocystis Jirovecii Pneumonia in Newly Diagnosed HIV Infection: A Challenging Case Report. Turk Patoloji Derg 2020; 1:246-250. [PMID: 32149364 PMCID: PMC10510603 DOI: 10.5146/tjpath.2020.01480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/02/2020] [Indexed: 11/18/2022] Open
Abstract
Pneumocystis jirovecii is a potentially life-threatening opportunistic pathogen particularly affecting the lungs, mainly in immunosuppressed individuals and HIV-infected patients with a low CD4 cell count. A 50-year-old man presented with a 1-week history of pleuritic chest pain and fever. He was also hypoxic with oxygen saturation of 86% on room air. Detailed clinical history revealed that he had fatigue, dyspnea, night sweats, generalized bone pain and a loss of about 10 kg in weight over the past six months without intention. Chest imaging showed diffuse bilateral infiltrates. Diagnostic bronchoscopy was performed. Transbronchial biopsy and bronchoalveolar lavage were received simultaneously. The presence of P. jirovecii was suspected in hematoxylin-eosin-stained slides, and Gomori's methenamine silver stain was used to confirm the diagnosis. A blood test revealed dyslipidemia, hypothyroidism, increased plasma levels of the gonadotropins and positive HIV antibodies with a CD4+ cell count of 48/μL. CMV co-infection was found with CMV viral load of 6738 copies/ml in plasma. Herein, we present a case with Pneumocystis jirovecii pneumonia (PCP) that led to a new diagnosis of Human immonudeficiency virus. As in our case, diagnosis of disease through the pathological examination of tissues (biopsy samples) or bodily fluids could lead to the recognition of an unrevealed HIV-infection.
Collapse
Affiliation(s)
- Selin Kestel Kayık
- Department of Pathology, Gazi University, School of Medicine, Ankara, Turkey
| | - Elif Acar
- Department of Pathology, Gazi University, School of Medicine, Ankara, Turkey
| | - Leyla Memiş
- Department of Pathology, Gazi University, School of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Bishop LR, Davis AS, Bradshaw K, Gamez M, Cisse OH, Wang H, Ma L, Kovacs JA. Characterization of p57, a Stage-Specific Antigen of Pneumocystis murina. J Infect Dis 2019; 218:282-290. [PMID: 29471356 DOI: 10.1093/infdis/jiy099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/15/2018] [Indexed: 11/14/2022] Open
Abstract
Pneumocystis has a large multicopy gene family encoding proteins related to the major surface glycoprotein (Msg), whose functions are largely unknown. We expressed one such protein of Pneumocystis murina, p57, which is encoded by 3 highly conserved genes, and demonstrated by immunoblot that immunocompetent mice that were immunized with crude Pneumocystis antigens or that had cleared Pneumocystis infection developed antibodies to p57. Using hyperimmune anti-p57 serum combined with immunolabeling, we found that p57 was expressed by small trophic forms and intracystic bodies, whereas it was not expressed on larger trophic forms or externally by cysts. Expression of p57 and Msg by trophic forms was largely mutually exclusive. Treatment of infected animals with caspofungin inhibited cyst formation and markedly decreased p57 expression. While p57 expression was seen in immunocompetent mice infected with Pneumocystis, immunization with recombinant p57 did not result in altered cytokine expression by lymphocytes or in diminished infection in such mice. Thus, p57 appears to be a stage-specific antigen of Pneumocystis that is expressed on intracystic bodies and young trophic forms and may represent a mechanism to conserve resources in organisms during periods of limited exposure to host immune responses.
Collapse
Affiliation(s)
- Lisa R Bishop
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, NIH, Bethesda, Maryland
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Kaitlynn Bradshaw
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Monica Gamez
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Ousmane H Cisse
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, NIH, Bethesda, Maryland
| | - Honghui Wang
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, NIH, Bethesda, Maryland
| | - Liang Ma
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, NIH, Bethesda, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, NIH, Bethesda, Maryland
| |
Collapse
|
12
|
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus and an opportunistic pathogen that causes fatal cryptococcal meningitis. Advances in genomics, genetics, and cellular and molecular biology of C. neoformans have dramatically improved our understanding of this important pathogen, rendering it a model organism to study eukaryotic biology and microbial pathogenesis. In light of recent progress, we describe in this review the life cycle of C. neoformans with a special emphasis on the regulation of the yeast-to-hypha transition and different modes of sexual reproduction, in addition to the impacts of the life cycle on cryptococcal populations and pathogenesis.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| |
Collapse
|
13
|
Expression and Immunostaining Analyses Suggest that Pneumocystis Primary Homothallism Involves Trophic Cells Displaying Both Plus and Minus Pheromone Receptors. mBio 2019; 10:mBio.01145-19. [PMID: 31289178 PMCID: PMC6747714 DOI: 10.1128/mbio.01145-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fungi belonging to the genus Pneumocystis may cause severe pneumonia in immunocompromised humans, a disease that can be fatal if not treated. This disease is nowadays one of the most frequent invasive fungal infections worldwide. Whole-genome sequencing revealed that the sexuality of these fungi involves a single partner that can self-fertilize. Here, we report that two receptors recognizing specifically excreted pheromones are involved in this self-fertility within infected human lungs. Using fluorescent antibodies binding specifically to these receptors, we observed that most often, the fungal cells display both receptors at their surface. These pheromone-receptor systems might play a role in mate recognition and/or postfertilization events. They constitute an integral part of the Pneumocystis obligate sexuality within human lungs, a cycle that is necessary for the dissemination of the fungus to new individuals. The genus Pneumocystis encompasses fungal species that colonize mammals’ lungs with host specificity. Should the host immune system weaken, the fungal species can cause severe pneumonia. The life cycle of these pathogens is poorly known, mainly because an in vitro culture method has not been established. Both asexual and sexual cycles would occur. Trophic cells, the predominant forms during infection, could multiply asexually but also enter into a sexual cycle. Comparative genomics revealed a single mating type locus, including plus and minus genes, suggesting that primary homothallism involving self-fertility of each strain is the mode of reproduction of Pneumocystis species. We identified and analyzed the expression of the mam2 and map3 genes encoding the receptors for plus and minus pheromones using reverse transcriptase PCR, in both infected mice and bronchoalveolar lavage fluid samples from patients with Pneumocystis pneumonia. Both receptors were most often concomitantly expressed during infection, revealing that both pheromone-receptor systems are involved in the sexual cycle. The map3 transcripts were subject to alternative splicing. Using immunostaining, we investigated the presence of the pheromone receptors at the surfaces of Pneumocystis cells from a patient. The staining tools were first assessed in Saccharomyces cerevisiae displaying the Pneumocystis receptors at their cellular surface. Both receptors were present at the surfaces of the vast majority of the cells that were likely trophic forms. The receptors might have a role in mate recognition and/or postfertilization events. Their presence at the cell surface might facilitate outbreeding versus inbreeding of self-fertile strains.
Collapse
|
14
|
Fillinger RJ, Anderson MZ. Seasons of change: Mechanisms of genome evolution in human fungal pathogens. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 70:165-174. [PMID: 30826447 DOI: 10.1016/j.meegid.2019.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Fungi are a diverse kingdom of organisms capable of thriving in various niches across the world including those in close association with multicellular eukaryotes. Fungal pathogens that contribute to human disease reside both within the host as commensal organisms of the microbiota and the environment. Their niche of origin dictates how infection initiates but also places specific selective pressures on the fungal pathogen that contributes to its genome organization and genetic repertoire. Recent efforts to catalogue genomic variation among major human fungal pathogens have unveiled evolutionary themes that shape the fungal genome. Mechanisms ranging from large scale changes such as aneuploidy and ploidy cycling as well as more targeted mutations like base substitutions and gene copy number variations contribute to the evolution of these species, which are often under multiple competing selective pressures with their host, environment, and other microbes. Here, we provide an overview of the major selective pressures and mechanisms acting to evolve the genome of clinically important fungal pathogens of humans.
Collapse
Affiliation(s)
- Robert J Fillinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Goüy de Bellocq J, Wasimuddin, Ribas A, Bryja J, Piálek J, Baird SJE. Holobiont suture zones: Parasite evidence across the European house mouse hybrid zone. Mol Ecol 2018; 27:5214-5227. [PMID: 30427096 DOI: 10.1111/mec.14938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
Parasite hybrid zones resulting from host secondary contact have never been described in nature although parasite hybridization is well known and secondary contact should affect them similarly to free-living organisms. When host populations are isolated, diverge and recontact, intimate parasites (host specific, direct life cycle) carried during isolation will also meet and so may form parasite hybrid zones. If so, we hypothesize these should be narrower than the host's hybrid zone as shorter parasite generation time allows potentially higher divergence. We investigate multilocus genetics of two parasites across the European house mouse hybrid zone. We find each host taxon harbours its own parasite taxa. These also hybridize: Parasite hybrid zones are significantly narrower than the host's. Here, we show a host hybrid zone is a suture zone for a subset of its parasite community and highlight the potential of such systems as windows on the evolutionary processes of host-parasite interactions and recombinant pathogen emergence.
Collapse
Affiliation(s)
| | - Wasimuddin
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Alexis Ribas
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Section of Parasitology, Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Josef Bryja
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jaroslav Piálek
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Stuart J E Baird
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
16
|
Affiliation(s)
- Philippe M. Hauser
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- * E-mail:
| | - Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Veterans Administration Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
17
|
Cissé OH, Hauser PM. Genomics and evolution of Pneumocystis species. INFECTION GENETICS AND EVOLUTION 2018; 65:308-320. [PMID: 30138710 DOI: 10.1016/j.meegid.2018.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/20/2023]
Abstract
The genus Pneumocystis comprises highly diversified fungal species that cause severe pneumonia in individuals with a deficient immune system. These fungi infect exclusively mammals and present a strict host species specificity. These species have co-diverged with their hosts for long periods of time (> 100 MYA). Details of their biology and evolution are fragmentary mainly because of a lack of an established long-term culture system. Recent genomic advances have unlocked new areas of research and allow new hypotheses to be tested. We review here new findings of the genomic studies in relation with the evolutionary trajectory of these fungi and discuss the impact of genomic data analysis in the context of the population genetics. The combination of slow genome decay and limited expansion of specific gene families and introns reflect intimate interactions of these species with their hosts. The evolutionary adaptation of these organisms is profoundly influenced by their population structure, which in turn is determined by intrinsic features such as their self-fertilizing mating system, high host specificity, long generation times, and transmission mode. Essential key questions concerning their adaptation and speciation remain to be answered. The next cornerstone will consist in the establishment of a long-term culture system and genetic manipulation that should allow unravelling the driving forces of Pneumocystis species evolution.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
18
|
Ma L, Cissé OH, Kovacs JA. A Molecular Window into the Biology and Epidemiology of Pneumocystis spp. Clin Microbiol Rev 2018; 31:e00009-18. [PMID: 29899010 PMCID: PMC6056843 DOI: 10.1128/cmr.00009-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Cissé OH, Ma L, Wei Huang D, Khil PP, Dekker JP, Kutty G, Bishop L, Liu Y, Deng X, Hauser PM, Pagni M, Hirsch V, Lempicki RA, Stajich JE, Cuomo CA, Kovacs JA. Comparative Population Genomics Analysis of the Mammalian Fungal Pathogen Pneumocystis. mBio 2018; 9:e00381-18. [PMID: 29739910 PMCID: PMC5941068 DOI: 10.1128/mbio.00381-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/19/2018] [Indexed: 01/14/2023] Open
Abstract
Pneumocystis species are opportunistic mammalian pathogens that cause severe pneumonia in immunocompromised individuals. These fungi are highly host specific and uncultivable in vitro Human Pneumocystis infections present major challenges because of a limited therapeutic arsenal and the rise of drug resistance. To investigate the diversity and demographic history of natural populations of Pneumocystis infecting humans, rats, and mice, we performed whole-genome and large-scale multilocus sequencing of infected tissues collected in various geographic locations. Here, we detected reduced levels of recombination and variations in historical demography, which shape the global population structures. We report estimates of evolutionary rates, levels of genetic diversity, and population sizes. Molecular clock estimates indicate that Pneumocystis species diverged before their hosts, while the asynchronous timing of population declines suggests host shifts. Our results have uncovered complex patterns of genetic variation influenced by multiple factors that shaped the adaptation of Pneumocystis populations during their spread across mammals.IMPORTANCE Understanding how natural pathogen populations evolve and identifying the determinants of genetic variation are central issues in evolutionary biology. Pneumocystis, a fungal pathogen which infects mammals exclusively, provides opportunities to explore these issues. In humans, Pneumocystis can cause a life-threatening pneumonia in immunosuppressed individuals. In analysis of different Pneumocystis species infecting humans, rats, and mice, we found that there are high infection rates and that natural populations maintain a high level of genetic variation despite low levels of recombination. We found no evidence of population structuring by geography. Our comparisons of the times of divergence of these species to their respective hosts suggest that Pneumocystis may have undergone recent host shifts. The results demonstrate that Pneumocystis strains are widely disseminated geographically and provide a new understanding of the evolution of these pathogens.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavel P Khil
- Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P Dekker
- Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Xilong Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vanessa Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard A Lempicki
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Abstract
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.
Collapse
|
21
|
Wallen RM, Perlin MH. An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi. Front Microbiol 2018; 9:503. [PMID: 29619017 PMCID: PMC5871698 DOI: 10.3389/fmicb.2018.00503] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi.
Collapse
Affiliation(s)
| | - Michael H. Perlin
- Department of Biology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
22
|
Functional and Expression Analyses of the Pneumocystis MAT Genes Suggest Obligate Sexuality through Primary Homothallism within Host Lungs. mBio 2018; 9:mBio.02201-17. [PMID: 29463658 PMCID: PMC5821091 DOI: 10.1128/mbio.02201-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fungi of the genus Pneumocystis are obligate parasites that colonize mammals’ lungs and are host species specific. Pneumocystis jirovecii and Pneumocystis carinii infect, respectively, humans and rats. They can turn into opportunistic pathogens in immunosuppressed hosts, causing severe pneumonia. Their cell cycle is poorly known, mainly because of the absence of an established method of culture in vitro. It is thought to include both asexual and sexual phases. Comparative genomic analysis suggested that their mode of sexual reproduction is primary homothallism involving a single mating type (MAT) locus encompassing plus and minus genes (matMc, matMi, and matPi; Almeida et al., mBio 6:e02250-14, 2015). Thus, each strain would be capable of sexual reproduction alone (self-fertility). However, this is a working hypothesis derived from computational analyses that is, in addition, based on the genome sequences of single isolates. Here, we tested this hypothesis in the wet laboratory. The function of the P. jirovecii and P. carinii matMc genes was ascertained by restoration of sporulation in the corresponding mutant of fission yeast. Using PCR, we found the same single MAT locus in all P. jirovecii isolates and showed that all three MAT genes are often concomitantly expressed during pneumonia. Extensive homology searches did not identify other types of MAT transcription factors in the genomes or cis-acting motifs flanking the MAT locus that could have been involved in MAT switching or silencing. Our observations suggest that Pneumocystis sexuality through primary homothallism is obligate within host lungs to complete the cell cycle, i.e., produce asci necessary for airborne transmission to new hosts. Fungi of the genus Pneumocystis colonize the lungs of mammals. In immunosuppressed human hosts, Pneumocystis jirovecii may cause severe pneumonia that can be fatal. This disease is one of the most frequent life-threatening invasive fungal infections in humans. The analysis of the genome sequences of these uncultivable pathogens suggested that their sexual reproduction involves a single partner (self-fertilization). Here, we report laboratory experiments that support this hypothesis. The function of the three genes responsible for sexual differentiation was ascertained by the restoration of sexual reproduction in the corresponding mutant of another fungus. As predicted by self-fertilization, all P. jirovecii isolates harbored the same three genes that were often concomitantly expressed within human lungs during infection. Our observations suggest that the sexuality of these pathogens relies on the self-fertility of each isolate and is obligate within host lungs to complete the cell cycle and allow dissemination of the fungus to new hosts.
Collapse
|
23
|
Abstract
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients-Candida, Pneumocystis, and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Collapse
|
24
|
Abstract
Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different.IMPORTANCEPneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms of antigenic variation used by this pathogen to escape the human immune system, a strategy commonly used by pathogenic microorganisms. Using a new DNA sequencing technology generating long reads, we could characterize the highly repetitive gene families encoding the proteins that are present on the cellular surface of this pest. These gene families are localized in the regions close to the ends of all chromosomes, the subtelomeres. Such chromosomal localization was found to favor genetic recombinations between members of each gene family and to allow diversification of these proteins continuously over time. This pathogen seems to use a strategy of antigenic variation consisting of the continuous production of new subpopulations composed of cells that are antigenically different. Such a strategy is unique among human pathogens.
Collapse
|
25
|
Affiliation(s)
- Kenneth H. Wolfe
- School of Medicine, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
26
|
Abstract
Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching?
Collapse
|
27
|
Kottom TJ, Hebrink DM, Jenson PE, Nandakumar V, Wüthrich M, Wang H, Klein B, Yamasaki S, Lepenies B, Limper AH. The Interaction of Pneumocystis with the C-Type Lectin Receptor Mincle Exerts a Significant Role in Host Defense against Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:3515-3525. [PMID: 28298521 DOI: 10.4049/jimmunol.1600744] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/11/2017] [Indexed: 01/24/2023]
Abstract
Pneumocystis pneumonia (PCP) remains a major cause of morbidity and mortality within immunocompromised patients. In this study, we examined the potential role of macrophage-inducible C-type lectin (Mincle) for host defense against Pneumocystis Binding assays implementing soluble Mincle carbohydrate recognition domain fusion proteins demonstrated binding to intact Pneumocystis carinii as well as to organism homogenates, and they purified major surface glycoprotein/glycoprotein A derived from the organism. Additional experiments showed that rats with PCP expressed increased Mincle mRNA levels. Mouse macrophages overexpressing Mincle displayed increased binding to P. carinii life forms and enhanced protein tyrosine phosphorylation. The binding of P. carinii to Mincle resulted in activation of FcRγ-mediated cell signaling. RNA silencing of Mincle in mouse macrophages resulted in decreased activation of Syk kinase after P. carinii challenge, critical in downstream inflammatory signaling. Mincle-deficient CD4-depleted (Mincle-/-) mice showed a significant defect in organism clearance from the lungs with higher organism burdens and altered lung cytokine responses during Pneumocystis murina pneumonia. Interestingly, Mincle-/- mice did not demonstrate worsened survival during PCP compared with wild-type mice, despite the markedly increased organism burdens. This may be related to increased expression of anti-inflammatory factors such as IL-1Ra during infection in the Mincle-/- mice. Of note, the P. murina-infected Mincle-/- mice demonstrated increased expression of known C-type lectin receptors Dectin-1, Dectin-2, and MCL compared with infected wild-type mice. Taken together, these data support a significant role for Mincle in Pneumocystis modulating host defense during infection.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Paige E Jenson
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Vijayalakshmi Nandakumar
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Huafeng Wang
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Bruce Klein
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792.,Department of Internal Medicine, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792.,Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; and
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905; .,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
28
|
Alanio A, Gits-Muselli M, Mercier-Delarue S, Dromer F, Bretagne S. Diversity of Pneumocystis jirovecii during Infection Revealed by Ultra-Deep Pyrosequencing. Front Microbiol 2016; 7:733. [PMID: 27252684 PMCID: PMC4877386 DOI: 10.3389/fmicb.2016.00733] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/02/2016] [Indexed: 01/05/2023] Open
Abstract
Pneumocystis jirovecii is an uncultivable fungal pathogen responsible for Pneumocystis pneumonia (PCP) in immunocompromised patients, the physiopathology of which is only partially understood. The diversity of the Pneumocystis strains associated with acute infection has mainly been studied by Sanger sequencing techniques precluding any identification of rare genetic events (< 20% frequency). We used next-generation sequencing to detect minority variants causing infection, and analyzed the complexity of the genomes of infection-causing P. jirovecii. Ultra-deep pyrosequencing (UDPS) of PCR amplicons of two nuclear target region [internal transcribed spacer 2 (ITS2) and dihydrofolate reductase (DHFR)] and one mitochondrial DNA target region [the mitochondrial ribosomal RNA large subunit gene (mtLSU)] was performed on 31 samples from 25 patients. UDPS revealed that almost all patients (n = 23/25, 92%) were infected with mixtures of strains. An analysis of repeated samples from six patients showed that the proportion of each variant change significantly (by up to 30%) over time on treatment in three of these patients. A comparison of mitochondrial and nuclear UDPS data revealed heteroplasmy in P. jirovecii. The recognition site for the homing endonuclease I-SceI was recovered from the mtLSU gene, whereas its two conserved motifs of the enzyme were not. This suggests that heteroplasmy may result from recombination induced by unidentified homing endonucleases. This study sheds new light on the biology of P. jirovecii during infection. PCP results from infection not with a single microorganism, but with a complex mixture of different genotypes, the proportions of which change over time due to intricate selection and reinfection mechanisms that may differ between patients, treatments, and predisposing diseases.
Collapse
Affiliation(s)
- Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, Hôpital Saint-LouisParis, France; Université Paris Diderot, Sorbonne Paris CitéParis, France; Unité de Mycologie Moléculaire, Département de Mycologie, Centre National de Référence Mycoses Invasives et Antifongiques, Institut PasteurParis, France; Centre National de la Recherche Scientifique CNRS URA3012Paris, France
| | - Maud Gits-Muselli
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, Hôpital Saint-LouisParis, France; Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Séverine Mercier-Delarue
- Laboratoire de Microbiologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, Hôpital Saint-Louis Paris, France
| | - Françoise Dromer
- Unité de Mycologie Moléculaire, Département de Mycologie, Centre National de Référence Mycoses Invasives et Antifongiques, Institut PasteurParis, France; Centre National de la Recherche Scientifique CNRS URA3012Paris, France
| | - Stéphane Bretagne
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, Hôpital Saint-LouisParis, France; Université Paris Diderot, Sorbonne Paris CitéParis, France; Unité de Mycologie Moléculaire, Département de Mycologie, Centre National de Référence Mycoses Invasives et Antifongiques, Institut PasteurParis, France; Centre National de la Recherche Scientifique CNRS URA3012Paris, France
| |
Collapse
|
29
|
Ma L, Chen Z, Huang DW, Kutty G, Ishihara M, Wang H, Abouelleil A, Bishop L, Davey E, Deng R, Deng X, Fan L, Fantoni G, Fitzgerald M, Gogineni E, Goldberg JM, Handley G, Hu X, Huber C, Jiao X, Jones K, Levin JZ, Liu Y, Macdonald P, Melnikov A, Raley C, Sassi M, Sherman BT, Song X, Sykes S, Tran B, Walsh L, Xia Y, Yang J, Young S, Zeng Q, Zheng X, Stephens R, Nusbaum C, Birren BW, Azadi P, Lempicki RA, Cuomo CA, Kovacs JA. Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun 2016; 7:10740. [PMID: 26899007 PMCID: PMC4764891 DOI: 10.1038/ncomms10740] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Zehua Chen
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Da Wei Huang
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Honghui Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Amr Abouelleil
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lisa Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Emma Davey
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Rebecca Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Xilong Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Lin Fan
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Giovanna Fantoni
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Michael Fitzgerald
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Emile Gogineni
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Jonathan M. Goldberg
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Grace Handley
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Xiaojun Hu
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Charles Huber
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Xiaoli Jiao
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Kristine Jones
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Joshua Z. Levin
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Pendexter Macdonald
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Alexandre Melnikov
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Castle Raley
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Monica Sassi
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Brad T. Sherman
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Xiaohong Song
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Sean Sykes
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bao Tran
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Laura Walsh
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Yun Xia
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Jun Yang
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Sarah Young
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Qiandong Zeng
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Xin Zheng
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Robert Stephens
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Chad Nusbaum
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bruce W. Birren
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Richard A. Lempicki
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Christina A. Cuomo
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
30
|
Julca I, Droby S, Sela N, Marcet-Houben M, Gabaldón T. Contrasting Genomic Diversity in Two Closely Related Postharvest Pathogens: Penicillium digitatum and Penicillium expansum. Genome Biol Evol 2015; 8:218-27. [PMID: 26672008 PMCID: PMC4758248 DOI: 10.1093/gbe/evv252] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Penicillium digitatum and Penicillium expansum are two closely related fungal plant pathogens causing green and blue mold in harvested fruit, respectively. The two species differ in their host specificity, being P. digitatum restricted to citrus fruits and P. expansum able to infect a wide range of fruits after harvest. Although host-specific Penicillium species have been found to have a smaller gene content, it is so far unclear whether these different host specificities impact genome variation at the intraspecific level. Here we assessed genome variation across four P. digitatum and seven P. expansum isolates from geographically distant regions. Our results show very high similarity (average 0.06 SNPs [single nucleotide polymorphism] per kb) between globally distributed isolates of P. digitatum pointing to a recent expansion of a single lineage. This low level of genetic variation found in our samples contrasts with the higher genetic variability observed in the similarly distributed P. expansum isolates (2.44 SNPs per kb). Patterns of polymorphism in P. expansum indicate that recombination exists between genetically diverged strains. Consistent with the existence of sexual recombination and heterothallism, which was unknown for this species, we identified the two alternative mating types in different P. expansum isolates. Patterns of polymorphism in P. digitatum indicate a recent clonal population expansion of a single lineage that has reached worldwide distribution. We suggest that the contrasting patterns of genomic variation between the two species reflect underlying differences in population dynamics related with host specificities and related agricultural practices. It should be noted, however, that this results should be confirmed with a larger sampling of strains, as new strains may broaden the diversity so far found in P. digitatum.
Collapse
Affiliation(s)
- Irene Julca
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Universitat Autònoma De Barcelona, Spain
| | - Samir Droby
- Department of Postharvest Science, ARO, the Volcani Center, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, The Volcani Center, Bet Dagan, Israel
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana De Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
31
|
Heitman J. Evolution of sexual reproduction: a view from the Fungal Kingdom supports an evolutionary epoch with sex before sexes. FUNGAL BIOL REV 2015; 29:108-117. [PMID: 26834823 DOI: 10.1016/j.fbr.2015.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sexual reproduction is conserved throughout each supergroup within the eukaryotic tree of life, and therefore thought to have evolved once and to have been present in the last eukaryotic common ancestor (LECA). Given the antiquity of sex, there are features of sexual reproduction that are ancient and ancestral, and thus shared in diverse extant organisms. On the other hand, the vast evolutionary distance that separates any given extant species from the LECA necessarily implies that other features of sex will be derived. While most types of sex we are familiar with involve two opposite sexes or mating types, recent studies in the fungal kingdom have revealed novel and unusual patterns of sexual reproduction, including unisexual reproduction. In this mode of reproduction a single mating type can on its own undergo self-fertile/homothallic reproduction, either with itself or with other members of the population of the same mating type. Unisexual reproduction has arisen independently as a derived feature in several different lineages. That a myriad of different types of sex determination and sex determinants abound in animals, plants, protists, and fungi suggests that sex specification itself may not be ancestral and instead may be a derived trait. If so, then the original form of sexual reproduction may have been unisexual, onto which sexes were superimposed as a later feature. In this model, unisexual reproduction is both an ancestral and a derived trait. In this review, we consider what is new and what is old about sexual reproduction from the unique vantage point of the fungal kingdom.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
32
|
Tasaka S. Pneumocystis Pneumonia in Human Immunodeficiency Virus-infected Adults and Adolescents: Current Concepts and Future Directions. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2015; 9:19-28. [PMID: 26327786 PMCID: PMC4536784 DOI: 10.4137/ccrpm.s23324] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 12/17/2022]
Abstract
Pneumocystis jirovecii pneumonia (PCP) is one of the most common opportunistic infections in human immunodeficiency virus–infected adults. Colonization of Pneumocystis is highly prevalent among the general population and could be associated with the transmission and development of PCP in immunocompromised individuals. Although the microscopic demonstration of the organisms in respiratory specimens is still the golden standard of its diagnosis, polymerase chain reaction has been shown to have a high sensitivity, detecting Pneumocystis DNA in induced sputum or oropharyngeal wash. Serum β-D-glucan is useful as an adjunctive tool for the diagnosis of PCP. High-resolution computed tomography, which typically shows diffuse ground-glass opacities, is informative for the evaluation of immunocompromised patients with suspected PCP and normal chest radiography. Trimethoprim–sulfamethoxazole (TMP-SMX) is the first-line agent for the treatment of mild to severe PCP, although it is often complicated with various side effects. Since TMP-SMX is widely used for the prophylaxis, the putative drug resistance is an emerging concern.
Collapse
Affiliation(s)
- Sadatomo Tasaka
- Division of Pulmonary Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
33
|
Skalski JH, Kottom TJ, Limper AH. Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Res 2015; 15:fov046. [PMID: 26071598 DOI: 10.1093/femsyr/fov046] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/28/2022] Open
Abstract
Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction.
Collapse
Affiliation(s)
- Joseph H Skalski
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Theodore J Kottom
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Pondering Mating: Pneumocystis jirovecii, the Human Lung Pathogen, Selfs without Mating Type Switching, in Contrast to Its Close Relative Schizosaccharomyces pombe. mBio 2015; 6:e00583-15. [PMID: 25944864 PMCID: PMC4436060 DOI: 10.1128/mbio.00583-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|