1
|
Gagne M, Flynn BJ, Andrew SF, Marquez J, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Pessaint L, Todd JPM, Doria-Rose NA, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, O'Dell S, Wali B, Ellis M, Godbole S, Laboune F, Henry AR, Teng IT, Wang D, Wang L, Zhou Q, Zouantchangadou S, Van Ry A, Lewis MG, Andersen H, Kwong PD, Curiel DT, Roederer M, Nason MC, Foulds KE, Suthar MS, Diamond MS, Douek DC, Seder RA. Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat Immunol 2024; 25:1913-1927. [PMID: 39227514 PMCID: PMC11436372 DOI: 10.1038/s41590-024-01951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Mychalowych
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Matthew R Burnett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonid A Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zohar E Ziff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erin Maule
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yogita Jethmalani
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bushra Wali
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehul S Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines & Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Darling TL, Harastani HH, Joshi A, Bricker TL, Soudani N, Seehra K, Hassan AO, Diamond MS, Boon ACM. Mucosal immunization with ChAd-SARS-CoV-2-S prevents sequential transmission of SARS-CoV-2 to unvaccinated hamsters. SCIENCE ADVANCES 2024; 10:eadp1290. [PMID: 39083604 PMCID: PMC11290484 DOI: 10.1126/sciadv.adp1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
COVID-19 vaccines have successfully reduced severe disease and death after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Nonetheless, COVID-19 vaccines are variably effective in preventing transmission and symptomatic SARS-CoV-2 infection. Here, we evaluated the impact of mucosal or intramuscular vaccine immunization on airborne infection and transmission of SARS-CoV-2 in Syrian hamsters. Immunization of the primary contact hamsters with a mucosal chimpanzee adenoviral-vectored vaccine (ChAd-CoV-2-S), but not intramuscular messenger RNA (mRNA) vaccine, reduced infectious virus titers ~100-fold and 100,000-fold in the upper and lower respiratory tract of the primary contact hamster following SARS-CoV-2 exposure. This reduction in virus titer in the mucosal immunized contact animals was sufficient to eliminate subsequent transmission to vaccinated and unvaccinated hamsters. In contrast, sequential transmission occurred after systemic immunization with the mRNA vaccine. Thus, immunization with a mucosal COVID-19 vaccine protects against cycles of respiratory transmission of SARS-CoV-2 and can potentially limit the community spread of the virus.
Collapse
Affiliation(s)
- Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ahmed O. Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Joyce JD, Moore GA, Goswami P, Harrell TL, Taylor TM, Hawks SA, Green JC, Jia M, Irwin MD, Leslie E, Duggal NK, Thompson CK, Bertke AS. SARS-CoV-2 Rapidly Infects Peripheral Sensory and Autonomic Neurons, Contributing to Central Nervous System Neuroinvasion before Viremia. Int J Mol Sci 2024; 25:8245. [PMID: 39125815 PMCID: PMC11311394 DOI: 10.3390/ijms25158245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Neurological symptoms associated with COVID-19, acute and long term, suggest SARS-CoV-2 affects both the peripheral and central nervous systems (PNS/CNS). Although studies have shown olfactory and hematogenous invasion into the CNS, coinciding with neuroinflammation, little attention has been paid to susceptibility of the PNS to infection or to its contribution to CNS invasion. Here we show that sensory and autonomic neurons in the PNS are susceptible to productive infection with SARS-CoV-2 and outline physiological and molecular mechanisms mediating neuroinvasion. Our infection of K18-hACE2 mice, wild-type mice, and golden Syrian hamsters, as well as primary peripheral sensory and autonomic neuronal cultures, show viral RNA, proteins, and infectious virus in PNS neurons, satellite glial cells, and functionally connected CNS tissues. Additionally, we demonstrate, in vitro, that neuropilin-1 facilitates SARS-CoV-2 neuronal entry. SARS-CoV-2 rapidly invades the PNS prior to viremia, establishes a productive infection in peripheral neurons, and results in sensory symptoms often reported by COVID-19 patients.
Collapse
Affiliation(s)
- Jonathan D. Joyce
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Greyson A. Moore
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Poorna Goswami
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
| | - Telvin L. Harrell
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Tina M. Taylor
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Seth A. Hawks
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Jillian C. Green
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Mo Jia
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Matthew D. Irwin
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Emma Leslie
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
| | - Nisha K. Duggal
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Christopher K. Thompson
- School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Andrea S. Bertke
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| |
Collapse
|
4
|
Port JR, Morris DH, Riopelle JC, Yinda CK, Avanzato VA, Holbrook MG, Bushmaker T, Schulz JE, Saturday TA, Barbian K, Russell CA, Perry-Gottschalk R, Shaia C, Martens C, Lloyd-Smith JO, Fischer RJ, Munster VJ. Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. eLife 2024; 12:RP87094. [PMID: 38416804 PMCID: PMC10942639 DOI: 10.7554/elife.87094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 hr), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10 µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 hr). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Dylan H Morris
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
| | - Jade C Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Victoria A Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Myndi G Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Taylor A Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Kent Barbian
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Colin A Russell
- Department of Medical Microbiology | Amsterdam University Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Craig Martens
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
| | - Robert J Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| |
Collapse
|
5
|
Zhang Y, Shankar SN, Vass WB, Lednicky JA, Fan ZH, Agdas D, Makuch R, Wu CY. Air Change Rate and SARS-CoV-2 Exposure in Hospitals and Residences: A Meta-Analysis. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2024; 58:217-243. [PMID: 38764553 PMCID: PMC11101186 DOI: 10.1080/02786826.2024.2312178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/16/2024] [Indexed: 05/21/2024]
Abstract
As SARS-CoV-2 swept across the globe, increased ventilation and implementation of air cleaning were emphasized by the US CDC and WHO as important strategies to reduce the risk of inhalation exposure to the virus. To assess whether higher ventilation and air cleaning rates lead to lower exposure risk to SARS-CoV-2, 1274 manuscripts published between April 2020 and September 2022 were screened using key words "airborne SARS-CoV-2 or "SARS-CoV-2 aerosol". Ninety-three studies involved air sampling at locations with known sources (hospitals and residences) were selected and associated data were compiled. Two metrics were used to assess exposure risk: SARS-CoV-2 concentration and SARS-CoV-2 detection rate in air samples. Locations were categorized by type (hospital or residence) and proximity to the sampling location housing the isolated/quarantined patient (primary or secondary). The results showed that hospital wards had lower airborne virus concentrations than residential isolation rooms. A negative correlation was found between airborne virus concentrations in primary-occupancy areas and air changes per hour (ACH). In hospital settings, sample positivity rates were significantly reduced in secondary-occupancy areas compared to primary-occupancy areas, but they were similar across sampling locations in residential settings. ACH and sample positivity rates were negatively correlated, though the effect was diminished when ACH values exceeded 8. While limitations associated with diverse sampling protocols exist, data considered by this meta-analysis support the notion that higher ACH may reduce exposure risks to the virus in ambient air.
Collapse
Affiliation(s)
- Yuetong Zhang
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columnia, Canada
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Environmental & Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Z. Hugh Fan
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Duzgun Agdas
- Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, Florida, USA
| | - Robert Makuch
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
6
|
Reissner J, Siller P, Bartel A, Roesler U, Friese A. Stability of Feline Coronavirus in aerosols and dried in organic matrices on surfaces at various environmental conditions. Sci Rep 2023; 13:22012. [PMID: 38086913 PMCID: PMC10716419 DOI: 10.1038/s41598-023-49361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Enveloped respiratory viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can be transmitted through aerosols and contact with contaminated surfaces. The stability of these viruses outside the host significantly impacts their transmission dynamics and the spread of diseases. In this study, we investigated the tenacity of Feline Coronavirus (FCoV) in aerosols and on surfaces under varying environmental conditions. We found that airborne FCoV showed different stability depending on relative humidity (RH), with higher stability observed at low and high RH. Medium RH conditions (50-60%) were associated with increased loss of infectivity. Furthermore, FCoV remained infectious in the airborne state over 7 h. On stainless-steel surfaces, FCoV remained infectious for several months, with stability influenced by organic material and temperature. The presence of yeast extract and a temperature of 4 °C resulted in the longest maintenance of infectivity, with a 5 log10 reduction of the initial concentration after 167 days. At 20 °C, this reduction was achieved after 19 days. These findings highlight the potential risk of aerosol and contact transmission of respiratory viruses, especially in enclosed environments, over extended periods. Studying surrogate viruses like FCoV provides important insights into the behavior of zoonotic viruses like SARS-CoV-2 in the environment.
Collapse
Affiliation(s)
- Janina Reissner
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research-TZR, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| | - Paul Siller
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research-TZR, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Federal Office of Consumer Protection and Food Safety, Department Veterinary Drugs, Mittelstraße 51-54, 10117, Berlin, Germany
| | - Alexander Bartel
- Institute of Veterinary Epidemiology and Biostatistics, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research-TZR, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Anika Friese
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research-TZR, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
7
|
Kuehl PJ, Dearing J, Werts A, Cox J, Irshad H, Barrett EG, Tucker SN, Langel SN. Design and validation of an exposure system for efficient inter-animal SARS-CoV-2 airborne transmission in Syrian hamsters. Microbiol Spectr 2023; 11:e0471722. [PMID: 37882564 PMCID: PMC10714807 DOI: 10.1128/spectrum.04717-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The main route of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is airborne. However, there are few experimental systems that can assess the airborne transmission dynamics of SARS-CoV-2 in vivo. Here, we designed, built, and characterized a hamster transmission caging and exposure system that allows for efficient SARS-CoV-2 airborne transmission in Syrian hamsters without contributions from fomite or direct contact transmission. We successfully measured SARS-CoV-2 viral RNA in aerosols and demonstrated that SARS-CoV-2 is transmitted efficiently at either a 1:1 or 1:4 infected index to naïve recipient hamster ratio. This is meaningful as a 1:4 infected index to naïve hamster ratio would allow for simultaneous comparisons of various interventions in naïve animals to determine their susceptibility to infection by aerosol transmission of SARS-CoV-2. Our SARS-CoV-2 exposure system allows for testing viral airborne transmission dynamics and transmission-blocking therapeutic strategies against SARS-CoV-2 in Syrian hamsters.
Collapse
Affiliation(s)
- Philip J. Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Justin Dearing
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Adam Werts
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Jason Cox
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Hammad Irshad
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Edward G. Barrett
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | | | - Stephanie N. Langel
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Gagne M, Flynn BJ, Andrew SF, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Pessaint L, Todd JPM, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, Doria-Rose NA, O'Dell S, Godbole S, Laboune F, Henry AR, Marquez J, Teng IT, Wang L, Zhou Q, Wali B, Ellis M, Zouantchangadou S, Ry AV, Lewis MG, Andersen H, Kwong PD, Curiel DT, Foulds KE, Nason MC, Suthar MS, Roederer M, Diamond MS, Douek DC, Seder RA. Mucosal Adenoviral-vectored Vaccine Boosting Durably Prevents XBB.1.16 Infection in Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565765. [PMID: 37986823 PMCID: PMC10659340 DOI: 10.1101/2023.11.06.565765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens. Graphical abstract
Collapse
|
9
|
Port JR, Morris DH, Riopelle JC, Yinda CK, Avanzato VA, Holbrook MG, Bushmaker T, Schulz JE, Saturday TA, Barbian K, Russell CA, Perry-Gottschalk R, Shaia CI, Martens C, Lloyd-Smith JO, Fischer RJ, Munster VJ. Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.08.15.504010. [PMID: 36032963 PMCID: PMC9413705 DOI: 10.1101/2022.08.15.504010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10μm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.
Collapse
Affiliation(s)
- Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Dylan H. Morris
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Jade C. Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A. Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kent Barbian
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Colin A. Russell
- Department of Medical Microbiology | Amsterdam University Medical Center, University of Amsterdam
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl I. Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Robert J. Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
10
|
Pan J, Gmati S, Roper BA, Prussin AJ, Hawks SA, Whittington AR, Duggal NK, Marr LC. Stability of Aerosolized SARS-CoV-2 on Masks and Transfer to Skin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10193-10200. [PMID: 37399494 PMCID: PMC10358342 DOI: 10.1021/acs.est.3c01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
The potential for masks to act as fomites in the transmission of SARS-CoV-2 has been suggested but not demonstrated experimentally or observationally. In this study, we aerosolized a suspension of SARS-CoV-2 in saliva and used a vacuum pump to pull the aerosol through six different types of masks. After 1 h at 28 °C and 80% RH, SARS-CoV-2 infectivity was not detectable on an N95 and surgical mask, was reduced by 0.7 log10 on a nylon/spandex mask, and was unchanged on a polyester mask and two different cotton masks when recovered by elution in a buffer. SARS-CoV-2 RNA remained stable for 1 h on all masks. We pressed artificial skin against the contaminated masks and detected the transfer of viral RNA but no infectious virus to the skin. The potential for masks contaminated with SARS-CoV-2 in aerosols to act as fomites appears to be less than indicated by studies involving SARS-CoV-2 in very large droplets.
Collapse
Affiliation(s)
- Jin Pan
- Civil
and Environmental Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Selma Gmati
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Bryce A. Roper
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Aaron J. Prussin
- Civil
and Environmental Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Seth A. Hawks
- Department
of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Abby R. Whittington
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Departments
of Chemical Engineering and Macromolecular Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nisha K. Duggal
- Department
of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Linsey C. Marr
- Civil
and Environmental Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Aerosolize this: Generation, collection, and analysis of aerosolized virus in laboratory settings. PLoS Pathog 2023; 19:e1011178. [PMID: 36893118 PMCID: PMC9997909 DOI: 10.1371/journal.ppat.1011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|
12
|
Cui H, Zhao K, Zhang C, Lin J, Sun S, Li Q, Du L, Zhang C, Liu J, Gao F, He W, Gao Y, Guo Z, Guan J. Parapoxvirus-based therapy eliminates SARS-CoV-2-loaded fine aerosol and blocks viral transmission in hamster models. Front Microbiol 2022; 13:1086627. [PMID: 36532502 PMCID: PMC9751573 DOI: 10.3389/fmicb.2022.1086627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 01/09/2024] Open
Abstract
Currently, it is believed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an airborne virus, and virus-containing aerosol particles have been found concurrent with the onset of COVID-19, which may contribute to the noncontact transmission of SARS-CoV-2. Exploring agents to block SARS-CoV-2 transmission is of great importance to prevent the COVID-19 pandemic. In this study, we found that inactivated Parapoxvirus ovis (iORFV), a kind of immunomodulator, could compress the proportion of small particle aerosols exhaled by Syrian golden hamsters. Notably, the concentration of SARS-CoV-2 RNA-containing aerosol particles was significantly reduced by iORFV in the early stages after viral inoculation. Importantly, smaller aerosol particles (<4.7 μm) that carry infectious viruses were completely cleared by iORFV. Consistently, iORFV treatment completely blocked viral noncontact (aerosol) transmission. In summary, iORFV may become a repurposed agent for the prevention and control of COVID-19 by affecting viral aerosol exhalation and subsequent viral transmission.
Collapse
Affiliation(s)
- Huan Cui
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Jing Lin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shihui Sun
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qi Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Le Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chunmao Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Feng Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
13
|
Wagner J, Macher JM, Chen W, Kumagai K. Comparative Mask Protection against Inhaling Wildfire Smoke, Allergenic Bioaerosols, and Infectious Particles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15555. [PMID: 36497628 PMCID: PMC9735667 DOI: 10.3390/ijerph192315555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
This work compares relative mask inhalation protection against a range of airborne particle sizes that the general public may encounter, including infectious particles, wildfire smoke and ash, and allergenic fungal and plant particles. Several mask types available to the public were modeled with respirable fraction deposition. Best-case collection efficiencies for cloth, surgical, and respirator masks were predicted to be lowest (0.3, 0.6, and 0.8, respectively) for particle types with dominant sub-micrometer modes (wildfire smoke and human-emitted bronchial particles). Conversely, all mask types were predicted to achieve good collection efficiency (up to ~1.0) for the largest-sized particle types, including pollen grains, some fungal spores, and wildfire ash. Polydisperse infectious particles were predicted to be captured by masks with efficiencies of 0.3-1.0 depending on the pathogen size distribution and the type of mask used. Viruses aerosolized orally are predicted to be captured efficiently by all mask types, while those aerosolized from bronchiolar or laryngeal-tracheal sites are captured with much lower efficiency by surgical and cloth masks. The predicted efficiencies changed very little when extrathoracic deposition was included (inhalable rather than respirable fraction) or when very large (100 µm) particles were neglected. Actual mask fit and usage will determine protection levels in practice, but the relative comparisons in this work can inform mask guidance for different inhalation hazards, including particles generated by yard work, wildfires, and infections.
Collapse
Affiliation(s)
- Jeff Wagner
- Environmental Health Laboratory Branch, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA 94804, USA
| | | | | | | |
Collapse
|
14
|
Oksanen L, Auvinen M, Kuula J, Malmgren R, Romantschuk M, Hyvärinen A, Laitinen S, Maunula L, Sanmark E, Geneid A, Sofieva S, Salokas J, Veskiväli H, Sironen T, Grönholm T, Hellsten A, Atanasova N. Combining Phi6 as a surrogate virus and computational large-eddy simulations to study airborne transmission of SARS-CoV-2 in a restaurant. INDOOR AIR 2022; 32:e13165. [PMID: 36437671 PMCID: PMC10100099 DOI: 10.1111/ina.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 05/18/2023]
Abstract
COVID-19 has highlighted the need for indoor risk-reduction strategies. Our aim is to provide information about the virus dispersion and attempts to reduce the infection risk. Indoor transmission was studied simulating a dining situation in a restaurant. Aerosolized Phi6 viruses were detected with several methods. The aerosol dispersion was modeled by using the Large-Eddy Simulation (LES) technique. Three risk-reduction strategies were studied: (1) augmenting ventilation with air purifiers, (2) spatial partitioning with dividers, and (3) combination of 1 and 2. In all simulations infectious viruses were detected throughout the space proving the existence long-distance aerosol transmission indoors. Experimental cumulative virus numbers and LES dispersion results were qualitatively similar. The LES results were further utilized to derive the evolution of infection probability. Air purifiers augmenting the effective ventilation rate by 65% reduced the spatially averaged infection probability by 30%-32%. This relative reduction manifests with approximately 15 min lag as aerosol dispersion only gradually reaches the purifier units. Both viral findings and LES results confirm that spatial partitioning has a negligible effect on the mean infection-probability indoors, but may affect the local levels adversely. Exploitation of high-resolution LES jointly with microbiological measurements enables an informative interpretation of the experimental results and facilitates a more complete risk assessment.
Collapse
Affiliation(s)
- Lotta Oksanen
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - Joel Kuula
- Finnish Meteorological InstituteHelsinkiFinland
| | - Rasmus Malmgren
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Martin Romantschuk
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiLahtiFinland
| | | | | | - Leena Maunula
- Faculty of Veterinary Medicine, Food Hygiene and Environmental HealthUniversity of HelsinkiHelsinkiFinland
| | - Enni Sanmark
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Ahmed Geneid
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Svetlana Sofieva
- Finnish Meteorological InstituteHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Julija Salokas
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Helin Veskiväli
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Tarja Sironen
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Veterinary Biosciences, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | | | | | - Nina Atanasova
- Finnish Meteorological InstituteHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
15
|
Abstract
The continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans necessitates evaluation of variants for enhanced virulence and transmission. We used the ferret model to perform a comparative analysis of four SARS-CoV-2 strains, including an early pandemic isolate from the United States (WA1), and representatives of the Alpha, Beta, and Delta lineages. While Beta virus was not capable of pronounced replication in ferrets, WA1, Alpha, and Delta viruses productively replicated in the ferret upper respiratory tract, despite causing only mild disease with no overt histopathological changes. Strain-specific transmissibility was observed; WA1 and Delta viruses transmitted in a direct contact setting, whereas Delta virus was also capable of limited airborne transmission. Viral RNA was shed in exhaled air particles from all inoculated animals but was highest for Delta virus. Prior infection with SARS-CoV-2 offered varied protection against reinfection with either homologous or heterologous variants. Notable genomic variants in the spike protein were most frequently detected following WA1 and Delta virus infection.
Collapse
|
16
|
Vass WB, Lednicky JA, Shankar SN, Fan ZH, Eiguren-Fernandez A, Wu CY. Viable SARS-CoV-2 Delta variant detected in aerosols in a residential setting with a self-isolating college student with COVID-19. JOURNAL OF AEROSOL SCIENCE 2022; 165:106038. [PMID: 35774447 PMCID: PMC9217630 DOI: 10.1016/j.jaerosci.2022.106038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 05/08/2023]
Abstract
The B.1.617.2 (Delta) variant of SARS-CoV-2 emerged in India in October of 2020 and spread widely to over 145 countries, comprising over 99% of genome sequence-confirmed virus in COVID-19 cases of the United States (US) by September 2021. The rise in COVID-19 cases due to the Delta variant coincided with a return to in-person school attendance, straining COVID-19 mitigation plans implemented by educational institutions. Some plans required sick students to self-isolate off-campus, resulting in an unintended consequence: exposure of co-inhabitants of dwellings used by the sick person during isolation. We assessed air and surface samples collected from the bedroom of a self-isolating university student with mild COVID-19 for the presence of SARS-CoV-2. That virus' RNA was detected by real-time reverse-transcription quantitative polymerase chain reaction (rRT-qPCR) in air samples from both an isolation bedroom and a distal, non-isolation room of the same dwelling. SARS-CoV-2 was detected and viable virus was isolated in cell cultures from aerosol samples as well as from the surface of a mobile phone. Genomic sequencing revealed that the virus was a Delta variant SARS-CoV-2 strain. Taken together, the results of this work confirm the presence of viable SARS-CoV-2 within a residential living space of a person with COVID-19 and show potential for transportation of virus-laden aerosols beyond a designated isolation suite to other areas of a single-family home.
Collapse
Affiliation(s)
- William B Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Z Hugh Fan
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
- Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | | | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Kurth A, Weber U, Reichenbacher D. Maintaining differential pressure gradients does not increase safety inside modern BSL-4 laboratories. Front Bioeng Biotechnol 2022; 10:953675. [PMID: 36110311 PMCID: PMC9468669 DOI: 10.3389/fbioe.2022.953675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
This article discusses a previously unrecognized contradiction in the design of biosafety level-4 (BSL-4) suit laboratories, also known as maximum or high containment laboratories. For decades, it is suggested that both directional airflow and pressure differentials are essential safety measures to prevent the release of pathogens into the environment and to avoid cross-contamination between laboratory rooms. Despite the absence of an existing evidence-based risk analyses demonstrating increased safety by directional airflow and pressure differentials in BSL-4 laboratories, they were anchored in various national regulations. Currently, the construction and operation of BSL-4 laboratories are subject to rigorous quality and technical requirements including airtight containment. Over time, BSL-4 laboratories evolved to enormously complex technical infrastructures. With the aim to counterbalance this development towards technical simplification while still maintaining maximum safety, we provide a detailed risk analysis by calculating pathogen mitigation in maximum contamination scenarios. The results presented and discussed herein, indicate that both directional airflow or a differential pressure gradient in airtight rooms within a secondary BSL-4 containment do not increase biosafety, and are not necessary. Likewise, reduction of pressure zones from the outside into the secondary containment may also provide sufficient environmental protection. We encourage laboratory design professionals to consider technical simplification and policymakers to adapt corresponding legislation and regulations surrounding directional airflow and pressure differentials for technically airtight BSL-4 laboratories.
Collapse
Affiliation(s)
- Andreas Kurth
- Biosafety Level-4 Laboratory, Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
- *Correspondence: Andreas Kurth,
| | - Udo Weber
- Ingenieurbüro Udo Weber, Köln, Germany
| | - Detlef Reichenbacher
- Construction, Physical Plant and Technology, Robert Koch Institute, Central Services, Berlin, Germany
| |
Collapse
|
18
|
Heitzman-Breen N, Ciupe SM. Modeling within-host and aerosol dynamics of SARS-CoV-2: The relationship with infectiousness. PLoS Comput Biol 2022; 18:e1009997. [PMID: 35913988 PMCID: PMC9371288 DOI: 10.1371/journal.pcbi.1009997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/11/2022] [Accepted: 07/09/2022] [Indexed: 12/19/2022] Open
Abstract
The relationship between transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the amount of virus present in the proximity of a susceptible host is not understood. Here, we developed a within-host and aerosol mathematical model and used it to determine the relationship between viral kinetics in the upper respiratory track, viral kinetics in the aerosols, and new transmissions in golden hamsters challenged with SARS-CoV-2. We determined that infectious virus shedding early in infection correlates with transmission events, shedding of infectious virus diminishes late in the infection, and high viral RNA levels late in the infection are a poor indicator of transmission. We further showed that viral infectiousness increases in a density dependent manner with viral RNA and that their relative ratio is time-dependent. Such information is useful for designing interventions. Quantifying the relationship between SARS-CoV-2 dynamics in upper respiratory tract and in aerosols is key to understanding SARS-CoV-2 transmission and evaluating intervention strategies. Of particular interest is the link between the viral RNA measured by PCR and a subject’s infectiousness. Here, we developed a mechanistic model of viral transmission in golden hamsters and used data in upper respiratory tract and aerosols to evaluate key within-host and environment based viral parameters. The significance of our research is in identifying the timing and duration of viral shedding, how long it stays infectious, and the link between infectious virus and total viral RNA. Such knowledge enhances our understanding of the SARS-CoV-2 transmission window.
Collapse
Affiliation(s)
- Nora Heitzman-Breen
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Volckens J, Good KM, Goble D, Good N, Keller JP, Keisling A, L'Orange C, Morton E, Phillips R, Tanner K. Aerosol emissions from wind instruments: effects of performer age, sex, sound pressure level, and bell covers. Sci Rep 2022; 12:11303. [PMID: 35788635 PMCID: PMC9252563 DOI: 10.1038/s41598-022-15530-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Aerosol emissions from wind instruments are a suspected route of transmission for airborne infectious diseases, such as SARS-CoV-2. We evaluated aerosol number emissions (from 0.25 to 35.15 μm) from 81 volunteer performers of both sexes and varied age (12 to 63 years) while playing wind instruments (bassoon, clarinet, flute, French horn, oboe, piccolo, saxophone, trombone, trumpet, and tuba) or singing. Measured emissions spanned more than two orders of magnitude, ranging in rate from < 8 to 1,815 particles s-1, with brass instruments, on average, producing 191% (95% CI 81-367%) more aerosol than woodwinds. Being male was associated with a 70% increase in emissions (vs. female; 95% CI 9-166%). Each 1 dBA increase in sound pressure level was associated with a 28% increase (95% CI 10-40%) in emissions from brass instruments; sound pressure level was not associated with woodwind emissions. Age was not a significant predictor of emissions. The use of bell covers reduced aerosol emissions from three brass instruments tested (trombone, tuba, and trumpet), with average reductions ranging from 53 to 73%, but not for the two woodwind instruments tested (oboe and clarinet). Results from this work can facilitate infectious disease risk management for the performing arts.
Collapse
Affiliation(s)
- John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Kristen M Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Division of Disease Control and Public Health Response, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Dan Goble
- School of Music, Theatre, and Dance, Colorado State University, Fort Collins, CO, USA
| | - Nicholas Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joshua P Keller
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Amy Keisling
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- School of Music, Theatre, and Dance, Colorado State University, Fort Collins, CO, USA
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Emily Morton
- School of Music, Theatre, and Dance, Colorado State University, Fort Collins, CO, USA
| | - Rebecca Phillips
- School of Music, Theatre, and Dance, Colorado State University, Fort Collins, CO, USA
| | - Ky Tanner
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
20
|
|
21
|
Baselga M, Alba JJ, Schuhmacher AJ. The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6605. [PMID: 35682191 PMCID: PMC9180361 DOI: 10.3390/ijerph19116605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023]
Abstract
The global acceptance of the SARS-CoV-2 airborne transmission led to prevention measures based on quality control and air renewal. Among them, carbon dioxide (CO2) measurement has positioned itself as a cost-efficiency, reliable, and straightforward method to assess indoor air renewal indirectly. Through the control of CO2, it is possible to implement and validate the effectiveness of prevention measures to reduce the risk of contagion of respiratory diseases by aerosols. Thanks to the method scalability, CO2 measurement has become the gold standard for diagnosing air quality in shared spaces. Even though collective transport is considered one of the environments with the highest rate of COVID-19 propagation, little research has been done where the air inside vehicles is analyzed. This work explores the generation and accumulation of metabolic CO2 in a tramway (Zaragoza, Spain) operation. Importantly, we propose to use the indicator ppm/person as a basis for comparing environments under different conditions. Our study concludes with an experimental evaluation of the benefit of modifying some parameters of the Heating-Ventilation-Air conditioning (HVAC) system. The study of the particle retention efficiency of the implemented filters shows a poor air cleaning performance that, at present, can be counteracted by opening windows. Seeking a post-pandemic scenario, it will be crucial to seek strategies to improve air quality in public transport to prevent the transmission of infectious diseases.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (J.J.A.)
| | - Juan J. Alba
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (J.J.A.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Alberto J. Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (J.J.A.)
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 500018 Zaragoza, Spain
| |
Collapse
|
22
|
Fisman DN, Amoako A, Tuite AR. Impact of population mixing between vaccinated and unvaccinated subpopulations on infectious disease dynamics: implications for SARS-CoV-2 transmission. CMAJ 2022; 194:E573-E580. [PMID: 35470204 PMCID: PMC9054088 DOI: 10.1503/cmaj.212105] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
Background: The speed of vaccine development has been a singular achievement during the COVID-19 pandemic, although uptake has not been universal. Vaccine opponents often frame their opposition in terms of the rights of the unvaccinated. We sought to explore the impact of mixing of vaccinated and unvaccinated populations on risk of SARS-CoV-2 infection among vaccinated people. Methods: We constructed a simple susceptible–infectious–recovered compartmental model of a respiratory infectious disease with 2 connected subpopulations: people who were vaccinated and those who were unvaccinated. We simulated a spectrum of patterns of mixing between vaccinated and unvaccinated groups that ranged from random mixing to complete like-with-like mixing (complete assortativity), in which people have contact exclusively with others with the same vaccination status. We evaluated the dynamics of an epidemic within each subgroup and in the population as a whole. Results: We found that the risk of infection was markedly higher among unvaccinated people than among vaccinated people under all mixing assumptions. The contact-adjusted contribution of unvaccinated people to infection risk was disproportionate, with unvaccinated people contributing to infections among those who were vaccinated at a rate higher than would have been expected based on contact numbers alone. We found that as like-with-like mixing increased, attack rates among vaccinated people decreased from 15% to 10% (and increased from 62% to 79% among unvaccinated people), but the contact-adjusted contribution to risk among vaccinated people derived from contact with unvaccinated people increased. Interpretation: Although risk associated with avoiding vaccination during a virulent pandemic accrues chiefly to people who are unvaccinated, their choices affect risk of viral infection among those who are vaccinated in a manner that is disproportionate to the portion of unvaccinated people in the population.
Collapse
Affiliation(s)
- David N Fisman
- Dalla Lana School of Public Health (Fisman, Amoako, Tuite), University of Toronto, Toronto, Ont.; Centre for Immunization Readiness (Tuite), Public Health Agency of Canada, Ottawa, Ont.
| | - Afia Amoako
- Dalla Lana School of Public Health (Fisman, Amoako, Tuite), University of Toronto, Toronto, Ont.; Centre for Immunization Readiness (Tuite), Public Health Agency of Canada, Ottawa, Ont
| | - Ashleigh R Tuite
- Dalla Lana School of Public Health (Fisman, Amoako, Tuite), University of Toronto, Toronto, Ont.; Centre for Immunization Readiness (Tuite), Public Health Agency of Canada, Ottawa, Ont
| |
Collapse
|
23
|
Tellier R. COVID-19: the case for aerosol transmission. Interface Focus 2022; 12:20210072. [PMID: 35261731 PMCID: PMC8831082 DOI: 10.1098/rsfs.2021.0072] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
The COVID-19 pandemic is the most severe pandemic caused by a respiratory virus since the 1918 influenza pandemic. As is the case with other respiratory viruses, three modes of transmission have been invoked: contact (direct and through fomites), large droplets and aerosols. This narrative review makes the case that aerosol transmission is an important mode for COVID-19, through reviewing studies about bioaerosol physiology, detection of infectious SARS-CoV-2 in exhaled bioaerosols, prolonged SARS-CoV-2 infectivity persistence in aerosols created in the laboratory, detection of SARS-CoV-2 in air samples, investigation of outbreaks with manifest involvement of aerosols, and animal model experiments. SARS-CoV-2 joins influenza A virus as a virus with proven pandemic capacity that can be spread by the aerosol route. This has profound implications for the control of the current pandemic and for future pandemic preparedness.
Collapse
Affiliation(s)
- Raymond Tellier
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Rios de Anda I, Wilkins JW, Robinson JF, Royall CP, Sear RP. Modeling the filtration efficiency of a woven fabric: The role of multiple lengthscales. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:033301. [PMID: 35342280 PMCID: PMC8939465 DOI: 10.1063/5.0074229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 05/09/2023]
Abstract
During the COVID-19 pandemic, many millions have worn masks made of woven fabric to reduce the risk of transmission of COVID-19. Masks are essentially air filters worn on the face that should filter out as many of the dangerous particles as possible. Here, the dangerous particles are the droplets containing the virus that are exhaled by an infected person. Woven fabric is unlike the material used in standard air filters. Woven fabric consists of fibers twisted together into yarns that are then woven into fabric. There are, therefore, two lengthscales: the diameters of (i) the fiber and (ii) the yarn. Standard air filters have only (i). To understand how woven fabrics filter, we have used confocal microscopy to take three-dimensional images of woven fabric. We then used the image to perform lattice Boltzmann simulations of the air flow through fabric. With this flow field, we calculated the filtration efficiency for particles a micrometer and larger in diameter. In agreement with experimental measurements by others, we found that for particles in this size range, the filtration efficiency is low. For particles with a diameter of 1.5 μm, our estimated efficiency is in the range 2.5%-10%. The low efficiency is due to most of the air flow being channeled through relatively large (tens of micrometers across) inter-yarn pores. So, we conclude that due to the hierarchical structure of woven fabrics, they are expected to filter poorly.
Collapse
Affiliation(s)
| | - Jake W. Wilkins
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | | | | | - Richard P. Sear
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
25
|
Rufino de Sousa N, Steponaviciute L, Margerie L, Nissen K, Kjellin M, Reinius B, Salaneck E, Udekwu KI, Rothfuchs AG. Detection and isolation of airborne SARS-CoV-2 in a hospital setting. INDOOR AIR 2022; 32:e13023. [PMID: 35347788 PMCID: PMC9111425 DOI: 10.1111/ina.13023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 05/15/2023]
Abstract
Transmission mechanisms for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are incompletely understood. In particular, aerosol transmission remains unclear, with viral detection in air and demonstration of its infection potential being actively investigated. To this end, we employed a novel electrostatic collector to sample air from rooms occupied by COVID-19 patients in a major Swedish hospital. Electrostatic air sampling in conjunction with extraction-free, reverse-transcriptase polymerase chain reaction (hid-RT-PCR) enabled detection of SARS-CoV-2 in air from patient rooms (9/22; 41%) and adjoining anterooms (10/22; 45%). Detection with hid-RT-PCR was concomitant with viral RNA presence on the surface of exhaust ventilation channels in patients and anterooms more than 2 m from the COVID-19 patient. Importantly, it was possible to detect active SARS-CoV-2 particles from room air, with a total of 496 plaque-forming units (PFUs) being isolated, establishing the presence of infectious, airborne SARS-CoV-2 in rooms occupied by COVID-19 patients. Our results support circulation of SARS-CoV-2 via aerosols and urge the revision of existing infection control frameworks to include airborne transmission.
Collapse
Affiliation(s)
- Nuno Rufino de Sousa
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Laura Steponaviciute
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Lucille Margerie
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Karolina Nissen
- Department of Medical SciencesInfectious DiseasesUppsala UniversityUniversity Hospital UppsalaUppsalaSweden
| | - Midori Kjellin
- Department of Medical SciencesInfectious DiseasesUppsala UniversityUniversity Hospital UppsalaUppsalaSweden
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics (MBB)Karolinska InstitutetStockholmSweden
| | - Erik Salaneck
- Department of Medical SciencesInfectious DiseasesUppsala UniversityUniversity Hospital UppsalaUppsalaSweden
| | - Klas I. Udekwu
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | | |
Collapse
|
26
|
Arpino F, Grossi G, Cortellessa G, Mikszewski A, Morawska L, Buonanno G, Stabile L. Risk of SARS-CoV-2 in a car cabin assessed through 3D CFD simulations. INDOOR AIR 2022; 32:e13012. [PMID: 35347787 PMCID: PMC9111293 DOI: 10.1111/ina.13012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 05/26/2023]
Abstract
In this study, the risk of infection from SARS-CoV-2 Delta variant of passengers sharing a car cabin with an infected subject for a 30-min journey is estimated through an integrated approach combining a recently developed predictive emission-to-risk approach and a validated CFD numerical model numerically solved using the open-source OpenFOAM software. Different scenarios were investigated to evaluate the effect of the infected subject position within the car cabin, the airflow rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. speaking). The numerical simulations here performed reveal that the risk of infection is strongly influenced by several key parameters: As an example, under the same ventilation mode and emitting scenario, the risk of infection ranges from zero to roughly 50% as a function of the HVAC flow rate. The results obtained also demonstrate that (i) simplified zero-dimensional approaches limit proper evaluation of the risk in such confined spaces, conversely, (ii) CFD approaches are needed to investigate the complex fluid dynamics in similar indoor environments, and, thus, (iii) the risk of infection in indoor environments characterized by fixed seats can be in principle controlled by properly designing the flow patterns of the environment.
Collapse
Affiliation(s)
- Fausto Arpino
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| | - Giorgio Grossi
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| | - Gino Cortellessa
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| | - Alex Mikszewski
- International Laboratory for Air Quality and HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Lidia Morawska
- International Laboratory for Air Quality and HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Giorgio Buonanno
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
- International Laboratory for Air Quality and HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Luca Stabile
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| |
Collapse
|
27
|
Leonardi AJ, Mishra AK. A Sanitation Argument for Clean Indoor Air: Meeting a Requisite for Safe Public Spaces. Front Public Health 2022; 10:805780. [PMID: 35237550 PMCID: PMC8883285 DOI: 10.3389/fpubh.2022.805780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Asit Kumar Mishra
- MaREI Centre, Ryan Institute & School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
28
|
Abstract
Breathing is a critical, complex, and highly integrated behavior. Normal rhythmic breathing, also referred to as eupnea, is interspersed with different breathing related behaviors. Sighing is one of such behaviors, essential for maintaining effective gas exchange by preventing the gradual collapse of alveoli in the lungs, known as atelectasis. Critical for the generation of both sighing and eupneic breathing is a region of the medulla known as the preBötzinger Complex (preBötC). Efforts are underway to identify the cellular pathways that link sighing as well as sneezing, yawning, and hiccupping with other brain regions to better understand how they are integrated and regulated in the context of other behaviors including chemosensation, olfaction, and cognition. Unraveling these interactions may provide important insights into the diverse roles of these behaviors in the initiation of arousal, stimulation of vigilance, and the relay of certain behavioral states. This chapter focuses primarily on the function of the sigh, how it is locally generated within the preBötC, and what the functional implications are for a potential link between sighing and cognitive regulation. Furthermore, we discuss recent insights gained into the pathways and mechanisms that control yawning, sneezing, and hiccupping.
Collapse
|