1
|
Xu M, Ruan S, Sun J, Li J, Chen D, Ma Y, Qi Y, Liu Z, Ruan Q, Huang Y. Human cytomegalovirus RNA2.7 inhibits ferroptosis by upregulating ferritin and GSH via promoting ZNF395 degradation. PLoS Pathog 2024; 20:e1012815. [PMID: 39724092 DOI: 10.1371/journal.ppat.1012815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a herpes virus with a long replication cycle. HCMV encoded long non-coding RNA termed RNA2.7 is the dominant transcript with a length of about 2.5kb, accounting for 25% of total viral transcripts. Studies have shown that HCMV RNA2.7 inhibits apoptosis caused by infection. The effect of RNA2.7 on other forms of cell death is still unclear. In this work, we found that RNA2.7 deletion significantly decreased the viability of HCMV-infected cells, while treatment with ferroptosis inhibitor Fer-1 rescued the infection-induced cell death, demonstrating an anti-ferroptosis role of RNA2.7. The results further showed that RNA2.7 inhibited ferroptosis via enhancing Ferritin Heavy Chain 1 (FTH1) and Solute Carrier Family 7 Member 11 (SLC7A11) expression in Erastin treated cells without involving other viral components. Pooled Genome-wide CRISPR screening revealed zinc finger protein 395 (ZNF395) as a new regulator repressing the expression of FTH1 and SLC7A11. HCMV RNA2.7 promoted proteasome-mediated degradation of ZNF395 that resulted in upregulation of FTH1 and SLC7A11 to inhibit ferroptosis, therefore maintain survival in host cells and complete replication of virus.
Collapse
Affiliation(s)
- Mingyi Xu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shan Ruan
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingxuan Sun
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianming Li
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Chen
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Gynaecology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecocology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecocology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongyang Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecocology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiang Ruan
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecocology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yujing Huang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecocology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Hein MY, Peng D, Todorova V, McCarthy F, Kim K, Liu C, Savy L, Januel C, Baltazar-Nunez R, Sekhar M, Vaid S, Bax S, Vangipuram M, Burgess J, Njoya L, Wang E, Ivanov IE, Byrum JR, Pradeep S, Gonzalez CG, Aniseia Y, Creery JS, McMorrow AH, Sunshine S, Yeung-Levy S, DeFelice BC, Mehta SB, Itzhak DN, Elias JE, Leonetti MD. Global organelle profiling reveals subcellular localization and remodeling at proteome scale. Cell 2024:S0092-8674(24)01344-8. [PMID: 39742809 DOI: 10.1016/j.cell.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/05/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
Defining the subcellular distribution of all human proteins and their remodeling across cellular states remains a central goal in cell biology. Here, we present a high-resolution strategy to map subcellular organization using organelle immunocapture coupled to mass spectrometry. We apply this workflow to a cell-wide collection of membranous and membraneless compartments. A graph-based analysis assigns the subcellular localization of over 7,600 proteins, defines spatial networks, and uncovers interconnections between cellular compartments. Our approach can be deployed to comprehensively profile proteome remodeling during cellular perturbation. By characterizing the cellular landscape following HCoV-OC43 viral infection, we discover that many proteins are regulated by changes in their spatial distribution rather than by changes in abundance. Our results establish that proteome-wide analysis of subcellular remodeling provides key insights for elucidating cellular responses, uncovering an essential role for ferroptosis in OC43 infection. Our dataset can be explored at organelles.czbiohub.org.
Collapse
Affiliation(s)
| | - Duo Peng
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | | | | | - Kibeom Kim
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Chad Liu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Laura Savy
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | | | - Sophie Bax
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - James Burgess
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Leila Njoya
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Eileen Wang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Serena Yeung-Levy
- Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
3
|
Gray V, Chen W, Tan RJY, Teo JMN, Huang Z, Fong CHY, Law TWH, Ye ZW, Yuan S, Bao X, Hung IFN, Tan KCB, Lee CH, Ling GS. Hyperglycemia-triggered lipid peroxidation destabilizes STAT4 and impairs anti-viral Th1 responses in type 2 diabetes. Cell Metab 2024; 36:2511-2527.e7. [PMID: 39488214 DOI: 10.1016/j.cmet.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Patients with type 2 diabetes (T2D) are more susceptible to severe respiratory viral infections, but the underlying mechanisms remain elusive. Here, we show that patients with T2D and coronavirus disease 2019 (COVID-19) infections, and influenza-infected T2D mice, exhibit defective T helper 1 (Th1) responses, which are an essential component of anti-viral immunity. This defect stems from intrinsic metabolic perturbations in CD4+ T cells driven by hyperglycemia. Mechanistically, hyperglycemia triggers mitochondrial dysfunction and excessive fatty acid synthesis, leading to elevated oxidative stress and aberrant lipid accumulation within CD4+ T cells. These abnormalities promote lipid peroxidation (LPO), which drives carbonylation of signal transducer and activator of transcription 4 (STAT4), a crucial Th1-lineage-determining factor. Carbonylated STAT4 undergoes rapid degradation, causing reduced T-bet induction and diminished Th1 differentiation. LPO scavenger ameliorates Th1 defects in patients with T2D who have poor glycemic control and restores viral control in T2D mice. Thus, this hyperglycemia-LPO-STAT4 axis underpins reduced Th1 activity in T2D hosts, with important implications for managing T2D-related viral complications.
Collapse
Affiliation(s)
- Victor Gray
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rachael Julia Yuenyinn Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhihao Huang
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Carol Ho-Yi Fong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Tommy Wing Hang Law
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiucong Bao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Kathryn Choon-Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Chi-Ho Lee
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Chooi WH, Winanto, Zeng Y, Lee CYP, Lim ZQ, Gautam P, Chu JJH, Loh YH, Alonso S, Ng SY. Enterovirus-A71 preferentially infects and replicates in human motor neurons, inducing neurodegeneration by ferroptosis. Emerg Microbes Infect 2024; 13:2382235. [PMID: 39017655 DOI: 10.1080/22221751.2024.2382235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/15/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Enterovirus A71 (EV-A71) causes Hand, Foot, and Mouth Disease and has been clinically associated with neurological complications. However, there is a lack of relevant models to elucidate the neuropathology of EV-A71 and its mechanism, as the current models mainly utilize animal models or immortalized cell lines. In this study, we established a human motor neuron model for EV-A71 infection. Single cell transcriptomics of a mixed neuronal population reveal higher viral RNA load in motor neurons, suggesting higher infectivity and replication of EV-A71 in motor neurons. The elevated RNA load in motor neurons correlates with the downregulation of ferritin-encoding genes. Subsequent analysis confirms that neurons infected with EV-A71 undergo ferroptosis, as evidenced by increased levels of labile Fe2+ and peroxidated lipids. Notably, the Fe2+ chelator Deferoxamine improves mitochondrial function and promotes survival of motor neurons by 40% after EV-A71 infection. These findings deepen understanding of the molecular pathogenesis of EV-A71 infection, providing insights which suggest that improving mitochondrial respiration and inhibition of ferroptosis can mitigate the impact of EV-A71 infection in the central nervous system.
Collapse
Affiliation(s)
- Wai Hon Chooi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Winanto
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- National University of Singapore, Faculty of Science (Department of Biological Science), Singapore
| | - Yingying Zeng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Cheryl Yi-Pin Lee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ze Qin Lim
- Infectious Diseases Translational Research Programme (IDTRP); Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore
| | - Pradeep Gautam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Justin Jang Hann Chu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Infectious Diseases Translational Research Programme (IDTRP); Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme (IDTRP); Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore
| | - Shi-Yan Ng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National Neuroscience Institute, Singapore
| |
Collapse
|
5
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03640-4. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
See WR, Yousefi M, Ooi YS. A review of virus host factor discovery using CRISPR screening. mBio 2024; 15:e0320523. [PMID: 39422472 PMCID: PMC11559068 DOI: 10.1128/mbio.03205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The emergence of genome-scale forward genetic screening techniques, such as Haploid Genetic screen and clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen has opened new horizons in our understanding of virus infection biology. CRISPR screening has become a popular tool for the discovery of novel host factors for several viruses due to its specificity and efficiency in genome editing. Here, we review how CRISPR screening has revolutionized our understanding of virus-host interactions from scientific and technological viewpoints. A summary of the published screens conducted thus far to uncover virus host factors is presented, highlighting their experimental design and significant findings. We will outline relevant methods for customizing the CRISPR screening process to answer more specific hypotheses and compile a glossary of conducted CRISPR screens to show their design aspects. Furthermore, using flaviviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as examples, we hope to offer a broad-based perspective on the capabilities of CRISPR screening to serve as a reference point to guide future unbiased discovery of virus host factors.
Collapse
Affiliation(s)
- Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
7
|
Yan HW, Feng YD, Tang N, Cao FC, Lei YF, Cao W, Li XQ. Viral myocarditis: From molecular mechanisms to therapeutic prospects. Eur J Pharmacol 2024; 982:176935. [PMID: 39182550 DOI: 10.1016/j.ejphar.2024.176935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Myocarditis is characterized as local or diffuse inflammatory lesions in the myocardium, primarily caused by viruses and other infections. It is a common cause of sudden cardiac death and dilated cardiomyopathy. In recent years, the global prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the widespread vaccination have coincided with a notable increase in the number of reported cases of myocarditis. In light of the potential threat that myocarditis poses to global public health, numerous studies have sought to elucidate the pathogenesis of this condition. However, despite these efforts, effective treatment strategies remain elusive. To collate the current research advances in myocarditis, and thereby provide possible directions for further research, this review summarizes the mechanisms involved in viral invasion of the organism and primarily focuses on how viruses trigger excessive inflammatory responses and in result in different types of cell death. Furthermore, this article outlines existing therapeutic approaches and potential therapeutic targets for the acute phase of myocarditis. In particular, immunomodulatory treatments are emphasized and suggested as the most extensively studied and clinically promising therapeutic options.
Collapse
Affiliation(s)
- Han-Wei Yan
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ying-Da Feng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Na Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Feng-Chuan Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ying-Feng Lei
- Department of Microbiology, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
8
|
Arbatskiy M, Balandin D, Akberdin I, Churov A. A Systems Biology Approach Towards a Comprehensive Understanding of Ferroptosis. Int J Mol Sci 2024; 25:11782. [PMID: 39519341 PMCID: PMC11546516 DOI: 10.3390/ijms252111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Ferroptosis is a regulated cell death process characterized by iron ion catalysis and reactive oxygen species, leading to lipid peroxidation. This mechanism plays a crucial role in age-related diseases, including cancer and cardiovascular and neurological disorders. To better mimic iron-induced cell death, predict the effects of various elements, and identify drugs capable of regulating ferroptosis, it is essential to develop precise models of this process. Such drugs can be tested on cellular models. Systems biology offers a powerful approach to studying biological processes through modeling, which involves accumulating and analyzing comprehensive research data. Once a model is created, it allows for examining the system's response to various stimuli. Our goal is to develop a modular framework for ferroptosis, enabling the prediction and screening of compounds with geroprotective and antiferroptotic effects. For modeling and analysis, we utilized BioUML (Biological Universal Modeling Language), which supports key standards in systems biology, modular and visual modeling, rapid simulation, parameter estimation, and a variety of numerical methods. This combination fulfills the requirements for modeling complex biological systems. The integrated modular model was validated on diverse datasets, including original experimental data. This framework encompasses essential molecular genetic processes such as the Fenton reaction, iron metabolism, lipid synthesis, and the antioxidant system. We identified structural relationships between molecular agents within each module and compared them to our proposed system for regulating the initiation and progression of ferroptosis. Our research highlights that no current models comprehensively cover all regulatory mechanisms of ferroptosis. By integrating data on ferroptosis modules into an integrated modular model, we can enhance our understanding of its mechanisms and assist in the discovery of new treatment targets for age-related diseases. A computational model of ferroptosis was developed based on a modular modeling approach and included 73 differential equations and 93 species.
Collapse
Affiliation(s)
- Mikhail Arbatskiy
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| | - Dmitriy Balandin
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| | - Ilya Akberdin
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Alexey Churov
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| |
Collapse
|
9
|
Ouyang A, Chen T, Feng Y, Zou J, Tu S, Jiang M, Sun H, Zhou H. The Hemagglutinin of Influenza A Virus Induces Ferroptosis to Facilitate Viral Replication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404365. [PMID: 39159143 PMCID: PMC11497066 DOI: 10.1002/advs.202404365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/27/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis is a novel form of cell death caused by the accumulation of lipid peroxides in an iron-dependent manner. However, the precise mechanism underlying the exploitation of ferroptosis by influenza A viruses (IAV) remains unclear. The results demonstrate that IAV promotes its own replication through ferritinophagy by sensitizing cells to ferroptosis, with hemagglutinin identified as a key trigger in this process. Hemagglutinin interacts with autophagic receptors nuclear receptor coactivator 4 (NCOA4) and tax1-binding protein 1 (TAX1BP1), facilitating the formation of ferritin-NCOA4 condensates and inducing ferritinophagy. Further investigation shows that hemagglutinin-induced ferritinophagy causes cellular lipid peroxidation, inhibits aggregation of mitochondrial antiviral signaling protein (MAVS), and suppresses the type I interferon response, thereby contributing to viral replication. Collectively, a novel mechanism by which IAV hemagglutinin induces ferritinophagy resulting in cellular lipid peroxidation, consequently impairing MAVS-mediated antiviral immunity, is revealed.
Collapse
Affiliation(s)
- Aotian Ouyang
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Tong Chen
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yi Feng
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Jiahui Zou
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Meijun Jiang
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Huimin Sun
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
- Frontiers Science Center for Animal Breeding and Sustainable ProductionWuhanHubei430070China
- Hubei Hongshan LaboratoryWuhanHubei430070China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Provincethe Cooperative Innovation Center for Sustainable Pig ProductionWuhanHubei430070China
| |
Collapse
|
10
|
Wang H, Fan C, Chen X, Zhou W, Guo L, Zhao F, Ye S, He S, Chen Y. Pyruvate Kinase M2 Nuclear Translocation Regulate Ferroptosis-Associated Acute Lung Injury in Cytokine Storm. Inflammation 2024; 47:1667-1684. [PMID: 38483700 PMCID: PMC11549213 DOI: 10.1007/s10753-024-02000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 11/09/2024]
Abstract
Cytokine storm (CS) is linked with macrophage dysfunction and acute lung injury (ALI), which can lead to patient mortality. Glycolysis is preferentially exploited by the pro-inflammatory macrophages, in which pyruvate kinase M2 (PKM2) is a critical enzyme. The mechanism underlying the link between CS and ALI involves cell death, with the recently discovered programmed cell death known as ferroptosis being involved. However, the relationship between the glycolysis and ferroptosis in the context of CS-related ALI remains unclear. CS-associated ALI induced by poly I:C (10 mg/kg, i.v) and LPS (5 mg/kg, i.p) (IC: LPS) exhibit significant ferroptosis. Ferrostatin-1 (ferroptosis inhibitor) treatment attenuated IC:LPS‑induced mortality and lung injury. Moreover, Alveolar macrophage (AM) from IC:LPS model exhibited enhanced glycolysis and PKM2 translocation. The administration of ML-265(PKM2 monomer/dimer inhibitor) resulted in the formation of a highly active tetrameric PKM2, leading to improved survival and attenuation of ALI. Furthermore, ML-265 treatment decreased ferroptosis and restored the balance between anaerobic glycolysis and oxidative phosphorylation. Notably, in patients with lung infection, intracellular expression level of PKM2 were correlated with circulating inflammation. Enhanced ferroptosis and PKM2 nuclear translocation was noticed in CD14+ blood monocytes of lung infection patients with CS. In conclusion, PKM2 is a key regulatory node integrating metabolic reprograming with intra-nuclear function for the regulation of ferroptosis. Targeting PKM2 could be explored as a potential means in the future to prevent or alleviate hyper-inflammatory state or cytokines storm syndrome with aberrant ferroptotic cell death.
Collapse
Affiliation(s)
- Haiting Wang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Fan
- Department of Emergency and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuelian Chen
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Emergency and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Guo
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Zhao
- Department of Emergency and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangjun He
- Department of Emergency and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Chen
- Department of Emergency and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Zhou J, Ni W, Zhang X, Yang M, Liu X, Guo J, Li J, Zhao Q, Deng H, Lei H, Zhang L, Liao H, Jia X. Visual analysis on ferroptosis and its cross-talk to coronavirus disease 2019 (COVID-19). Heliyon 2024; 10:e37617. [PMID: 39290278 PMCID: PMC11407094 DOI: 10.1016/j.heliyon.2024.e37617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Background Ferroptosis is a new type of programmed cell death. Although ferroptosis has been studied in various aspects, there has been no visual analysis of ferroptosis in coronavirus disease 2019 (COVID-19) to date. It is still a global health concern of the COVID-19 pandemic worldwide, three years after its outbreak. Yet the emergence of the mutant strain Omicron has caused a fourth wave of infections in many countries. The pathogenesis of COVID-19 is still undergoing extensive exploration, which holds paramount importance in mitigating future epidemics. Methods For this study, CiteSpace 6.2 R4 software was used for bibliometric and visual atlas analysis of ferroptosis-related research, and the Genecards database was used to mine ferroptosis and COVID-19-related genes. Results We found increasing studies about ferroptosis. China and the United States have demonstrated robust scientific innovation over recent years, with extensive collaboration between their institutions and authors. Ferroptosis and COVID-19 were seen to have 13 shared genes, which may be new targets for the treatment of COVID-19 in the future. Most of the shared genes are enriched in tumor necrosis factor (TNF) pathways. The majority of those genes are up-regulated under the cellular response to oxidative stress. Genes including Tumour necrosis factor (TNF), RELA proto-oncogene (RELA), Activating transcription factor 4 (ATF4), Cytochrome b-245 beta chain (CYBB), Jun proto-oncogene (JUN), Mitogen-activated protein kinase 1 (MAPK1) and Heme oxygenase 1 (HMOX1), maybe a breakthrough for ferroptosis and COVID-19. Whilst previous research has shown there to be a relationship between ferroptosis and COVID-19, the specific role of ferroptosis remained unclear. Our study aimed to analyze the research status of ferroptosis and its relationship with COVID-19, to provide a useful reference for further prevention and treatment of COVID-19. Overall, uncovering the role of ferroptosis in SARS-CoV-2 infection is important for the development of new treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Junda Zhou
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenjia Ni
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Xianqin Zhang
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Meng Yang
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Xin Liu
- College of Public Health, Chengdu Medical College, China
| | - Jinlin Guo
- Chengdu University of Traditional Chinese Medicine, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hang Deng
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Hanyue Lei
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Lin Zhang
- Department of Clinical Pharmacy, ShaoXing People's Hospital, ShaoXing Hospital of ZheJiang University, China
| | - Hai Liao
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xu Jia
- Key Laboratory of Non-Coding RNA and Drug Discovery at Chengdu Medical College of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| |
Collapse
|
12
|
Baagar K, Alessa T, Abu-Farha M, Abubaker J, Alhumaidi H, Franco Ceruto JA, Hamad MK, Omrani A, Abdelrahman S, Zaka-Ul Haq M, Safi AW, Alhariri B, Barman M, Abdelmajid A, Cancio HVD, Elmekaty E, Al-Khairi I, Cherian P, Jayyousi L, Ahmed M, Qaddoumi M, Hajji S, Esmaeel A, Al-Andaleeb A, Channanath A, Devarajan S, Ali H, Thanaraj TA, Al-Sabah S, Al-Mulla F, Abdul-Ghani M, Jayyousi A. Effect of pioglitazone on inflammatory response and clinical outcome in T2DM patients with COVID-19: a randomized multicenter double-blind clinical trial. Front Immunol 2024; 15:1369918. [PMID: 39308871 PMCID: PMC11412854 DOI: 10.3389/fimmu.2024.1369918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) caused by the coronavirus SARS-CoV-2, has emerged as a rapidly spreading contagious disease across the globe. Recent studies showed that people with diabetes mellitus, severe obesity, and cardiovascular disease are at higher risk of mortality from COVID-19. It has been suggested that the increased risk is due to the chronic inflammatory state associated with type 2 diabetes. This study aimed to evaluate the efficacy of pioglitazone, a strong insulin sensitizer with anti-inflammatory properties, in improving the clinical outcomes of patients with type 2 diabetes admitted with moderate-severe COVID-19. Method We enrolled 350 patients with type 2 diabetes who were admitted to hospitals in Qatar and Kuwait with COVID-19. Patients were randomized to receive, in a double-blind fashion, pioglitazone (n = 189) or a matching placebo (n = 161) for 28 days. The study had two primary outcomes: (1) the incidence of a composite outcome composed of (a) the requirement for mechanical ventilation, (b) death, and (c) myocardial damage; and (2) an increase in C-reactive protein (CRP) levels. Results The first primary outcome occurred in 28 participants (8%), and the secondary outcome occurred in 17. Treatment with pioglitazone showed a significant reduction in interleukin (IL)-3 levels compared with placebo treatment (mean (SD) 2.73 (± 2.14) [95% CI: 0.02, 1.1], p = 0.043 vs. 2.28 (± 1.67) [95% CI: - 0.23, 0.86], p = 0.3, respectively), with no effect seen in the levels of other inflammatory markers. Even though not significant, a few of the patients on pioglitazone exhibited serum troponin levels > 3 times higher than the normal range seen in patients on placebo. On the other hand, more patients on pioglitazone were admitted to the ICU than those with placebo, and no significant difference in the CRP reduction was observed between the two groups. Conclusion The results of the present study demonstrate that pioglitazone treatment did not independently provide any additional clinical benefit to patients with type 2 diabetes admitted with a COVID-19 infection. Clinical trial registration https://clinicaltrials.gov, identifier NCT04604223.
Collapse
Affiliation(s)
- Khaled Baagar
- Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | - Thamer Alessa
- Jaber AlAhmed Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Heba Alhumaidi
- Jaber AlAhmed Hospital, Ministry of Health, Kuwait City, Kuwait
| | | | | | - Ali Omrani
- Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | | | | | | | | | - Manish Barman
- Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Eman Elmekaty
- Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Lina Jayyousi
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Manama, Bahrain
| | - Mohammed Ahmed
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohammed Qaddoumi
- Pharmacology and Therapeutics Department, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Sulaiman Hajji
- Jaber AlAhmed Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Ahmad Esmaeel
- Jaber AlAhmed Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Ali Al-Andaleeb
- Jaber AlAhmed Hospital, Ministry of Health, Kuwait City, Kuwait
| | | | | | - Hamad Ali
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Salman Al-Sabah
- Jaber AlAhmed Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Muhammad Abdul-Ghani
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City, Kuwait
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX, United States
| | - Amin Jayyousi
- Medicine Department, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
13
|
Zhao Q, Miao C, Chen YT, Zhu LY, Zhang YT, Luo SQ, Wang YL, Zhu ZM, Han X, Wen Y, Wu R, Du S, Yan QG, Huang X, Zhao S, Lang YF, Wang Y, Zheng Y, Zhao F, Cao SJ. Host Factor Rab4b Promotes Japanese Encephalitis Virus Replication. Microorganisms 2024; 12:1804. [PMID: 39338478 PMCID: PMC11433971 DOI: 10.3390/microorganisms12091804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Although the Japanese encephalitis virus (JEV) infects various cell types, its receptor molecules are still not clearly understood. In our laboratory's prior research, Rab4b was identified as a potential host factor that facilitates JEV infection in PK15 cells, utilizing a genome-wide CRISPR/Cas9 knockout library (PK-15-GeCKO). To further explore the effect of Rab4b on JEV replication, we used the Rab4b knockout PK15 cell line using the CRISPR/Cas9 technology and overexpressing the Rab4b PK15 cell line, with IFA, RT-qPCR, and Western blot to study the effect of Rab4b on viral replication in the whole life cycle of the JEV. The results show that the knockout of Rab4b inhibited the replication of the JEV in PK15 cells, and the overexpression of Rab4b promoted the replication of the JEV in PK15 cell lines. Furthermore, we demonstrated for the first time that host factor Rab4b facilitates the adsorption, internalization, assembly, and release of the JEV, thereby promoting JEV replication. This study enriches the regulatory network between the JEV and host factors and lays the experimental foundation for further understanding of the function of the Rab4b protein.
Collapse
Affiliation(s)
- Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Chang Miao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Ting Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Long-Yue Zhu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya-Ting Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sai-Qi Luo
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Luo Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhu-Ming Zhu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfeng Han
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Qi-Gui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yi-Fei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yi Zheng
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Fei Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - San-Jie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| |
Collapse
|
14
|
Feng H, Zhang K, Zhang J, Wang X, Guo Z, Wang L, Chen F, Han S, Li J. The alleviating effect of Phillygenin on the regulation of respiratory microbiota and its metabolites in IBV-infected broilers by inhibiting the TLR7/MyD88/NF-κB axis. FASEB J 2024; 38:e23882. [PMID: 39143727 DOI: 10.1096/fj.202400168rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Phillygenin (PHI) is an active ingredient derived from the leaf of Forsythia suspensa that has been found to alleviate inflammation and peroxidation response. Avian infectious bronchitis (IB) is a major threat to poultry industry viral respiratory tract disease that infected with infectious bronchitis virus (IBV). This study investigated the protection of PHI to CEK cell and broiler's tracheal injury triggered by avian infectious bronchitis virus (IBV). The results showed that IBV infection did not cause serious clinical symptoms and slowing-body weight in PHI-treated broilers. The expression of virus loads, pro-inflammation factors (IL-6, TNF-α, and IL-1β) in CEK cell, and tracheas were decreased compared to the IBV group, exhibiting its potent anti-inflammation. Mechanistically, the study demonstrated that the inhibition of TLR7/MyD88/NF-κB pathway was mainly involved in the protection effect of PHI to inflammation injury. Interestingly, a higher abundance of Firmicutes and Lactobacillus in respiratory tract was observed in PHI-treated broilers than in the IBV group. Significant differences were observed between the IBV group and PHI-treated group in the Ferroptosis, Tryptophan metabolism, and Glutathione metabolism pathways. PHI exhibited potent protection effect on IBV infection and alleviated inflammation injury, mainly through inhibiting TLR7/MyD88/NF-κB pathway. The study encourages further development of PHI, paving the way to its clinical use as a new candidate drug to relieve IBV-induced respiratory symptoms.
Collapse
Affiliation(s)
- Haipeng Feng
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kang Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jingyan Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhiting Guo
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Lei Wang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Fubing Chen
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Songwei Han
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianxi Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Letafati A, Taghiabadi Z, Ardekani OS, Abbasi S, Najafabadi AQ, Jazi NN, Soheili R, Rodrigo R, Yavarian J, Saso L. Unveiling the intersection: ferroptosis in influenza virus infection. Virol J 2024; 21:185. [PMID: 39135112 PMCID: PMC11321227 DOI: 10.1186/s12985-024-02462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
The influenza virus (IFV) imposes a considerable health and economic burden globally, requiring a comprehensive understanding of its pathogenic mechanisms. Ferroptosis, an iron-dependent lipid peroxidation cell death pathway, holds unique implications for the antioxidant defense system, with possible contributions to inflammation. This exploration focuses on the dynamic interplay between ferroptosis and the host defense against viruses, emphasizing the influence of IFV infections on the activation of the ferroptosis pathway. IFV causes different types of cell death, including apoptosis, necrosis, and ferroptosis. IFV-induced ferroptotic cell death is mediated by alterations in iron homeostasis, intensifying the accumulation of reactive oxygen species and promoting lipid peroxidation. A comprehensive investigation into the mechanism of ferroptosis in viral infections, specifically IFV, has great potential to identify therapeutic strategies. This understanding may pave the way for the development of drugs using ferroptosis inhibitors, presenting an effective approach to suppress viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Taghiabadi
- Department of Microbiology and Virology of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Omid Salahi Ardekani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Simin Abbasi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Qaraee Najafabadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Negar Nayerain Jazi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jila Yavarian
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy.
| |
Collapse
|
16
|
Hashemi M, Khosroshahi EM, Chegini MK, Asadi S, Hamyani Z, Jafari YA, Rezaei F, Eskadehi RK, Kojoori KK, Jamshidian F, Nabavi N, Alimohammadi M, Rashidi M, Mahmoodieh B, Khorrami R, Taheriazam A, Entezari M. Mechanistic insights into cisplatin response in breast tumors: Molecular determinants and drug/nanotechnology-based therapeutic opportunities. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108513. [PMID: 39216513 DOI: 10.1016/j.mrrev.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer continues to be a major global health challenge, driving the need for effective therapeutic strategies. Cisplatin, a powerful chemotherapeutic agent, is widely used in breast cancer treatment. However, its effectiveness is often limited by systemic toxicity and the development of drug resistance. This review examines the molecular factors that influence cisplatin response and resistance, offering crucial insights for the scientific community. It highlights the significance of understanding cisplatin resistance's genetic and epigenetic contributors, which could lead to more personalized treatment approaches. Additionally, the review explores innovative strategies to counteract cisplatin resistance, including combination therapies, nanoparticle-based drug delivery systems, and targeted therapies. These approaches are under intensive investigation and promise to enhance breast cancer treatment outcomes. This comprehensive discussion is a valuable resource to advance breast cancer therapeutics and address the challenge of cisplatin resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Hamyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Medicine, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Yasamin Alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast Eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Faranak Jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
17
|
Zhao D, Guo X, Lin B, Huang R, Li H, Wang Q, Zeng Y, Shang Y, Wu Y. Magnolol against enterovirus 71 by targeting Nrf2-SLC7A11-GSH pathway. Biomed Pharmacother 2024; 176:116866. [PMID: 38876045 DOI: 10.1016/j.biopha.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
Enterovirus 71 (EV71), a prominent pathogen associated with hand, foot, and mouth disease (HFMD), has been reported worldwide. To date, the advancement of effective drugs targeting EV71 remains in the preliminary experimental stage. In this study, magnolol demonstrated a significant dose-dependent inhibition of EV71 replication in vitro. It upregulated the overall expression level of nuclear factor erythroid 2 - related factor 2 (Nrf2) and facilitated its nucleus translocation, resulting in the increased expression of various ferroptosis inhibitory genes. This process led to a reduction in reactive oxygen species (ROS) accumulation induced by viral infection. Additionally, magnolol exhibited a broad-spectrum antiviral effect against enteroviruses. Notably, treatment with magnolol substantially enhanced the survival rate of EV71-infected mice, attenuated viral load in heart, liver, brain, and limb tissues, and mitigated tissue inflammation. Taken together, magnolol emerges as a promising candidate for the development of anti-EV71 drugs.
Collapse
Affiliation(s)
- Dingran Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Xueyang Guo
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Binbin Lin
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Rui Huang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Hanyu Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Qi Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Yunlong Zeng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China.
| |
Collapse
|
18
|
Pang Q, Tang Z, Luo L. The crosstalk between oncogenic signaling and ferroptosis in cancer. Crit Rev Oncol Hematol 2024; 197:104349. [PMID: 38626848 DOI: 10.1016/j.critrevonc.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.
Collapse
Affiliation(s)
- Qianghu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhirou Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang,School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
19
|
Zhang T, Luo L, He Q, Xiao S, Li Y, Chen J, Qin T, Xiao Z, Ge Q. Research advances on molecular mechanism and natural product therapy of iron metabolism in heart failure. Eur J Med Res 2024; 29:253. [PMID: 38659000 PMCID: PMC11044586 DOI: 10.1186/s40001-024-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Sijie Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yuwei Li
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Junpeng Chen
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Tao Qin
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
20
|
Zhao X, Zhang Y, Luo B. Ferroptosis, from the virus point of view: opportunities and challenges. Crit Rev Microbiol 2024:1-18. [PMID: 38588443 DOI: 10.1080/1040841x.2024.2340643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Ferroptosis is a new type of cell death, which is mainly dependent on the formation and accumulation of reactive oxygen species and lipid peroxides mediated by iron. It is distinct from other forms of regulation of cell death in morphology, immunology, biochemistry, and molecular biology. Various cell death mechanisms have been observed in many viral infections, and virus-induced cell death has long been considered as a double-edged sword that can inhibit or aggravate viral infections. However, understanding of the role of ferroptosis in various viral infections is limited. Special attention will be paid to the mechanisms of ferroptosis in mediating viral infection and antiviral treatment associated with ferroptosis. In this paper, we outlined the mechanism of ferroptosis. Additionally, this paper also review research on ferroptosis from the perspective of the virus, discussed the research status of ferroptosis in virus infection and classified and summarized research on the interaction between viral infections and ferroptosis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Yu S, Tong L, Shen J, Li C, Hu Y, Feng K, Shao J. Recent research progress based on ferroptosis-related signaling pathways and the tumor microenvironment on it effects. Eur J Med Chem 2024; 269:116290. [PMID: 38518522 DOI: 10.1016/j.ejmech.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
The existing therapies for cancer are not remote satisfactory due to drug-resistance in tumors that are malignant. There is a pressing necessity to take a step forward to develop innovative therapies that can complement current ones. Multiple investigations have demonstrated that ferroptosis therapy, a non-apoptotic modality of programmed cell death, has tremendous potential in face of multiple crucial events, such as drug resistance and toxicity in aggressive malignancies. Recently, ferroptosis at the crosswalk of chemotherapy, materials science, immunotherapy, tumor microenvironment, and bionanotechnology has been presented to elucidate its therapeutic feasibility. Given the burgeoning progression of ferroptosis-based nanomedicine, the newest advancements in this field at the confluence of ferroptosis-inducers, nanotherapeutics, along with tumor microenvironment are given an overview. Here, the signaling pathways of ferroptosis-related were first talked about briefly. The emphasis discussion was placed on the pharmacological mechanisms and the nanodrugs design of ferroptosis inducing agents based on multiple distinct metabolism pathways. Additionally, a comprehensive overview of the action mechanisms by which the tumor microenvironment influences ferroptosis was elaborately descripted. Finally, some limitations of current researches and future research directions were also deliberately discussed to provide details about therapeutic avenues for ferroptosis-related diseases along with the design of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lingwu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenglei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongshan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Keke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
22
|
Pereira TA, Espósito BP. Can iron chelators ameliorate viral infections? Biometals 2024; 37:289-304. [PMID: 38019378 DOI: 10.1007/s10534-023-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The redox reactivity of iron is a double-edged sword for cell functions, being either essential or harmful depending on metal concentration and location. Deregulation of iron homeostasis is associated with several clinical conditions, including viral infections. Clinical studies as well as in silico, in vitro and in vivo models show direct effects of several viruses on iron levels. There is support for the strategy of iron chelation as an alternative therapy to inhibit infection and/or viral replication, on the rationale that iron is required for the synthesis of some viral proteins and genes. In addition, abnormal iron levels can affect signaling immune response. However, other studies report different effects of viral infections on iron homeostasis, depending on the class and genotype of the virus, therefore making it difficult to predict whether iron chelation would have any benefit. This review brings general aspects of the relationship between iron homeostasis and the nonspecific immune response to viral infections, along with its relevance to the progress or inhibition of the inflammatory process, in order to elucidate situations in which the use of iron chelators could be efficient as antivirals.
Collapse
|
23
|
Zhao J, Wang Q, Liu Z, Zhang M, Li J, Fu ZF, Zhao L, Zhou M. Neuroinvasive virus facilitates viral replication by employing lipid droplets to reduce arachidonic acid-induced ferroptosis. J Biol Chem 2024; 300:107168. [PMID: 38490434 PMCID: PMC10999822 DOI: 10.1016/j.jbc.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Lipids have been previously implicated in the lifecycle of neuroinvasive viruses. However, the role of lipids in programmed cell death and the relationship between programmed cell death and lipid droplets (LDs) in neuroinvasive virus infection remains unclear. Here, we found that the infection of neuroinvasive virus, such as rabies virus and encephalomyocarditis virus could enhance the LD formation in N2a cells, and decreasing LDs production by targeting diacylglycerol acyltransferase could suppress viral replication. The lipidomics analysis revealed that arachidonic acid (AA) was significantly increased after reducing LD formation by restricting diacylglycerol acyltransferase, and AA was further demonstrated to induce ferroptosis to inhibit neuroinvasive virus replication. Moreover, lipid peroxidation and viral replication inhibition could be significantly alleviated by a ferroptosis inhibitor, ferrostatin-1, indicating that AA affected neuroinvasive virus replication mainly through inducing ferroptosis. Furthermore, AA was demonstrated to activate the acyl-CoA synthetase long-chain family member 4-lysophosphatidylcholine acyltransferase 3-cytochrome P450 oxidoreductase axis to induce ferroptosis. Our findings highlight novel cross-talks among viral infection, LDs, and ferroptosis for the first time, providing a potential target for antiviral drug development.
Collapse
Affiliation(s)
- Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Qianruo Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Zhenkun Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Mai Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Jinquan Li
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China.
| |
Collapse
|
24
|
Wei Y, Gu Y, Zhou Z, Wu C, Liu Y, Sun H. TRIM21 Promotes Oxidative Stress and Ferroptosis through the SQSTM1-NRF2-KEAP1 Axis to Increase the Titers of H5N1 Highly Pathogenic Avian Influenza Virus. Int J Mol Sci 2024; 25:3315. [PMID: 38542289 PMCID: PMC10970474 DOI: 10.3390/ijms25063315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is involved in signal transduction and antiviral responses through the ubiquitination of protein targets. TRIM21 was reported to be related to the imbalance of host cell homeostasis caused by viral infection. Our studies indicated that H5N1 highly pathogenic avian influenza virus (HPAIV) infection up-regulated TRIM21 expression in A549 cells. Western blot and qPCR results showed that knockdown of TRIM21 alleviated oxidative stress and ferroptosis induced by H5N1 HPAIV and promoted the activation of antioxidant pathways. Co-IP results showed that TRIM21 promoted oxidative stress and ferroptosis by regulating the SQSTM1-NRF2-KEAP1 axis by increasing SQSTM1 K63-linked polyubiquitination under the condition of HPAIV infection. In addition, TRIM21 attenuated the inhibitory effect of antioxidant NAC on HPAIV titers and enhanced the promoting effect of ferroptosis agonist Erastin on HPAIV titers. Our findings provide new insight into the role of TRIM21 in oxidative stress and ferroptosis induced by viral infection.
Collapse
Affiliation(s)
- Yifan Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yongxia Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Ziwei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Changrong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yanwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Ding L. Ferroptosis in viral infection: a potential therapeutic target. Future Microbiol 2024; 19:519-524. [PMID: 38411103 PMCID: PMC11216501 DOI: 10.2217/fmb-2023-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 02/28/2024] Open
Abstract
Ferroptosis, known as a type of programmed cell death that is iron dependent, is characterized by intracellular iron accumulation, glutathione depletion, glutathione peroxidase inactivation and lipid peroxidation. More and more research in recent years has demonstrated the tight connection between viral infections and ferroptosis. This article reviews the potential role and mechanism of ferroptosis in viral infection, and these findings will help in the prevention and treatment of the virus.
Collapse
Affiliation(s)
- Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science & Technology, Xianning, China
| |
Collapse
|
26
|
Li Z, Zhao B, Zhang Y, Fan W, Xue Q, Chen X, Wang J, Qi X. Mitochondria-mediated ferroptosis contributes to the inflammatory responses of bovine viral diarrhea virus (BVDV) in vitro. J Virol 2024; 98:e0188023. [PMID: 38226812 PMCID: PMC10878082 DOI: 10.1128/jvi.01880-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the family Flaviviridae and includes two biotypes in cell culture: cytopathic (CP) or non-cytopathic (NCP) effects. Ferroptosis is a non-apoptotic form of programmed cell death that contributes to inflammatory diseases. However, whether BVDV induces ferroptosis and the role of ferroptosis in viral infection remain unclear. Here, we provide evidence that both CP and NCP BVDV can induce ferroptosis in Madin-Darby bovine kidney cells at similar rate. Mechanistically, biotypes of BVDV infection downregulate cytoplasmic and mitochondrial GPX4 via Nrf2-GPX4 pathway, thereby resulting in lethal lipid peroxidation and promoting ferroptosis. In parallel, BVDV can degrade ferritin heavy chain and mitochondrial ferritin via NCOA4-mediated ferritinophagy to promote the accumulation of Fe2+ and initiate ferroptosis. Importantly, CP BVDV-induced ferroptosis is tightly associated with serious damage of mitochondria and hyperactivation of inflammatory responses. In contrast, mild or unapparent damage of mitochondria and slight inflammatory responses were detected in NCP BVDV-infected cells. More importantly, different mitophagy pathways in response to mitochondria damage by both biotypes of BVDV are involved in inflammatory responses. Overall, this study is the first to show that mitochondria may play key roles in mediating ferroptosis and inflammatory responses induced by biotypes of BVDV in vitro.IMPORTANCEBovine viral diarrhea virus (BVDV) threatens a wide range of domestic and wild cattle population worldwide. BVDV causes great economic loss in cattle industry through its immunosuppression and persistent infection. Despite extensive research, the mechanism underlying the pathogenesis of BVDV remains elusive. Our data provide the first direct evidence that mitochondria-mediated ferroptosis and mitophagy are involved in inflammatory responses in both biotypes of BVDV-infected cells. Importantly, we demonstrate that the different degrees of injury of mitochondria and inflammatory responses may attribute to different mitophagy pathways induced by biotypes of BVDV. Overall, our findings uncover the interaction between BVDV infection and mitochondria-mediated ferroptosis, which shed novel light on the physiological impacts of ferroptosis on the pathogenesis of BVDV infection, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.
Collapse
Affiliation(s)
- Zhijun Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Bao Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Animal Disease Control Center, Xi'an, China
| | - Ying Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Wenqi Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiwen Chen
- Animal Disease Prevention and Control, Healthy Breeding Engineering Technology Research Center, Mianyang Normal University, Mianyang, Sichuan, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| |
Collapse
|
27
|
Yang H, Fan T, Xun M, Wu B, Guo S, Li X, Zhao X, Yao H, Wang H. N-terminal acetyltransferase 6 facilitates enterovirus 71 replication by regulating PI4KB expression and replication organelle biogenesis. J Virol 2024; 98:e0174923. [PMID: 38189249 PMCID: PMC10878262 DOI: 10.1128/jvi.01749-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIβ (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIβ (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.
Collapse
Affiliation(s)
- Hang Yang
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tingting Fan
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Meng Xun
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Bo Wu
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shangrui Guo
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xinyu Li
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaohui Zhao
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Haoyan Yao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
28
|
Zhang D, Wu X, Xue X, Li W, Zhou P, Lv Z, Zhao K, Zhu F. Ancient dormant virus remnant ERVW-1 drives ferroptosis via degradation of GPX4 and SLC3A2 in schizophrenia. Virol Sin 2024; 39:31-43. [PMID: 37690733 PMCID: PMC10877354 DOI: 10.1016/j.virs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of retroviral infections in human germline cells from millions of years ago. Among these, ERVW-1 (also known as HERV-W-ENV, ERVWE1, or ENVW) encodes the envelope protein of the HERV-W family, which contributes to the pathophysiology of schizophrenia. Additionally, neuropathological studies have revealed cell death and disruption of iron homeostasis in the brains of individuals with schizophrenia. Here, our bioinformatics analysis showed that differentially expressed genes in the human prefrontal cortex RNA microarray dataset (GSE53987) were mainly related to ferroptosis and its associated pathways. Clinical data demonstrated significantly lower expression levels of ferroptosis-related genes, particularly Glutathione peroxidase 4 (GPX4) and solute carrier family 3 member 2 (SLC3A2), in schizophrenia patients compared to normal controls. Further in-depth analyses revealed a significant negative correlation between ERVW-1 expression and the levels of GPX4/SLC3A2 in schizophrenia. Studies indicated that ERVW-1 increased iron levels, malondialdehyde (MDA), and transferrin receptor protein 1 (TFR1) expression while decreasing glutathione (GSH) levels and triggering the loss of mitochondrial membrane potential, suggesting that ERVW-1 can induce ferroptosis. Ongoing research has shown that ERVW-1 reduced the expression of GPX4 and SLC3A2 by inhibiting their promoter activities. Moreover, Ferrostatin-1 (Fer-1), the ferroptosis inhibitor, reversed the iron accumulation and mitochondrial membrane potential loss, as well as restored the expressions of ferroptosis markers GSH, MDA, and TFR1 induced by ERVW-1. In conclusion, ERVW-1 could promote ferroptosis by downregulating the expression of GPX4 and SLC3A2, revealing a novel mechanism by which ERVW-1 contributes to neuronal cell death in schizophrenia.
Collapse
Affiliation(s)
- Dongyan Zhang
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xing Xue
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhao Lv
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kexin Zhao
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
29
|
Zhang Y, Jiang C, Meng N. Targeting Ferroptosis: A Novel Strategy for the Treatment of Atherosclerosis. Mini Rev Med Chem 2024; 24:1262-1276. [PMID: 38284727 DOI: 10.2174/0113895575273164231130070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Since ferroptosis was reported in 2012, its application prospects in various diseases have been widely considered, initially as a treatment direction for tumors. Recent studies have shown that ferroptosis is closely related to the occurrence and development of atherosclerosis. The primary mechanism is to affect the occurrence and development of atherosclerosis through intracellular iron homeostasis, ROS and lipid peroxide production and metabolism, and a variety of intracellular signaling pathways. Inhibition of ferroptosis is effective in inhibiting the development of atherosclerosis, and it can bring a new direction for treating atherosclerosis. In this review, we discuss the mechanism of ferroptosis and focus on the relationship between ferroptosis and atherosclerosis, summarize the different types of ferroptosis inhibitors that have been widely studied, and discuss some issues worthy of attention in the treatment of atherosclerosis by targeting ferroptosis.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
30
|
Zhang Q, Luo Y, Peng L, Rong X, Liu Y, Li J, Luo J. Ferroptosis in cardiovascular diseases: role and mechanism. Cell Biosci 2023; 13:226. [PMID: 38102663 PMCID: PMC10724928 DOI: 10.1186/s13578-023-01169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
In multicellular organisms, regulatory cell death is a crucial aspect of growth and development. Ferroptosis, which was postulated roughly ten years ago, is a mode of cell death that differs from apoptosis, autophagy, and pyrodeath. This distinct pattern of cell death is triggered by an imbalance between oxidants and antioxidants and strongly associated with the metabolism of iron, lipids, amino acids, and glutathione. A growing body of research has implicated ferroptosis in the incidence and progression of many organ traumas and degenerative diseases. Recently, ferroptosis has gained attention as a crucial regulatory mechanism underlying the initiation and development of a variety of cardiovascular diseases, including myocardial ischemia/reperfusion injury, cardiomyopathy, arrhythmia, chemotherapy, and Corona Virus-2-induced cardiac injury. Pharmacological therapies that inhibit ferroptosis have great potential for the management of cardiovascular disorders. This review discusses the prevalence and regulatory mechanisms of ferroptosis, effect of ferroptosis on the immune system, significance of ferroptosis in cardiovascular diseases, and potential therapeutic value of regulating ferroptosis in a variety of heart diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| |
Collapse
|
31
|
Denolly S, Stukalov A, Barayeu U, Rosinski AN, Kritsiligkou P, Joecks S, Dick TP, Pichlmair A, Bartenschlager R. Zika virus remodelled ER membranes contain proviral factors involved in redox and methylation pathways. Nat Commun 2023; 14:8045. [PMID: 38052817 DOI: 10.1038/s41467-023-43665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a global health issue, yet neither antiviral therapy nor a vaccine are available. ZIKV is an enveloped RNA virus, replicating in the cytoplasm in close association with ER membranes. Here, we isolate ER membranes from ZIKV-infected cells and determine their proteome. Forty-six host cell factors are enriched in ZIKV remodeled membranes, several of these having a role in redox and methylation pathways. Four proteins are characterized in detail: thioredoxin reductase 1 (TXNRD1) contributing to folding of disulfide bond containing proteins and modulating ZIKV secretion; aldo-keto reductase family 1 member C3 (AKR1C3), regulating capsid protein abundance and thus, ZIKV assembly; biliverdin reductase B (BLVRB) involved in ZIKV induced lipid peroxidation and increasing stability of viral transmembrane proteins; adenosylhomocysteinase (AHCY) indirectly promoting m6A methylation of ZIKV RNA by decreasing the level of S- adenosyl homocysteine and thus, immune evasion. These results highlight the involvement of redox and methylation enzymes in the ZIKV life cycle and their accumulation at virally remodeled ER membranes.
Collapse
Affiliation(s)
- Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Alexey Stukalov
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alina N Rosinski
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Paraskevi Kritsiligkou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sebastian Joecks
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
32
|
Huang R, Wu J, Ma Y, Kang K. Molecular Mechanisms of Ferroptosis and Its Role in Viral Pathogenesis. Viruses 2023; 15:2373. [PMID: 38140616 PMCID: PMC10747891 DOI: 10.3390/v15122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Ferroptosis is a novelty form of regulated cell death, and it is mainly characterized by iron accumulation and lipid peroxidation in the cells. Its underlying mechanism is related to the amino acid, iron, and lipid metabolisms. During viral infection, pathogenic microorganisms have evolved to interfere with ferroptosis, and ferroptosis is often manipulated by viruses to regulate host cell servicing for viral reproduction. Therefore, this review provides a comprehensive overview of the mechanisms underlying ferroptosis, elucidates the intricate signaling pathways involved, and explores the pivotal role of ferroptosis in the pathogenesis of viral infections. By enhancing our understanding of ferroptosis, novel therapeutic strategies can be devised to effectively prevent and treat diseases associated with this process. Furthermore, unraveling the developmental mechanisms through which viral infections exploit ferroptosis will facilitate development of innovative antiviral agents.
Collapse
Affiliation(s)
- Riwei Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| | - Yaodan Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| | - Kai Kang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| |
Collapse
|
33
|
Shen J, Qian M, Wu M, Tang J, Gong Y, Li J, Ji J, Dang B. Rosiglitazone inhibits acyl-CoA synthetase long-chain family number 4 and improves secondary brain injury in a rat model of surgical brain injury. Clin Exp Pharmacol Physiol 2023; 50:927-935. [PMID: 37675456 DOI: 10.1111/1440-1681.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
Ferroptosis is a recently discovered non-apoptotic form of cellular death. Acyl-CoA synthetase long-chain family number 4 (ACSL4) is necessary for iron-dependent cellular death, and reactive oxygen species (ROS) produced by ACSL4 are the executioners of ferroptosis. Rosiglitazone improves ferroptosis by inhibiting ACSL4. There is no research indicating whether ACSL4 plays a role in cell death after surgical brain injury (SBI). This study aimed to investigate the role of ACSL4 in SBI via the ferroptosis pathway. Ninety male Sprague-Dawley rats were examined using a model of SBI. Subsequently, the inhibitory effect of rosiglitazone on ACSL4 was assessed via western blot, real-time polymerase chain reaction (PCR), immunofluorescence, fluoro-jade C staining, Perl's staining, ROS assay, and neurological scoring. The results showed that compared with the Sham group, the protein levels of ACSL4 and transferrin were significantly increased after SBI. Administration of rosiglitazone significantly reduced neuronal necrosis, iron deposition, brain water content and ROS in brain tissue and ameliorated neurological deficits at 48 h after SBI, which was concomitant with decreased transferrin expression. These findings demonstrate that SBI-induced upregulation of ACSL4 may be partly mediated by the ferroptosis pathway, which can be reversed by rosiglitazone administration.
Collapse
Affiliation(s)
- Jinchao Shen
- Departments of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Min Qian
- Departments of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Muyao Wu
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Jiafeng Tang
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Yating Gong
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Jie Li
- Departments of Intensive Care Unit, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No.77 Changan Southern Road, Jiangsu Province, China
| | - Jinfen Ji
- Departments of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Baoqi Dang
- Departments of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, China
| |
Collapse
|
34
|
Zhu B, Wei Y, Zhang M, Yang S, Tong R, Li W, Long E. Metabolic dysfunction-associated steatotic liver disease: ferroptosis related mechanisms and potential drugs. Front Pharmacol 2023; 14:1286449. [PMID: 38027027 PMCID: PMC10665502 DOI: 10.3389/fphar.2023.1286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered a "multisystem" disease that simultaneously suffers from metabolic diseases and hepatic steatosis. Some may develop into liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Given the close connection between metabolic diseases and fatty liver, it is urgent to identify drugs that can control metabolic diseases and fatty liver as a whole and delay disease progression. Ferroptosis, characterized by iron overload and lipid peroxidation resulting from abnormal iron metabolism, is a programmed cell death mechanism. It is an important pathogenic mechanism in metabolic diseases or fatty liver, and may become a key direction for improving MASLD. In this article, we have summarized the physiological and pathological mechanisms of iron metabolism and ferroptosis, as well as the connections established between metabolic diseases and fatty liver through ferroptosis. We have also summarized MASLD therapeutic drugs and potential active substances targeting ferroptosis, in order to provide readers with new insights. At the same time, in future clinical trials involving subjects with MASLD (especially with the intervention of the therapeutic drugs), the detection of serum iron metabolism levels and ferroptosis markers in patients should be increased to further explore the efficacy of potential drugs on ferroptosis.
Collapse
Affiliation(s)
- Baoqiang Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuankui Wei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingming Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyu Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyuan Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Enwu Long
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
35
|
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S, Sun L. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chin Med J (Engl) 2023; 136:2521-2537. [PMID: 37442770 PMCID: PMC10617883 DOI: 10.1097/cm9.0000000000002533] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Long-chain acyl-coenzyme A (CoA) synthase 4 (ACSL4) is an enzyme that esterifies CoA into specific polyunsaturated fatty acids, such as arachidonic acid and adrenic acid. Based on accumulated evidence, the ACSL4-catalyzed biosynthesis of arachidonoyl-CoA contributes to the execution of ferroptosis by triggering phospholipid peroxidation. Ferroptosis is a type of programmed cell death caused by iron-dependent peroxidation of lipids; ACSL4 and glutathione peroxidase 4 positively and negatively regulate ferroptosis, respectively. In addition, ACSL4 is an essential regulator of fatty acid (FA) metabolism. ACSL4 remodels the phospholipid composition of cell membranes, regulates steroidogenesis, and balances eicosanoid biosynthesis. In addition, ACSL4-mediated metabolic reprogramming and antitumor immunity have attracted much attention in cancer biology. Because it facilitates the cross-talk between ferroptosis and FA metabolism, ACSL4 is also a research hotspot in metabolic diseases and ischemia/reperfusion injuries. In this review, we focus on the structure, biological function, and unique role of ASCL4 in various human diseases. Finally, we propose that ACSL4 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| |
Collapse
|
36
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
37
|
Yu T, Sun S. Role and mechanism of ferroptosis in acute lung injury. Cell Cycle 2023; 22:2119-2129. [PMID: 37946318 PMCID: PMC10732650 DOI: 10.1080/15384101.2023.2278328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
Ferroptosis is a new non-apoptotic cell death caused by the accumulation of dysregulated metabolism of ferric iron, amino acids or lipid peroxidation. Increasing studies suggest that ferroptosis is involved in the acute lung injury (ALI). This article aims to review the role of ferroptosis in ALI. ALI is a common respiratory disease and presents a high mortality rate. Inhibiting cell ferroptosis of lung improves the ALI. In addition, several signaling pathways are related to ferroptosis in ALI, involving in iron homeostasis, lipid peroxidation, and amino acid metabolism. Moreover, there are various key factors to regulate the occurrence of ferroptosis in ALI, such as ACSL4, NRF2, and P53. The ACSL4 promotes the ferroptosis, while the NRF2 alleviates the ferroptosis in ALI. The main effect of P53 is to promote ferroptosis. Accordingly, ferroptosis is involved in ALI and may be an important therapeutic target for ALI.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Pediatrics Class 1, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
38
|
Li L, Ye Z, Xia Y, Li B, Chen L, Yan X, Yuan T, Song B, Yu W, Rao T, Lin F, Zhou X, Cheng F. YAP/ACSL4 Pathway-Mediated Ferroptosis Promotes Renal Fibrosis in the Presence of Kidney Stones. Biomedicines 2023; 11:2692. [PMID: 37893066 PMCID: PMC10603838 DOI: 10.3390/biomedicines11102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The potential association between calcium oxalate stones and renal fibrosis has been extensively investigated; however, the underlying mechanisms remain unclear. Ferroptosis is a novel form of cell death characterized by iron-dependent lipid peroxidation and regulated by acyl coenzyme A synthase long-chain family member 4 (ACSL4). Yes-associated protein (YAP), a transcriptional co-activator in the Hippo pathway, promotes ferroptosis by modulating ACSL4 expression. Nevertheless, the involvement of YAP-ACSL4 axis-mediated ferroptosis in calcium oxalate crystal deposition-induced renal fibrosis and its molecular mechanisms have not been elucidated. In this study, we investigated ACSL4 expression and ferroptosis activation in the kidney tissues of patients with calcium oxalate stones and in mice using single-cell sequencing, transcriptome RNA sequencing, immunohistochemical analysis, and Western blot analysis. In vivo and in vitro experiments demonstrated that inhibiting ferroptosis or ACSL4 mitigated calcium oxalate crystal-induced renal fibrosis. Furthermore, YAP expression was elevated in the kidney tissues of patients with calcium oxalate stones and in calcium oxalate crystal-stimulated human renal tubular epithelial cell lines. Mechanistically, in calcium oxalate crystal-stimulated human renal tubular epithelial cell lines, activated YAP translocated to the nucleus and enhanced ACSL4 expression, consequently inducing cellular ferroptosis. Moreover, YAP silencing suppressed ferroptosis by downregulating ACSL4 expression, thereby attenuating calcium oxalate crystal-induced renal fibrosis. Conclusively, our findings suggest that YAP-ACSL4-mediated ferroptosis represents an important mechanism underlying the induction of renal fibrosis by calcium oxalate crystal deposition. Targeting the YAP-ACSL4 axis and ferroptosis may therefore hold promise as a potential therapeutic approach for preventing renal fibrosis in patients with kidney stones.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (L.L.); (Z.Y.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (L.L.); (Z.Y.)
| |
Collapse
|
39
|
Wang Y, Wu J. Ferroptosis: a new strategy for cardiovascular disease. Front Cardiovasc Med 2023; 10:1241282. [PMID: 37731525 PMCID: PMC10507265 DOI: 10.3389/fcvm.2023.1241282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Cardiovascular disease (CVD) is currently one of the prevalent causes of human death. Iron is one of the essential trace elements in the human body and a vital component of living tissues. All organ systems require iron for various metabolic processes, including myocardial and skeletal muscle metabolism, erythropoiesis, mitochondrial function, and oxygen transport. Its deficiency or excess in the human body remains one of the nutritional problems worldwide. The total amount of iron in a normal human body is about 3-5 g. Iron deficiency may cause symptoms such as general fatigue, pica, and nerve deafness, while excessive iron plays a crucial role in the pathophysiological processes of the heart through ferroptosis triggered by the Fenton reaction. It differs from other cell death modes based on its dependence on the accumulation of lipid peroxides and REDOX imbalance, opening a new pathway underlying the pathogenesis and mechanism of CVDs. In this review, we describe the latest research progress on the mechanism of ferroptosis and report its crucial role and association with miRNA in various CVDs. Finally, we summarise the potential therapeutic value of ferroptosis-related drugs or ferroptosis inhibitors in CVDs.
Collapse
Affiliation(s)
| | - Junduo Wu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Lee S, Hwang N, Seok BG, Lee S, Lee SJ, Chung SW. Autophagy mediates an amplification loop during ferroptosis. Cell Death Dis 2023; 14:464. [PMID: 37491375 PMCID: PMC10368698 DOI: 10.1038/s41419-023-05978-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Ferroptosis, a programmed cell death, has been identified and associated with cancer and various other diseases. Ferroptosis is defined as a reactive oxygen species (ROS)-dependent cell death related to iron accumulation and lipid peroxidation, which is different from apoptosis, necrosis, autophagy, and other forms of cell death. However, accumulating evidence has revealed a link between autophagy and ferroptosis at the molecular level and has suggested that autophagy is involved in regulating the accumulation of iron-dependent lipid peroxidation and ROS during ferroptosis. Understanding the roles and pathophysiological processes of autophagy during ferroptosis may provide effective strategies for the treatment of ferroptosis-related diseases. In this review, we summarize the current knowledge regarding the regulatory mechanisms underlying ferroptosis, including iron and lipid metabolism, and its association with the autophagy pathway. In addition, we discuss the contribution of autophagy to ferroptosis and elucidate the role of autophagy as a ferroptosis enhancer during ROS-dependent ferroptosis.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, VA Palo Alto Health Care System and Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Byeong Geun Seok
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
| | - Sangguk Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, 34141, South Korea
| | - Su Wol Chung
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea.
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, 44610, South Korea.
| |
Collapse
|
41
|
Liang Y, Chen J, Wang C, Yu B, Zhang Y, Liu Z. Investigating the mechanism of Echovirus 30 cell invasion. Front Microbiol 2023; 14:1174410. [PMID: 37485505 PMCID: PMC10359910 DOI: 10.3389/fmicb.2023.1174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Viruses invade susceptible cells through a complex mechanism before injecting their genetic material into them. This causes direct damage to the host cell, as well as resulting in disease in the corresponding system. Echovirus type 30 (E30) is a member of the Enterovirus B group and has recently been reported to cause central nervous system (CNS) disorders, leading to viral encephalitis and viral meningitis in children. In this review, we aim to help in improving the understanding of the mechanisms of CNS diseases caused by E30 for the subsequent development of relevant drugs and vaccines.
Collapse
Affiliation(s)
- Yucai Liang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Congcong Wang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Bowen Yu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Yong Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
42
|
Links between Vitamin K, Ferroptosis and SARS-CoV-2 Infection. Antioxidants (Basel) 2023; 12:antiox12030733. [PMID: 36978981 PMCID: PMC10045478 DOI: 10.3390/antiox12030733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Ferroptosis is a recently discovered form of programmed cell death. It is characterized by the accumulation of iron and lipid hydroperoxides in cells. Vitamin K is known to have antioxidant properties and plays a role in reducing oxidative stress, particularly in lipid cell membranes. Vitamin K reduces the level of reactive oxygen species by modulating the expression of antioxidant enzymes. Additionally, vitamin K decreases inflammation and potentially prevents ferroptosis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to coronavirus disease 2019 (COVID-19) is associated with oxidant–antioxidant imbalance. Studies have shown that intensified ferroptosis occurs in various tissues and cells affected by COVID-19. Vitamin K supplementation during SARS-CoV-2 infection may have a positive effect on reducing the severity of the disease. Preliminary research suggests that vitamin K may reduce lipid peroxidation and inhibit ferroptosis, potentially contributing to its therapeutic effects in COVID-19 patients. The links between ferroptosis, vitamin K, and SARS-CoV-2 infection require further investigation, particularly in the context of developing potential treatment strategies for COVID-19.
Collapse
|
43
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
44
|
Abstract
Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.
Collapse
|
45
|
Zhang H, Li Y, Yang R, Xiao L, Dong S, Lin J, Liu G, Shan H. Erastin inhibits porcine epidemic diarrhea virus replication in Vero cells. Front Cell Infect Microbiol 2023; 13:1142173. [PMID: 36936772 PMCID: PMC10015705 DOI: 10.3389/fcimb.2023.1142173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV), an intestinal pathogenic coronavirus, has caused significant economic losses to the swine industry worldwide. At present, there are several treatment methods, but there is still a lack of clinically effective targeted drugs, new antiviral mechanisms and drugs need to be explored. Methods In this study, we established a model of erastin versus ferrostatin-1 treatment of Vero cells, and then detected virus proliferation and gene expression by RT-qPCR through PEDV infection experiments. Results We demonstrated for the first time that erastin significantly inhibited the replication of PEDV upon entry into cells; Vero treated with erastin significantly regulated the expression of three genes, NRF2, ACSL4 and GPX4, notably erastin regulated the expression of these three genes negatively correlated with the expression induced by PEDV virus infection. Conclusions Since NRF2, ACSL4 and GPX4 are classical Ferroptosis genes, this study speculates that erastin may inhibit the replication of PEDV in Vero cells in part through the regulation of ferroptosis pathway, and erastin may be a potential drug for the treatment of PEDV infection.
Collapse
Affiliation(s)
- Hongliang Zhang
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
| | - Yingguang Li
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
| | - Ruimei Yang
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
| | - Ling Xiao
- Animal Husbandry and Veterinary Station of Rushanzhai Town, Rushan Animal Husbandry Development Center, Weihai, China
| | - Shaoming Dong
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
| | - Jiaxu Lin
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
| | - Gang Liu
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Gang Liu, ; Hu Shan,
| | - Hu Shan
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Gang Liu, ; Hu Shan,
| |
Collapse
|
46
|
Gao J, Wang Q, Tang YD, Zhai J, Hu W, Zheng C. When ferroptosis meets pathogenic infections. Trends Microbiol 2022; 31:468-479. [PMID: 36496309 DOI: 10.1016/j.tim.2022.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Apoptosis, necrosis, or autophagy are diverse types of regulated cell death (RCD), recognized as the strategies that host cells use to defend against pathogens such as viruses, bacteria, or fungi. Pathogens can induce or block different types of host cell RCD, promoting propagation or evading host immune surveillance. Ferroptosis is a newly identified RCD. Evidence has demonstrated how pathogens regulate ferroptosis to promote their replication, dissemination, and pathogenesis. However, the interaction between ferroptosis and pathogenic infections still needs to be completely elucidated. This review summarizes the advances in the interaction between pathogenic infections and host ferroptotic processes, focusing on the underlying mechanisms of how pathogens exploit ferroptosis, and discussing possible therapeutic measures against pathogen-associated diseases in a ferroptosis-dependent manner.
Collapse
|
47
|
Zeng S, Peng O, Hu F, Xia Y, Geng R, Zhao Y, He Y, Xu Q, Xue C, Cao Y, Zhang H. Metabolomic analysis of porcine intestinal epithelial cells during swine acute diarrhea syndrome coronavirus infection. Front Cell Infect Microbiol 2022; 12:1079297. [PMID: 36530441 PMCID: PMC9751206 DOI: 10.3389/fcimb.2022.1079297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enveloped, positive single-stranded RNA virus belonging to Coronaviridae family, Orthocoronavirinae subfamily, Alphacoronavirus genus. As one of the main causes of swine diarrhea, SADS-CoV has brought huge losses to the pig industry. Although we have a basic understanding of SADS-CoV, the research on the pathogenicity and interactions between host and virus are still limited, especially the metabolic changes induced by SADS-CoV infection. Here, we utilized a combination of untargeted metabolomics and lipomics to analyze the metabolic alteration in SADS-CoV infected cells. Significant changes were observed in 1257 of 2225 metabolites identified in untargeted metabolomics, while the number of lipomics was 435 out of 868. Metabolic pathway enrichment analysis showed that amino acid metabolism, tricarboxylic acid (TCA) cycle and ferroptosis were disrupted during viral infection, suggesting that these metabolic pathways may partake in pathological processes related to SADS-CoV pathogenesis. Collectively, our findings gain insights into the cellular metabolic disorder during SADS-CoV infection, offer a valuable resource for further exploration of the relationship between virus and host metabolic activities, and provide potential targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Siying Zeng
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Fangyu Hu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Yu Xia
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Rui Geng
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Yan Zhao
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Yihong He
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China,*Correspondence: Hao Zhang,
| |
Collapse
|
48
|
Heat Shock Protein 60 Is Involved in Viral Replication Complex Formation and Facilitates Foot and Mouth Virus Replication by Stabilizing Viral Nonstructural Proteins 3A and 2C. mBio 2022; 13:e0143422. [PMID: 36106732 PMCID: PMC9601101 DOI: 10.1128/mbio.01434-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maintenance of viral protein homeostasis depends on the machinery of the infected host cells, giving us an insight into the interplay between host and virus. Accumulating evidence suggests that heat shock protein 60 (HSP60), as one molecular chaperone, is involved in regulating virus infection. However, the role of HSP60 during foot-and-mouth disease virus (FMDV) replication and its specific mechanisms have not been reported. We demonstrate that HSP60 modulates the FMDV life cycle. HSP60 plays a role at the postentry stage of the viral life cycle, including RNA replication and mRNA translation; however, HSP60 does not affect viral replication of Seneca Valley virus (SVA) or encephalomyocarditis virus (EMCV). We found that HSP60 is involved in FMDV replication complex (RC) formation. Furthermore, our results indicate that HSP60 interacts with FMDV nonstructural proteins 3A and 2C, key elements of the viral replication complex. We also show that HSP60 regulates the stability of 3A and 2C via caspase-dependent and autophagy-lysosome-dependent degradation, thereby promoting FMDV RNA synthesis and mRNA translation mediated by the RC. Additionally, we determined that the apical domain of HSP60 is responsible for interacting with 3A and 2C. The N terminus of 3A and ATPase domain of 2C are involved in binding to HSP60. Importantly, HSP60 depletion potently reduced FMDV pathogenicity in infected mice. Altogether, this study demonstrates a specific role of HSP60 in promoting FMDV replication. Furthermore, targeting host HSP60 will help us design the FMDV-specific antiviral drugs.
Collapse
|
49
|
Xiao L, Huang H, Fan S, Zheng B, Wu J, Zhang J, Pi J, Xu JF. Ferroptosis: A mixed blessing for infectious diseases. Front Pharmacol 2022; 13:992734. [PMID: 36160441 PMCID: PMC9490125 DOI: 10.3389/fphar.2022.992734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
To date, it has been confirmed that the occurrence and development of infectious diseases are tightly associated with regulatory cell death processes, such as apoptosis, autophagy, and necroptosis. Ferroptosis, as a newly discovered form of regulatory cell death characterized by iron-dependent lipid peroxidation, is not only closely associated with tumor progression, but is also found to be tightly related to the regulation of infectious diseases, such as Tuberculosis, Cryptococcal meningitis, Malaria and COVID-2019. The emerging critical roles of ferroptosis that has been found in infectious disease highlight ferroptosis as a potential therapeutic target in this field, which is therefore widely expected to be developed into new therapy strategy against infectious diseases. Here, we summarized the underlying mechanisms of ferroptosis and highlighted the intersections between host immunity and ferroptosis. Moreover, we illuminated the roles of ferroptosis in the occurrence and progression of different infectious diseases, which might provide some unique inspiration and thought-provoking perspectives for the future research of these infectious diseases, especially for the development of ferroptosis-based therapy strategy against infectious diseases.
Collapse
Affiliation(s)
- Leyao Xiao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Huanshao Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Biying Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Junai Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Jiang Pi, ; Jun-Fa Xu,
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Jiang Pi, ; Jun-Fa Xu,
| |
Collapse
|
50
|
Yang Y, Li W, You B, Zhou C. Advances in cell death mechanisms involved in viral myocarditis. Front Cardiovasc Med 2022; 9:968752. [PMID: 36017100 PMCID: PMC9395613 DOI: 10.3389/fcvm.2022.968752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Viral myocarditis is an acute inflammatory disease of the myocardium. Although many etiopathogenic factors exist, coxsackievirus B3 is a the leading cause of viral myocarditis. Abnormal cardiomyocyte death is the underlying problem for most cardiovascular diseases and fatalities. Various types of cell death occur and are regulated to varying degrees. In this review, we discuss the different cell death mechanisms in viral myocarditis and the potential interactions between them. We also explore the role and mechanism of cardiomyocyte death with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exploring the mechanisms may help in the early identification and the development of effective treatments, thus improving the quality of life of patients with viral myocarditis. We believe that the inhibition of cardiomyocyte death has immense therapeutic potential in increasing the longevity and health of the heart.
Collapse
Affiliation(s)
- Yang Yang
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
- *Correspondence: Yang Yang,
| | - Wang Li
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
| | - Benshuai You
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chenglin Zhou
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
- Chenglin Zhou,
| |
Collapse
|